5,534 research outputs found

    Testing for Bivariate Spherical Symmetry

    Get PDF
    An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distri- bution-free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the asymptotic ones, are presented. In a simulation study, the good perfor- mance of the test is demonstrated. Furthermore, a real data example is presented.Asymptotic distribution;distribution-free;empirical like- lihood;hypothesis test;spherical symmetry.

    Tapering promotes propriety for Fourier transforms of real-valued time series

    Get PDF
    We examine Fourier transforms of real-valued stationary time series from the point of view of the statistical propriety. Processes with a large dynamic range spectrum have transforms that are very significantly improper for some frequencies; the real and imaginary parts can be highly correlated, and the periodogram will not have the standard chi-square distribution at these frequencies, nor have two degrees of freedom. Use of a taper reduces impropriety to just frequencies close to zero and Nyquist only, and frequency ranges where the propriety breaks down can be quite accurately and easily predicted by half the autocorrelation width of |H * H(2f)|, denoted by c, where H(f) is the Fourier transform of the taper and * denotes convolution. For vector time series we derive an improved distributional approximation for minus twice the log of the generalized likelihood ratio test statistic for testing for propriety of the Fourier transform at any frequency, and compare frequency range cutoffs for propriety determined by the hypothesis test with those determined by c

    Detecting simultaneous variant intervals in aligned sequences

    Get PDF
    Given a set of aligned sequences of independent noisy observations, we are concerned with detecting intervals where the mean values of the observations change simultaneously in a subset of the sequences. The intervals of changed means are typically short relative to the length of the sequences, the subset where the change occurs, the "carriers," can be relatively small, and the sizes of the changes can vary from one sequence to another. This problem is motivated by the scientific problem of detecting inherited copy number variants in aligned DNA samples. We suggest a statistic based on the assumption that for any given interval of changed means there is a given fraction of samples that carry the change. We derive an analytic approximation for the false positive error probability of a scan, which is shown by simulations to be reasonably accurate. We show that the new method usually improves on methods that analyze a single sample at a time and on our earlier multi-sample method, which is most efficient when the carriers form a large fraction of the set of sequences. The proposed procedure is also shown to be robust with respect to the assumed fraction of carriers of the changes.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS400 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Non-null Distribution of The Likelihood Ratio Statistic for Testing Multisample Compound Symmetry

    Get PDF
    The non-null distribution of the modified likelihood ratio test statistic Λ∗ for testing multisample compound symmetry of q multivariate Gaussian models is derived. The non-null moments of Λ∗ are obtained in terms of Lauricella's hypergeometric function. The non-null distribution is expressed in terms of H-function.

    Non-null Distribution of The Likelihood Ratio Statistic for Testing Multisample Compound Symmetry

    Get PDF
    The non-null distribution of the modified likelihood ratio test statistic Λ∗ for testing multisample compound symmetry of q multivariate Gaussian models is derived. The non-null moments of Λ∗ are obtained in terms of Lauricella's hypergeometric function. The non-null distribution is expressed in terms of H-function.&nbsp

    The host galaxies of luminous radio-quiet quasars

    Full text link
    We present the results of a deep K-band imaging study which reveals the host galaxies around a sample of luminous radio-quiet quasars. The K-band images, obtained at UKIRT, are of sufficient quality to allow accurate modelling of the underlying host galaxy. Initially, the basic structure of the hosts is revealed using a modified Clean deconvolution routine optimised for this analysis. 2 of the 14 quasars are shown to have host galaxies with violently disturbed morphologies which cannot be modelled by smooth elliptical profiles. For the remainder of our sample, 2D models of the host and nuclear component are fitted to the images using the chi-squared statistic to determine goodness of fit. Host galaxies are detected around all of the quasars. The reliability of the modelling is extensively tested, and we find the host luminosity to be well constrained for 9 quasars. The derived average K-band absolute K-corrected host galaxy magnitude for these luminous radio-quiet quasars is =-25.15+/-0.04, slightly more luminous than an L* galaxy. The spread of derived host galaxy luminosities is small, although the spread of nuclear-to-host ratios is not. These host luminosities are shown to be comparable to those derived from samples of quasars of lower total luminosity and we conclude that there is no correlation between host and nuclear luminosity for these quasars. Nuclear-to-host ratios break the lower limit previously suggested from studies of lower nuclear luminosity quasars and Seyfert galaxies. Morphologies are less certain but, on the scales probed by these images, some hosts appear to be dominated by spheroids but others appear to have disk-dominated profiles.Comment: 16 pages, 8 figures, revised version to be published in MNRA

    Constraining the Mass Profiles of Stellar Systems: Schwarzschild Modeling of Discrete Velocity Datasets

    Full text link
    (ABRIDGED) We present a new Schwarzschild orbit-superposition code designed to model discrete datasets composed of velocities of individual kinematic tracers in a dynamical system. This constitutes an extension of previous implementations that can only address continuous data in the form of (the moments of) velocity distributions, thus avoiding potentially important losses of information due to data binning. Furthermore, the code can handle any combination of available velocity components, i.e., only line-of-sight velocities, only proper motions, or a combination of both. It can also handle a combination of discrete and continuous data. The code finds the distribution function (DF, a function of the three integrals of motion E, Lz, and I3) that best reproduces the available kinematic and photometric observations in a given axisymmetric gravitational potential. The fully numerical approach ensures considerable freedom on the form of the DF f(E,Lz,I3). This allows a very general modeling of the orbital structure, thus avoiding restrictive assumptions about the degree of (an)isotropy of the orbits. We describe the implementation of the discrete code and present a series of tests of its performance based on the modeling of simulated datasets generated from a known DF. We find that the discrete Schwarzschild code recovers the original orbital structure, M/L ratios, and inclination of the input datasets to satisfactory accuracy, as quantified by various statistics. The code will be valuable, e.g., for modeling stellar motions in Galactic globular clusters, and those of individual stars, planetary nebulae, or globular clusters in nearby galaxies. This can shed new light on the total mass distributions of these systems, with central black holes and dark matter halos being of particular interest.Comment: ApJ, in press; 51 pages, 11 figures; manuscript revised following comments by refere
    corecore