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Tapering Promotes Propriety for Fourier Transforms
of Real-Valued Time Series
A. T. Walden, Senior Member, IEEE and Zia Ziang Leong

Abstract—We examine Fourier transforms of real-valued sta-
tionary time series from the point of view of statistical propriety.
Processes with a large dynamic range spectrum have transforms
that are very significantly improper for some frequencies; the
real and imaginary parts can be highly correlated, and the
periodogram will not have the standard chi-square distribution at
these frequencies, nor have two degrees of freedom. Use of a taper
reduces impropriety to just frequencies close to zero and Nyquist
only, and frequency ranges where propriety breaks down can be
quite accurately and easily predicted by half the autocorrelation
width of |H ⇤ H(2f)|, denoted by c, where H(f) is the Fourier
transform of the taper and ⇤ denotes convolution. For vector
time series we derive an improved distributional approximation
for minus twice the log of the generalized likelihood ratio
test (GLRT) statistic for testing for propriety of the Fourier
transform at any frequency, and compare frequency range cut-
offs for propriety determined by the hypothesis test with those
determined by c.

Index Terms—Fourier transform of time series, generalized
likelihood ratio test (GLRT), improper complex vector, spectral
analysis, tapering, vector-valued time series.

I. INTRODUCTION
A complex-valued random vector Z is said to be proper, or

circular to second-order, if it is uncorrelated with its complex
conjugate [11], [15]. In recent years there has been a great
deal of interest in the concept of improper signals, for which
this second-order circularity does not hold, since performance
advantages accrue by processing such signals in a way which
exploits the extra information contained in the signal [2], [7],
[17].
The focus of this paper is on the ubiquitous case of Fourier

transforms of finite-length segments of real-valued time series,
which we examine from the point of view of statistical
propriety.
Consider a real-valued discrete time stationary process

{Xt, t 2 Z} and without loss of generality take the process to
have zero mean. Let the sample interval be �t = 1 so that the
Nyquist frequency is 1/2. The Fourier transform of the finite
segment {Xt, t = 0, . . . , N � 1} is given by

J(f) = N�1/2
N�1X
t=0

Xte�i2⇡ft, |f |  1/2. (1)

At frequencies 0 < f < 1/2 the quantity J(f) is complex-
valued and the question arises as to whether it is corre-
lated with its complex-conjugate, i.e., is proper, or not. Why
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should we care? For J(f) Gaussian-distributed, a reasonable
assumption in view of (1) and the central limit theorem,
this is an important question, since if it is proper, the real
and imaginary parts are independent, and consequently the
periodogram |J(f)|2 will have a scaled �2

2 distribution (chi-
square with two degrees of freedom). This is a basic as-
sumption made for the periodogram in much statistical work
involving the spectrum, and yet will be invalid if J(f) is
improper. Indeed, the magnitude of an improper complex-
valued Gaussian random variable has an ‘improper/noncircular
Rayleigh pdf,’ [2, p. 5108].
Propriety of J(f) was briefly considered in [9], (and used

by [16] in the context of radar signals), where it was concluded
that “Unless the noise is white, the circular anomaly will
usually not be zero, and the second-order statistics must take
a prescribed form that is not circular.” This statement is quite
vague and the purpose of the current paper is to explore the
issue much further, and in particular look at the interaction
between tapering and propriety. (Tapering is not mentioned in
[9] or [16].) We find that impropriety is worse at frequencies
where power is relatively low in comparison to any high
power peaks in the spectrum, i.e., those frequencies where
the spectral estimate is subject to ‘side-lobe leakage.’ Our
results are practically useful: tapering protects against such
impropriety at all but the lowest and highest frequencies, and
moreover we can determine numerically what is meant by
‘lowest’ and ‘highest,’ enabling us to know where standard
distributional properties will be invalid. We also compare these
frequency range cut-offs for propriety with those determined
by an improved generalized likelihood ratio test.

A. Contributions
Following some background in Section II on complex-

valued vectors, and their statistical properties, the contributions
of this paper are as follows:
1) We show that, for processes with a spectrum having a
large dynamic range, the Fourier transform values are
very significantly improper for frequencies affected by
side-lobe leakage. The real and imaginary parts can be
highly correlated and the periodogram will not have a chi-
square distribution at these frequencies, nor have two de-
grees of freedom. This distributional effect complements
the known problem of leakage bias of the periodogram
in such cases.

2) The application of a taper in the Fourier transform will
reduce impropriety just to frequencies close to zero and
Nyquist, ensuring that the chi-square distribution for the
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periodogram is valid for most of the frequency range.
Moreover, the frequencies where propriety of the Fourier
transform breaks down near zero and Nyquist can be quite
accurately predicted from half the autocorrelation width
of |H ⇤H(2f)|, denoted by c, where H(f) is the Fourier
transform of the taper and ⇤ denotes convolution.

3) We consider making decisions on impropriety of the
Fourier transform via hypothesis testing. For vector time
series we derive an improved distributional approximation
for minus twice the log of the generalized likelihood ratio
(GLRT) statistic for testing for propriety of the Fourier
transform at any frequency. This enables us to compare
frequency range cut-offs for propriety determined by the
hypothesis test with those determined by c; the latter is
indicated by an extreme percentage point of the former.

B. Terminology
Superscripts: ⇤ denotes complex-conjugate, T denotes trans-

pose, and H denotes complex-conjugate (Hermitian) transpose.
tr{·} denotes matrix trace. d! denotes convergence in dis-
tribution. def= means equal by definition. d= means equal in
distribution. Re(Z) and Im(Z) denote the real and imaginary
parts, respectively, of Z.
Np(0,⌃) will denote the usual real-valued Gaussian dis-

tribution of dimension p with mean 0 and covariance matrix
⌃. NC

p (0,⌃) will denote a proper complex-valued Gaussian
distribution of dimension p with mean 0 and covariance matrix
⌃.

II. COMPLEX-VALUED RANDOM VECTORS
A. Background
Let Z = [Z1, . . . , Zp]T denote a complex-valued ran-

dom column vector with mean zero. The covariance matrix
cov{Z,Z} of the complex-valued vector Z is defined as
⌃ = cov{Z,Z} def= E{ZZH}, and is Hermitian. Since it is
a covariance matrix it is positive semidefinite. Additionally,
Z has a complementary covariance matrix ccov{Z,Z} [17],
defined as R = ccov{Z,Z} def= cov{Z,Z⇤} = E{ZZT },
which is complex-valued and symmetric, but not in general
positive semidefinite. (The complementary covariance matrix
is also called the pseudo-covariance matrix, e.g., [17].)
In the scalar case the two second central moments are the

variance and the complementary variance:

var{Z} = E{|Z|2} and cvar{Z} = E{Z2}. (2)

The two matrices ⌃ and R both appear in the so-called
augmented covariance matrix [17]. Suppose we form the
augmented vector U by joining Z and Z⇤, i.e.,

U = [ZT ,ZH ]T = [Z1, . . . , Zp, Z
⇤
1 , . . . , Zp

⇤]T , (3)

then letting ⌃U = E{UUH}, we obtain

⌃U = E

⇢
Z
Z⇤

� ⇥
ZH ZT

⇤�
=


⌃ R
R⇤ ⌃⇤

�
.

Note that ⌃U captures all the second-order statistics of Z; U
is simply a convenient structure for obtaining the matrix.

We can also write Z as Z = A + iB, where A =
Re(Z),B = Im(Z). Let ⌃V denote the covariance matrix
of the real-valued random vector

V = [AT ,B T ]T = [A1, . . . , Ap, B1, . . . , Bp]T ,

and suppose we partition up the covariance matrix ⌃V =
E{V V T } into its four constituent p⇥ p matrices,

⌃V =

⌃AA ⌃AB

⌃BA ⌃BB

�
.

Then

⌃Z =E{ZZH} = (⌃AA + ⌃BB) + i(⌃BA �⌃AB)
RZ =E{ZZT } = (⌃AA �⌃BB) + i(⌃BA + ⌃AB).

Note that when RZ = 0, we obtain

⌃AA = ⌃BB = 1
2Re(⌃Z); ⌃AB = �⌃BA = �1

2 Im(⌃Z).
(4)

A complex-valued random vector that has R = 0 is called a
proper complex-valued random vector [11]. If Z is proper, it
is uncorrelated with its complex conjugate Z⇤. When R 6= 0,
the vector is an improper complex-valued random vector [17].
Remark 1: From (4), for the scalar case, we have �2

A =
�2

B = �2
Z/2 and �AB = �BA must be zero, i.e., for a proper

complex-valued random variable, the real and imaginary parts
are uncorrelated with equal variances. ⇤
A proper complex-valued random vector is also said to be

‘circular to second-order’ [15]: if we multiply Z by ei↵, for
0  ↵  2⇡, its second-order properties remain the same, i.e.,

E{Zei↵(Zei↵)H} = E{ZZH}
E{Zei↵(Zei↵)T } = ei2↵E{ZZT } = ei2↵RZ = 0.

A random vector is (fully) circular if its probability distribution
is rotationally invariant [17, p. 53].

B. Complex-Valued Gaussian Random Vector
Assume Z = [Z1, . . . , Zp]

T is now a complex-valued
Gaussian random vector with zero mean vector and covari-
ance matrix ⌃. The real and imaginary parts of Z form
a set of 2p jointly zero-mean Gaussian random variables,
V

d=N2p(0,⌃V ).
When R = 0, Z

d=NC
p (0,⌃). Since the joint moments

of orders 1 and 2 determine the entire distributional structure
for the Gaussian distribution, it follows that a complex-valued
zero-mean Gaussian random vector is proper iff it is (fully)
circular [17, p. 53].
Remark 2: In the scalar case, if Z

d=NC
1 (0,�2

Z), then A
and B are independent, each N1(0,�2

Z/2); see Remark 1. ⇤

III. IMPROPRIETY OF SCALAR FOURIER TRANSFORM
Under appropriate mixing conditions for a real-valued non-

Gaussian stationary time series, or directly for a stationary
Gaussian time series, the Fourier transform in (1) is asymp-
totically (N !1) distributed as [5, p. 120],

J(f) d=

(
NC

1 (0, S(f)) if f 6= 0,±1/2
N1(0, S(f)) if f = 0,±1/2,

(5)
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where we have concentrated on the principal domain |f | 
1/2, given that the result is periodic with period unity. So,
asymptotically, the Fourier transform is proper/circular for
frequencies away from zero and ±1/2. In this paper we look
at these properties for finite samples.
Remark 3: Under the same conditions giving (5), we have

the following distributional result for the periodogram:

|J(f)|2 d=(S(f)/2)�2
2, f 6= 0,±1/2. (6)

⇤

A. Raw DFT
The orthonormal discrete Fourier transform (DFT) corre-

sponds to evaluating the Fourier transform (1) at the Fourier
frequencies f` = `/N, ` = 0, . . . , N � 1. We can write the
DFT as FX, where X is a column vector with elements
{Xt, t = 0, . . . , N � 1} and F is an N ⇥ N matrix whose
(`, t)th element is exp(�i2⇡t`/N)/

p
N, for 0  `, t  N�1.

A linear transform of a proper complex-valued vector is
proper [11], and all scalar components are then proper. So
the DFT of a proper complex-valued vector gives rise to
proper complex variables at each Fourier frequency. This
property was exploited in [13] for the simulation of proper
scalar complex-valued Gaussian proceses. However, if X is
real-valued, the case of interest to us, no such assurance is
forthcoming.
The autocovariance sequence (ACVS) of the stationary, real-

valued, zero-mean process {Xt} is defined as

s⌧
def= E{Xt+⌧Xt}, (7)

where ⌧ is the lag. The ACVS is assumed absolutely summable
so that its Fourier transform (the spectrum) exists.
Some aspects of circularity of the DFT were examined by

Edelblute [9], who derived some useful analytical expressions
which we now explore further.
The power or variance of the DFT is

P (f`) = E{|J(f`)|2} =
1
N

N�1X
t=0

N�1X
u=0

st�u cos (2⇡f`(t� u)) .

(8)
This is also the expected value of the periodogram. The
covariance of the real and imaginary part of J(f`) is

C(f`) = E{Re(J(f`))Im(J(f`))} = � 1
N

N�1X
t=1

st sin(2⇡f`t).

(9)
This is called the circular anomaly in [9].
The difference between the variances of the real and imag-

inary parts of J(f`) is

Q(f`) = E{Re2(J(f`))}�E{Im2(J(f`))} (10)

=

8><
>:

1
N

PN�1
t=0

PN�1
u=0 st�u, f` = 0

1
N

PN�1
t=0

PN�1
u=0 st�u cos(⇡(t + u)), f` = ±1/2

2 cot (2⇡f`)C(f`), otherwise.
(11)

0 0.2 0.4
0

0.5

1

(a)

im
pr

op
rie

ty
 in

de
x

frequency
0 0.2 0.4

1

0

1

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

(b)

frequency
0 0.2 0.4

30

20

10

0

10

20

dB

0 0.2 0.4
0

0.5

1

(c)

im
pr

op
rie

ty
 in

de
x

frequency
0 0.2 0.4

10

0

10

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

(d)

frequency
0 0.2 0.4

60
50
40
30
20
10

0
10
20

dB

Fig. 1. Impropriety index for four time series (a)–(d) for N = 256. The solid
line is the index, |%(f`)|, while the dashed line is the theoretical spectrum
S(f`) measured on a decibel (10 log10) scale.

Remark 4: The two special cases in (11) were not included
in [9]. ⇤
In addition, we can also obtain the pseudo-variance R(f`) =
E{J2(f`)} by using Equation (9) and (11):

R(f`) = E{[Re (J(f`)) + iIm (J(f`))]2}
= Q(f`) + 2iC(f`) (12)

=

8><
>:

1
N

PN�1
t=0

PN�1
u=0 st�u, f` = 0

1
N

PN�1
t=0

PN�1
u=0 st�u cos(⇡(t + u)), f` = ±1/2

2C(f`) csc (2⇡f`) ei2⇡f` , otherwise.
(13)

Here csc denotes cosec.
Ollila [12] considered the ratio between the pseudo-variance

and the variance of a complex random variable, Z, namely
%Z

def= RZ/PZ . It measures the correlation of the variable with
its complex conjugate. Its modulus quantifies how improper is
Z : it is proper if |%Z | = 0 and it is maximally improper
if |%Z | = 1. If Z is Gaussian, then |%Z | = 0 corresponds
to circularity, otherwise, just second-order circularity. |%Z |
was called the circularity coefficient in [12], but we prefer
‘impropriety index’ which avoids confusion over second or
higher-order circularity.
For each Fourier frequency f` we can use (8) and (13)

to calculate the impropriety index |%(f`)| = |R(f`)/P (f`)|
analytically. We have done this for four different time series
models:

(a) Xt = ✏t

(b) Xt = 1.8Xt�1 � 0.9Xt�2 + ✏t (14)
(c) Xt = 0.75Xt�1 � 0.5Xt�2 + ✏t

(d) Xt = 2.7607Xt�1 � 3.8106Xt�2

+ 2.6535Xt�3 � 0.9238Xt�4 + ✏t

Here {✏t} is zero-mean Gaussian white noise. Model (b) is
taken from [21]. Models (c) and (d) are taken from [14].
Models (b) and (d) have large spectrum dynamic ranges of
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Fig. 2. Impropriety index |%h(f 0
`)| for finer frequency approach with tapering,

N = 256, N 0 = 4096.

41dB and 65dB, respectively, (where the decibel (dB) scale
is a 10 log 10 scale), and their spectral magnitudes vary quite
rapidly with frequency. The variance of {✏t} is chosen to make
{Xt} have unity variance. Only model (a) was considered in
[9].
For each model, and N = 256, Fig. 1 shows the impropriety

index (solid line, left y-axis) with frequency, while the spectral
density function S(f`) =

P1
⌧=�1 s⌧e�i2⇡f`⌧ , is also shown

(dashed line, right y-axis). In spectral estimation, “side-lobe
leakage” describes the effect of estimated power transferring
from high power parts of the spectrum to low power parts.
Such leakage is absent when the spectrum is flat (white
noise) and most acute when the dynamic range is high. We
see that the impropriety index is zero for white noise, apart
from at frequency zero. Also for the low dynamic range
spectrum of model (c) there is only a small impropriety away
from the peak, just visible at high frequencies where the
spectrum is lowest. However, for models (b) and (d), where
the dynamic range is high, impropriety is essentially zero
where the spectrum is high, but where the spectrum is low,
the impropriety index can become very high.
A stochastic process runs from �1 to1 so our observation

of X0, . . . ,XN�1 can be viewed as multiplying the process by
a box-car function which is zero before the observations, then
unity, and then zero again after the observations. Such sharp
features cause ripples in the Fourier transform leading to the
leakage discussed above; this can be ameliorated by applying
a taper, which we discuss next.

B. DFT with tapering
Edelblute’s results were derived for Fourier frequencies only

and did not include tapering. We have just seen that the raw
DFT produces very high impropriety for time series with high
dynamic range. We now consider both tapering and a finer
frequency grid. We replace (1) by

Jh(f) def=
N�1X
t=0

htXte�i2⇡ft, (15)

where {ht, t = 0, . . . , N � 1} is a data taper normalized to
have a sum of squares of unity. Then the tapered periodogram
is given by |Jh(f)|2|.
We utilise the zeroth-order Slepian taper: let H(f) =PN�1
t=0 hte�i2⇡ft, be the Fourier transform of the taper,

and let H(f) = |H(f)|2 be the corresponding spectral
window. Then the zeroth-order Slepian taper is the se-
quence such that H(f) maximizes the concentration ratio
[
RW
�W H(f)df ]/[

R 1/2
�1/2H(f)df ] over a chosen design interval

[�W,W ] ✓ [�1/2, 1/2]. Many further details are provided in
[14, Chapters 7 and 8]. Such a taper reduces leakage through
excellent sidelobe suppression in H(f).
The effective bandwidth, B say, associated with the taper,

can be equated to the autocorrelation width [4, p. 154] of
H(f) = |H(f)|2 :

B
def= widtha{|H(f)|2} =

nR 1/2
�1/2 |H(f)|2df

o2

R 1/2
�1/2 |H(f)|4df

. (16)

As shown in [22, p. 210], the effective bandwidth for the
zeroth-order Slepian taper is actually less than that of the
‘design bandwidth’ of 2W. In this work we chose W = 3/N,
so that the associated effective bandwidth is then less than
2W = 6/N = 0.023, i.e., not too wide in terms of Fourier
frequencies and consistent with resolving the spectra in Fig. 1.
Let Ph(f)def=E{|Jh(f)|2}, Rh(f)def=E{J2

h(f)}. Then [21],

Ph(f) =
N�1X
t=0

N�1X
u=0

hthust�ue�i2⇡f(t�u) (17)

Rh(f) =
N�1X
t=0

N�1X
u=0

hthust�ue�i2⇡f(t+u). (18)

We can pad with zeros to give a length N 0 = 2n >> N
and thus calculate Ph(f 0`) and Rh(f 0`) where f 0` = `/N 0, ` =
0, . . . , N 0� 1, giving a much finer frequency scale. To obtain
(17) we use a forward fast Fourier transform (FFT) over t,
and then an inverse FFT over u, and to calculate (18) we
use two forward FFTs. With N = 256 we chose to use
N 0 = 4096. Fig. 2 shows the impropriety index, |%h(f 0`)| =
|Rh(f 0`)/Ph(f 0`)|, in this case. Away from f = 0, 1/2 the
impropriety index is virtually zero. Clearly the tapering has
been very beneficial in producing a proper or (second-order)
circular outcome for most of the frequency range.
However, it is highly informative to examine behaviour very

close to zero and Nyquist. Fig. 3 is a zoom-in to the low
frequency end (0  f 0` < 0.01) of the plots in Fig. 2. The
high frequency end, (0.49 < f 0`  0.5), is not shown, but
follows analogously from the symmetry seen in Fig. 2.
It is shown in Appendix-A that |%h(f)| = |H ⇤H(2f)| =���PN�1
t=0 h2

t e�i4⇡ft
��� , where ⇤ denotes convolution. Now |H ⇤

H(2f)| is real-valued, positive and peaked about f = 0. So its
autocorrelation width will be a suitable measure of its width:

widtha{|H ⇤H(2f)|} def=

nR 1/2
�1/2 |H ⇤H(2f)|df

o2

R 1/2
�1/2 |H ⇤H(2f)|2df

. (19)
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Fig. 3. Impropriety index |%(f 0
`)| for finer frequency approach with tapering,

N = 256, N 0 = 4096, restricted to very low frequencies. The vertical dashed
line marks c = 1

2widtha{|H ⇤H(2f)|}.

Let us denote

c = 1
2widtha{|H ⇤H(2f)|}. (20)

Impropriety is then predicted for the (positive) frequency
ranges [0, c][ [12�c, 1

2 ]. The quantity c is marked by a vertical
dashed line in Fig. 3. This measure provides a useful estimate
of the frequency extent of the impropriety under tapering.
Remark 5: Under the same conditions giving (5), we have

the following distributional result for the tapered periodogram:

|Jh(f)|2 d=(S(f)/2)�2
2, f 6= 0,±1/2, (21)

i.e., the tapered and the untapered periodograms have the same
large sample distribution [5, p. 128]. ⇤

IV. STATISTICAL IMPLICATIONS OF IMPROPRIETY
A. Correlation Between Real and Imaginary Parts
1) No tapering: We consider the covariance matrix of the

real and imaginary parts of J(f 0`) :
E{Re2(J(f 0`))} E{Re(J(f 0`))Im(J(f 0`))}

E{Re(J(f 0`))Im(J(f 0`))} E{Im2(J(f 0`))}

�
.

Using (8) and (10), then (9) and (12), we can write this as

1
2


[P (f 0`) + Re(R(f 0`))] Im(R(f 0`))

Im(R(f 0`)) [P (f 0`)�Re(R(f 0`))]

�
. (22)

The components of this matrix can be found using (17) and
(18) with the taper set to the default ht = 1/

p
N.

Remark 6: For f = 0,±1/2, J(f) is real-valued and the
covariance matrix is singular. ⇤
Using (22) we can find the correlation between the real

and imaginary parts of J(f 0`); under propriety, it is zero.
Fig. 4 shows the correlation against frequency for our four
models. For models (a), white noise, and (c), the low dynamic
range example, the correlation is essentially zero apart from
very close to zero and 1/2. Now let us look at models
(b) and (d). Recalling Fig. 1, we see that in parts of the
frequency range where leakage is not a problem (and the
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Fig. 4. Correlation between real and imaginary parts of J(f 0
`) for four time

series (a)–(d). N = 256, N 0 = 4096 and no taper.
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Fig. 5. Correlation between real and imaginary parts of Jh(f 0
`) for four time

series (a)–(d). N = 256, N 0 = 4096 with Slepian taper, restricted to very
high frequencies. The dashed line is as in Fig. 3.

impropriety index is zero) the correlation is around zero,
but where there is considerable leakage (and the impropriety
index is significantly non-zero) the correlation can reach high
values, such as �0.87 for model (d). Correlation will mean
that the scaled �2

2 statistical model for the periodogram —
which assumes independent real and imaginary parts — will be
invalid. The oscillating correlation structure seen in Figs. 4(b)
and (d) will affect the degrees of freedom of the periodogram,
which we examine shortly.

2) With tapering: Just as for the impropriety index, the
effect of applying a taper is dramatic: the correlation between
the real and imaginary parts of Jh(f 0`) for all four models is
then only significantly non-zero close to f = 0,±1/2. Fig. 5
shows the correlation for high frequencies f 0` > 0.49 and c
gives a good indication of the frequency below which the
correlation can be taken to be zero. At low frequencies the plot
is inverted with the correlation falling to �1 as f 0` approaches
zero.
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B. Distribution
The probability density function (PDF) of the magnitude of

an improper complex-valued Gaussian random variable was
given in [2, p. 5108], who called it ‘the improper/noncircular
Rayleigh pdf.’ The PDF of Ŝ(f) def= |J(f)|2 then follows as

g(Ŝ(f)) =
1

P (f)p⌘(f)
e�Ŝ(f)/[P (f)⌘(f)] I0

 
Ŝ(f)|⇢(f)|
P (f)⌘(f)

!
,

(23)
Ŝ(f) > 0, where ⌘(f) def= 1�|⇢(f)|2, and I0(·) is the modified
Bessel function of the first kind of order zero. Note that when
⇢(f) = 0, the PDF is that of an exponential random variable
with mean P (f) :

g(Ŝ(f)) =
1

P (f)
e�Ŝ(f)/P (f), Ŝ(f) > 0, (24)

or, |J(f)|2 d=(P (f)/2)�2
2.

• At a frequency fa where the periodogram is unaf-
fected by side-lobe leakage and local bias is negligible,
E{|J(fa)|2} def= P (fa) = S(fa), and ⇢(fa) = 0, so that
(6) or (24) gives the standard distributional properties.

• At a frequency fb where the periodogram is affected by
side-lobe leakage, P (fb) > S(fb), and ⇢(fb) 6= 0, and
the PDF (23) applies.

Fig. 6 illustrates these results: here fa is the nearest Fourier
frequency to the peak in the SDF for model (b), shown in
Fig. 1(b). fb is chosen to be 0.4 for the same model. The plots
in the top row of Fig. 6 show exactly the behaviour discussed
above. For the plots in the bottom row tapering has been
applied, side-lobe leakage is eliminated, and the distributional
behaviour now also obeys standard theory at fb.

C. Degrees of Freedom
All the model-based properties shown so far are are exact.

We now look at the degrees of freedom of the periodogram
via simulation. We take the periodogram to be distributed
as a scaled chi-squared variable with ⌫ degrees of freedom:
Ŝ(f) d= a�2

⌫ , for which E{Ŝ(f)} = a⌫ and var{Ŝ(f)} =
2a2⌫, so that

⌫ = 2

⇣
E{Ŝ(f)}

⌘2

var{Ŝ(f)}
. (25)

The quantity ⌫ is often called the equivalent degrees of
freedom of the spectrum estimator Ŝ(f) [14, p. 255]. To
estimate ⌫ at each frequency we can simulate a time series
from the chosen model process m times, calculate the sample
means and variances of Ŝ(f 0`), and use these in (25) to obtain
⌫̂. This was done using m = 10 000 and the results are shown
in Fig. 7 for model (d). Plots (a)–(c) are for no tapering and
we see that the degrees of freedom oscillate between 1.5 and
2 at the low-frequency end and between 1 and 2 at the high-
frequency end.
When tapering is applied the effect is immediate: in plot (d)

we see at the high-frequency end that the degrees of freedom
for P̂h(f) are 2 until the boundary marked by the vertical line
implied by (19), after which the degrees of freedom roll-off
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Fig. 6. Theoretical and empirical distributions of periodogram estimator for
model (b), at frequency fa, (left column) and frequency fb, (right column),
without tapering, (first row), and with tapering (second row). In every plot
the thick line gives the PDF in (6), and the thin line that in (23); they are
only noticeably different in plot (b). Here N = 256 and 20 000 simulations
were used to build the histograms.
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Fig. 7. Estimated degrees of freedom for model (d) using N = 256 and
N 0 = 4096. Plots (a)–(c) are for no tapering, and show the full frequency
range, the low-frequency end and the high-frequency-end, respectively. Plot
(d) shows the high-frequency end when the Slepian taper is used, and the
vertical dashed line is as in Fig. 3.

smoothly to unity. (The same effect is observed at the low-
frequency end.)

D. The Case for Tapering
Brillinger [6], considered tapering in spectrum estimation.

His two main advantages for tapering were (i) “an improve-
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Fig. 8. All plots for model (b). Top row: theoretical and empirical distributions
of periodogram, at frequencies (a) fb � 1

N , (b) fb, (c) fb + 1
N . Bottom

row: theoretical and empirical distributions of tapered periodograms, all
at frequency fb, using Slepian tapers of orders 0, 1, 2 for plots (d)–(f),
respectively. In each plot the thick line gives the PDF in (6), and the thin
line that in (23). Here N = 256 and 20 000 simulations were used to build
the histograms.

ment in the resolution (reduction in the bias) of the estimate
in the case that the power spectrum has a split peak or a very
large peak at some location” and (ii) “one can arrange that the
finite Fourier transform values at distinct frequencies be more
nearly uncorrelated.”
In the current paper we have shown that tapering results

in Jh(·) being proper over all the frequency range except
at very high or low frequencies, and that what is meant by
“very high/low” can be numerically predicted. The propriety
of Jh means that standard chi-square approximations for the
(tapered) periodogram will be valid.

V. A HIGHLY RELEVANT EXAMPLE
We now illustrate the importance of the results by con-

sideration of two standard types of smoothing for spectrum
estimation. We firstly remind ourselves of the standard theory,
then consider the effects of impropriety.

A. Smoothed periodogram
The smoothed periodogram is found by averaging 2K + 1

adjacent periodogram ordinates at the Fourier frequencies [5]:

S̄(f`) =
1

2K + 1

KX
k=�K

Ŝ(f`�k). (26)

Standard large sample theory [19, p. 196] considers S̄(fj) to
be the average of 2K + 1 approximately independent random
variables each distributed as in (6), so that

S̄(f`)
d=


S(f`)
4K + 2

�
�2

4K+2, f` 6= 0,±1/2, (27)

provided that the spectrum varies little over the 2K+1 Fourier
frequencies.

B. Multitapering
The multitaper spectrum estimator is found by averaging

over a set of K tapered periodograms at frequency f`:

Ŝ(MT )(f`) =
1
K

K�1X
k=0

|Jhk(f`)|2, (28)

where Jhk(f) def=
PN�1

t=0 ht,kXte�i2⇡ft, and {ht,k t =
0, . . . , N � 1; k = 0, . . . ,K � 1} are a set of K orthonor-
mal, (e.g., Slepian), data tapers [22]. Standard large sample
theory [14, p. 343] takes Ŝ(MT )(f`) to be the average of K
approximately independent random variables each distributed
as in (21), so that

Ŝ(MT )(f`)
d= S(fj)

2K
�2

2K , f` 6= 0,±1/2, (29)

provided that the spectrum varies little over the bandwidth of
the widest taper, namely that of order (K � 1), [22].

C. Effect of Impropriety
For model (b), consider the estimator (26) with K = 1

and centered at the Fourier frequency fb = 0.4. Figs. 8(a)-(c)
show empirical histograms of the periodograms for frequencies
fb� 1

N , fb, fb + 1
N , respectively. The standard theory PDF (6)

does not hold in all three cases, and hence the result (27)
will be invalid. By way of contrast, the improper/noncircular
magnitude squared PDF of (23), predicts the distribution of
the periodograms very well.
Turning to the estimator (28), Figs. 8(d)-(f) show empirical

histograms for the tapered periodograms used in (28) when
K = 3, all at frequency fb. The three tapers used were Slepian
tapers of orders 0, 1, 2, respectively, [22]. The standard theory
PDF (6), or equivalently (21), holds in all three cases, and
hence the result (29) will be valid. The in-built tapering thus
avoids the complication of improper/noncircular PDFs.

VI. HYPOTHESIS TESTING AND VECTOR TRANSFORMS
We now turn to making decisions on impropriety based

on samples of the Fourier transform. We will use hypothesis
testing to determine the frequency interval corresponding to
a rejection of propriety and compare this with the intervals
determined by [0, c] [ [12 � c, 1

2 ]. We will do this for both the
scalar (p = 1) and vector (p > 1) cases, and in doing so we
derive a distributional approximation for the test statistic for
the vector case which improves on that of [23].

A. Background
Consider a real-valued, mean-zero, Gaussian and sta-

tionary, vector-valued times series {Xt} where Xt =
[X1,t, . . . ,Xp,t]T . Suppose we replace (15) by

Jh(f) def=
N�1X
t=0

htXte�i2⇡tf , (30)

and define the augmented vector

U(f) def= [JT
h (f),JH

h (f)]T , (31)
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which is a complex-valued vector of length 2p. We now
temporarily suppress the dependence on f. Then letting ⌃U =
E{UUH}, we will have

⌃U = E

⇢
Jh

J⇤h

� ⇥
JH

h JT
h

⇤� def=


P h Rh

R⇤
h P ⇤

h

�
. (32)

Given K independent and identically distributed random sam-
ples Jh;1, . . . ,Jh;K we know that the likelihood for the
corresponding augmented vectors u1, . . . ,uK will be [18]

l = ⇡�pK(det⌃U )�K/2 exp

(
�1

2

KX
k=1

uH
k ⌃U

�1uk

)

= ⇡�pK(det⌃U )�K/2 exp
n
�K

2 tr
⇣
⌃U

�1⌃̂U

⌘o
,

where ⌃̂U is the sample augmented covariance matrix

⌃̂U =
1
K

KX
k=1

uH
k uk =

"
P̂ h R̂h

R̂
⇤
h P̂

⇤
h

#
. (33)

Our hypothesis test for propriety of Jh, (at frequency f ), is
then H0 : Rh = 0 vs H1 : Rh 6= 0.
The generalized likelihood ratio test (GLRT) statistic is,

LG =
max

Rh2H0
L(Jh)

max
Rh2H1

L(Jh)
, (34)

a ratio of the likelihood with ⌃U having zero off-diagonal
blocks, to the likelihood with unconstrained ⌃U . The statistic
can be rexpressed as [18]

T
def= L2/K

G = det{Ip � P̂
�1

h R̂hP̂
�⇤
h R̂

⇤
h} =

det{⌃̂U}
det2{P̂ h}

.

B. Existing Distributional Approximations
By Wilks’ theorem [20], if H0 is true, then as K !1,

M
def= �2 log LG = �K log(T ) d�! �2

⌘. (35)

Here ⌘ is the difference between the number of free real
parameters under H0 and H1. Now Rh is complex symmetric,
and there are 1

2 (p2 � p) free complex parameters in the
upper triangle (excluding the diagonal) and p free complex
parameters on the diagonal. Hence, we have a total of p2 + p
free real parameters, and therefore ⌘ = p2 + p.
Remark 7: Delmas et al. [8] have derived asymptotic

distributions for generalized likelihood ratios for testing for
impropriety in the scalar and vector cases; they consider
both independent and identically distributed observations, and
independent but non-identically distributed scenarios. ⇤
Our focus in the following is the finite-sample case. Box’s

finite-sample distributional approximation for M is

M
d= K

K � p
�2

p2+p, (36)

[23], and we reject H0 if

M >
K

K � p
�2

p2+p(1� ↵), (37)

where �2
p2+p(1 � ↵) is the 100(1 � ↵)% point of the chi-

square distribution with p2 + p degrees of freedom. When
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Fig. 9. GLRT test statistic M(f 0
`) for the four scalar time series (a)–(d) for

N = 256, N 0 = 4096 and K = 15. No tapering used. The horizontal line is
the critical value for ↵ = 0.01 based on Box’s approximation which is exact
for the scalar case.

p = 1 (scalar case), T = 1 � |%̂|2. Under the null hypothesis
it is known that |%̂|2, which is a coherence estimator, has a
beta(1,K � 1) distribution, from which it follows that Box’s
approximation is actually exact for p = 1.
The GLRT statistics M(f 0`) for the four scalar time series

(a)–(d) are shown in Fig. 9 for ht = 1/
p

N, i.e., there is no
tapering. It resulted from K = 15 independent simulations of
length N = 256. The critical value for ↵ = 0.01 is shown
by the horizontal line, and is valid at any particular frequency
f 0`. Viewed over all frequencies we would expect a number
of false positives, but the general result is that propriety is
violated for model (b) at higher frequencies, and for model
(d) at most frequencies, as expected from Fig. 1.
Fig. 9 results from a one-off simulation of the GLRT; to

investigate the behaviour at frequencies near zero and 1/2 we
can use averaging to get stable results. Consider replicating
the test statistic L times to get M1(f 0`), . . . ,ML(f 0`). Now
each Mi(f 0`) has the chi-square distribution with two degrees
of freedom, or exponential distribution with parameter 1/2,
scaled by K/(K � 1). Since the sum of L independent
exponential random variables Yi has a gamma distribution,
it follows that the probability density function of Y , the mean
of the Y ’s, is g(y) = (L/2)L[yL�1/(L�1)!]e�Ly/2, y > 0,
which identifies the Gamma(L,L/2) distribution. So for the
mean of the M ’s,

M(f 0`)
d= K

K � 1
Gamma(L,L/2), (38)

which is exact for the scalar case. Using tapering, the averaged
GLRT statistic for L = 200 for the low-frequency end is
shown in Fig. 10 for the four scalar time series. The 1% level
cuts the averaged GLRT at a frequency close to c. (If the 5%
level is used the match is not much different, since the 1% and
5% points of the distribution are close.) Analogous behaviour
is found close to Nyquist frequency.
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Fig. 10. Averaged GLRT statistic M(f 0
`) for the four scalar time series (a)–

(d) for N = 256, N 0 = 4096, K = 15 and L = 200. Low-frequency end
when the Slepian taper is used. The horizontal line is the critical value for
↵ = 0.01 using (38) and the vertical lines are as in Fig. 3.

C. A New Distributional Approximation for Vector Case
The derivation of Box’s approximation is by the idea of

matching the cumulants of a scaled chi-square approximation
toM up to an error of order O(K�2). This will be problematic
for p > 1 [3, p. 329] and leads to the consideration of other
approaches.
Box [3] suggested approximately matching the cumulants of

distributions of the form bF⌫1,⌫2 , i.e., a scaled F distribution
with parameters ⌫1, ⌫2. In fact we can match the first three
cumulants exactly as we now show, starting with Theorem 1.
Theorem 1: The 2rth moment of LG(f), i.e., E{L2r

G (f)},
is given by

C
pY

j=1

�(K[1 + 2r]� 2j + 1)
�(K[1 + 2r]� j + 1)

, (39)

where C is a term that does not depend on r.
Proof: This is given in AppendixB.

The moment generating function (MGF) for M(f) =
�2 log LG(f) is given by (with f suppressed), �M (s) =
E{esM} = E{L�2s

G } so using (39),

�M (s) = C0

pY
j=1

�(K[1� 2s]� 2j + 1)
�(K[1� 2s]� j + 1)

.

The Gamma functions will be valid if �2Ks+K�2j+1 > 0
for all j = 1, . . . , p, which requires �2s > (2p� 1�K)/K.
The cumulants i of M are found from the cumulant

generating function by successively differentiating log�M (s)
and setting s = 0. Notice that the requirement �2s >
(2p� 1�K)/K corresponds to K � 2p when s = 0. Then,
for i � 1, i = di log�M (s)/(ds)i

��
s=0

so that i is

[�2K]i
pX

j=1

h
 (i�1)(K � 2j + 1)�  (i�1)(K � j + 1)

i
.

(40)
Here for i = 1,  (x) = [d log �(x)]/dx is the digamma
function, while for i = 2 and 3,  (1)(x) and  (2)(x) are the
trigamma and tetragamma functions respectively; these are all

(p, K) Method ↵ = 0.05 ↵ = 0.01

(2, 6) Asymptotic 12.59 16.81
Box 18.89 25.22

scaledF 19.97 26.97
simulated 19.89 26.50

(3, 8) Asymptotic 21.03 26.22
Box 33.64 41.95

scaledF 36.98 46.83
simulated 36.82 47.94

(4, 10) Asymptotic 31.41 37.57
Box 52.35 62.61

scaledF 59.17 71.98
simulated 59.69 71.73

(5, 12) Asymptotic 43.77 50.89
Box 75.04 87.24

scaledF 86.61 102.46
simulated 86.23 102.41

(5, 20) Asymptotic 43.77 50.89
Box 58.36 67.86

scaledF 59.88 69.80
simulated 59.23 69.69

TABLE I
COMPARISON OF 100(1� ↵)% PERCENTAGE POINTS OF M(f)

ACCORDING TO THE ASYMPTOTIC RESULT (35), BOX’S APPROXIMATION
(36), THE SCALED F METHOD (42), AND THE SIMULATION RESULT

‘polygamma functions.’ 1 is the mean, 2 is the variance,
3/

3/2
2 is the skewness and 4/2

2 is the excess kurtosis.
The parameters of bF⌫1,⌫2 are given by the cumulants [10]

b =
21

�
2

12 � 2
2 + 13

�
22

12 � 42
2 + 313

,

⌫1 =
41

�
2

12 � 2
2 + 13

�
412

2 � 2
13 + 23

, (41)

⌫2 =
42

12 � 82
2 + 613

13 � 22
2

.

Inserting the first three cumulants specified by (40) into (41)
means that the resulting parameter values b, ⌫1, ⌫2 specify an
F distribution whose cumulants exactly match those of M(f).
Then to carry out the test M(f) would be compared to

bF⌫1,⌫2(1� ↵), (42)

where F⌫1,⌫2(1 � ↵) is the 100(1 � ↵)% point of the F
distribution with parameters b, ⌫1, ⌫2 given by (41).
Table I compares the percentage points of the distribution

of M(f) for the asymptotic approximation (35), Box’s ap-
proximation (36) and the scaled F method (42) for ↵ = 0.05
and 0.01. We see that Box’s approximation and the F method
give significantly different results from the asymptotic result
for these finite sample sizes of K = 6, 8, 10, 12, 20. We also
see, as expected, that Box’s and the F methods converge for
‘large’ K = 20.
The previous approach for scalar time series can be extended

to investigate impropriety for the Fourier transform of real-
valued vector time series. To do so we introduce four vector
autoregressive processes of unity order for dimension 2, 3, 4
and 5. These take the form

Xt = �[p]Xt�1 + ✏t (43)
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where {✏t} is white with an identity covariance matrix and
the parameter matrices chosen are

�[2] =


0.5 0.1
0.5 0.5

�

�[3] =

2
4 �0.7003 0.3192 0.0372

0.9459 0.2980 0.6007
�0.0924 �0.1352 0.6506

3
5

�[4] =

2
664
�0.3317 0.3975 �0.6044 �0.9389
0.4881 0 �0.0402 0.8094
0.2197 0.2353 0.7189 0.6110
0.1534 �0.6342 �0.5201 0.7730

3
775

�[5] =

2
66664

0.2 0 �0.1 0 0.5
0.4 �0.2 0 0.2 0
�0.2 0 0.3 0 0.1
0.3 0.1 0 0.3 0
0 0 0 0.5 0.2

3
77775 ,

all giving rise to stationary time series. To carry out the GLRT
we will use bF⌫1,⌫2 for the distribution of M(f 0`), as justified
in Section VI-B. We apply the Slepian taper, and again pay
attention to the ends of the frequency range, and use averaging
to get stable results. For the F approximation the choice of
K requires K � 2p, and we used K = 15. For the moment
generating function for the average of M1(f 0`), . . . ,ML(f 0`),

�M (s) = �
(1/L)⌃L

i=1Mi
(s) = E

h
es⌃L

i=1Mi/L
i

=
h
E{es(M/L)}

iL
= [�M/L(s)]L, (44)

since the Mi are independent. The MGF for M/L is
�M/L(s) = E{es(M/L)} = E{L�2s/L

G }, i.e.,

�M/L(s) = C0

pY
j=1

�(K[1� 2 s
L ]� 2j + 1)

�(K[1� 2 s
L ]� j + 1)

. (45)

The cumulant generating function is then,

log�M (s) = L log�M/L(s). (46)

Then, for i � 1, the cumulants, ?
i say, are ?

i =
di log�M (s)/(ds)i

��
s=0

so that ?
i is

L


�2K

L

�i pX
j=1

h
 (i�1)(K � 2j + 1)�  (i�1)(K � j + 1)

i
.

(47)
Using these cumulants and (41) we can calculate the corre-
sponding parameters b?, ⌫?

1 and ⌫?
2 , say, and we take

M
d= b?F⌫?

1 ,⌫?
2
. (48)

The averaged GLRT statistic for L = 200 for the low-
frequency end is shown in Fig. 11 for the four vector time
series with tapering. As for the scalar case, the 1% level cuts
the averaged GLRT at a frequency close to c. Again, analogous
behaviour is found close to Nyquist frequency. The particular
extreme percent point will vary with K.
For these four models, using tapering, we also simulated the

100(1�↵)% percentage points of M(f) at f = 0.25, (where
H0 will hold); this was done by calculating M(0.25) over
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Fig. 11. Averaged GLRT statistic M(f 0
`) for the four VAR time series (a)–

(d) for N = 256, N 0 = 4096, K = 15 and L = 200. Low-frequency end
when the Slepian taper is used. The horizontal line is the critical value for
↵ = 0.01 using (48) and the vertical lines are as in Fig. 3.

5000 independent trials. The results are shown under ‘simu-
lated’ in Table I, and we see that the scaled F approximation
provides a good match.

VII. A USEFUL RESULT

Consider the population version of the statistic T, which
takes the form det{Ip �P�1

h RhP�⇤
h R⇤

h}. Using (54), for a
designed taper this can be written as

det{Ip � S�1S[H ⇤H(2f)]S�1S[H ⇤H(2f)]⇤}
= det{Ip(1� |H ⇤H(2f)|2)} = (1� |H ⇤H(2f)|2)p.

In the scalar case this is simply 1 � |%h(f)|2; see (55). We
thus see that when tapering is used |H ⇤ H(2f)| is a basic
measure for impropriety for both the scalar and vector Fourier
transforms. By design, |H ⇤H(2f)| is bounded by

P
h2

t = 1.

VIII. SUMMARY AND CONCLUSION

For the Fourier transform of a real-valued time series
impropriety is worse at frequencies where the spectral estimate
is subject to side-lobe leakage. After tapering, impropriety
survives only at the lowest and highest frequencies, [0, c] [
[12�c, 1

2 ], and c can be determined numerically. Hence we will
know where standard distributional properties will be valid or
invalid.
An improved GLRT for complex vector impropriety was de-

rived by improving the small-sample approximation of the test
statistic. This was used to compare the frequency range cut-
offs for propriety determined by c, with those determined by
the GLRT. The former is indicated by an extreme percentage
point of the latter.
Overall, our work provides further motivation for applying

tapering if carrying out statistical work with the Fourier
transform of a real-valued time series.
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APPENDIX

A. Impropriety and the Tapered Fourier Transform

We write the zero-mean process Xt in its spec-
tral representation, Xt =

R 1/2
�1/2 ei2⇡�t dZ(�), where

E{dZ(f 0)dZH(f)} = S(f)df if f = f 0 and zero otherwise.
Here S(f) denotes the spectral matrix at frequency f. Then

Jh(f) =
Z 1/2

�1/2
H(f � �) dZ(�). (49)

Now let Jh;l(f) denote the lth component of Jh(f), i.e., the
tapered Fourier transform for series l. Using (49), with Slm(f)
the (l,m)th element of S(f),

E{Jh;l(f)J⇤h;m(f)}=
Z 1/2

�1/2
H(f � �)H⇤(f � �)Slm(�)d�

⇡Slm(f)
Z 1/2

�1/2
|H(f � �)|2 d� = Slm(f).

The approximation is based on the assumption that Slm(f)
is approximately constant over the effective bandwidth, B, of
|H(f)|2. (This is a sensible assumption for a designed taper,
but, for a spectrum with some dynamic range it would be
invalid in the case of a default (no) taper ht = 1/

p
N , since

in that case |H(f)|2 would correspond to Fejér’s kernel with
its extensive high sidelobes; e.g., see [14, p. 207]). The final
equality uses the unit periodicity of H(·) and that the taper
has

P
h2

t = 1. Next, E{Jh;l(f)Jh;m(f)} is given by

Z Z 1/2

�1/2
H(f � �)H(f �  )E{dZl(�)dZm( )}

=
Z Z 1/2

�1/2
H(f � �)H(f �  )E{dZl(�)dZ⇤

m(� )}

=
Z 1/2

�1/2
H(f � �)H(f + �)Slm(�)d�.

The product H(f � �)H(f + �) only has a significant
amplitude for f close to zero and Nyquist (1/2). What is
meant by “f close to zero” idea is illustrated in Fig. 12, which
shows from left to right the magnitude |H(f��)H(f +�)| =
|H⇤(��f)H(�+f)| for “offsets” of f = 0, B/2, B and 3B/2
as a function of frequency �. (Only positive frequencies are
shown because of the symmetry about zero.) B is calculated
using (16). Half this width, B/2, is also marked by a vertical
dashed line in each plot. So we see that once the offset f
exceeds B the magnitude of H(f��)H(f +�) is very small,
(quantifying what is meant by “close to zero”), and also the
magnitude is only ever large over a frequency width of B. So,
assuming as before, that Slm(f) is approximately constant
over a bandwidth B, we can take E{Jh;l(f)Jh;m(f)} ⇡
Slm(f)

R 1/2
�1/2 H(f � �)H(f + �) d�, where we realize from

the foregoing that only for a small range of frequencies f will
this be non-zero.
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Fig. 12. Left to right: the magnitude |H(f � �)H(f + �)| = |H⇤(� �
f)H(� + f)| for “offsets” of f = 0, B/2, B and 3B/2 as a function of
frequency �. B/2 is marked by a vertical dashed line in each plot. The
Slepian taper is used here.

Now, since H(·) has unit periodicity,
Z 1/2

�1/2
H(f � �)H(f + �) d� =

Z 1/2

�1/2
H( )H(2f �  ) d 

= H ⇤H(2f) (50)

=
N�1X
t=0

h2
t e
�i4⇡ft. (51)

Now Jh(f) = [Jh;1(f), . . . , Jh;p(f)]T so from (32),

P h(f) = S(f), (52)
Rh(f) = S(f) · (H ⇤H(2f)), (53)

and therefore,

⌃U = S(f)


Ip H ⇤H(2f)Ip

(H ⇤H(2f))⇤Ip Ip

�
. (54)

In the case of a scalar series, p = 1, (52) and (53) give

|%h(f)| = |Rh(f)|
|Ph(f)| =

E{J2
h(f)}

E{|Jh(f)|2} = |H ⇤H(2f)|. (55)

The above results are illustrated in Fig. 13 for model (b)
of (14). Here plot (b) shows that the two sides of (55)
are indistinguishable for a designed taper, whereas plot (a)
shows that the result does not hold for the default (no) taper
ht = 1/

p
N, as stated above.

B. Proof of Theorem 1
Under the null, E{T r} may be written as [23, p. 829]

22rp

Qp
j=1 �(K � j + 1)

Q2p
j=1 �((2r + K � j + 1)/2)Q2p

j=1 �((K � j + 1)/2)
Qp

j=1 �(2r + K � j + 1)
.

(56)
where �(·) is the gamma function. We rearrange this:

22rp

Qp
j=1 �(K � j + 1)Qp

j=1 �(2r + K � j + 1)

2pY
j=1

�((2r + K � j + 1)/2)
�((K � j + 1)/2)

.

To simplify the last product we use the duplication for-
mula for gamma functions [1, (6.1.18)], �(z)�(z + 1

2 ) =
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Fig. 13. Comparison of |%h(f)| (solid line) versus |H ⇤H(2f)| (heavy line)
for model (b) where in plot (a) the default taper ht = 1/

p
N is used, while

in plot (b) the Slepian taper is used. Ranges have been limited to show any
differences more clearly; for plot (b) there are no discernible differences.

⇡1/221�2z�(2z). Using this we get, for ` = 1, . . . , p,

�((2r + K � 2`+ 1)/2)�((2r + K � 2`+ 2)/2) =
⇡1/22�2r�K+2`�(2r + K � 2`+ 1);

�((K � 2`+ 1)/2)�((K � 2`+ 2)/2) =
⇡1/22�K+2`�(K � 2`+ 1).

So E{T r} may now be written asQp
j=1 �(K � j + 1)Qp

j=1 �(2r + K � j + 1)

pY
j=1

�(2r + K � 2j + 1)
�(K � 2j + 1)

,

or, as

C
pY

j=1

�(2r + K � 2j + 1)
�(2r + K � j + 1)

, (57)

where C does not depend on r. Now T r(f) = L2r/K
G (f) and

letting r ! rK, gives T rK(f) = L2r
G (f). So E{L2r

G (f)} is
found by replacing r by rK in (57), which gives (39).
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