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A bstract

In the first part of this thesis we consider the skew-normal class of distributions on 
the line and its limiting general half-normal distribution. Inferential procedures 
based on the methods of moments and maximum likelihood are developed and their 
performance assessed using simulation. Data on the strength of glass fibre and the 
body fat of elite athletes are used to illustrate some of the inferential issues raised.

The second part of the thesis is devoted to a consideration of the analysis of skew 
circular data. First, we derive the large-sample distribution of certain key circular 
statistics and show how this result provides a basis for inference for the 
corresponding population measures.

Next, tests for circular reflective symmetry about an unknown central direction 
are investigated. A large-sample test and computer intensive variants of it are 
developed, and their operating characteristics explored both theoretically and 
empirically. Subsequently, we consider tests for circular reflective symmetry about 
a known or specified median axis. Two new procedures are developed for testing for 
symmetry about a known median axis against skew alternatives, and their 
operating characteristics compared in a simulation experiment with those of the 
circular analogues of three linear tests. On the basis of the results obtained from 
the latter, a simple testing strategy is identified. The performance of the tests 
against rotation alternatives is also investigated. Throughout, the use of the 
various tests of symmetry is illustrated using a wide range of circular data sets.

Finally, we propose the wrapped skew-normal distribution on the circle as a 
potential model for circular data. The distribution’s fundamental properties are 
presented and inference based on the methods of moments and maximum 
likelihood is explored. Tests for limiting cases of the class are proposed, and a 
potential use of the distribution is illustrated in the mixture based modelling of 
data on bird migration.
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Glossary of Notation

G lossary o f N otation

R elation s
= is approximately equal to
-  is distributed as

P op u lation  q u an tities
P art I

JÂ mean
(j standard deviation

coefficient of skewness 
Y2 coefficient of kurtosis

lâ' central moment about the mean

P2  /̂ 4 /  /̂ 2
A
A  P'f, / 1 ^ 2

P art II
IÂ mean direction
p, median direction
p  mean resultant length
^p^Pp trigonometric moments about the origin

^p, Pp trigonometric moments about the mean direction

(̂ *p'>P*p P'̂  trigonometric moments about the median direction
s circular measure of skewness
k circular measure of kurtosis
V circular variance

Sam ple q u an tities
P art I

ÿ  mean
5 standard deviation
gj coefficient of skewness
m[ moment about the origin

central moment about the mean 
p  method of moments estimate of p

p  maximum likelihood estimate of p



Glossary of Notation

0

0

F

R

*  T *

s
k

P art  II
mean direction 

median direction 

0 — p

mean resultant length
trigonometric moments about the origin
trigonometric moments about the mean direction 0 
trigonometric moments about the median direction p  

circular measure of skewness 
circular measure of kurtosis

D istr ib u tion s
s n (;i ) standard skew-normal with skewness parameter À 

general skew-normal with direct parameters 7] and À 
general skew-normal with centred parameters p, O'and 
extended general skew-normal with direct parameters 7], À 
and Ç
half-normal with parameters ^ and 7]

wrapped skew-normal on the circle with direct parameters 
7j and À

WSNCc(/^^,0',yi ) wrapped skew-normal on the circle with centred parameters 
p ^ ,a a n d y ^

SNb(^,77,/1) 
sNc(p,<T,r, )

WSNCb(#,77,/1)

F u n ction s
tan"* (or arctan) Consider the two reals % and y, and the ratio r = yjx . If 

jc = y = 0 then r and tan"*( y/x) are undefined. Otherwise,

-1/ / \ f ^ if x > 0

where ^ = tan"* ( r) takes values in [ -  ;r/2,;r/2] . 
defined on page 164
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Introduction

In troduction

1 O verview

The content of this thesis has been divided into two parts; one of which considers 
inference for the general skew-normal class of distributions and its limiting general 
half-normal distribution, the other consisting of contributions to the analysis of 
skew data on the circle. However, whilst the types of data to which the two parts 
refer are different, it is important to stress that there are certain key ideas common 
to both. One such key concept is that of symmetry, or, perhaps more correctly, a 
lack of it. For many, symmetry is an aesthetical necessity. Indeed, this role of 
symmetry manifests itself strongly in the surviving cultural heritage dating back 
at least to the times of the ancient Greeks. From a mathematical perspective, an 
assumption of symmetry generally results in greater tractability. Of course, the 
best known and most frequently applied model in Statistics, the normal 
distribution, is a symmetric one. Whilst the theoretical importance of the normal 
distribution is beyond question, the following observation quoted from Pearson 
(1900) raises considerable doubt as to the role of the normal distribution as a model 
for real linear data.

“We can only conclude from the investigations here considered that 
the normal curve possesses no special fitness for describing errors 
or deviations such as arise either in observing practice or in 
nature.”

For the analysis of circular data, the best known and most frequently applied 
model is the von Mises distribution, again, a symmetrical one. However, the 
following remark quoted from Mardia (1972, p. 10) raises questions as to what the 
true role of the von Mises distribution should be.

“As on the line, symmetrical distributions on the circle are 
comparatively rare.”
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In the analysis of skew linear data, a frequently applied technique is that of 
Box-Cox transformation. For data considered initially to be non-normal, a 
transformation is sought which, amongst producing other desirable outcomes, 
results in a transformed data set for which the normal distribution is a reasonable 
model. Inference is then performed for the transformed data, with results for the 
original scale usually being obtained by applying the appropriate inverse 
transformation. Despite the potential problems associated with the application of 
such an approach being well documented (see, for example, Chatfield (1995, p. 69) 
and Aitkin et al. (1989, Section 3.1)), the (mis)use of this technique is commonplace. 
Of course, those freed from the shackles of normality have, at least in theory, a vast 
array of alternative models for linear data at their disposal. The skew-normal class 
and its limiting general half-normal distribution considered in Part I of this thesis 
form part of that bank of models.

For circular data distributed over anything other than a reduced arc of the unit 
circle, the application of any transformation of the data which changes the relative 
positions of the data can result in wildly different inferential results. Due to the 
compactness on the circle, the only types of transformation which leave the relative 
positions of the data unaffected are those of rotation and reflection. Consequently, 
the only viable general approach to modelling circular data is to fit appropriate 
models to the original data values or those obtained after applying a rotation or 
reflection to them. And if, as has been commented, symmetrically distributed 
circular data are rare, then models capable of describing the forms of asymmetry 
manifested by real circular data are required. How strange, then, to find that, in 
the sum total of over 1400 pages making up the five principal texts which address 
the analysis of circular data, i.e. Mardia (1972), Batschelet (1981), Fisher (1993), 
Mardia & Jupp (1999) and Jammalamadaka & Sengupta (2001), less than ten are 
specifically devoted to asymmetric models. In an initial attempt to address this 
disjuncture between established practice in the statistical analysis of circular data 
and the implicit statistical demands raised by real circular data, in Chapter 6 we 
propose the wrapped skew-normal distribution on the circle as a potential model for 
circular data.

As is also evident from a consideration of the literature, methods are required 
which can be used in the analysis of circular data to detect symmetry or the lack of 
it. In Chapters 4 and 5 we propose procedures for testing for two types of symmetry 
associated with circular data. The remaining chapter of Part II, Chapter 3, provides 
the theoretical results underpinning much of Chapters 4, 5 and 6.
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2 C om puting

In order to implement the methodology developed within this thesis, and to explore 
the sampling properties of estimators, the operating characteristics of tests and the 
coverage of confidence sets, etc., it was necessary to develop a substantial library of 
computer programs. Those programs are available from the author upon request. 
All programming was conducted in FORTRAN following the advice regarding style 
and readability promoted by Ellis (1990).

Many of those programs make use of two highly efficient sorting routines; one 
written for sorting a single array by James J. Filliben, the other for sorting two 
arrays written by Rondall E. Jones and John A. Wisniewski. Both of these routines 
are freely available over the internet from the GAMS (Guide to Available 
Mathematical Software) archives.

The pseudo-random number generator routine used was a double precision 
version of that proposed by Wichmann & Hill (1982), incorporating the amendment 
of McLeod (1985). The numerical optimization of log-likelihood functions was 
performed using a routine for the Nelder-Mead simplex (Nelder & Mead, 1965) 
coded by O’Neill (1971). Values of the standard normal distribution function were 
evaluated using a routine written by Alan J. Miller. All three routines are available 
over the internet from the StatLib archives.

Finally, all graphical work was produced using the facilities of the Minitab 
statistical software package.

3 N otation

Generally, the notation employed in Part I of this thesis follows established 
convention. That used to denote the different parametrizations of the skew-normal 
distribution differs from the notation commonly used in the associated literature. 
We believe the notation used here is less prone to misinterpretation.

In Part II, we follow, as far as is possible, the notation established in Mardia & 
Jupp (1999). The specific notation used for the three parametrizations of the 
wrapped skew-normal distribution on the circle is an extension of that used by us 
for its linear analogue.
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Chapter 1 - Problems of Inference for the Skew-normal Distribution

C hapter 1 Problem s o f In ference for th e Skew -norm al 

D istribution

1.1 In trod uction

In this chapter we consider the general skew-normal distribution and certain 
problems of inference associated with it. The distribution’s genesis is reviewed in 
Section 1.2, and in Section 1.3 we briefly discuss the extended general skew-normal 
distribution.

The main original work presented in the chapter appears in Section 1.4, in 
which we address problems of inference for the so-called direct and centred 
parametrizations of the general skew-normal distribution. We discuss these 
problems from the perspectives of moment and likelihood based inference. Certain 
irregular features of the sampling distributions of the moment estimators, and 
others of the log-likelihood surface, are traced by us to the parameter redundancy 
of the direct parametrization.

In Section 1.4.2 we illustrate the improvements brought about by the centred 
parametrization. What we beliSve to be a new general asymptotic result for the 
joint sampling distribution of the sample mean, standard deviation and coefficient 
of skewness is given in Theorem 1.1 of Section 1.4.2.1.

In Section 1.4.2.2 we propose a numerical approach to finding the maximum 
likelihood estimates employing a constrained version of the log-likelihood and a 
grid based search incorporating the Nelder-Mead simplex. We also detail 
shortcomings of two S-PLUS routines for likelihood based estimation developed by 
Azzalini & Capitanio (1999).

The results from a simulation study designed to explore and compare the small- 
sample characteristics of the method of moments and maximum likelihood 
estimators for the centred parameters are given in Section I.4.2.3.

Tests for limiting cases of the distribution are discussed in Section 1.4.3. We 
propose two new procedures for testing the null hypothesis of an underlying half­
normal distribution against the'‘alternative of some less positively skewed member 
of the skew-normal class. The first is based on an asymptotic result for the
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sampling distribution of the coefficient of skewness, whilst the second is a Monte 
Carlo variant of it founded upon the same statistic.

In Section 1.4.4 we illustrate the developed methodology in the analysis of two 
real data sets.

For the most part, the content of Section 1.4 follows closely that of Pewsey 
(2000a). However, the level of detail given within it is generally greater than that 
in the cited paper. Also, Theorem 1.1 is a generalization of a result given in the 
same paper for the sampling distribution of the moment estimators of the centred 
parameters.

The chapter closes with a summary of its content and a description of potential 
avenues for related future research.

1.2 D efin ition , G enesis and P rop erties o f th e  Skew -norm al C lass

1.2.1 The Standard Skew-normal Distribution
The (standard) skew-normal distribution, popularly referred to as “Azzalini’s skew- 
normal distribution”, see Johnson et al. (1994, p. 61), was developed formally by 
Azzalini (1985) as a particular case arising from a variant of the following lemma. 
Rather than repeat the rather opaque proof of the lemma given by Azzalini (1985), 
we present what we consider to be a more transparent alternative.

Lemma 1.1 Consider two arbitrary absolutely continuous distributions with 

densities f  and g and distribution functions F and G, respectively, which are 

symmetric about 0. Then, for any À G ( - 00,00)̂

2 G (A y)/(y ), ( - 0 0  < 3; < 0 0) (1 .2 .1 )

is a probability density function.

Proof Given the assumed symmetry about 0, it follows that

J  '^G(Xy)f{y)dy  = a j  |  G {À y ) f ( y )d y  +  J  G (A y)/() ')^ fy |

=  2 lG (Ay)f{y)dy+  \{ l-G {À y)} f(y )d y  

= 2 j f { y ) d y  = l.
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With the aim of defining a class of distributions which includes the standard 
normal, is mathematically tractable and includes distributions with wide-ranging 
coefficients of skewness and kurtosis, Azzalini (1985) considered the model arising 

from (1.2.1) with and G( )= 0 (  ), where ^(*) and O(-) represent the

probability density function (pdf) and distribution function, respectively, of the 
standard normal distribution. These choices lead to the following definition of a 
standard skew-normal random variable.

If a random variable X  has pdf

/(;<:;A ) =  2 ^ ( r ) o ( / lr )  , - « ) < % < -  o o < y l < o o ^  (1 .2 .2 )

then X  is said to be distributed according to the standard skew-normal distribution 

with parameter À, denoted % ~SN(/1).

The parameter À regulates the skewness of the distribution. Azzalini (1985) 

showed that the distribution function of X  can be represented as

F(x ;/l)= < D (;t:)-2r ( x ,/ l ) ,  

where T{h,a), a function studied by Owen (1956), gives the integral of the bivariate 

standard normal density over the region bounded by the lines x = h and y = ax in 

the (x, y) plane.
Henze (1986) gave a probabilistic representation of the standard skew-normal 

distribution which reveals the structure of the skew-normal class. He showed that 

if Zj and Z  ̂ are independent standard normal random variables then

=<î|Z,| + ( l - 5 ^ f  Z,~SN(A), (1.2.3)

where S = e (-1, l). Thus, a SN(Z) random variable can be viewed as a

normalized linear combination of independent half-normal and standard normal 
random variables. Corollary 2 of Henze (1986), which is based on (1.2.3) and an 
adaptation of the Box-Müller method, provides an efficient means of generating 

random variables from the SN(Z) distribution. This representation serves as a 

means of relating the skew-normal distribution to the distributions of other sums of 
random variables studied prior to the publication of Azzalini (1985). The 
distribution of the sum of a normal random variable and a truncated normal
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random variable was considered in Weinstein (1964) and Nelson (1964). In the 
econometrics literature, Aigner et al. (1977) derived the distribution of the sum of a 
normal random variable and a half-normal random variable.

Two other constructions which lead to the standard skew-normal distribution 
are also worthy of note. Both are associated with the following bivariate set-up. 

Consider the joint distribution of ,%2 ) where Ẑ  and Z  ̂ are two standard 

normal random variables with corr(z^ ,Zj^=  p. Let Ẑ ,) denote the minimum of 

Zj and Zg, and Ẑ )̂ the maximum.

The first construction predates the work of Azzalini (1985) and follows from a 
more general result quoted by David (1981, pp. 117-118) as being a private

communication due to Nagaraja (1979). For a^, Ü2 = -pa^  -1 )+ !^^

and «1 +Ü2  all non-zero, the linear combination Y = + «2̂ (2) ^ standard

skew-normal random variable with À = ± { ( l-p ) /( l  + p)y^{(û2 “ 1̂ )/(^i +<̂ 2)}’ 

the sign depending on the sign of + 6%2 .̂ In passing, we note that Loperfido 

(2002) considered the distributions of Ẑ j) and Ẑ 2) tn this context, showing them to

be Sn(-Z *) and Sn(z*), respectively, where X  = { (l- /? )/(  1-1-p)}^ .̂ In fact, the 

result for the distribution of Ẑ jy had been derived much earlier by Roberts (1966).

The second construction follows from a more general one given by Arnold et al. 

(1993). If Zg is truncated below at 0 then the marginal distribution of Zj is

standard skew-normal with Z = p j( l - p ^ ^ ^  .

We also note that Andel et al. (1984) identified the standard skew-normal 
distribution as the stationary distribution of a certain first-order threshold 
autoregressive process: see, also, Azzalini (1986).

1.2.2 Fundamental Properties of the Standard Skew-normal Distribution
The basic properties of the standard skew-normal distribution were investigated by 
Azzalini (1985, 1986) and Henze (1986). The most important five can be 
summarized as follows:

a) When A = 0, the distribution corresponds to the standard normal 

distribution.
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b) As À the distribution tends to the positive standard half-normal

distribution. Conversely, as /I —> , the distribution tends to the negative

standard half-normal distribution.
c) If X  is distributed according to the standard skew-normal distribution with 

parameter À, i.e. X  ~ SN(/i), then -  A ~ SN(-/i).

d) The density (1.2.2) is strongly unimodal.

e) If A -  SN(A), then A " -

Densities for various choices of positive À, ranging between N(0,1) = SN(0) and 

the limiting standard half-normal = SN(°o), are given in Figure 1.1. From this plot 

we see that, for À = 2 the density is moderately asymmetric, whilst for À = 20 the 

density differs little from that of the limiting standard half-normal distribution.

0 .7 -

0 .6 -

0 .5 -

gQ
0 .4 -

0 .3 -

0.2

0 .1 -

2•2 0 1 31

Figure 1.1 Densities for various cases of the standard skew-normal distribution: 
 , SN(0)  ̂ N(0,1);---------, SN(2); — - — , SN(5);--------------, SN(20);-------------,
SN(oo) = standard half-normal.

Azzalini (1985) obtained the moment generating function of A -  SN(A) as

M(r) = 2exp(r^/2)o(& ). Given property e) above, the even moments of A are

equal to the even moments of a standard normal random variable. Henze (1986) 
used the representation (1.2.3) to obtain the following expression for the odd 

moments of A.

e ( X )= w ( l  + (1.2.4)
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where 6 = ( 2/

1.2.3 The General Skew-normal Class
The obvious extension of the standard skew-normal class results from the inclusion 

of location and scale parameters. Thus, if Z  ~ SN(/l) then 1^ = ^ + T]X

(— CO < ^ < oo ; 77 > o) is said to have a (general) skew-normal distribution with what 

Azzalini & Capitanio (1999) refer to as “direct” parameters {^,rj,X). We denote the 

fact as Fp~SNj)(^,77,>^), the subindex D referring to the use of the direct 

parametrization. From (1.2.2), the density of is given by

T]
( —00 < y  < 00). (1.2.5)

1.0-f

0 . 4 -

0 . 2 -

0 -

- 0 .2 -

■s - 0 .4 -

Ü  - 0 . 6  —

- 1 . 0 - 1
•1.0 - 0.8 - 0.6 - 0.4 - 0.2 0 0.2 0.4 0.6 0.8 1.0

Delta

Figure 1.2 Coefficients of skewness (-------- ) and kurtosis (-
the parameter S.

-) as functions of

Using (1.2.4), the first four moments and variance of are:

E ( F j = ^  + 677 ,̂ E ( F ^ ) = f +

e{y^)=<^^ +3b^^t]S + 3^tj^ + 3 b r j ^ S , 

f(F d  +4b^^j]S + 6^̂ rj  ̂+4b^r]^ô{3-S^)+3?]'^, 

var(Fj5 )= 7]^{l-b^S^).

(1.2 .6)

1 0
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The coefficients of skewness and kurtosis for are the same as those for X, 

namely,

n  = / g (-0-99527,0.99527),

l{7C-i)b*S* r \
r ,  [0,0.86918).

In Figure 1.2 we represent these two measures as functions of S. For reference 

purposes, we note that /1-values of 2, 5 and 20 correspond to (5-values of 0.8944, 

0.9806 and 0.9988, respectively.

1.3 The E xtended  G eneral Skew -norm al C lass

In an attempt to widen the ranges of skewness and kurtosis of the class, Azzalini 
(1985) proposed a further extension of it, introducing a shape parameter, 

f  G (-cx3,oo) The random variable is said to have an extended general skew-

normal distribution if its pdf is given by

77, i ,  0 =  + + F ' }. (1.3.1)

where -o°< w < °°. We denote the fact by ~ SNEg ( f , rj,

Henze (1986) provided a representation of an extended skew-normal random 
variable in terms of a normalized linear combination of a standard normal random 
variable and a truncated standard normal random variable, and derived 
expressions for the distribution’s moments. Arnold & Beaver (2000) give the 

following construction which leads to a model described by (1.3.1). Suppose W and 

U are independent and identically distributed standard normal random variables. 

Then the standardized version of (1.3.1), i.e. with ^ = 0 and 77 = 1, is the

conditional density of W given that Ç + ÀW > U.

Although the extended skew-normal distribution was developed independently 
by Azzalini (1985), its first appearance can be traced to Birnbaum (1950). The 
distribution had also been proposed previously by O’Hagan & Leonard (1976) as a 
potential skew prior when there is uncertainty about an inequality constraint in 
the hayesian estimation of a normal location parameter. Given these precedences, 
and those referred to in Section 1.2.1, there is clearly an issue as to the intellectual

1 1
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“ownership” of the skew-normal distribution. On the one hand, the common 
reference to it as “Azzalini’s skew-normal distribution” is a popularism which fails 
to convey the distribution’s deeper historical roots. Nevertheless, the term does 
highlight the fundamental contribution of Azzalini and his co-authors towards the 
characterization, extension and dissemination of the distribution. Implicitly, it also 
suggests the potential existence of other skew-normal distributions (see Section 
1.5.2).

Azzalini (1985) obtained the moment generating function of and quoted the 

ranges of Fj and Fg being approximately (-1.2, 1.2) and (0, 2), respectively. 

Arnold & Beaver (2002) discuss multivariate extensions of the class.

1.4 In feren ce for th e  G eneral Skew -norm al D istr ib u tion

Classical moment and likelihood based inference for problems concerning the 
general skew-normal distribution have been addressed in the literature by: 
Azzalini (1985), Salvan (1986), Arnold et al. (1993), Chiogna (1997), Azzalini & 
Capitanio (1999) and Pewsey (2000a). Liseo (1990) and Mukhopadhyay & 
Vidakovic (1995) consider inference from a hayesian perspective. In this section we 
discuss moment and likelihood based inference, the treatment given following 
closely that published in Pewsey (2000a).

1.4.1 Inference for the Direct Parametrization
1.4.1.1 Moment Based Inference
Inference based on the method of moments for the direct parametrization of the 
general skew-normal distribution has been considered in Arnold et al. (1993) and 

Pewsey (2000a). Proceeding as in Pewsey (2000a), let y = (Ji denote a

random sample of n observations from a SNjj(^,77,/l) distribution, with sample 

moments = 0, m2 = ,... about the mean. We denote the moment estimates of

T] and Ô by ^ , 77, <5 , respectively. For simplicity, consider the studentized

sample y = (y^p..., ŷ „ ) where ŷ . = (y, -  y )/5 , i = l,...,n ; this is a sample from a

,77̂ ,/%) distribution with and 77̂ = 77/ j .  Equating the first

three sample moments of the studentized data to their population counterparts 

from (1.2.6), the method of moments (MM) estimates of & , 77̂ and S are

1 2
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4 ^ = - c m f l s ,  = ( l  + | / r  and S  /&% , (1.4.1)

<1. Otherwise, S iswhere c = { 2 / ( 4 - .  Then, À = 5 , provided 

out of range as an estimate of ô and we refer to it as being ‘inadmissible’. For such 

estimates, À is undefined. The MM estimates of ^  and T] can be recovered using

^  = y + and fj = sfj^ (1.4.2)

This approach is equivalent to, although arguably simpler than, that given in 
Arnold et al. (1993).

a) d)
0 .6 -f

0 .5 -

0 .4 -

g O .3 -

0 .1 -

0 -

Estimate of location parameter, xi

b)

1.5-

0.5-

0 -

1.5 2.0 2
Estimate of the scale parameter, eta

1.00.5
Estimate

iii-nlTffi

1 .5 -

-1.0 -0.5 0 0.5 1.0 1.5
Estimate of the location parameter, xi

e)
2 .0 -

1 .5 -

0 .5 -

0 -

1.0 1.5 2.0
Estimate of the scale parameter, eta
0.5

-1.0 -0.5 0 0.5 1.0
Estimate of the skewness parameter, delta

6-1
5 -

4 -

2 -

0 -

- 1.0 -0.5 0 0.5 1.0
Estimate of the skewness parameter, delta

Figure 1.3 Empirical sampling distributions of the method of moments 
estimates of ^ T] and S obtained from 5000 simulated samples of size 20 from the 
SNd(0,1,/1) distribution: a), b), c) 2 = 0; d), e), f) 2 = 20.
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As mentioned above, a major deficiency of MM estimation is that the estimate of 

S can be inadmissible, i.e. greater than, or equal to, 1 in absolute value. Such 

estimates occur with greater frequency as the skewness parameter of the 

underlying skew-normal distribution tends to ±00. Faced with an inadmissible

estimate, we interpret it as indicating that the underlying distribution is half­
normal or negative half-normal, depending on its sign. Inference for the general 
half-normal distribution is considered in Chapter 2.

In terms of subsequent inference concerning the parameters, a further 
problematic feature of MM estimation for the direct parametrization is that the 
sampling distributions of the estimates of the location and skewness parameters 
are often bimodal, the problem being particularly acute when the underlying 
distribution is normal. For this particular case, ÿ  and s are the MM and 

maximum likelihood (ML) estimates of the location and scale parameters. However, 
if we use (1.4.1) and (1.4.2) to estimate the parameters of an assumed skew-normal 
distribution, when the data come from a normal population, we will tend to over­

estimate rj and over- or under-estimate ^ and 8, depending on the sign of ^  .

Figures 1.3 and 1.4 provide representations of the empirical sampling 
distributions of the method of moments estimates for simulated samples from the 
symmetrical standard normal distribution and the highly skewed SN^(0, 1, 20) 

distribution. We have chosen to represent the skewness of the distribution using 8 

rather than À so as to avoid the complications of infinite or undefined estimates of

the latter. In these two figures, values of 8 in excess of 1 are inadmissible. As

can be appreciated, as the sample size and magnitude of the skewness parameter 
increase the sampling distributions of all three estimates tend to unimodal 
distributions. However, these sampling distributions cannot realistically be 
considered as being normal, even for sample sizes as large as 500. For the samples

of size 20, the sampling distribution of 8 is still bimodal even for data drawn from

a highly skewed distribution. We also note that, for the samples from the SN^(0, 1, 

20) distribution, the proportion of inadmissible ^estimates increases spectacularly 

with increasing sample size. Increasing sample size does nothing to alleviate the 
problems associated with the form of the sampling distributions of the estimates for 
data drawn from the standard normal distribution.
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a)

1.2-

1.0-

0 .6 -

0 .4 -

0 .2 -

0 -

- 1.0 0.5 1.0
Estimate of the location parameter, xi

-0.5 
of theEstimate

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Estimate of the scale parameter, eta

-0.20 -0.15 -0.10 -0.05 0 0.05 0.10 0.15
Estimate of the location parameter, xi

e)

7 -
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i :
2 -
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0 -

Estimate of the scale parameter, eta

2 0 -

0.6 1.0 
Estimate of the skewness parameter, delta

0.94 0.96 0.98 1.00 1.02 1.04 1.06
Estimate of the skewness parameter, delta

F ig u re  1.4 Empirical sampling distributions of the method of moments 
estimates of ^  tj and S obtained from 5000 simulated samples of size 500 from the 
SNd(0,1,/1) distribution: a), b), c) À =0; d), e),f) À = 20.

Whilst some of the problems referred to above regarding the sampling properties 
of the MM estimators were also mentioned in Arnold et al. (1993), these authors 
failed to identify the problems we have referred to when the underlying 
distribution is normal. We consider this oversight to be due to the limited scope of 
their reported simulation study which only included pseudo-random variâtes 
generated from a SNp(10, 5, 2) distribution. Given that MM estimation can be 

carried out using studentization in conjunction with (1.4.1) and (1.4.2), the choices 

of ^ = 10 and /; = 5 in their simulations are somewhat irrelevant. As we have

commented in Section 1.2.2, a /l-value of 2 corresponds to a density which is 

moderately asymmetric.
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fact that À =0, ^ -  y and is always a solution to the likelihood

1.4.1.2 Likelihood Based Inference
Properties of the likelihood function, and inference based upon it, for the direct 
parametrization of the skew-normal distribution have been considered by Azzalini 
(1985), Liseo (1990), Arnold et al. (1993), Azzalini & Dalla Valle (1996), Chiogna 
(1997), Azzalini & Capitanio (1999) and Pewsey (2000a). Three equations satisfied 

by the ML estimates corresponding to a random sample, y , from the

distribution are given in Arnold et al. (1993). For our purposes, the most relevant of 

the three is

a constraint on the ML estimates ^  and fj which had previously been identified in 

Azzalini (1985). In the same paper, Azzalini gives the Fisher information matrix for 

and notes that it is singular for À = 0. Arnold et al. (1993) highlight the

I t

equations, although, in general, this solution does not give the ML estimates. 
Azzalini (1985) gives an algorithm for finding the ML estimates based on the 

profile log-likelihood of À,. However, as pointed out by Arnold et al. (1993), the 

quoted algorithm is incorrect as the constraint (1.4.3) does not apply to the profile 

log-likelihood. Azzalini (1985) observes that the profile log-likelihood of A always 

has a stationary point at À = 0. Arnold et al. (1993) also consider profile likelihood 

methods and quote numerical results which indicate that this stationary point in 
the profile log-likelihood corresponds to a saddlepoint on the likelihood surface. 

Chiogna (1997) proves that /% = 0 is a point of inflexion for the profile log-likelihood

of À.

To illustrate some of the problems associated with the likelihood for the direct 
parametrization we use a form of the full log-likelihood function incorporating the 
constraint (1.4.3) and studentization of the original data as described in Section

1.4.1.1. For the studentized data the constraint (1.4.3) becomes fĵ  = + , an

analogous relation to that given by the middle constraint of (1.4.1) for the 
equivalent MM estimates. Using this constraint for the studentized data along with 
the density (1.2.5), maximum likelihood estimation reduces to finding, using
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numerical optimization, those values of and X which maximize the constrained 

log-likelihood

1/2 (1.4.4)

In theory, the ML estimates of the location and scale parameters for the original, 

non-studentized, data can be obtained by substituting the ML estimates and 

f}^, the latter calculated using (1.4.3), in place of their MM counterparts in (1.4.2).

Table 1.1 The frontier data of Azzalini & Capitanio (1999).

0.1169 1.7311 0.0144 0.4881 2.3877 -0.0853 0.0522 0.7226 0.8718 3.0415
0.6363 1.3590 1.5958 0.4567 0.9885 1.7001 1.0380 1.0195 0.3528 1.4249
0.3170 1.3276 -0.1032 1.1568 0.0699 1.6802 0.2470 0.4147 1.6882 0.7256
1.3568 1.1091 0.0500 2.2886 1.4985 2.7261 1.8443 -0.0687 0.9441 0.6872
0.5258 0.4743 0.4240 0.7349 0.4428 0.1880 0.4642 0.2786 0.2742 0.5678

Log-likelihood functions defined by (1.4.4) generally contain a long narrow ridge 
which is often curved. Arnold et al. (1993) refer to similar features in the two 
dimensional profile log-likelihood functions associated with the direct 
parametrization. This type of feature can cause problems for many optimization 
methods, as such techniques generally perform well for surfaces with contours 
which are close to symmetrical ellipsoids; see e.g. Lindsey (1996, p. 109). For 
surfaces containing narrow ridges, certain iterative methods may fail to converge, 
let alone converge to the required global maximum. This is a known feature, for 
instance, of gradient-based iterative techniques. Given the generally non-elliptical 
form of the likelihood surface under the direct parametrization, convergence, when 
it occurs, can be slow. The constrained log-likelihood surface defined by (1.4.4) for 
the so-called ‘Trontier data” of Azzalini & Capitanio (1999) exhibits such a curved 
ridge feature, as can be appreciated from Figure 1.5. In this figure we have 

represented (1.4.4) in terms of S, rather than X, so as to avoid the complications 

associated with the range of the latter. The frontier data, reproduced in Table 1.1, 

consist of 50 pseudo-random variâtes simulated from the SNd(0, 1, 5) distribution.

Unlike its method of moments counterpart, a maximum likelihood estimate of a 
parameter is, by definition, always within range, i.e. ‘admissible’. However, 
particularly for small sized samples, and generally for samples drawn from skew- 

normal distributions with moderate to large values of X, the global maximum of the
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log-likelihood can occur on the boundary of the parameter space. In such cases, the 

maximum likelihood estimate of the skewness parameter X is infinite. The frontier 

data provide a case in point. Indeed, the word “frontier” used in their description 
presumably refers to the fact that the maximum likelihood estimate of the 
skewness parameter occurs on the boundary, or “frontier”, of the parameter space. 
As we can see from Figure 1.5, the prominent narrow ridge winds its way out to the 

global maximum corresponding to a value on the S = 1 (or, equivalently, À = )

boundary. As an isolated case, this behaviour is somewhat surprising as the sample 
distribution of the frontier data displays no obviously pathological features. For 
instance, the sample coefficient of skewness is 0.9022, well below the theoretical 
maximum for a skew-normal random variable of 0.9953. The corresponding value 

for the population coefficient of skewness for the underlying SNd(0, 1, 5) 

distribution is 0.8510. As Cox (1992) and Lindsey (1996, p. 81) note, boundary 
estimates of parameters have a clear interpretation. Formally, a boundary 
maximum likelihood estimate indicates that the set of plausible models lies to only 

one side of the most likely one. Thus, here, we interpret a boundary estimate of À 

as indicating that a half-normal distribution is the most likely generating 
mechanism for the data. Again, see Chapter 2 for a treatment of inference for the 
general half-normal distribution.

-30

Z
-40

-50

Figure 1.5 Constrained log-likelihood surface under the direct parametrization, 
truncated atz = -50, for the studentized values of the frontier data: % = y = (̂ , z 
= value of (1.4.4).

If operating with infinite values of a parameter estimate is thought messy then 

we can always reparametrize. For instance, here we could choose to work with S

G ( - l , l )  rather than /1g (- oo,oo). Whilst working with, for instance, S  rather than
18
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A circumvents the problem of infinite point estimates, boundary estimates on the A 

scale are still nevertheless transformed to boundary estimates on the S scale. And 

boundary values for point estimates, under whatever parametrization, are 
problematic in that the regularity conditions underpinning standard, asymptotic 
theory based, likelihood methods of inference do not apply on the boundary of the 
parameter space.

-350

-400

-450

Figure 1.6 Constrained log-likelihood surface under the direct parametrization, 
truncated at z = -500, for the studentized values of a simulated sample of size 500 
from the N(0,1) = SNd(0,1,0) distribution: x= ^s,y = ^ ,z  = value of (1.4.4).

Pewsey (2000a) traces the singularity of the Fisher information matrix for À = 0 

to the parameter redundancy of the parametrization for the normal case, a fact 
easily identified using the results of Catchpole & Morgan (1997). In the latter, an 
exponential-family model is identified as being parameter redundant if the mean 

can be expressed using a reduced number of parameters. From (1.2.6), f(F d  ) is a 

function of all three parameters, whereas for the normal case it is just The 

singularity of the information matrix then follows from Remark 4 of Catchpole & 
Morgan (1997). According to Theorem 2 of the same paper, the likelihood surface 
for the normal case must contain a completely flat ridge. Thus, if we were to 
attempt to maximize the log-likelihood for this parametrization using numerical 
techniques, the results obtained could be highly misleading as for this case no 
unique solution exists. In Figure 1.6 we plot (1.4.4) for a simulated sample of size 
500 from the N(0, 1) = SNd(0, 1, 0) distribution. As in Figure 1.5, we plot (1.4.4) as 

a function of S, and truncate the surface so as to highlight its main features. We see 

that even for such a large sample size, the surface is completely flat across a
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relatively wide range of lvalues, indicating that the data provide little or no 

information ahout the parameters. We also note that the dominant ridge in Figure 
1.6 is not orthogonal to either parameter axis and so neither the skewness nor the 
location parameter have unique maximum likelihood estimates. These 
consequences, and our findings for MM estimation, rule the direct parametrization 
out as a general basis from which to conduct estimation.

1.4.2 Inference for the Centred Parametrization
Having identified the singularity problem associated with ML estimation for the 
direct parametrization, Azzalini (1985) introduced the “centred” parametrization, 

(//,cr,yj ). He defined a skew-normal random variable 7  ̂ with ^ (7 ^ )= //  and

var(}^ )= (7̂  by

Fe + -oo<^<oo,(T >0,
|var(Z))^

where A is a SN(A) random variable. In this notation, we use the subindex C to 

highlight the role of the centred parametrization. The parameter is the 

coefficient of skewness of X, and hence also that of 7  ̂. We denote the distribution

of 7  ̂ under this parametrization by SN^( // ,cr,7i ). As £’(7 ^ )= // ,  this

parametrization is clearly not parameter redundant for the normal case. 
Expressions for the direct parameters in terms of the centred ones are:

^ = j u - c r f c r ,

T] = a{l  + c^yf^y^,  (1.4.5)

{ b ^ + c ^ { b ^ - i ) r y y ’

where, as before, h = (2/^)'^^ and c = {2/(4 — . The density of 1/ under this 

parametrization is given by
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a
y - i^ + C/i1/3

X 0 cYx1/3 y-M) +cyf\
y ^  j J

(1.4.6)

{b^+ c^{b^-l)Y l'^Y {\ + c Y ' T

(_oo<y<oo;-co<^<oo; (T > 0; -  0.99527 < /, < 0.99527).

1.4.2.1 Moment Based Inference
Moment based inference for the centred parametrization has only been considered 
in Pewsey (2000a). As,

e {Yc )=IJ., ) = / < " + and £ '(y /)= /<^+3/n7^+ crV i, d.4.7)

the MM estimates of the centred parameters are the usual ones, namely

^  = ÿ, a  = 5, fi =g^ = m js ^ .

Prior to giving a general result for the asymptotic distribution of ( ÿ, ) in

Theorem 1.1, we provide the details of a lemma quoted by Mardia (1972, p. I l l )  
which summarizes a standard means of deriving large-sample approximations to 
sampling distributions based on Taylor expansion.

Lemma 1.2 Let the p-dimensional statistic ,...,7^ have joint distribution

which is asymptotically N (^,E) with ^  ,...,0^)^ and E = ((J-), where

e {t . )= , and var(7] )= (T„ and cov{t . ,T. )= (7̂  are of order Further, let

\,...,h ^  he differentiable functions of ,...,7^ . Then

E {K )= hXe,
f= i 7=1

var( ht ) = X  ),
i= l 7=1

cov(ht  A  )=  + o { n ^ ' X ,

(1.4.8)

1=1 7=1

where k, I = and h^  ̂= dh,̂  jdd. , ĥ ^̂  = d^h,  ̂jdO^ ddj and (^ ). The

joint distribution of (/Zj ,...,/z  ̂) is asymptotically normal i f  the leading terms of the 

are finite and those for the var(/z^) are of the form c^jn with Cj^>0.
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Theorem  1.1 Let he n independently and identically distributed random

variables from a distribution for which the first six central moments are finite. Let 

p, and denote the mean, variance and coefficient of skewness of the

distribution, respectively. Let j a n d  , where

p^ denotes the central moment about the mean. Then the asymptotic joint

distribution of ( j ,  s, ) is trivariate normal with 

E {ÿ)= ^l,
E {  s ) =  ( t{ i -  (3 + a  y8ra}+ ), (1.4.9)

s (g , )= r , +3{r. (7 + 5A  )-4^3 }/8n + o(n-^/^),

var( y)= g '̂  jn ,

var( 5) = cr̂  (y?2 + (1.4.10)

var(g, ) = { 9 - 6 A  - 3 / ,  A  + A  + x X 3 5 + 9 A M / "  + o (

cov(ÿ,i)=<T^F, +

cov(ÿ,g,)=cr(02 -3 -3 r,V 2)/n  + 0(«-'/"), (1.4.11)

cov(i, g, )= <t{2A -  Fi (5 + 3A )}/4n + ),

i f  the terms of 0(^n) in the variances of s and are positive.

1 ”Proof Let =m[ , T̂  = and T̂  =m[ where m[ = — . Then, ÿ = 7] ,
n i=\

rrt grri rji ,

5 = (£2 - T i j ^  and g, = ^ -j-----  ̂ \ \ 3/2'~" ’ differentiable functions of 7̂  , 7̂  and
V2 - 7 j j

£3 . The non-central moments can be expressed as, 

e {y ^)= p^ + 3pG^ + crV i,
e { y '̂  )=  p"̂  + 6 / / +  4//crVi + cr'^Pi, (1-4.12)

e {y ^)= p  ̂+10p^G^ +10//V V i +5pG^P2 +cr^p3,

e ( y ^)= p^ +l5p'^G^ +20p^G^y^ +l5p^G^P2 +6pG^p^ +g ^P^.
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Appealing to the central limit theorem, the asymptotic distribution of (?] ,7  ̂,7̂  )

is N(g,Z) where g = ( , ^ 3  X = ) , ) F  and Z = (o -J , with

/ \ cr̂
CTii -  var(7’i j - — , 

n

0-12 = 0-21 = cov(7; ) = ^ ( 2 / /  + oXi \

cr, 3  = 0 -3 , = cov(r, A  )= — (SyU" +3//oy, +<t"A )-

0-22 = var(r2 ) = — {4//^ -\■Â laŶ  +<t^(A  -l)}, (1.4.13)
n

'{t, j , )

= — {ôyU’ +9fi^ay^ +/<cr"(5A -3 )+ o -^ (A  ~ h  )}.
n

0 - 3 3  = var(7  ̂ ) = — -o-^)+6/zo-(3//^-o-^)yi  

+ 15^V^y^2 +6//o-^y^3

ô  23 — ô  22 — COV\

o-'

Now apply Lemma 1.2 with \  =6^, ^  = (^2 and /Z3 _ 3̂
1^2 -^1 V

The non-zero first- and second-order partial derivatives of these functions, 

expressed in terms of p,  and y^, are:

=  1,

O-̂  '  ̂ 2o^ '  ̂ 4o^ '

, , , _ 3 ( A w ^ ^ )  ,2) - 3 ( 2 / ^ + o r , )  ( 3 ) _  1
/Î3 -  ^3 • f ’s ^  . "3
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^(n) ^ -g ^ )+ g y i (S/^  ̂+0-^)1
O '

^(12) = 3{-9/^^-5^gr. + 0 '}  ^(,3) ^ 37^
20-' '  O-

, (22) _ 3(i2// + 5o7i ) (23) _ -3
 ̂ 4o" '  ̂ 2o^ '

Substituting these partial derivatives, and the variances and covariances given by 
(1.4.13), in (1.4.8) we obtain, after lengthy but basic algebraic simplification, the 
expectations, variances and covariances given in (1.4.9)-(1.4.11). Asymptotic

normality follows from Lemma 1.2 due to the asymptotic normality of ,7  ̂,7̂  ) ,

the forms of the leading terms for the expectations in (1.4.9) and the assumption 

that the terms of 0(^n) in the variances of .y and in (1.4.10) are positive.

We suspect that Taylor expansion may well have been used previously in the 
literature to derive equivalent results to those given in Theorem 1.1 for the joint 

distribution of (ÿ, 5', ). Nevertheless, we have been unable to track down any

such previous work. We note that Gupta (1967) used Taylor expansion to derive an 

asymptotic result for the marginal distribution of .

In order to apply Theorem 1.1 in the case of an underlying general skew-normal 

distribution, we note that if 7  ̂~SN(.(//,cr,7i ),

P2  =72 +3 = 3 + ( ̂  — 3),

ŷ3 =10/1 (3;r^-40;r + 96)/4,

ŷ4 =15{l + r' (̂2;r-6)}-T  ̂(9;r^-80;r + 160y2,

where T -  .

For the special case of an underlying normal distribution, the relevant sampling 
properties of all three individual estimators are well known. Nevertheless, in 
Figures 1.7 and 1.8 we represent the sampling distributions of the method of 
moments estimates for the same simulated samples used to generate Figures 1.3 
and 1.4. We do this so as to provide a comparison with the sampling distributions of 
the maximum likelihood estimates presented later in Figures 1.13 and 1.14.

Simulation confirms that all of the results in (1.4.9)-(1.4.11), apart from that for

var(^i ), provide very good approximations to the sampling properties of the
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estimators for data drawn from skew-normal distributions, even when the sample 
size is as small as 20. Sample sizes of 50 or more are required before the expression 

for var(^ j) gives a reasonable approximation. Moreover, it is known that the 

sampling distribution of tends to normality very slowly even for data from 

normal populations; see e.g. Pearson (1963) and D’Agostino (1970).
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Figure 1.7 Empirical sampling distributions of the method of moments 
estimates of <7 and % obtained from the same 5000 simulated samples of size 20 
used to produce Figure 1.3: a), b), c) SNd(0,1,0) s  SNc(0,l,0); d), e), f) SNd(0,1,20) = 
SNc(0.7969, 0.6041,0.9851).

For data from highly skewed cases of the skew-normal class the sampling 

distribution of is skewed, even for very large n, as can be appreciated from 

Figures 1.7 and 1.8. Should asymptotic theory be thought not to apply, inference for
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can be based upon computer intensive methods such as Monte Carlo 

significance testing and the bootstrap.
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Figure 1.8 Empirical sampling distributions of the method of moments 
estimates of ju, a  and yi obtained from the same 5000 simulated samples of size 
500 used to produce Figure 1.4; a), b), c) SNd(0,1,0) = SNc(0,l,0); d), e), f) SNd(0,1,20) 
= SNc(0.7969, 0.6041, 0.9851).

As for the direct parametrization, a major problem associated with method of 
moments estimation for the centred parametrization is the occurrence of 
inadmissible estimates of the skewness parameter. Under the centred 

parametrization, inadmissible values of fj = are those with absolute values in

excess of 0.99527. Again, we interpret inadmissible estimates of as indicating
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that a half-normal distribution is the underlying generating mechanism. 
Approximately 3.7% of the estimates in Figure 1.7c, and none of the estimates in 
Figure 1.8c, are inadmissible. The corresponding percentages for the histograms in 
Figures 1.7f and l.Sf are 29 and 42, respectively.

We close this section by giving the following results for the frontier data. The 

theoretical values of the three parameters for a SNd(0, 1, 5) distribution are jJ, -

0.7824, a=  0.6228 and = 0.8510. The MM estimates of these parameters are p, 

= 0.8849, & = 0.7488 and fj = 0.9022. These estimates are contrasted with the 

corresponding ML estimates in the following section.

1.4.2.2 Likelihood Based Inference
Work on issues associated with likelihood based inference for the centred 
parametrization of the skew-normal distribution has been published by Azzalini 
(1985), Azzalini & Dalla Valle (1996), Chiogna (1997), Azzalini & Capitanio (1999) 
and Pewsey (2000a). Considering theoretical results first, Azzalini (1985) gave the 
information matrix for the centred parameters. As proven by Chiogna (1997), the 

information matrix converges to diag(n/(J^,2n/cr^,n/6) as —>0, not to its

inverse as stated incorrectly in Azzalini (1985). The inverse of this diagonal matrix 
also corresponds to the asymptotic form of the covariance matrix for the method of 

moments estimators of the centred parameters as ŷ  —> 0, as can be established 

from (1.4.10) and (1.4.11). Chiogna (1997) shows that the derivative of the profile 

log-likelihood for ŷ  is finite and different from zero as —> 0.

In the remainder of this section, we consider competing numerical approaches 
for identifying the maximum likelihood estimates of the centred parameters. 
Particular attention is given to the approach proposed in Pewsey (2000a) based on 
a constrained version of the full log-likelihood function analogous to that in (1.4.4). 

Consider a random sample y from the ) distribution and its

studentized counterpart from the SN^ ,cr̂  ) distribution. The constraint 

(1.4.3) on the ML estimates for the direct parametrization leads to the constraint 

(7̂  = {//^(l-l-f^)+iy^ , where f  = cy'f^. The ML estimates, and fj , are

those values which maximize the constrained log-likelihood
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r, ; y j=  log. [ W  ( i+ ^ ') + 1̂ '  -  -%i og. ( i + )

+ E iog .
(=1

0

V

+ r 1/2
(1.4.14)

-oo< jû  < oo, -  0.99527 <Yi < 0.99527. The ML estimates of // and cr are then

given by fi = y + sjû  and â  = .

Although (1.4.14) is algebraically more complicated than (1.4.4), the surface 
defined by it is generally far better behaved. In Figure 1.9 we represent the surface 
obtained using (1.4.14) for the frontier data. Rather than having the winding ridge 
displayed in Figure 1.5, the main ridge in Figure 1.9 is close to being orthogonal to 

the jû  axis. Nevertheless, the ridge still leads to a boundary estimate of the

skewness parameter and thus the contours of the surface are clearly not elliptical. 
We also note that the reparametrization has removed the plateau feature of the 

ridge in the vicinity of À = S = = 0.

-30

Z
-40

-50

Figure 1.9 Constrained log-likelihood surface under the centred 
parametrization, truncated at z = -50, for the studentized values of the frontier 
data: x = jUs,y = y, z = value of (1.4.14).

The boundary estimate of is inevitable given the form of the 

reparametrization and the previously identified boundary estimate for S. The ML 

estimates of the other two parameters are jii = 0.8860 and â  = 0.7474.

Contrasting these results with the MM estimates p, = 0.8849, & = 0.7488 and ŷ

= 0.9022, we see that there is little difference between the estimates of the location
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and scale parameters obtained via the two methods. However, the method of 

moments estimate fj = 0.9022 is numerically much closer to the true underlying

value of /i = 0.8510. This estimate for corresponds to an estimate for À of 

approximately 6.4, whilst the boundary maximum likelihood estimate results in an 

infinite estimate for À. On the one hand, these wildly disparate numerical values 

are somewhat misleading, as a consideration of Figure 1.1 attests. In fact, the 

differences between the probability density functions corresponding to the three À- 

values concerned are not that great. Nevertheless, the ML solution implies the 
existence of a hard lower threshold, whereas that for MM estimation does not. 

Generally, in situations where a boundary estimate arises for then,

depending on whether is of interest, we might carry out ML based inference for

a general half-normal distribution or apply computer intensive methods as in 
Section 1.4.1.2. We see the re-estimation approach to dealing with boundary 
estimates of Azzalini & Capitanio (1999) as one based on an interpretation of the 
likelihood which is difficult to defend on objective grounds.

-350

-400

Z

-450

-500

Figure 1.10 Constrained log-likelihood surface under the centred 
parametrization, truncated at z = -500, for the studentized values of the same 
simulated sample of size 500 from the N(0,1) = SNd(0,1,0) = SNc(0,l,0) distribution 
used in Figure 1.6: x-iis,y = YuZ = value of (1.4.14).

In Figure 1.10 we plot the surface defined by (1.4.14) for the simulated data from 
the standard normal distribution used previously to produce Figure 1.6. It can be 
seen that the reparametrization has removed the problematic plateau feature 
evident in Figure 1.6, attributed to the parameter redundancy of the direct 
parametrization. The surface has a unique global maximum and its contours
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roughly approximate tight ellipses in shape. In both Figures 1.9 and 1.10 the ridges 

lie closely around the  ̂ = 0 axis. This value of corresponds to a value of // = ÿ

for the non-studentized data, which is the same as the MM estimate of fi. We might

therefore expect the MM estimate of = 0, to provide a good initial estimate

for the optimization of (1.4.14).
The main observations drawn from Figures 1.9 and 1.10 partly confirm points 

made by Azzalini (1985), Azzalini & Dalla Valle (1996) and Azzalini & Capitanio 
(1999). In the latter, a summary is given of the improvements brought about by the 
centred reparametrization, expressed mainly in terms of profile log-likelihoods. 
These improvements apply equally well to the constrained likelihood (1.4.14), and 
can be summarized as follows. As there is no parameter redundancy under the 
centred parametrization, its parameters are estimable. The reparametrization 
leads to improved shape characteristics of the log-likelihood surface, which in turn 
means that convergence of appropriately chosen optimization methods to the global 
maximum is, in general, relatively swift.

a)
1 -

- 1 -

MM estimate

1 .00 -

0)0.98—

6 0 .9 7 -

«0.96

0.93-
1.0 1.2 1.4
MM estimate

Figure 1.11 Scatterplots of the ML versus the MM estimate of for 5000 
simulated samples of size: a) 20 from the N(0,1) = SNc(0,l,0) distribution; b) 500 
from the SNd(0,1,20) = SNc(0.7969, 0.6041, 0.9851) distribution.

Azzalini & Capitanio (1999) gave a World Wide Web address from which two S- 
PLUS routines for fitting the skew-normal distribution using maximum likelihood 
estimation can be obtained. The routine sn.em uses the EM algorithm to maximize 
the log-likelihood whilst sn.mle employs gradient based methods. Both routines use 
the MM estimates as default starting values. As we have noted previously, p

usually provides a good initial estimate of p . However, in general, and f  j are
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not strongly related, particularly if n is small or is large. Another starting

value needs to be used if ŷ  is inadmissible. Figure 1.11 illustrates the lack of any 

clear relation between fj and fj using estimates obtained from simulated 

samples of size 20 from the N(0, 1) distribution and of size 500 from the SNd(0, 1, 

20) = SNc(0.7969, 0.6041, 0.9851) distribution. The plotting symbols forming the 

horizontal lines in both scatterplots correspond to boundary ML estimates.
Experience shows that if the MM estimates are used as starting values then 

both routines can converge to a local, rather than the global, maximum of the log- 
likelihood. It has long been known that log-likelihood surfaces can contain multiple 
maxima, the problem being most acute for small samples. Schemes for identifying 
the global maximum in such circumstances date back to the early computational 
work of Barnett (1966). A standard approach is to use a grid of starting values in 
an attempt to ensure that the true global maximum is identified. An optional 
argument of the routine sn.mle allows the user to specify their own starting values 
and so can be used to carry out a grid search. The routine sn.em does not have this 
argument and so its use is strictly limited. Moreover, it can be very slow to execute 
and, more problematically, is based upon optimization for the direct 
parametrization which we identified in Section 1.4.1.2 as being parameter 
redundant for the normal case.

Our approach to finding ML estimates is based upon the optimization of (1.4.14) 
using the simplex algorithm of Nelder & Mead (1965). We use the starting value 

= 0 and a grid of starting values for ŷ  spanning its full range. So as to ensure 

that the true global maximum has been identified, the maximum value found 

during optimization is contrasted with the values of (1.4.14) on the ŷ  boundary, 

namely - in lo g ,( l  + a n d  -^ n lo g ,( l  + w h e r e  and denote the

minimum and maximum values of the studentized data, respectively.
A pilot simulation study incorporating the above approach showed that 

multiple maxima can occur on the constrained log-likelihood surface. Moreover, 
multiple maxima are most frequent for small samples from normal populations. 
The simulated sample in Table 1.2 provides a case in point. The log-likelihood 

associated with this sample has a local maximum 0.01, at (// = 0.01, cr= 1.31, y^

= 0.10) and a global maximum at (// = -0.03, (J= 1.36, y  ̂ = 0.73). Using the default 

starting values, both sn.mle and sn.em converge to the local, rather than the global,
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maximum. Figure 1.12 represents the shape of the constrained log-likelihood 
surface in the neighbourhood of these two maxima. Considering the problem in 
greater generality, approximately 5% of samples of size 20 from normal populations 
have log-likelihood surfaces which contain multiple maxima within the parameter 

space, whilst for samples from skew-normal populations with À = 20 the frequency 

is close to 2%. For sample sizes as large as 500, multiple maxima are generally rare 
for all but those samples from close to normal populations. Even for this limiting 
case, their frequency of occurrence is only around 0.4%.

Table 1.2 Simulated sample of size 20 from the SNd(0,1,0) = N(0,1) distribution.

2.583 1.343 -1.107 -1.203 -0.984 1.359 -0.799 1.580 -0.540 -0.918
1.121 0.412 -0.763 1.333 -1.928 0.873 -1.076 1.139 0.050 -2.258

- 13.7

- 13.8 '

Figure 1.12 Constrained log-likelihood surface under the centred 
parametrization, truncated at z = -14, for the studentized values of the simulated 
sample of size 20 from the SNd(0,1,0) = N(0,1) distribution given in Table 1.2: % = //,, 
y= /hZ = value of (1.4.14).

In Figures 1.13 and 1.14 we present the sampling distributions for the 
maximum likelihood estimates of the centred parameters for the same simulated 
data sets of size 20 and 500 used in the production of Figures 1.3, 1.4, 1.7 and 1.8. 
Comparisons of Figure 1.13 with Figure 1.7, and Figure 1.14 with Figure 1.8, prove 
most revealing. Firstly, there is very little appreciable difference between the 
sampling distributions of the method of moments and maximum likelihood
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estimates of JJ, and a. For small-sized samples and Y\ close to 0, f\ performs very 

poorly indeed. Figure 1.13c is dominated by spikes corresponding to boundary 

estimates. In comparison, the sampling distribution of in Figure 1.7c is much 

more regular. Comparing Figure 1.14c with Figure 1.8c we see that the 

performance of fj approaches that of as the sample size increases.
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0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0
Estimate of the location parameter, mu

O  1 .0 -

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Estimate of the scale parameter, sigma
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0.4 0.6 0.8 1.0 1.2 1.4
Estimate of the location parameter, mu

e)

4 -
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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§  10-  p

- 1 0  1 
Estimate of the skewness parameter

- 1 0  1 
Estimate of the skewness parameter

Figure 1.13 Empirical sampling distributions of the maximum likelihood 
estimates of ju, cr and y obtained from the same 5000 simulated samples of size 20 
used to produce Figures 1.3 and 1.7: a), b), c) SNd(0,1,0) = SNc(0,l,0); d), e), f) 
SNd(0,1,20) = SNc(0.7969, 0.6041, 0.9851).

As can be seen from Figure 1.14f, the sampling distribution of fj , like that of 

, is not normal for samples drawn from highly skewed populations, even for n as
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large as 500. In passing, we note the spikes around 0 in the sampling distributions 

of displayed in Figures 1.13c and 1.14c. We attribute these to a compressing 

effect associated with the scale, as on the À scale they disappear. Whilst for 

large values of À the sampling distribution of fj is more regular (unimodal but, 

nevertheless, skewed), fj is superior in performance, even for small samples. 

Despite approximately 95% of the values of fj in Figure 1.13f being boundary 

estimates, the proportion of fj values in the neighbourhood of the true value of 

/i = 0.9851 is far in excess of the corresponding proportion for .

-0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12
Estimate of the location parameter, mu

b)
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4 —

2 -

0 -

.88 0.92 0.96 1.00 1.04 1.08 1.12
Estimate of the scale parameter, sigma
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Figure 1.14 Empirical sampling distributions of the maximum likelihood 
estimates oï jd, a and yi obtained from the same 5000 simulated samples of size 
500 used to produce Figures 1.4 and 1.8: a), b), c) SNd(0,1,0) = SNc(0,l,0); d), e), f) 
SNd(0,1,20) = SNc(0.7969, 0.6041, 0.9851).
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1.4.2.3 A Comparative Simulation Study
So as to compare the small-sample characteristics of the MM and ML estimators in 
greater detail, we conducted an in-depth simulation study. Samples of size n = 20, 

50, 100, 200 and 500 were simulated from the SNd(0, 1, Â) distribution for À = 0,2, 

5 and 20. For each (n, Â) combination, 5000 samples were simulated using the 

method of Henze (1986). As performance measures we used the mean value and 

mean squared error. For comparative purposes, the measures for fj were 

calculated using truncation of inadmissible values to ± 0.99527. Clearly, the quoted 

mean squared errors for are, in general, smaller than they would have been

without such truncation. For the estimation of we also recorded; the percentage

of inadmissible MM estimates; the percentage of boundary ML estimates, and the 
percentage of samples for which the MM estimate was inadmissible and the ML 
estimate was a boundary estimate. The results obtained are presented in Tables 
1.3-1.5, with each table representing the results for an individual parameter.

Table 1.3 Performance measures for the MM and ML estimates of // from 5000 
simulated samples of size n from the SNd(0,1,/1) distribution: mean; (mean squared 
error).

Sample Â = 0; ^  = 0 Â = 2; /i= 0.7136 À = [d = 0.7824 À = 20; ji = 0.7969 
size, n MM ML MM ML MM ML MM ML

20 0.0022 0.0014 0.7157 0.7095 0.7826 0.7811 0.7984 0.8111
(0.0480) (0.0512) (0.0248) (0.0259) (0.0201) (0.0205) (0.0185) (0.0182)

50 0.0026 0.0029 0.7126 0.7077 0.7850 0.7780 0.7964 0.7967
(0.0205) (0.0210) (0.0101) (0.0104) (0.0077) (0.0077) (0.0074) (0.0070)

100 -0.0015 -0.0014 0.7146 0.7136 0.7818 0.7790 0.7971 0.7951
(0.0099) (0.0099) (0.0049) (0.0050) (0.0039) (0.0038) (0.0038) (0.0035)

200 0.0007 0.0007 0.7126 0.7123 0.7823 0.7818 0.7964 0.7943
(0.0052) (0.0052) (0.0025) (0.0025) (0.0019) (0.0019) (0.0019) (0.0017)

500 0.0000 0.0000 0.7146 0.7146 0.7819 0.7818 0.7963 0.7960
(0.0020) (0.0020) (0.0010) (0.0010) (0.0007) (0.0007) (0.0007) (0.0007)

From Table 1.3 we see there is little or no difference between the mean values 
and mean squared errors obtained for the method of moments and maximum 

likelihood estimates of fi.
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Table 1.4 Performance measures for the MM and ML estimates of cr from 5000 
simulated samples of size n from the SNd(0,1,/1) distribution: mean; (mean squared 
error).

Sample /I = 0;; cr= 1 Â = 2; C7-= 0.7005 À = 5; (7:= 0.6228 A = 20; (7= 0.6041
size,n MM ML MM ML MM ML MM ML

20 0.9622 1.0058 0.6732 0.7009 0.5984 0.6083 0.5806 0.5691
(0.0257) (0.0307) (0.0139) (0.0160) (0.0128) (0.0120) (0.0128) (0.0107)

50 0.9871 0.9965 0.6887 0.6971 0.6142 0.6248 0.5929 0.5940
(0.0101) (0.0112) (0.0057) (0.0064) (0.0052) (0.0055) (0.0054) (0.0043)

100 0.9911 0.9922 0.6958 0.6973 0.6165 0.6206 0.5992 0.6027
(0.0052) (0.0052) (0.0029) (0.0030) (0.0026) (0.0027) (0.0027) (0.0022)

200 0.9965 0.9968 0.6970 0.6973 0.6204 0.6211 0.6008 0.6039
(0.0025) (0.0025) (0.0014) (0.0014) (0.0013) (0.0012) (0.0013) (0.0011)

500 0.9982 0.9982 0.6990 0.6991 0.6215 0.6217 0.6029 0.6035
(0.0010) (0.0010) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0004)

We know, of course, that (J is a negatively biased estimator of a. This fact is 

reflected in the results presented in Table 1.4. We note that the bias of â  is 

generally smaller than that of d. For data from close to symmetric distributions, 

the mean squared error of a  is generally smaller than that of Ô, while for highly 

skewed cases â  marginally outperforms & according to this criterion. Again, any 

differences between the mean values and mean squared errors of G and â  are 

very small.

From Table 1.5, fj generally outperforms fj , although the performance of is 

inferior for close to symmetric populations, particularly for small samples. The 
large mean squared error for these cases is consistent with the content of Figure 

1.13c. In general, the frequencies of inadmissible and boundary estimates of 

diminish with increasing n and as A —> 0. However, boundary ML estimates are 

still possible for n as large as 500, albeit for samples from highly asymmetric 

populations. For such distributions the percentage of inadmissible method of 
moments estimates increases with sample size. The percentages appearing in the 
square brackets imply that there is little relation between the occurrence of 

inadmissible MM and boundary ML estimates of ŷ  .
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Table 1.5 Performance measures for the MM and ML estimates of y from 5000 
simulated samples of size n from the SNd(0,1,A,) distribution: mean; (mean squared 
error); {percentage of inadmissible or boundary estimates, respectively}; 
[percentage of samples for which MM estimate was inadmissible and ML estimate 
was a boundary estimate].

Sample A = 0; y=0 ;i = 2; 0.4538 À = 5; y == 0.8510 À = 20; y-= 0.9851
size,n MM ML MM ML MM ML MM ML

20 -0.0015 0.0035 0.3171 0.4615 0.5806 0.7837 0.6769 0.9338
(0.2064) (0.5819) (0.2081) (0.4726) (0.2045) (0.2363) (0.1947) (0.0905)

(3.741 {49.16} {8.86} {54.74} {21.70} {77.24} {29.40} {95.08}
[2.40] [6.34] [19.02] [28.82]

50 0.0014 -0.0003 0.3895 0.4464 0.7085 0.8448 0.7951 0.9811
(0.1045) (0.1812) (0.1078) (0.1351) (0.0850) (0.0405) (0.0826) (0.0049)

{0.32} {4.86} {5.12} {9.42} {22.72} {34.72} {33.82} {86.86}
[0.12] [1.14] [10.02] [30.26]

100 -0.0002 -0.0012 0.4258 0.4467 0.7674 0.8474 0.8583 0.9851
(0.0560) (0.0731) (0.0643) (0.0576) (0.0461) (0.0138) (0.0406) (0.0007)

{0.02} {0.06} {2.34} {0.78} {22.58} {8.80} {37.74} {65.70}
[0] [0.02] [2.42] [25.34]

200 -0.0013 -0.0015 0.4391 0.4473 0.8072 0.8499 0.8954 0.9857
(0.0297) (0.0339) (0.0344) (0.0266) (0.0246) (0.0054) (0.0219) (0.0002)

{0} {0} {0.40} {0} {18.10} {0.54} {38.92} {32.78}
[01 [01 [0.22] [13.08]

500 -0.0002 -0.0004 0.4460 0.4505 0.8365 0.8494 0.9347 0.9852
(0.0118) (0.0122) (0.0144) (0.0104) (0.0120) (0.0019) (0.0083) (0.0000)

{0} {0} {0.02} {0} {11.28} {0} {41.68} {3.30}
[0] [0] [0] [1.26]

In many practical situations, interest will focus on fi and cr, with being a

nuisance parameter. Our results indicate that for these situations there is little or 
no benefit in using ML estimation, and the extreme simplicity of MM estimation 
strongly favours its adoption. Should a complete specification of the underlying 
distribution be required then ML estimation is generally preferable. However, MM 
estimation performs better for small samples from close to symmetric populations.

1.4.3 Tests for Limiting Cases
The normal, half-normal and negative half-normal distributions warrant special 
attention as they can be specified in terms of two parameters rather than the three 
of the skew-normal class. Parsimony dictates that, for data displaying a high 
degree of asymmetry, or symmetry, we should investigate the appropriateness of 

the relevant limiting case. Salvan (1986), has shown that is the locally most
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powerful location and scale invariant statistic for testing for normality within the 
skew-normal class. Here we consider significance tests for departures from an 
underlying half-normal distribution. Those for its negative analogue are then 
obvious.

In principal, one could define a generalized likelihood ratio based procedure to 
test for an underlying half-normal distribution against the alternative of some 

other member of the skew-normal class. In terms of the parameter , a test of 

these two hypotheses is equivalent to testing = 0.99527 against

H^'.y^< 0.99527. However, as the value of ŷ  under the null hypothesis is a 

boundary point of the parameter space, the asymptotic distribution of the deviance 

for such a test is not X\ as given by standard likelihood theory. One could seek an 

empirical approximation to the sampling distribution of the deviation using 
simulation, as in Brooks et al. (1997), but we do not pursue that option here.

Instead, we consider a simple test based on the sample coefficient of skewness

= fj . From Theorem 1.1, the asymptotic distribution of for data from a half­

normal distribution is normal with mean 0.99527 and variance 8.03572 . A

large-sample test follows immediately. However, this large-sample test should be 
used with caution because, as we have noted in Section 1.4.2.1, the sampling 

distribution of is not well approximated by the normal distribution, even for 

very large samples. In the absence of a better approximation to the sampling 

distribution of , we propose a computer intensive alternative. As Barnard (1963) 

explains, a Monte Carlo based approach to significance testing is always available 
so long as data from the null model can he simulated. Here, such a test can be 

based on the rank of ĝ  for the original data when ordered amongst the values of 

ĝ  for samples of the same size simulated from the standard half-normal 

distribution.
Considering once more the percentages in square brackets in Table 1.5, and the 

content of Figure 1.11b, we note the following. If we use ĝ  for testing for 

departures from a half-normal distribution, and base subsequent estimation upon 
the ML criterion, it is possible that the test might reject the null hypothesis and yet 

ML estimation could lead to the contradictory result of a boundary estimate for ŷ  . 

Faced with this situation, the data analyst is advised to estimate the parameters
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using both methods and compare the resultant densities graphically and for 
goodness-of-fit in order to check both for gross disparities between the two and for 
any lack of fit. On purely physical grounds, should we have reason to think that 
there is a threshold value associated with the variable of interest then this would 
tend to favour the adoption of the ML estimates. If the contrary were true, the MM 
solution would appear the more appropriate.

1.4.4 Two Illustrative Examples
In this section, we consider a number of issues associated with fitting the skew- 
normal distribution using two real data sets drawn from the statistical literature.

1.4.4.1 Glass Fibre Strength Data
In our first illustrative example we analyze a sample of experimental data 
introduced by Smith & Naylor (1987) and reproduced in Table 1.6. The data consist 
of 63 measurements on the strength of 1.5 cm lengths of glass fibre made at the 
National Physical Laboratory in England. Smith & Naylor consider the three- 
parameter Weibull distribution as a potential model for these data.

Table 1.6 The glass fibre strength data of Smith & Naylor (1987) ordered from 
smallest to largest.

0.55 0.74 0.77 0.81 0.84 0.93 1.04 1.11 1.13 1.24 1.25 1.27 1.28 1.29
1.30 1.36 1.39 1.42 1.48 1.48 1.49 1.49 1.50 1.50 1.51 1.52 1.53 1.54
1.55 1.55 1.58 1.59 1.60 1.61 1.61 1.61 1.61 1.62 1.62 1.63 1.64 1.66
1.66 1.66 1.67 1.68 1.68 1.69 1.70 1.70 1.73 1.76 1.76 1.77 1.78 1.81
1.82 1.84 1.84 1.89 2.00 2.01 2.24

The method of moments and maximum likelihood estimates for the two 
parametrizations are:

I  = 1.92, I  = 1.85; t] = 0.52, fj = 0.47; 1  = -6.30, X  = -2.68,

and

J1 = 1.51, ft = 1.50; & = 0.32, â  = 0.31; y, = -0.90, y, = -0.62,

respectively, the estimates of the direct parameters having been calculated from 
those of the centred ones using (1.4.5). Although the estimates of the location and 
scale parameters do not differ greatly under either parametrization, the differences 
between the estimates of the skewness parameters are relatively large. This 
reflects our earlier findings in Section 1.4.2.2 where the lack of any clear
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relationship between the method of moments and maximum likelihood estimates of 
these parameters was discussed. In Figure 1.15 the densities corresponding to the 
method of moments and maximum likelihood estimates are superimposed on a 
histogram of the data. Whilst there is little difference between the lower tails of the 
two densities, the density fitted via maximum likelihood estimation appears to 
provide a more reasonable estimate of the mode and follow more closely the sample 
distribution in its upper tail. The visual impression that both densities under­
represent the degree of kurtosis evident in the sample distribution, is partly 
confirmed by the chi-squared goodness-of-fit test. The chi-squared statistics for the 
MM and ML solutions, based on 10 class intervals with expected frequencies in 

excess of 5, corresponded to /7-values of 0.07 and 0.11, respectively. Thus, using this 

criterion the ML solution is marginally superior. For both solutions, the major 
contributions to the chi-squared statistic were associated with the disparity 
between the fitted densities and the observed frequencies in the neighbourhood of 
the mode.

2 .0 - 1

1 .5 -

0 .5 -

0-
2.00.5 1.0 1.5 2.5

Glass fibre strength

Figure 1.15 Histogram of the glass fibre strength data with superimposed
skew-nomal densities fitted using the method of moments (------ ) and the method
of maximum likelihood (...... ).

1 .4.4.2 Body Fat M easurements of Elite A thletes

Often, the skewness of a sample distribution is a consequence of mixing data from 
two or more distinct sub-populations. If this is the case, then a generally more 
informative analysis results from modelling the variable of interest within the 
various sub-samples rather than treating the data as a sample drawn from a single 
population. Our second data set, taken from Cook & Weisberg (1994), provides a 
case in point. The analysis we present also illustrates an issue raised towards the

40



Chapter 1 - Problems of Inference for the Skew-normal Distribution

end of Section 1.4.3. The data, reproduced in Table 1.7, consist of percentage body 
fat measurements made on 102 male and 100 female elite athletes representing ten 
different sports with highly disparate physiological demands. The athletes 
concerned trained at the Australian Institute of Sport.

Table 1.7 The percentage body fat measurements of 202 Australian Institute of 
Sport athletes, ordered from smallest to largest. The underlined values are those 
for the 1 0 2  male athletes.

5.63 5.80 5.90 5.93 6 .0 0 6 .0 0 6.03 6.06 6.06 6 .1 0 6.16 6 .2 0 6.26
6.33 6.33 6.43 6.46 6.53 6.56 6.56 6.59 6.76 6.82 6 .8 6 6.92 6.96
6.99 7.06 7.16 7.19 7.19 7.22 7.29 7.35 7.35 7.42 7.49 7.52 7.68
7.72 7.82 7.88 8.07 8.18 8.44 8.45 8.47 8.51 8.51 8.51 8.54 8.56
8.61 8.64 8.77 8.84 8.84 8.87 8.87 8.94 8.97 8.97 9.00 9.02 9.03
9.10 9.17 9.20 9.20 9.36 9.40 9.40 9.50 9.53 9.56 9.56 9.56 9.79
9.86 9.89 9.91 10.05 10.05 1 0 .1 2 10.15 10.16 10.25 10.48 10.53 10.64 10.74
10.81 11.05 11.07 11.07 1 1 .2 2 11.29 11.47 11.50 11.63 11.64 1 1 .6 6 11.72 11.77
11.79 11.85 11.95i 12.16 1 2 .2 0 12.39 12.55 12.61 12.78 12.92 13.06 13.35 13.46
13.49 13.61 13.91 13.93 13.97 14.26 14.52 14.53 14.69 14.98 15.01 15.07 15.31
15.58 15.59 15.95 16.20 16.25 16.38 16.58 16.86 17.07 17.22 17.24 17.41 17.51
17.64 17.71 17.71 17.89 17.93 17.95 18.04 18.08 18.08 18.14 18.48 18.72 18.77
19.17 19.20 19.26: 19.35 19.39 19.51 19.61 19.63 19.64 19.75 19.83 19.88 19.94
19.99 2 0 .1 0 2 0 .1 2 20.43 2 0 .8 6 21.30 21.30 21.32 21.47 21.79 22.25 22.39 22.43
22.62 23.01 23.01 23.11 23.30 23.66 23.70 23.70 24.69 24.88 24.97 25.16 25.26
26.50 26.57 26.65 26.78 28.83 30.10 35.52

<D 0.4—

Percentage body fat.

Figure 1.16 Histogram of the percentage body fat data with superimposed skew-
normal densities fitted using the method of moments (------ ) and the method of
maximum likelihood (......... ). Shaded rectangles represent the density for male
athletes; non-shaded rectangles, the density for females.

Figure 1.16 is a histogram of the data in which shading has been used to 
represent the density of male athletes in each class interval. The superimposed 
densities are those obtained from fitting the skew-normal distribution to the data
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treated as a single sample using MM and ML estimation. The corresponding 
estimates of the direct and centred parameters are:

^ = 6.04, ^ = 5.63; fj = 9.69, fj = 10.00; À, = 3.73, = +oo,

and

p. = 13.51, p  = 13.62; & = 6.17, â  = 6.03; = 0.76, = 0.99527.

We note the vast difference, both numerically and interpretationally, between Â 

and X . The value for X  of 3.73 would not lead us to suspect that a half-normal

distribution was the parent population, whereas the message from X  is clearly that 

it is. When we applied the Monte Carlo significance test of Section 1.4.3 with 4999 
simulated samples we found that the value 0.76 corresponded to the 13th 

percentile of the sampling distribution of f\  • Thus, according to the observed value 

of f  j , a half-normal distribution is a possible, though unlikely, model for the data.

Whilst the forms taken by the two fitted densities in Figure 1.16 are very similar 
across approximately 85% of the range of the data, the differences between their 
lower tails are important. It is known from the sports physiology literature that 
elite athletes seldom have less than 5% body fat. Generally, a minimum of between 
3 and 4% body fat is necessary in order merely to survive. As can be seen from 
Table 1.7, the minimum percentage body fat measurement within the sample is 
5.63, which is the threshold value fitted under ML estimation. Thus, the MM 
solution ascribes non-zero probability to physically unattainable measurements 
whilst the ML solution appears to over-estimate the threshold. Of course, we could 
have included the background information in the estimation process and fitted a 
half-normal distribution to the data with the value of ^ constrained to be some

hard threshold value of, say, 3%.
On purely objective statistical grounds, neither solution, in fact, provides an 

adequate fit to the data. In addition to the observations made above, we note from 
Figure 1.16 that the sample distribution appears to have more than one mode. The 
chi-squared goodness-of-fit statistic for the MM solution, based on 13 class 

intervals with expected frequencies in excess of 5, corresponded to a p-value of zero 

to four decimal places. The major contributions to the lack-of-fit were found to be 
associated with the disparity between the fitted density and the observed 
frequencies in the lower tail area and in the neighbourhood of the smaller mode 
formed by body fat measurements of around 20%. The p-value for the equivalent
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test for the ML solution was 0.01, again highly significant. For this solution, the 
major contributions to the test statistic corresponded to the disparities between the 
observed and expected frequencies in the neighbourhoods of the major mode and 
the two minor modes formed by body fat measurements of around 20% and 25%, 
respectively.

Whilst we have treated the data of this example as a single sample from a 
unimodal population, a primary reason for the poor fit of the skew-normal 
distribution is that the data do not actually arise from such a population. For 
instance, the values for the male and female athletes are markedly different, as can 
be appreciated from Figure 1.16. The generally higher percentage body fat 
measurements for the female athletes are in keeping with results from research in 
sports physiology; see, for example, Wilmore & Costill (1994, Chapter 16). Clearly, 
a major part of the skewness within the data results from mixing the 
measurements for the two sexes.

If the skew-normal distribution is fitted to the data for just the males we obtain 
the following MM and ML estimates for the two parametrizations:

p  = 9.25, p  = 9.47; a  = 3.17, â  = 2.90; y, = 1.52786, y, = 0.99527.

and

^  = 5.06, ^ = 5.63; Tj = 5.26, i) = 4.81; À = 4-°o, X  = +°°, 

where, in the calculation of the estimates of the direct parameters, the 

inadmissible MM estimate for ŷ  has been set equal to the maximum value of ŷ  , 

namely 0.99527. Thus, both fits correspond to parent populations which are half­
normal. The fit of the half-normal distribution to the data for the male athletes is 
considered in greater detail in Section 2.7 of Chapter 2.

When the skew-normal distribution is fitted to the measurements for the 
females, we obtain the following estimates:

p  = 17.85, p  = 17.82; d  = 5.43, â  = 6.74; fj = 0.35, f, = 0.41.

and

I  = 12.78, I  =11.18; p = 7.42, p = 9.46; X  = 1.65, X  = 1.85.

In Figure 1.17, the densities corresponding to these estimates are superimposed 
upon a histogram of the measurements for the female athletes.
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Figure 1.17 Histogram of the percentage body fat measurements of the 100 elite 
female athletes with superimposed skew-normal densities fitted using the method 
of moments (—  -) and the method of maximum likelihood (...... ).

From a visual inspection of Figure 1.17 it would appear that the ML solution is 
far too heavy-tailed. The overall fit of the MM solution appears to be better, 
although the differences between it and the histogram perhaps indicate that the 
parent population is one with more than a single mode. These observations are 
supported by the results obtained from chi-squared goodness-of-fit analyses. The p- 

value of the chi-squared test for the MM solution, calculated using 10 class 
intervals with expected frequencies in excess of 5, formed from those used in the 
histogram, was 0.07. For this fit, the major contributions to the test statistic were 
those associated with disparities between the observed and expected frequencies 
around the first mode, and in the trough between modes, evident in the histogram. 

For an equivalent analysis based on the ML solution, the p-value of the test was 

0.01, the major contributions to the goodness-of-fit statistic resulting from the 
disparities between the observed and expected frequencies in the tails and in the 
class intervals associated with the first and last mode of the histogram. We could 
proceed by splitting the data for the females further by sport type in an attempt to 
obtain a better fit and yet more insight into the factors influencing the body fat 
measurements of the athletes. However, we do not pursue that approach further 
here.

We conclude with the observation that, should we wish to fit a single density to 
all 202 measurements, we might contemplate an alternative approach based on 
finite mixture modelling. As the sample is clearly skew, the skew-normal
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distribution suggests itself as a useful candidate model for the components used in 
such a mixture.

1.5 Sum m ary and D irection s for F uture R esearch

In this last section of the chapter we summarize the main issues which have so far 
been addressed within in it, and indicate potential avenues for future research.

1.5.1 Sum m ary
In Sections 1.2-1.3 the genesis, properties and univariate extensions of the general 
skew-normal distribution were reviewed.

The main section of the chapter. Section 1.4, dealt with some basic problems of 
inference associated with the general skew-normal distribution. Specifically, in 
Section 1.4.1, issues associated with estimating the distribution’s direct parameters 
were addressed. In Section 1.4.1.1 we gave a simplified approach to calculating the 
MM estimates based on studentization of the original data, and highlighted 
unattractive features of the sampling distributions of the MM estimators. In this 
and subsequent sections, simulated data were used to illustrate the main issues 
raised. In Section 1.4.1.2 we explored problems associated with the shape of the log- 
likelihood function and traced a major shortcoming of the direct parametrization to 
its parameter redundancy for the important normal case.

Section 1.4.2 dealt with MM and ML based inference for the centred 
parametrization of the distribution. In Section 1.4.2.1 we derived the asymptotic 
distribution for the MM estimators and illustrated the improvement in the forms of 
their sampling distributions when compared with those of their direct parameter 
counterparts.

Competing numerical approaches for identifying the ML estimates were 
compared in Section 1.4.2.2, with particular attention being given to one employing 
a constrained version of the log-likelihood function and a grid based search 
utilizing the Nelder-Mead simplex. Some important deficiencies of two routines of 
Azzalini & Capitanio (1999) were discussed, these being related to the lack of any 

strong relation between the MM and ML estimates of /j , and the potential

existence of multiple maxima on the log-likelihood surface. The proposed grid based 
search was found to resolve both of these shortcomings. We also illustrated 
improvements in the shape of the log-likelihood brought about by the 
reparametrization, some being consequences of its lack of parameter redundancy.
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In Section 1.4.2.3 we presented the results of a simulation study designed to 
compare the small-sample characteristics of the MM and ML estimators of the 

centred parameters. We concluded that if is a nuisance parameter, and we are 

interested in inference concerning p  and a  only, then MM estimation should be

employed. If is also of interest then ML estimation is, in general, preferable. 

However, MM estimation performs better for small samples from close to 
symmetric populations.

Procedures for testing for an underlying half-normal distribution were discussed 
in Section 1.4.3. We considered a large-sample test based on a normal 
approximation to the sampling distribution of the coefficient of skewness, and its 
Monte Carlo analogue.

Finally, in Section 1.4.6, two data sets were used to illustrate a number of issues 
associated with fitting the skew-normal distribution; the first example involving 
the strength of glass fibre, the second the body fat of elite athletes.

1.5.2 Directions for Future Research
In the foregoing sections of this chapter we have focused mainly on point 
estimation and tests for limiting cases of the general skew-normal distribution. 
Other forms of inference such as confidence set construction and hypothesis testing 
for pairs, or all three, of the distribution’s parameters can be based on the 
distributional results for MM estimation presented in Theorem 1.1 and their ML 
counterparts given in Azzalini (1985). Standard asymptotic likelihood theory can be 
used to carry out inference for points within the parameter space. However, given 
the forms of the sampling distributions of the ML estimates, particularly that of 

, one might envisage problems with the reliability of the results obtained. 

Clearly, standard asymptotic likelihood theory does not apply on the boundary of 
the parameter space. The generalized likelihood ratio procedure for testing for a 
half-normal parent population, referred to in Section 1.4.3, is another potential 
inferential tool which requires investigation. Taking a wider perspective, a 
comparison of the results obtained from MM and ML estimation with those arising 
from other methods of estimation would be of great interest.

As our examples in Section 1.4.4 show, the skew-normal class is somewhat 
limited in terms of its capacity to model kurtosis. In view of this shortcoming, the 
extended skew-normal class suggests itself as potentially being more relevant to 
the modelling of real data. From a consideration of the literature, the development
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of inferential methods for this class of distributions appears to be a completely open 
field. The class’s direct parametrization will suffer from the same problem of 
parameter redundancy as that identified for the general skew-normal distribution. 

Reparametrization in terms of ( fi, o’, ,^ 2 ) would appear to be an obvious

potential remedy, but algorithms for actually locating the ML estimates of these 
parameters need to be developed. MM estimation is again trivial, and the results of 
Theorem 1.1 can be extended in the obvious way so as to cater for the additional 
parameter. Boundary problems will possibly be accentuated for this extended 
version of the skew-normal class, given that, in theory, boundary estimates can 

occur for both Â and f  (or and /g )•

A further extension of the skew-normal class is to its multivariate counterpart 
studied by Azzalini & Dalla Valle (1996) and Azzalini & Capitanio (1999). The 
latter two authors have developed routines for fitting this multivariate skew- 
normal distribution which are available from the World Wide Web address 
http://www.stat.unipd.it/dip/homes/azzaiini/SN. However, the parametrization 
used is an extension of the direct parametrization of the scalar class and it would 
appear that this parameterization could well suffer from parameter redundancy 
when the parent population is multivariate normal. Again, this potential problem 
needs to be investigated and an alternative parametrization identified should it be 
found to occur.

Returning to the univariate setting once more, the skew-normal class is just one 
of the potential skew classes that follow on applying Lemma 1.1. Mukhopadhyay & 
Vidakovic (1995) consider other classes with heavier tails, generated using the 
densities and distribution functions of the Laplace and t distributions. The 
(general) exponential and half-^ distributions are the respective limiting 
distributions of these two classes when location and scale parameters are 
introduced. As will become clear, the treatment of the general half-normal 
distribution given in Chapter 2 is relevant to the development of inferential 
procedures for the parameters of these two limiting distributions. One could 
obviously define other classes of skew distributions using Lemma 1.1 in 
combination with the density and distribution function of any other symmetric 
distribution which might appeal, or by mixing the density of some chosen 
symmetric distribution with the distribution function of another. Thus, the further 
derivation of the wider class of possible distributions arising from Lemma 1.1 is a 
vast potential field for future research.
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Lemma 1.1 is one means of generating skew distributions, but there are others. 
Jones & Faddy (2002) consider another general approach based on piecing together 
suitably scaled halves of symmetric component distributions, tracing the version of 
it involving normal distributions to Gibbons & Mylroie (1973). Another, less easily 
generalizable, option is to skew the density of a symmetric distribution directly by 
introducing appropriate additional parameters. This is the approach used by Jones 
(2001) to derive a skew extension of the ^-distribution. As a general approach for 
producing skew multivariate distributions from spherically symmetric 
distributions, Jones (2002) proposes marginal replacement.

Together, these various techniques might be employed to derive a vast array of 
skew distributions in one or more dimensions. However, for the resulting 
distributions to be truly useful to the data analyst, sound inferential procedures 
need to be developed for the estimation and testing of their associated parameters.
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C hapter 2 L arge-sam ple In ference for th e  G eneral H alf­

norm al D istribution

2.1 In trod uction

As we saw in Chapter 1, the general half-normal distribution is a limiting case of 
the general skew-normal class. Moreover, as we also saw, for highly skew data, 
both the MM and ML estimates of a fitted skew-normal distribution often 
correspond to a general half-normal parent population. We therefore consider the 
derivation of inferential results for the general half-normal distribution as being of 
genuine relevance to the modelling of skew data. Surprisingly, nothing had been 
published regarding inference for the general half-normal distribution prior to the 
appearance of Pewsey (2002a). In the sequel, the presented material draws heavily 
on the content of that paper. However, we note that the important results 
presented here concerning bias-correction, and those for MM estimation, were not 
included in that publication.

The subsequent sections of the chapter are organized as follows. In Section 2.2 
we consider the origins of the half-normal distribution and its extension to the 
general half-normal distribution. The numerous distributions for which the half- 
normal distribution is a special case are also identified. Section 2.3 addresses point 
estimation of the distribution’s parameters. Specifically, we provide details of the 
estimates arising from the method of moments and the method of maximum 
likelihood. Large-sample estimation based on the resulting estimators is the theme 
of Section 2.4. Using the asymptotic results given in Theorem 1.1 of Chapter 1, in 
Section 2.4.1 we derive the asymptotic distribution of the MM estimators for the 
parameters of the general half-normal distribution. These results lead us to the 
definition of bias-corrected estimates and large-sample confidence sets for the 
distribution’s parameters. Section 2.4.2 follows along similar lines, but deals with 
corresponding results for the ML based estimators. We first use extreme value 
theory to derive an asymptotic distributional result involving the ML estimator of 
the location parameter of the distribution. Subsequently, an asymptotic result for 
the distribution of the ML estimator of the distribution’s scale parameter is
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obtained. Bias-corrected estimators follow directly from these two results, as do 
constructions for large-sample confidence sets.

In Section 2.5 we present the details of a Monte Carlo experiment designed to 
investigate the sampling properties of the point estimators, and the coverages of 
the confidence sets, identified in Sections 2.3 and 2.4. The use of the confidence sets 
as a basis upon which to perform hypothesis testing is discussed briefly in Section 
2.6. In Section 2.7 we illustrate the application of the developed methodology with 
an analysis of the body fat measurements of the male elite athletes introduced in 
Section 1.4.4.2 of Chapter 1.

The last section of the chapter. Section 2.8, provides a summary of the 
preceeding sections and the main conclusions drawn from them. The chapter ends 
with an indication of related potential lines for future research.

2.2 DanieTs H alf-norm al D istribution  and its  E xten sion

If Z is a standard normal random variable, Z ~N (0,1), then X  = |z | follows a

(standard) half-normal distribution, and -  X  = - |z |  a (standard) negative half-

normal distribution. The standard half-normal distribution is a special case of the 
folded normal and truncated normal distributions (Johnson et al., 1994, pp. 156, 
170). It also arises as the central chi distribution with one degree of freedom 
(Johnson et al., 1994, p. 417).

Extending the distribution via the inclusion of location and scale parameters, 

Y = ^  + T]X is a general half-normal random variable with density

^ (2.2.1) 

:----- k  77>0.

where, as in Chapter 1, Z? = and ^(-) denotes the standard normal density.

We write Y ~ HN(^,77) to denote the fact. The variable Y* =^-7]X  follows a

negative general half-normal distribution. Inference for random samples from such 
a distribution follows in an obvious way from that for random samples from a 

general half-normal distribution, as -7*~HN(-^,?7).

The HN(0,77) distribution first appeared in Cuthbert Daniel’s classic paper of 

1959 introducing half-normal plots. Other relevant early work includes that of
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Elandt (1961) who, considering the HN(0,/7) distribution as a special case of the 

folded normal class, gave the distribution’s first four moments. The 

HN(0,77) distribution has become a popular distributional model in two main

contexts. In addition to providing a parent population from which to generate skew 
data sets in simulation studies, the distribution is also employed to describe the 
form of skew-distributed errors in stochastic frontier modelling; see, for example, 
Aigner et al. (1977). This particular case of the general half-normal distribution 
also arises as a special case of the generalized Rayleigh distribution (Johnson et al., 

1994, p. 453).
Finally, we note that, as well as being a limiting distribution of the skew-normal 

class, the HN(^,?y) distribution is also a special case of both the generalized

gamma distribution and the two parameter chi distribution (Johnson et al., 1994, 
pp. 385, 454).

2.3 P o in t E stim ation
In this section we consider the point estimation of the parameters of the general 
half-normal distribution using the method of moments and the method of 
maximum likelihood.

2.3.1 Method of Moments Estimation

The first two moments of 7 = ^ + rjX are:

E{Y) = ^  + brj and E(Y^) = +2b<̂ r]+ r]\ (2.3.1)

Equating these two moments to their sample analogues for a random sample 

y = (jj ,...,y„) of n observations from the HN(^,77) distribution, one obtains the

moment estimates

where ÿ  and s denote the mean and standard deviation of y , respectively. From

(2.3.1), should the threshold parameter f  be known then the moment estimate of rj 

becomes = (ÿ -  ̂ ) jb . If, on the other hand, the scale parameter, r], is known 

then the estimate of f  becomes ^  = y - b r j . Of these two possibilities, the former 

is the more likely to occur in practice. Inadmissible estimates are likely to occur
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using either estimator of the location parameter an inadmissible estimate in this 

context being one which is greater than , the smallest value in the sample y .

2.3.2 Maximum Likelihood E stim ation

From (2.2.1) the likelihood function for given y , is

f b )
n

— exp« 1 ^ -hv(y(i)-^), (2.3.3)

where hvQ is the unit Heaviside function. In order to maximize (2.3.3) we need to 

minimize ^(y,- subject to the constraint ^ < y^ .̂ This obviously occurs when
1=1

f  = y(j). For this choice of ^ the log-likelihood function is maximized when

1/2

^ = | —̂ (y ^ -y (i))^ | . Should ^ be known, then the ML estimate of 7J IS

1/2

f\̂  = j—]^(y. j- , whilst ^ = ŷ j) is also the ML estimate of ^for the case

where rj is known.

2.4 A sym ptotic D istributions, B ias-correction  and L arge-sam ple  

C onfidence Sets
In this section we obtain asymptotic distributional results for the MM and ML 
based estimators identified in Section 2.3. These results are then used to derive 
bias-corrected estimators and large-sample confidence sets for the parameters of 
the general half-normal distribution.

2.4.1 Moment Based Inference
From the distributional results given in Theorem 1.1 of Chapter 1, we have:

E{y)=^ + b?], var(y)= ^ ^ I
n

4n
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where = 0.9952717 and P 2  = 3.8691773. Using these results together with

(2.3.2), it follows that:

)= ^  + - ^  + o(j7 v a r( |* )= -^ ^  + o(/2
/ \ 2 

E(ij)=t] 1 - ^  +0{n-^'^), v a r(^ )= -^ -H 0 (n "^ /'} , (2.4.1)

cow{^, f j ) = ^ ^  + o{n

where = 0.6851013, = 0.3413251, = 0.8586472, = 0.7172943 and =

-0.2723381. Appealing to Lemma 1.2, the joint distribution of (^ ,p)  is 

asymptotically bivariate normal.

The results for E ( tj) and ) in (2.4.1) suggest we might contemplate the use 

of the following bias-corrected point estimates for rj and

Vbc -
1/2 1 - ^

1/2 b +
{ n - c , )

(2.4.2)

Using the results for ^ , and without including any bias-correction in the 

estimation of 7], the limits of a conventional approximate 100(l-<%)% confidence 

interval for ^ are given by

I- a / 2

/  \V2
(2.4.3)

where Zai2  denotes the upper aj2 quantile of the standard normal distribution. 

Allowing for bias-correction in the estimation of Tj, the limits of the equivalent 

interval for ^  are

I-
f  \ 1/2'

c, , Cg
----- - ^ a / 2n n

\  V
Vbc ' (2.4.4)

From the results for f j , the limits of a conventional approximate 100(l-<%)% 

confidence interval for Tj are given by
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n

(2.4.5)

nV y

Making use of the results for the asymptotic joint distribution of ,fj), a large- 

sample approximate 100(l-a)%  simultaneous confidence region for is

given by where

U = n c,t)
n y

r j - t j
\ n y-

+ 2 rj-rj
V

n y

(2 .4 .6 )

Cg = 4.2029975, Cj = 1.5957691 and zl.i-a is the (l-(%) quantile of the chi- 

squared distribution with two degrees of freedom.

The asymptotic distributions of ^  and , obtained on applying the central 

limit theorem, are

N
y

and N
b^n

respectively. The construction of individual large-sample confidence intervals for ^ 

(when ?; is known) and Tj (when ^is known) is then trivial.

2 .4 .2  L ik e l ih o o d  B a s e d  I n f e r e n c e

Likelihood based inference for the general half-normal distribution is problematic 
in that the standard regularity conditions underlying it cannot be appealed to. 
Specifically, as is evident from (2.2.1), the support of the density depends on the 

location parameter General issues of likelihood based inference for irregular 

problems are reviewed by Smith (1985, 1989) and Cheng & Traylor (1995). A 
standard approach often used in an attempt to circumvent the difficulties 
associated with the type of irregularity experienced here, is to reparametrize the 
distribution. For instance, in the present case one might contemplate employing a 
parametrization equivalent to that of the centred parametrization for the skew- 
normal distribution, that is.
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x - e {x )
- o o  <  JU < 0 0  ̂ ( 7  > 0 ,

{ v a r ( x ) f

leading to the definition of a general half-normal distribution with mean JU and

variance However, as Smith & Naylor (1987) observe, such a

reparametrization is of no practical benefit if the original parameters are of 
paramount interest. This is indeed the case for the general half-normal 

distribution, as the problematic threshold value, will usually be of particular 

practical interest.
Given that standard likelihood theory cannot be used, we consider an alternative 

approach to obtaining distributional results for the ML estimators. First we use 
extreme value theory to derive an asymptotic result involving the ML estimator of 

^.For7~HN(^,/7),

Fy (y) =
20 - 1  f  < y <

0 y < f

and thus the distribution function of ^ is given by

1 - 2 N 1 - 0 f  ^ y <

0 y < f

which has a degenerate limiting distribution at y = f  as n —> oo. Using standard 

extreme value theory (see, for example, Arnold et al. (1992)), as is limited on 

the left, its extreme value distribution is of the Weibull type. Given Fy{y), the l/n 

quantile, or so-called smallest characteristic value of 7, , is obtained as

= ;; 0 “  ̂(y -h ̂ )-f  ̂ . Hence, we consider the limiting distribution of

Now,
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Fy (y +

20  ̂ky^ -1

20 - 1

= lim- 
y->o 1

2-<Z>
V v'7y

= k.

the last expression obtained using I’Hopital’s rule. Thus the extreme value 

distribution of W„ is Weibull with parameter y = 1, i.e. it is exponential with 

parameter Z =1. Summarizing,

l - f EXP(l). (2.4.7)

Table 2.1 Values of O + and l/(6n) for a range of sample sizes.

Sample size, n (2 + ir) V W
20 0.5250 0.0627068 0.0626657
30 0.5167 0.0417893 0.0417771
40 0.5125 0.0313380 0.0313329
50 0.5100 0.0250689 0.0250663
100 0.5050 0.0125335 0.0125331

We can obtain an approximation to z = O  ̂ as follows. Using a series

expansion of about 0,

= - ! - f  
( 2 ^ f  i 2 8

V y
dx

(2^)'
,1/2

X  1-------- ,
6 40

the right hand side of which is approximately equal to zji^T^y^ for z in the 

neighbourhood of 0. Thus, z ~ jn  = Ijibn). This approximation is accurate to
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2 decimal places for n = 10, and to 5 decimal places for n = 50. In Table 2.1 we give 

more precise values of + as well as the values of l/(èn) to the same

accuracy, for a pertinent range of sample sizes.

Turning to consider the distribution of fj, we have nf}^ where
(=1

y;. =4 + t]X,, X, = |z ,| and Z,. ~ N(0,1). Hence, where
i= l

is the minimum value of a random sample of size n, from the

p

standard half-normal distribution. As —>0, and thus, asymptotically,

n f  jr]'  ̂ ~ xl-i- (2.4.8)

For finite sample sizes, ——Tj ,̂ which suggests the use of the bias-
n

corrected estimate,

= | ^ 7 È ( > ’i “ y(i))^| • (2-4.9){ n - l  J [ n - 1 / . i  J

Similarly, from (2.4.7) we have, for finite n, )~ ^ -f ̂ ) ,  which leads us

to the bias-corrected estimator

(2.4.10)

Using (2.4.7) without any bias-correction in the estimation of ^ , an approximate 

100(l - a ) %  confidence interval for ^is given by

>-(■, + ̂  log. (f)® -’& + i ) <  #<>(., +17 log. ( l - f  )<!>■'è  + i ) .  (2.4.11)

Allowing for bias-correction in the estimation of 7], the interval becomes

y (I) ^ V bc < 7(1) +^BC (2.4.12)

If Tj is known then a large-sample confidence interval for ^ with the same nominal 

confidence level is obtained by substituting rj for i) in (2.4.11).

From (2.4.8), an approximate 100(l-a)%  confidence interval for rj is given by

1/2 1/2 \

rj
Z n - l , l - a f 2 % M -l,« /2

(2.4.13)
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where xl-\,aii denotes the a j l  quantile of the chi-squared distribution with n - l  

degrees of freedom. When ^is known, nrj^ = ^ [ Y .  -  f  j = T j ^ ^ X f  . Hence,
/=1 /=1

rj2 (2.4.14)

and the construction of confidence intervals for rj in this case follows in an obvious 

way.
From the derivation of the asymptotic distributional results summarized in 

(2.4.7) and (2.4.8), it follows that the distributions of the ML estimators ^ and f} 

are asymptotically independent. In the construction of a large-sample confidence 

region for we therefore assume the two pivotal statistics in (2.4.7) and (2.4.8)

to be independent and proceed as in the classic construction of a Mood exact region 
for the parameters of a univariate normal distribution; see Mood (1950, p. 227) and 

Arnold & Shavelle (1998). Thus, for a conventional 100(i-y)%  simultaneous 

confidence region we assume,

( l - r ) = ( l - œ f

ii-Û
-  log, (l -  f  )< ( f  )’ Z n - l ,a /2  < or/2

As a function of y we can express a  as <% = 1 -  (l -  . An approximate

100( l - y ) %  confidence region for ((^,7j) is then given by the set

X n - \ , \ - a l2

1/2

, 2
Xn-\,al2

1/2

(2.4.15)

I  + ?7 log, ( f  )<!)■' (i + i ) < ^ < |  + 77 log, (l -  f  )0" ‘ (i +

To illustrate the forms taken by the confidence regions specified in (2.4.6) and
(2.4.15), in Figure 2.1 we present the respective approximate 90% confidence

regions for (^ ,77) corresponding to sample sizes of 20 and 100, calculated using 

f  = ^ = 0 and r\ = 77 = 1.
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1.8 -

P 1.2

Location parameter (XI)

Figure 2.1 Approximate 90% confidence regions for i^,ri) for sample sizes of 20

(large regions) and 100 (small regions) with |  |  = 0 and rj-r} = l .  The ellipses
are MM based regions calculated using (2.4.6); the rectilinear regions delimited by 
the heavy dashed lines are those from ML theory obtained using (2.4.15).

2.5 M onte Carlo R esu lts

In order to investigate the small-sample characteristics of the point estimates and 
confidence sets identified in Sections 2.3 and 2.4, we conducted a simulation 
experiment. For a given sample size, n, ranging between 20 and 100, we generated 

one million pseudo-random samples from the standard half-normal distribution 
using a variation on the Box-Müller method proposed by Henze (1986) for the 
simulation of skew-normal variâtes. With these simulated samples we investigated 

the bias and mean squared error (MSE) of the MM and ML estimators of ^  and 7j 

identified in Section 2.3, and their bias-corrected counterparts given in Equations
(2.4.2), (2.4.9) and (2.4.10). Throughout the study it was assumed that both 
parameters were unknown. For the estimators arising from the method of moments 
we also recorded the percentage of the estimates which were inadmissible. In 
addition to these summaries for the point estimates, we also quantified the actual 
coverages of the nominal 90%, 95% and 99%, MM based, confidence sets given by 
Equations (2.4.3)-(2.4.6) and their ML based analogues specified in Equations
(2.4.11)-(2.4.13) and (2.4.15).

Tables 2.2 and 2.3 summarize the results obtained for the biases and MSEs of 

the various estimators of f  and Tj, respectively. Also included in Table 2.2 are the 

observed percentages of inadmissible estimates of ^  for those estimators associated 

with the method of moments. From an inspection of Table 2.2 we conclude that
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bias-correction leads to improved sampling properties of the point estimators of 

with both the bias and MSE being smaller than for the original estimators. Whilst 

has the smallest bias of the four estimators considered, the bias-corrected ML

based estimator, , is to be preferred given its consistently smaller MSE. In

addition, the fact that a high proportion of the values of are inadmissible rules

it out as a realistic competitor. We note that is marginally negatively biased.

Table 2.2 Empirical bias and MSE of MM and ML based estimators of  ̂
calculated from one million simulated samples of size n. The non-bias-corrected 
estimators, |  and are denoted as MM(NBC) and ML(NBC), and their bias- 

corrected counterparts, and , as MM(BC) and ML(BC).

Sample size, n Estimator Bias MSE % inadmissible

20 MM(NBC)
MM(BC)
ML(NBC)
ML(BC)

0.03420
-0.00005
0.05989

-0.00052

0.01754
0.01730
0.00688
0.00355

41.68
30.97

30 MM(NBC)
MM(BC)
ML(NBC)
ML(BC)

0.02280
-0.00004
0.04042

-0.00035

0.01156
0.01146
0.00318
0.00162

43.28
34.62

40 MM(NBC)
MM(BC)
ML(NBC)
ML(BC)

0.01715
0 .0 0 0 0 2

0.03064
- 0 .0 0 0 1 2

0.00861
0.00855
0.00183
0.00093

44.15
36.65

50 MM(NBC)
MM(BC)
ML(NBC)
ML(BC)

0.01378
0.00007
0.02459

- 0 .0 0 0 1 1

0.00690
0.00686
0.00119
0.00060

44.87
38.17

1 0 0 MM(NBC)
MM(BC)
ML(NBC)
ML(BC)

0.00690
0.00005
0.01242

- 0 .0 0 0 0 2

0.00342
0.00341
0.00031
0.00015

46.37
41.67

As is evident from Table 2.3, bias-correction reduces both the bias and MSE of 

the ML based estimator of ij. From the equivalent results for the MM based 

estimators we see that whilst the bias is reduced, the MSE is increased by bias- 
correction. Although the bias of the bias-corrected MM based estimator is the
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smallest, its ML counterpart, , wins out as its MSE is consistently the smallest. 

The latter estimator is marginally negatively biased.

Table 2.3 Empirical bias and MSE of MM and ML based estimators of rj 
calculated from one million simulated samples of size n. The non-bias-corrected 
estimators, rj and r] , are denoted as MM(NBC) and ML(NBC), and their bias-
corrected counterparts, rĵ ç. and , as MM(BC) and ML(BC).

Sample size, n Estimator Bias MSE

20 MM(NBC) -0.04311 0.03574
MM(BC) -0.00018 0.03699
ML(NBC) -0.06091 0.02818
ML(BC) -0.03652 0.02709

30 MM(NBC) -0.02867 0.02383
MM(BC) -0.00005 0.02438
ML(NBC) -0.04084 0.01813
ML(BC) -0.02444 0.01763

40 MM(NBC) -0.02138 0.01787
MM(BC) 0.00008 0.01819
ML(NBC) -0.03070 0.01334
ML(BC) -0.01835 0.01305

50 MM(NBC) -0.01712 0.01433
MM(BC) 0.00005 0.01453
ML(NBC) -0.02457 0.01053
ML(BC) -0.01467 0.01034

100 MM(NBC) -0.00865 0.00717
MM(BC) -0.00006 0.00722
ML(NBC) -0.01245 0.00515
ML(BC) -0.00747 0.00510

Summarizing our findings from Tables 2.2 and 2.3, we identify the ML based 

bias-corrected pair and as having the best sampling properties of the

various estimators considered.
In Table 2.4 we present the empirical coverages of the nominal 90%, 95% and 

99% confidence intervals for ^ given by Equations (2.4.3), (2.4.4), (2.4.11) and

(2.4.12). The standard error of any entry in this and the subsequent two tables is, 
at most, 0.03%. From these empirical coverage levels we see that, for a nominal 
level of 90%, the coverage of the MM based bias-corrected confidence interval 
specified by (2.4.4) is marginally closest to the nominal level. For the other two 
levels, the coverage of the ML based bias-corrected confidence interval given by
(2.4.12) is closest. We note that whilst the coverages of all four intervals fall
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marginally below the nominal level, they are nevertheless excellent. Indeed, the 
largest difference between the nominal and empirical levels is less than 1.9%, this 
for a sample size of only 20.

Table 2.4 Empirical coverage levels for nominal 90%, 95% and 99% MM and ML 
based, non-bias-corrected (NBC) and bias-corrected (BO), confidence intervals for 

The standard error of any entry is, at most, 0.03%.

Sample Nominal level
size,n Method 90% 95% 99%

20 MM (NBC) 88.17 93.10 97.41
MM(BC) 89.61 94.10 97.85
ML (NBC) 88.90 94.20 98.66
ML(BC) 89.19 94.41 98.74

30 MM (NBC) 88.81 93.76 97.97
MM(BC) 89.76 94.42 98.24
ML (NBC) 89.31 94.47 98.79
ML(BC) 89.50 94.61 98.83

40 MM (NBC) 89.19 94.10 98.25
MM(BC) 89.92 94.59 98.44
ML (NBC) 89.48 94.65 98.86
ML(BC) 89.62 94.74 98.90

50 MM (NBC) 89.26 94.24 98.38
MM(BC) 89.84 94.63 98.53
ML (NBC) 89.57 94.72 98.90
ML(BC) 89.68 94.79 98.93

100 MM (NBC) 89.71 94.67 98.71
MM(BC) 90.00 94.87 98.78
ML (NBC) 89.82 94.86 98.96
ML(BC) 89.87 94.89 98.97

Table 2.5 provides a similar summary for the empirical coverages of the 

confidence intervals for lj given by Equations (2.4.5) and (2.4.13). From a 

consideration of its content we see that the coverage of the MM based interval 
consistently exceeds the nominal level, whilst that of its ML counterpart falls 
consistently short of it. For nominal levels of 90% and 95%, the ML based interval 
tends generally to hold the level best, whereas for one of 99% the two intervals hold 
the level equally well. Again, the empirical coverages of both intervals are 
excellent, even for samples of only 20 observations, with the largest disparity 
between the empirical and nominal levels being less than 1.2%.
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Table 2.5 Empirical coverage levels for nominal 90%, 95% and 99% MM and ML 
based confidence intervals for rj. The standard error of any entry is, at most, 
0^8%.

Sample Nominal level
size, n Method 90% 95% 99%

20 MM 91.19 95.77 99.10
ML 89.53 94.67 98.88

30 MM 90.84 95.50 99.07
ML 89.61 94.73 98.92

40 MM 90.64 95.43 99.08
ML 89.73 94.78 98.93

50 MM 90.44 95.32 99.04
ML 89.75 94.86 98.95

100 MM 90.22 95.12 99.02
ML 89.78 94.88 98.96

Table 2.6 Empirical coverage levels for nominal 90%, 95% and 99% MM and ML
based confidence regions for (̂ , rj) . The standard error of any entry is, at most.
0.03%.

Sample Nominal level
size, n Method 90% 95% 99%

20 MM 90.87 95.32 98.86
ML 90.48 95.32 99.09

30 MM 90.62 95.24 98.88
ML 90.29 95.19 99.07

40 MM 90.48 95.20 98.92
ML 90.22 95.17 99.05

50 MM 90.38 95.15 98.92
ML 90.21 95.16 99.04

100 MM 90.17 95.07 98.96
ML 90.05 95.04 99.02

The final table in this section. Table 2.6, provides a summary of the empirical 

coverage levels of the confidence regions for (^ ,77) associated with Equations

(2.4.6) and (2.4.15). We note that, whilst the empirical coverages of both regions 
marginally exceed the nominal levels, the largest difference between the two, 
corresponding to a sample size of 20, is less than 0.9%. The ML based region
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consistently outperforms its MM based analogue, although the differences between 
the observed coverages are very small indeed

2.6 H ypoth esis T esting
Given the well-established equivalence between hypothesis testing and confidence 
set construction (Neyman, 1937; Lehmann, 1959, pp. 78-83; Aitchison, 1964, 1965), 
hypotheses concerning the parameters of the general half-normal distribution can 
be tested via the appropriate use of the large-sample confidence sets derived in 
Sections 2.4.1 and 2.4.2. The coverage results in Section 2.5 indicate that tests 
incorporating the likelihood theory based sets are generally to be preferred to their 
MM based counterparts. Those same empirical coverages also indicate that the use 

of the likelihood based confidence set associated with the pair (^, rj) will result in a

test that is marginally conservative. On the other hand, the analogous tests for ^  

and 7] will have type I errors marginally in excess of their nominal levels.

2.7 An Illustrative  Exam ple: The B ody F at D ata  R ev isited

In order to illustrate the methodology developed in the preceding sections, we 
present an analysis of the body fat measurements of the 102 male athletes 
considered previously in Section I.4.4.2. The data values for this subsample are the 
ones underlined in Table 1.7 of Chapter 1. A histogram of the data is given in 
Figure 2.3.

As we saw in Section 1.4.4.2, if the general skew-normal distribution is fitted to 
these data then the resulting MM and ML solutions correspond to general half­
normal distributions. Fitting the general half-normal distribution directly to these 
data, the bias-corrected ML based point estimates of the location and scale

parameters are = 5.57 and = 4.84, respectively. Separate nominally 95% 

confidence intervals for ^ and 7], calculated using (2.4.12) and (2.4.13) are (5.41, 

5.63) and (4.25, 5.61), respectively. As we commented in Section 1.4.4.2, a 
percentage body fat measurement of 5% is generally considered in the sports 
physiology literature as being the lower threshold value for a healthy elite athlete. 

We note that the interval for the threshold parameter ^  does not include this value. 

Should we wish to force the threshold value of ^  to be some prespecified value then 

of course we could do so. We would then estimate 7] using 7ĵ , and obtain

approximate confidence intervals for it using the distributional result (2.4.14).
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Figure 2.2 Approximate 95% confidence region for for the percentage body 
fat measurements of the 102 elite male athletes. The cross represents (^bC’^bc '̂ 
The dashed vertical line has  ̂ co-ordinate ^ = 5.63.

An approximate 95% confidence region for obtained using (2.4.15) is given

in Figure 2.2. Also represented in this figure is the position of the bias-corrected 

ML solution ). The (^, rj) co-ordinates of the extreme points defining the

displayed confidence region are: (5.63, 5.73), (5.63, 4.18), (5.32, 5.73) and (5.41,

4.18). Given these values, any hypothesis concerning the two parameters ^ and T] 

which specified a value as low as 5 for the threshold parameter ^ would be rejected 

by a two-sided test with a nominal significance level of 5%. For illustrative 
purposes, in Figure 2.3 the densities corresponding to the two extreme points (5.63,
4.18) and (5.32, 5.73) have been superimposed upon the histogram of the data 
together with the density of the bias-corrected ML solution (5.57, 4.84). The 
densities corresponding to the other two extreme points, (5.63, 5.73) and (5.41,
4.18), are very similar to those for (5.32, 5.73) and (5.63, 4.18), respectively, and 
have been omitted so as not to obscure the content of the plot. Visually the density 
of the bias-corrected ML solution provides a reasonable fit, an impression 
confirmed by the chi-squared goodness-of-fit test. The value of the chi-squared 
statistic, based on eight class intervals with expected frequencies in excess of 5 and 

formed from those used in the histogram of Figure 2.3, corresponded to a p-value of 

around 0.15. Nevertheless, the disparities between the fitted densities and the 
observed frequencies evident in Figure 2.3 suggest that perhaps a heavier-tailed
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distribution, such as the location and scale extension of a half-^ distribution, might 
provide an even better fit to the data.

0.20 H

0 .1 5 -

1Q 0.1 0 -

0.05 -

0 -

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Percentage body fat

Figure 2.3 Histogram of the percentage body fat measurements of the 102 elite
male athletes with superimposed half-normal densities: ----- , bias-corrected
maximum likelihood solution (5.57, 4.84);-----, (5.63, 4.18);......., (5.32, 5.73).

2.8 Sum m ary and D irection s for F uture R esearch

In this, the last, section of the present chapter, we summarize the content and 
conclusions of the previous sections, and identify related issues for potential future 
research.

2.8.1 Sum m ary
In Section 2.2 we extended the standard half-normal distribution via the inclusion 
of location and scale parameters, by so doing producing the general half-normal 
distribution. In passing, we noted the connections between the derived distribution 
and other well known distributions. Point estimates of the distribution’s 
parameters arising from the method of moments and the method of maximum 
likelihood were identified in Section 2.3. Asymptotic distributional results for both 
types of estimator were derived in Section 2.4. Using these results, we established 
alternative bias-corrected estimators and derived constructions for large-sample 
confidence sets.

In Section 2.5 we presented the results of a Monte Carlo simulation study 
conducted in order to explore the sampling properties of the estimators and the 
coverages of the confidence sets derived in Sections 2.3 and 2.4. From this study we
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concluded that the bias-corrected ML based point estimators had superior sampling 
properties, their MSEs being consistently the smallest. Regarding the coverages of 
the various confidence sets, bias-correction was found to improve the empirical 

coverage levels. The bias-corrected ML based interval for ^ given by (2.4.12) was 

found to have superior coverage for the nominal levels of 95% and 99%, whilst its 
MM based counterpart given by (2.4.4) held the 90% nominal level best. For all 
three nominal levels considered, the empirical coverage of the interval with best 
coverage fell marginally short of the nominal level.

Regarding the confidence intervals for 77, and confidence regions for (^, 77), the

ML based confidence sets given by (2.4.13) and (2.4.15) were identified as having 
superior coverages to their MM based analogues specified in (2.4.5) and (2.4.6). The 

empirical coverage of the interval for 77 specified in (2.4.13) was found to fall 

marginally below the nominal level, whilst that for the confidence region for 

(^,77) given by (2.4.13) fell marginally above the nominal level. For the confidence

sets for 77 and (^, 77) with best coverages, the single largest disparity between the

empirical and nominal coverage levels was found to be just 0.48%, this difference 

corresponding to the confidence region for (^,77) and a sample size of just 20.

Overall, the coverages of the confidence sets with best coverages were classified as 
being excellent.

In Section 2.6 we briefly discussed the use of the derived large-sample 
confidence sets as a basis upon which to carry out hypothesis testing. In Section 2.7 
we illustrated the methodology developed in the preceeding sections, obtaining 
point estimates and confidence sets for the parameters of an assumed half-normal 
parent population fitted to the body fat measurements of elite male athletes.

2.8.2 Directions for Future Research
As we explained in the introductory section of this chapter, our primary motivation 
for developing methods of inference for the general half-normal distribution was 
the distribution’s importance as a limiting distribution of the skew-normal class. 
Another, perhaps more important, reason for considering such methods is the 
potential relevance of the distribution in the modelling of real skew data. However, 
the general half-normal distribution is not the only one obtained by folding a 
symmetric parent population about its centre which might prove useful to 
modellers of skew data. As we commented at the end of our illustrative analysis of
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Section 2.7, for highly skew data exhibiting a sharp cut-off to one side of the mode, 
and a heavy tail to the other, the generalization of the half-^ distribution obtained 
on introducing location and scale parameters to its definition, could well provide a 
better model than the general half-normal distribution considered here. To our 
knowledge, this extension of the half-^ distribution has not previously been 
proposed in the literature. We note that the basic distributional properties of the 
half-^ distribution were studied by Psarakis & Panaretos (1990), who incorrectly 
refer to it as the “folded” t distribution.

Our treatment regarding inference for the parameters of the general half-normal 
distribution was founded upon two of the most commonly utilized methods of 
estimation; namely, the method of moments and the method of maximum 
likelihood. It would be of interest to compare the results we have obtained here 
with those arising from other methods of estimation. As the results of our 
simulation experiment showed, the coverages of the (bias-corrected) ML based 
confidence sets arising from asymptotic theory are excellent, even for sample sizes 
as small as 20. It would be interesting to compare their coverages for even smaller 
samples with those of confidence sets obtained, say, on applying the non- 
parametric and parametric versions of the bootstrap. General bootstrap approaches 
to confidence region construction are discussed in Davison & Hinkley (1997, 
Chapters 3 & 5). An alternative approach to constructing bootstrap confidence 
regions, based on Tukey’s depth criterion, is considered by Yeh & Singh (1997). A 
related issue of interest is that of the minimization of the area of any given 
confidence region for a specified confidence level. The paper by Arnold & Shavelle 
(1998) provides a useful introductory reference on this point.

In this chapter we have considered inference for the most basic of set-ups, that 
arising from random sampling. Amongst other scenarios which could be addressed, 
we mention those of regression and time series modelling. The regression problem 

involving half-normal errors with ^ = 0 is one which has been considered in the

stochastic frontier modelling literature by Aigner & Chu (1968), Schmidt (1976) 
and Aigner et al. (1977).

Clearly, multivariate extensions of the general half-normal distribution are 
possible. For any such model, the threshold parameters included in its definition 
will play a crucial role in terms of the distribution’s potential relevance to the 
modelling of skew multivariate data.
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Chapter 3 - The Large-sample Distribution of Key Circular Statistics

C hapter 3 The Large-sam ple D istrib u tion  o f K ey C ircular  

S ta tistics

3.1 In trod uction

In this chapter we consider the joint distribution of four fundamental statistics 
used in the analysis of circular data: the mean direction, the mean resultant 
length, the second central sine moment and the second central cosine moment. 
Between them, these statistics provide summaries of location, concentration, 
skewness and kurtosis of a sample of circular data.

The definitions of the four statistics, and their analogous population measures, 
are reviewed in Section 3.2. In Section 3.3, we use Taylor expansion to derive the 
asymptotic joint distribution of the statistics, in so doing simplifying and extending 
the results of Mardia (1972, Section 4.9.2). Our motivation for presenting these 
results is their importance in the modelling of skew distributed circular data, an 
area largely ignored in a literature dominated by a tacit, although often unrealistic, 
assumption of underlying symmetry. On the basis of the results in Section 3.3, in 
Section 3.4 we define bias-corrected estimators for the population measures.

Large-sample inference for the population measures is addressed in Section 3.5. 
We give new constructions for confidence intervals for the individual measures as 
well as those for confidence sets for pairs, etc. of the measures. The various 
constructions proposed allow for bias-correction as well as for an assumption of 
underlying symmetry.

In Section 3.6 we discuss the problems which can arise when applying the 
various inferential tools. In order to illustrate the use of the developed methodology 
and some of the problems associated with its application, in Section 3.7 we present 
analyses of three data sets recorded during animal orientation experiments.

The chapter closes with Section 3.8, in which we provide a summary of the 
Chapter’s content and an indication of related lines of potential future research.

7 0
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3.2 F undam ental S ta tistics for C ircular D ata

Let ^ denote a random angle and a random sample of n observations from

a circular distribution with characteristic function : p  = 0,±1,...}. Then

il/p=ap+iPp where ap= E (co spd )  and f ip = E (s in p 6 )  denote the

trigonometric moments of 0 about the zero direction. For p = L

y/̂  =a^ +ifii = , where p  is the mean direction and p  the mean resultant

length. The trigonometric moments about the mean direction are given by 

âp =£:{cosp(6>-//)} , = £:{sin p(6>-//)} .

The method of moments estimator of p  is R + bf  ̂  , where

1 « 2 ”
a =—\ c o s p 0 i  and b = —V sin p0. are the sample trigonometric moments 

n t t  n ,=i

about the zero direction. If R =0, the method of moments estimator of p, 0, is 

undefined. If R > 0,

-  I  tan"‘( z ? i ) if >0
|;r  + tan”̂ (/7i/«I ) if <0

where tan"*(x)e [-;r/2,;r/2], for x a real.

Mardia (1972, Section 3.7) introduced standardized versions of ŷ2 ^ 2

circular measures of population skewness and kurtosis, respectively. Denoting 

these measures by s and k,

P2  Â  j  , ( Z z - ( i - y /  «2s = - ^ =  , ..M- and k =
V -  ( 1 - p f  y '  (1 - / , ) '  '

V = 1-/9 denoting the circular variance of 6. The standardizations used in the

definitions of s and k were motivated by considerations of the properties of the two 

measures for concentrated distributions on the circle. For a symmetric distribution, 

both P 2  and 5 equal zero. The standardization used in the definition of k ensures 

that Â: = 0 for the wrapped normal distribution. See Mardia (1972, pp. 74-76) and 

Mardia & Jupp (1999, pp. 21-22). However, s and k are not in general scale 

invariant, a consequence of there existing no standardization transform for circular 

data equivalent to that routinely used for data on the line. For the same reason, ŷ2

and ^2 are not generally scale invariant either, but general expressions for the
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  1 ” /   \
large-sample properties of their sample analogues, Z?2 =—^ s m 2 \ 6 i  - 6 )  and

n ,= i

2 M /  V __

«2 = — ̂ c o s  - 0 ) ,  are relatively easy to derive. We note that P 2  was first
■  a

proposed as a measure of circular skewness by Batschelet (1965), and the option of 

using the fundamental measures P2  and ^  , rather than s and &, was referred to 

by Mardia (1972, p. 76).

3.3 The A sym ptotic D istribution  o f (^,R,Z?2 ,^2 )

Mardia (1972, Section 4.9) derived asymptotic results for the general form of the 

joint distribution of ( ^ ,r ). He also gave the joint distribution of the sample

analogues of s and k, s and ^ , for a parent population which is symmetric about 

the zero direction. In this section, we simplify and extend Mardia’s results, 
providing concise general results for the full asymptotic joint distribution of 

,«2 )• The main result of the chapter is summarized in the following

theorem.

T h e o r e m  3 .1  Let he a random sample ofn  observations from a circular

distribution with p e  (0, 1). Then the asymptotic joint distribution 0/  (^,R,Z?2 ,^2 ) 

is multivariate normal with

Pi . ^(..-3ll\ )
2np^ 4np

E { h ) = P 2 + -n
+ (3.3.1)

:{a,)=cc, +

ar(ë)=  var(«)=

var

var

( 0 4  

( î .  ) = 1

1 -m

2n

a ,  ( l - « 3  )] + (3.3.2)

+
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C 0 v (^ ,i? )= -^ - + 0(72
2np

cov(^,Z?2 )= — 
n

cov(o,â2 )= —'
n

( « Â ) = -

j__«3 ( l-« 2  )
2 ~ 2 ^  ?

2p p"

cov
p y

(3.3.3)

cov ,â 2 )= l- (i 77 Ip , ^4 ^iP-i ■*■̂ 2̂ 3 ^2 ^2 )
2 p

if the terms of 0 (« )  for the variances of 2̂ and ^2 in (3.3.2) are positive.

Proof Proceeding as in Mardia (1972, Section 4.9.2), since p ^ f )  we can assume 

that after a suitable rotation > 0, so that, with probability 1, ^ = tan“  ̂(èj /flj ).

In addition, the other three statistics, R , ^2 -  ^ —̂——-
ûfj +/?!

and Ü2  -   ̂ differentiable functions of Aj , hj , «2 » 2̂ •

Appealing to the central limit theorem, the asymptotic distribution of 

( a ,  , 6 7 2 , ^ 2  T is N (f ,z )  where |  = , ^ 2  T =  ( ^ 1  ’ A  ^ ^ 2 ^  A  T and

Z = (cr̂ y ), with

(jji = var(«i )= (l + <%2 -2al)l2n, a 22 = var(z?̂  )= (l-(%2 ~2Pi)l2n,
CF22 = var(<22 )=  (1 + (24 -  2<%2 )/2 tî, (T44 = var(62 )=  (l-6%4 -  2/31 ) /2n,

^ 1 2  = 0"21 = C0v(<2i ,Z?1 )= (^2 A )/2n,
<Ji3 =o'3i =cov(fli ,<22)= (<̂ 1 +<%3 - 2a ^ a 2 ) / 2n ,
(J l4  =  (7 4 j =  C O v ( f l ! j  5 ^ 2  ) ~  ( a  ^ 3  ~  P 2  y ^ T Î ,

^ 2 3  ~  ^ 3 2  ~  C O v (T > j j <^2 ) “  (  ^ 3  “ A  ~  ^  A  ^ 2  ’

<̂24 = 4̂2 = COv(&, ,Z?2 )= ((%! ~  CĈ  ~  ̂ A A 
0"34 = 0 -4 3  = C0v(ü2,&2 )= ( a  -2(̂ 2 A ŷ M.

(3.3.4)
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Now apply Lemma 1.2 of Chapter 1. For the functions = tan

h, and h, = k z Æ k ± 3 ^ l A A
<9̂1 + A (Xi + A

we obtain the following non-zero partial derivatives, those for and having 

been simplified using the identities in (3.3.5);

= - A / p \  h f> = a ,lp ^ .

= / p \  / ip )  = - 2 a , y ? i / p \  =

h f  = a j p ,  hf'' = I p ,

h*p = 2/3, «2 / p ^ , hf  ̂= -  2a, a ^ /p ^ , 

hf'< = -  2or, A / p \  = (a f  -  P! y p " .
/,(") = {4,6, (/3,/32 + «, « 2) - 8a, /3, â j } /p " ,

=  { s a ,  / 3 , P2  +  2 a j  ( a , ^  -  3 / 9 ," ) -  8 9̂ , %  } / p “ ,

}̂ '̂>=2P, {a l-P l) jp \ hf'^^Aa^Pljp\
A f ' = {4a, {P ^a ^ -  a, p^ )+ 8a, A ^ z j / p " .  
/!<""> = -2 a ,  (a ," - P l ) j p \  Aj"") = -4a,"/9, j p \

h f  = - 2 A Â / p \  = 2 a ,^ 2 / p \

=  ( a , "  -  P !  y p " , =  2 a ,  A / p " .

= 4 A  ( a ,  Â 2 -  A  « 2  )jp' , 4 " '  = {4a, A  â j  -  2(a," -  p! )p̂  } / p “ . 
hf'> = 4 a ^ P l j p \  / i f )  = - 2 A  (a," - P l ) j p \

%("") = - 4 a ,  (a , a ; + p ^p ^ lj  p \  /ij"") = - 4 a , " A / p \  hf*^ = 2a^{al -  P l) j  p \  

In these expressions, = d h ^ j and j d^j . Using these partial

derivatives together with the variances and covariances given in (3.3.4), and the 

identities

â 2 p" =  (a," -  A" ) a 2 +  2a , A  A  - 
A  P" = ( a f  -  Pi )A  -  2a , A  a j ,
A  P '= a , (  a," -  3 A" )a3 + A  ( 3a," -  A" )A ■

A P^ = a , (a ," -3 A " )A  -  A  {3al-pl)a„
«4 P “ = ( a," -  6a," A" + Pt )a„ + 4a, A  ( a," -  A^ )A  .
A p ' '  =  ( a , "  - 6 a , " A ^  +  A “ ) A  - 4 a ,  A  ( a , "  -  A ^ a ^ ,
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we obtain, after lengthy but basic algebraic simplification, the expectations, 
variances and covariances given in (3.3.1)-(3.3.3). Asymptotic normality follows

from Lemma 1.2 due to the asymptotic normality of («j » the fact that

the leading terms of the expectations in (3.3.1) are finite (as p ^ O )  and the 

assumption that the terms of order 0(^n) for the variances of Z?2 and in (3.3.2) 

are positive.

The bias terms in the expectations of 0 and R given in (3.3.1) are new to the 

literature. The formulae for the variances of 6 and R , and their covariance, are

equivalent but more concise than the expressions of Mardia (1972, p.llO) given in 
terms of trigonometric moments about the zero direction. They also highlight the 

importance of the assumption that p ^ l .  The other expressions in (3.3.1)-(3.3.3)

are also new to the literature.
Theorem 3.1 specifically excludes two important cases. The case for which 

p  = 0 includes the uniform distribution as well as distributions which are

multimodal and reflectively symmetric, or cyclically symmetric, or both. The 
analysis of data from multimodal distributions of these types is discussed in 
Section 3.6 and illustrated in Section 3.7.3. Also relevant in this context is the work 

of Mardia (1972, Section 4.9.2) in which the joint distribution of ( p ,r ) for a parent 

population with p  = 0 is considered. The case for which p  = 1 is pathological, 

corresponding to a point distribution.

3.4 B ias-corrected  E stim ators

Given the expectations in (3.3.1), we can define estimators of p, p, A  » ^2

corrected for bias to o(zz"^). Replacing the population measures in the bias terms of

(3.3.1) by their sample analogues, we obtain:

75



Chapter 3 - The Large-sample Distribution of Key Circular Statistics

Pl,BC ~ ̂ 2 n
_  ^ 3  _  ^ 2  I ^ ^ 2 ^ 2

R R^ R^
y

(3.4.1)

2̂,BC '  72 I R R^ I ’

where = —̂ s in  p[o. - p )  and = —̂ c o s  p{6^ -O ).
72 1=1 72 1=1

If the parent population is assumed to be symmetric then, as the central sine 

moments are all zero, we would use the original estimator 0 in place of fi^Q. 

Clearly, if we assume the underlying distribution to be symmetric then there is no 

need to estimate A  • Also, under the assumption of symmetry, we would set 62

equal to zero in the expression for A ,bc •

3.5 Large-sam ple In ference

In this section, we use the asymptotic distributional results presented in Section

3.3 to derive large-sample confidence sets for the population measures p, p, A  ’

and A  . Hypothesis tests involving these measures can be based on the derived 

confidence sets as discussed in Section 2.6.

3.5.1 Confidence Intervals for p

Using the results for £'(^ ) and var(^ ) given in Theorem 3.1, and replacing p, ^2

and A  by their sample analogues, R , ^2 and 62 , as appropriate, then, including 

only those variance terms of 0 ( 72" )̂, an approximate 100( l - a ) % , bias-corrected 

confidence interval for p  is given by

A _ \V2
'2 — •Co;/2

1-232
2nR'^

\  y
(3.5.1)

If the underlying distribution is assumed to be symmetric or, equivalently, we drop 
the bias term in (3.5.1), then the interval reduces to
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d ± Z all 2nR^
V J

(3.5.2)

This compares with the corresponding interval from Fisher & Lewis (1983) of

9 ±sin -1
' 1/2'

^ail 2nR^
\  y

(3.5.3)

As sin  ̂(x) ~ X for small x, then, for moderate sized samples from all but the most

disperse of unimodal populations, we would expect to find little difference between 
the results obtained using (3.5.2) and (3.5.3).

3.5.2 Confidence In tervals for p

Similarly, an approximate 100(l-ar)%, bias-corrected, confidence interval for p is  

given by

-  ( i - a ) + â  y '
4nR

- ^ ± z ,a/2 2n
(3.5.4)

Omitting the bias term we obtain the interval

R ± z„i2
2n

(3.5.5)

which is effectively that which follows from the results of Mardia (1972, Section 
4.9).

3.5.3 Confidence Regions for ( p, p )

An approximate 100(l-a)% , bias-corrected, confidence region for = (p ,p)T  is 

given by those for which

(3.5.6)

where xlp-a is the (l-(%) quantile of the chi-squared distribution with two 

degrees of freedom.

ii2 ~ 2nR‘ 4nR
(3.5.7)
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and 2 i2 = ( a )  with -  var(^)=
2nWV y

crj2 = cov(Â R )= and

A2 = v3r(i?)=
2n

. An analogous, non-bias-corrected, confidence region

follows similarly on omitting the two bias terms from (3.5.7). For a parent

population which is assumed to be symmetric, the bias associated with 6 should

be dropped from (3.5.7) and (Tj2 set equal to zero.

3.5.4 Confidence Sets for A  &iid ^

Proceeding as in Sections 3.5.1 and 3.5.2, an approximate 100(l-(%)%, bias- 

corrected confidence interval for A  is given by

Z?2 -  bias( ̂ 2 ) -  ^aji {var( A , (3.5.8)

where bias(z?2 )= —^  A  A  I 2 ^ 2 ^

R R*
and

y

var (â )= 2 " " R R

The non-bias-corrected counterpart of this confidence interval follows on omitting 
the estimate of the bias from (3.5.8). Of course, for an underlying distribution 

which is assumed to be symmetric, A  is identically zero.

Similarly, an approximate 100(l-(%)%, bias-corrected confidence interval for 

cĉ  is given by

A - biâs(ô2 )± z„/2{vàr(ô2 )} , (3.5.9)

where

var(a ) = -
1 + 7̂. _ 2  . 2b̂

R

The non-bias-corrected version of this confidence interval follows on omitting the 
estimate of the bias from (3.5.9). If the parent population is assumed to be
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symmetric then the terms involving should be set equal to zero in the 

expressions for bias(ô2 ) and var(«2 )•

By analogy with the content of Section 3.5.3, an approximate 100(l-ûr)% , bias-

corrected, confidence region for = ( A  ’ A  is given by those ^ for which

(^34 " ^ 34) ^34 34 "  ̂ 34 ) -  , (3.5.10)

where

^ 34- R R^ ' n
Og (22 )+^2^
R R^

(3.5.11)

and Z34 = ( A  ) with A 3 = var(z?2 ), 0̂ 44 = var(«2 ) and 

à 3 4 = C Ô v (b „ « J = i |( l - â 2 K

An analogous, non-bias-corrected, confidence region follows similarly on omitting 
the two bias terms from (3.5.11). For a parent population which is assumed to be 

symmetric, A  is identically zero and then a separate confidence interval for A  , 

calculated as described above, might be considered of interest.

3.5.5 Other Joint Confidence Sets
Confidence regions for the other four possible pairs of measures can be obtained 
using the analogous results to those employed in the constructions described in 
Sections 3.5.3 and 3.5.4. Those for triples and the full set of the four measures 
follow by the usual extension to the results summarized in (3.5.6) and (3.5.10). As 
in the constructions given above, we can either include, or omit, bias-correction. 
Also, again as in those same constructions, the assumption of symmetry can be 
allowed for by equating the relevant central sine moments to zero.

3.6 A C autionary N ote

As in any situation involving the unrestricted estimation of measures defined on 
some finite interval, experience shows that the use of the bias-corrected estimators 
of Section 3.4 and the confidence set constructions described in Section 3.5 can 
result in inadmissible estimates. Moreover, the constructions for the confidence 

sets can even fail to provide a set at all. For instance, the estimate of the bias of A
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given in Section 3.5.4 can ‘explode’, leading to point estimates and confidence 

bounds beyond the interval [-1, l]; the argument of the inverse sine function in

(3.5.3) need not necessarily be contained in [-1, l]l the bounds obtained using

(3.5.4) or (3.5.5) can lie outside [0,l] Such problems typically arise when and p

are small, conditions which apply to underlying distributions which are multimodal 
and cyclically symmetric. Whilst, for multimodal data, we can employ the statistics 
considered here as global measures, their use in the analysis of the data forming 
the individual modes has the potential of being yet more informative. An 
illustrative analysis of this type is given in Section 3.7.3.

3.7 T hree Illu strative  E xam ples

In this section we apply the inferential techniques developed in Sections 3.4 and 3.5 
in the analysis of three sets of circular data recorded during animal orientation 
experiments. The first two involve the initial directions taken by Chinese painted 
quail on exiting two differently structured corridors. The third concerns the 
orientations of dragonflies with respect to the sun’s azimuth.

3.7.1 Initial Headings of Chinese Painted Quail: Experiment A
The data given in Table 3.1 were collected during an orientation experiment 
involving Chinese painted quail {Excalfactoria chinensis) reported in Merkel and 
Fischer-Klein (1973). A total of 100 birds were forced to pass, one by one, through a 

corridor with a change in orientation of 15° at a distance of 0.5m from its exit. On 

leaving the corridor the birds generally compensated for this change in orientation, 

their initial headings being distributed about an angle of approximately -15° from

the zero direction defined by the last 0.5m of the corridor. However, as can be seen 
from Figure 3.1, the distribution of these angles of compensation does not appear to 
be symmetric.

The value of A for these data is -0.0216, and the bias-corrected estimate of A  ,

calculated using (3.4.1), is -0.0211. An approximate 95% confidence interval for

A  , calculated using (3.5.8), is (-0.0388,-0.0055). If the estimate of the bias is

dropped from (3.5.8) the equivalent interval becomes (-0.0383,-0.0049). Given that

neither interval contains zero, it would appear reasonable to conclude that the 
parent population is asymmetric.
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Table 3.1 The ordered initial headings (in degrees) of 100 Chinese painted quail 
on exit from a dog-leg corridor.

-43 -41 -41 -37 -37 -36 -35 -35 -33 -33 -30 -30 -30 -30 -28 -28 -28 -28 -27 -26 -26 
-26 -25 -25 -25 -25 -25 -25 -25 -25 -23 -23 -23 -22 -22 -22 -22 -20 -20 -20 -20 -20 
-20 -20 -18 -18 -17 -17 -17 -16 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -14 -14 
-14-13-13-13-13-13-12-12-10-10-10-10-10-9  -7 - 6  -5 -5 -5 -4 -3 
-3 0 0 5 6  11 12 12 13 17 17 18 18 20 40 44

90”

180°

• • •

270''

Figure 3.1 Raw circular plot of the initial headings of the 100 Chinese painted 
quail on exit from a dog-leg corridor. The zero direction corresponds to the 
orientation of the last 0.5m section of the corridor.

Table 3.2 provides a summary of the point estimates and approximate 95% 
confidence intervals for the other three measures, calculated assuming the 
underlying distribution to be asymmetric. As the results obtained either using, or 
not using, bias-correction are identical to (at least) the quoted accuracy of two 
decimal places, we have only included the one set of results.

We note that the interval for // contains the angle -15°, corresponding to an

angle of compensation equal to minus that of the change in orientation of the last 
stretch of the corridor. Thus, a null hypothesis stating that the population mean 

angle of compensation was fx -  -15° would not be rejected in a two-sided test of size 

5<%.
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Table 3.2 Point estimates and individual approximate 95% confidence intervals 
for fÀ, p and » quoted to two decimal places. The results are those obtained 
when the parent population is assumed to be asymmetric.

Measure Point estimate Approx. 95% Cl
fX -0.26 (-14.9°) (-0.31,-0.21) (-18.0°,-11.9°)
P 0.96 (0.95, 0.98)
^2 0.86 (0.81, 0.91)

As has been established previously, it is unreasonable to assume the parent 
population to be symmetric, and hence there is little to recommend the comparison 

of the point estimate and confidence interval for with the value of the same 

measure for an assumed underlying wrapped normal distribution.

a) b)

0 .97 -

^  0 .96 -

0 .95 -

0.94-1
■19 -18 -17 -16 -15 -14 -13 -12 -11

0 .90-

a  0 .85-

0 .80 -
0-0.04 - 0.02 - 0.01-0.03

Mu (degrees) Beta2-bar

Figure 3.2 Approximate 95% confidence regions for the Chinese painted quail 
data of Table 3.1: a) regions for (/i,p); b) regions for - lu a), the inclined
ellipse delimits the bias-corrected region; the other, the region without bias- 
correction and assuming the parent population to be symmetric. The dot
represents {d,R^. In b), the solid ellipse delimits the bias-corrected region; the 

other, the region without bias-correction. The dot represents )•

Approximate 95% confidence regions for (//,/)) and ( ^  ) are portrayed in

Figure 3.2. In Figure 3.2a we present the bias-corrected region calculated using
(3.5.6). The region obtained by dropping the bias terms from (3.5.7) is very similar 
and has been omitted so as not to obscure the plot. For comparative purposes we 
have also included the confidence region which results when the bias terms in
(3.5.7) are dropped and the underlying distribution is assumed to be symmetric. 

Given our previous findings regarding , the use of this latter confidence region
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would appear inappropriate. The bias-corrected and non-bias-corrected confidence 

regions for ), calculated using (3.5.10), are represented in Figure 3.2b. We

observe that the two regions are almost identical.

3.7.2 Initial Headings of Chinese Painted Quail: Experiment B
The data in Table 3.2 were recorded by Merkel and Fischer-Klein (1973) during a 
similar orientation experiment to that described in Section 3.7.1. In this second 
version of the experiment, 230 Chinese painted quail were forced to pass through a 
completely straight, Im long, corridor. The data correspond to the initial headings 
of the birds on exiting the corridor.

Table 3.3 The ordered initial headings (in degrees) of 230 Chinese painted quail 
on exit from a straight corridor.

-44 -40 -39 -39 -37 -36 -34 -33 -31-29 -27 -25 -23 -23 -22 -22 -20 -20 -20 -20 -18 
-18-16-15-15-15-14-14-14-13-13-12-12-12-12-10-10-10-10-9 -9 -9 
-9 -9 -9 -8 -8 -8 -7 -7 -7 -7 -7 -6 -6 -6 -6 -6 -5 -5 -5 -5 -5
-5 -5 -5 -5 -5 -4 -4 -4 -4 -4 -3 -3 -3 -3 -3 -3 -2 -2 -2 -2 -2
-2 -2 -2 -2 -1 -1  -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2  
2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5  
5 5 5 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8  
8 9 9 9 9 9 9 10 10 10 10 10 10 10 11 11 11 11 11 12 13
13 13 13 13 14 14 14 14 15 15 15 15 16 16 17 17 17 17 18 18 19
21 21 21 22 25 26 27 30 30 31 32 33 33 33 35 35 36 44 44 51

As can be seen from the raw circular plot of the data in Figure 3.3, the 
distribution of the initial headings of the quail appears to be symmetric about the

zero direction defined by the orientation of the corridor. The values of and 

for these data are identical to four decimal places, both equalling 0.0005. The limits 

of the approximate 95% confidence intervals for P 2 , calculated using (3.5.8) with 

and without bias-correction, respectively, are identical to four decimal places, 

corresponding to an interval of (-0.0063, +0.0073). Given that this interval

contains the value zero, in this case it would appear reasonable to assume the 
parent population to be symmetric.
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###...

Figure 3.3 Raw circular plot of the initial headings of the 230 Chinese painted 
quail on exit from a straight, Im long, corridor. The zero direction corresponds to 
the orientation of the corridor.

In Table 3.4 we present the point estimates and approximate 95% confidence 
intervals for the other three measures, calculated assuming underlying symmetry. 
As for Table 3.2, the results obtained either using, or not using, bias-correction are 
identical to (at least) two decimal places, and so we have only included the one set 
of results.

Table 3.4 Point estimates and individual approximate 95% confidence intervals 
for jx, p  and â g , quoted to two decimal places. The results are those obtained 
when the parent population is assumed to be symmetric.

Measure Point estimate Approx. 95% Cl

p 0.02 (1.3°) (-0.01,0.06) (-0.6°, 3.3°)

P 0.97 (0.96, 0.97)
^2 0.87 (0.85, 0.90)

Considering the confidence interval for //, we note that it contains the angle 0”.

Hence, a null hypothesis which stated that the population mean direction 
corresponded to the zero direction defined by the orientation of the corridor, would 
not be rejected in a two-sided test of size 5%.

To three decimal places the values of âg and R are 0.874 and 0.966, 

respectively. For a wrapped normal parent population we know that ^  ~ •
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Estimating p  by R, we obtain 0 ^ 2  = = 0.871 for an assumed underlying

wrapped normal distribution. As the difference between «2 %  is only very

slight, and the value 0.871 is contained in the approximate 95% confidence interval 

for ^2 , one might expect the wrapped normal distribution to provide a reasonable 

model for these data.

In Figure 3.4 we present the approximate 95% confidence region for (p ,p )  

obtained using (3.5.6) without applying bias-correction and assuming the 
underlying distribution to be symmetric. If the parent population is not assumed to 
be symmetric the resulting bias-corrected and non-bias-corrected regions are 
almost identical to the region portrayed.

0.975 -

O
g  0 .965-

0.955 -
0 1 2 3 4•1

Mu (degrees)

Figure 3.4 Approximate 95% confidence region for [ju,p) for the Chinese painted 
quail data of Table 3.3. The ellipse delimits the non-bias-corrected region obtained 
assuming the parent population to be symmetric. The dot represents 0̂,72 j .

Although we have analyzed the data in this and the preceding example as 
circular data, given that in both cases the data span just a reduced arc of the unit 
circle, we could have chosen to analyze them as linear data after applying a 
suitable rotation and unwrapping them to the line. In analyses analogous to the 
ones presented, the estimation of linear measures such as the mean, standard 
deviation and coefficient of skewness would then be of interest. If inference for such 
measures was to be based on the method of moments then the results presented in 
Theorem 1.1 of Chapter 1 would be relevant. The following example, however, is 
one which is not amenable to linear analysis, at least if the data set in its entirety 
is to be analyzed as a single sample.
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3.7.3 Orientations of Dragonflies
As well as providing an example of a truly circular data set, i.e. one for which the 
data are distributed over a sizeable arc of the unit circle, our last example of this 
section also illustrates the importance of the cautionary note made in Section 3.6. 
The data set upon which our analysis is based is taken from a study reported by 
Hisada (1972) into the orientation of dragonflies (Sympetrum) with respect to the 

sun’s azimuth. The data are reproduced in Table 3.5.

Table 3.5 The ordered orientations relative to the sun’s azimuth (in degrees) of 
214 dragonflies.

-127 -123 -123 -120 -116 -114 -112 -112 -112 -112 -110 -108 -108 -108
-106 -106 -106 -106 -106 -104 -104 -104 -102 -100 -100 -98 -98 -96
-96 -96 -96 -96 -94 -94 -94 -94 -94 -92 -92 -92 -92 -92
-92 -90 -90 -90 -88 -88 -88 -88 -88 -86 -86 -86 -84 -84
-84 -84 -84 -84 -82 -82 -82 -82 -82 -80 -80 -80 -80 -78
-78 -78 -78 -78 -76 -76 -76 -76 -74 -74 -74 -72 -72 -72
-70 -70 -70 -70 -67 -67 -67 -67 -63 -60 -51 -51 -47 -45
-40 -27 -27 -9 -9 -6 3 22 39 44 50 50 52 52
52 54 54 54 54 54 56 56 56 56 58 58 58 60
60 62 62 62 64 64 66 66 66 66 66 66 70 70
72 72 72 72 74 74 74 76 76 76 76 76 78 78
78 78 80 80 80 80 82 82 84 84 84 86 86 86
86 88 88 88 88 88 90 90 90 90 90 90 92 92
92 92 94 94 94 96 96 96 96 96 96 98 98 98
98 98 98 100 100 100 105 108 111 114 117 120 128 131
134 138 142 165

90'

180

270

Figure 3.5 Raw circular plot of the orientations of the 214 dragonflies relative to 
the sun’s azimuth.
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From the raw circular plot in Figure 3.5 we see that the distribution of the 214 
angles is clearly bimodal, with the dragonflies preferring to orientate themselves at 

an angle of around 90° to the left or right of the zero direction defined by the

azimuth. If we were to assume the underlying distribution to be cyclically 
symmetric then it would be appropriate to treat the data as being axial. Here we 
make no such assumption and conduct inference for the basic measures of location, 
concentration, skewness and kurtosis corresponding to the angles as given.

Table 3.6 Non-bias-corrected (NBC) and bias-corrected (EC) point estimates for 
//, p, ydg, and ^2 quoted to two decimal places. The two bias-corrected estimates
for «2 are those which result from assuming asymmetry (left) and symmetry 
(right).

Measure Point estimate
________________________________NBC_______ BÇ__________________

p 0.15 0.20
p 0.12 0.10

^2 0.30 10.04
âo -0.66 -1.00 -1.03

Table 3.7 Approximate 95%, non-bias-corrected (NBC) and bias-corrected (BC), 
confidence intervals for p (radians), p, ^ 2 ’ ^2 qnoted to two decimal places.
For both cases, the two intervals for 'a2  are those which result from assuming 
asymmetry (left) and symmetry (right).

Measure Approximate 95% confidence interval
____________________  NBC  BÇ_____

p (-0.88,1.19) (-0.83,1.24)
p (0.06,0.17) (0.05,0.15)

~P2 (-1.08,1.68) (8.66,11.42)
^2 (-1.29, -0.02) (-0.71, -0.60) (-1.64, -0.36) (-1.09, -0.97)

In Tables 3.6 and 3.7 we present point estimates and approximate 95% 

confidence intervals for p, P j , and ^  , calculated with (without) bias-correction 

and assuming (not assuming) symmetry. From Table 3.6 it can be seen that, whilst 

the estimates of p  and p  are reasonably consistent, bias-correction has led to

inadmissible estimates for P 2  and cĉ . Moreover, from Table 3.7 we observe that.
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apart from those for p, the confidence intervals provide very imprecise information 

concerning the various measures. Despite the fact that the sample consists of 214 

observations, the non-bias-corrected confidence interval for p  has a vast range,

being equivalent to that of the interval (-50.42°, 6818°). In addition, the Fisher-

Lewis interval specified in (3.5.3) could not be calculated as the argument of the 

inverse sine function used in its construction lay outside [-1, l ] . We note that the

limits of both intervals for P 2  inadmissible. Also, the non-bias-corrected 

interval spans the complete admissible range [-1, l] , whereas its bias-corrected

counterpart contains no admissible values at all. The confidence intervals for ^  

suffer from similar problems, with all but the non-bias-corrected interval based on 
the assumption of symmetry having inadmissible limits. Clearly the estimation 
process has broken down for these data, a consequence of the data being almost 
antipodally symmetric.

If instead of considering the data set in its entirety we split it in two then the 
problems of estimation detailed above disappear. Tables 3.8 and 3.9 contain point 
estimates and approximate 95% confidence intervals for the two subsamples

formed from the angles falling in the two intervals [0,;r) and [-zr, O), i.e. the 110

angles to the “left” (Sample L) and the 104 to the “right” (Sample R) of the azimuth. 
As the results obtained using, or not using bias-correction, and assuming 
symmetry, or asymmetry, differed by at most 0.01, we present just the results 
arising from assuming asymmetry and not applying bias correction. To two decimal 

places, the limits of the Fisher-Lewis interval for p  were also identical to those 

quoted in Table 3.9.

Table 3.8 Point estimates of p, p, ydg, and ofg, quoted to two decimal places, for
the two subsamples formed from the angles in Table 3.5 falling to the “left” 
(Sample L) and “right” (Sample R) of the sun’s azimuth.

Measure Point estimate
Sample L Sample R

// 1.41 (80.8°) -1.48 (-85.0°)
P 0.92 0.92

A -0.02 -0.05

«2 0.73 0.75
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Table 3.9 Approximate 95% confidence intervals for p, p, , and , quoted to
two decimal places, for the two subsamples formed from the angles in Table 3.5 
falling to the “left” (Sample L) and “right” (Sample R) of the sun’s azimuth.

Measure Approximate 95% confidence interval
Sample L Sample R

P (1.33,1.48) (76.2°, 84.8°) (-1.55,-1.41) (-89.0°,-81.0°)
P (0.89, 0.94) (0.90, 0.95)

Â (-0.05, 0.02) (-0.09, -0.01)
(X2 (0.65, 0.80) ( 0.67, 0.83)

From a consideration of the confidence intervals for given in Table 3.9, it 

would appear that the parent population for Sample R is asymmetric, whereas that 
underlying Sample L can reasonably be assumed to be symmetric. Interestingly, 

the two intervals for p  do not contain the angles 90° and -90°, respectively.

Indeed, given the angles they do contain, these two intervals provide evidence of a 
slight preference of the dragonflies to orientate themselves “towards” rather than 
“away” from the sun’s azimuth. We conclude our analysis by noting that, given our 

observations regarding the estimates of p^ and p, treating the data as though they 

were axial would seem to be unjustified.

3.8 Sum m ary and D irection s for F uture R esearch

We conclude the present chapter with a brief summary of the major issues 
addressed within it, and an outline of some potential lines of related future 
research.

3.8.1 Sum m ary
In this chapter we have considered the joint distribution of four fundamental 

statistics employed in the analysis of circular data: 0, R, , and . The

asymptotic joint distribution of these statistics was derived using Taylor expansion 

in Section 3.3. Bias-corrected estimators for the analogous population measures, p,

p, P2 , and ^ , follow directly from the results for the asymptotic joint

distribution, and were given in Section 3.4. In Section 3.5 we used those same 
results to derive new constructions for large-sample confidence sets for the different 
possible combinations of the population measures.
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Problems which might be encountered when applying the derived inferential 
tools were identified in Section 3.6. The use of those tools, and some of the potential 
problems associated with their application, were illustrated in Section 3.7 using 
three data sets taken from the animal orientation experimentation literature.

3.8.2 Directions for Future Research

The asymptotic results derived in this chapter for the joint distribution of R, 

Z?2 , and «2 are of wide relevance as they are nonparametric. In obtaining them, 

the only assumption we made regarding the underlying distribution was that p  G 

(0, 1). In Section 6.4.3.2 of Chapter 6 we explore the validity of the theoretical 
asymptotic bias and variance results given in Theorem 3.1 when the parent 
population is wrapped skew-normal.

The bias-corrected estimates of the population analogues of the four statistics, 
and the large-sample confidence set constructions given in Sections 3.4 and 3.5, 
also followed directly from our asymptotic results. For the illustrative examples of 
Section 3.7 we found that, except when the estimation process failed completely, 
the results obtained with or without bias-correction, and assuming or not assuming 
symmetry, seldom differed greatly. However, the sizes of the samples used in those 
examples were fairly large. It would be interesting to compare the efficiencies of the 
different estimators for data sets of varying size sampled from different forms of 
circular distributions. This idea is pursued in Section 6.4.3.3 of Chapter 6 for the 
case of a parent population assumed to be wrapped skew-normal. Similarly, a 
comparison of the actual coverages of the proposed large-sample confidence set 
constructions also suggests itself as being most valuable. Related to this last point, 
in Section 4.4 of Chapter 4 we present results for the operating characteristics of a 

test for reflective symmetry based on the statistic .

Regarding theoretical results associated with the above ideas, we note that 

Mardia (1972, Sections 4.5.3 and 4.9.3) considers the joint distribution of 6 and R

for an assumed von Mises parent population. For the same underlying distribution, 

Fisher & Lewis (1983) compare the form of the confidence interval for p  obtained 

using their construction with that of the corresponding exact interval given by 
Mardia (1972, pp. 145-6). Extending these ideas, it might be possible to obtain 
theoretical results for the joint distributions of other combinations of the four 
statistics for the von Mises distribution, or, indeed, any other appealing form of
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parent population. Those joint distributions might then be used to obtain 
distribution-specific estimators and confidence set constructions for the population 

measures p, p, ^  . However, on the face of it, obtaining theoretical

results of this type would appear to be somewhat of a tall order, at least for the full 
joint distribution of all four statistics. Moreover, for a specific parent population, 

the measures p, p, P^ , and may not be of primary interest. For instance, for an 

underlying wrapped normal distribution, the parameter (J rather than the measure 

p  would be of interest, and P2  and ^  would be of no real interest at all.

Nevertheless, for skew distributions we might envisage all four measures to be 
relevant, and theoretical results such as those described above would be most 
valuable.

Our results are based on asymptotic theory and therefore should not be applied 
in the analysis of small sized samples. For situations in which our asymptotic 
results are thought not to apply we can always use computer intensive methods of 
inference. Fisher & Hall (1989, 1990) and Fisher (1993, Chapter 8) consider 

bootstrap procedures for obtaining confidence intervals for p. The ideas underlying 

those procedures could be adapted to obtain computer intensive methods of 

inference for the other three measures p, P 2 , and ^  . For the construction of

bootstrap confidence sets for pairs, triples and the full set of the four measures, the 
approach of Yeh & Singh (1997) referred to in Section 2.8.2 of Chapter 2 suggests 
itself as being potentially useful.
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C hapter 4 T estin g  for C ircular R eflective  Sym m etry  

A bout an U nknow n C entral D irection

4.1 In trod uction

Symmetry is one of the most basic of dividing hypotheses, the acceptance of which 
leads to the subsequent exploration of models which, when compared with their 
skew competitors, generally have relatively concise parametric specifications. On 
the other hand, the rejection of symmetry raises important issues as to precisely 
which of a distribution’s characteristics are of real statistical interest. In this 
chapter we consider in detail the testing of circular data for a particular form of 
symmetry, namely, reflective symmetry about an unknown central direction, 
against asymmetry.

In Section 4.2 we provide a brief review of the enormous wealth of procedures 
which have been proposed for testing linear data for reflective symmetry about an 
unknown centre. In addition, we describe the various forms of symmetry associated 
with circular data which might be tested for, and cite the only published work that 
we are aware of regarding the testing of circular data for reflective symmetry about 
an unknown central direction.

In Section 4.3 we introduce a new large-sample omnibus procedure for testing 
circular data for reflective symmetry about an unknown central direction, the test 
and its asymptotic sampling properties following directly from the results given in 
Theorem 3.1 of Chapter 3. The operating characteristics of the test are explored in 
Section 4.4, the asymptotic power of the test being given in Section 4.4.1. In Section
4.4.2 we describe a Monte Carlo experiment designed to investigate the small- 
sample operating characteristics of the test. In this study we simulate data from a 
variety of unimodal distributions, three of which are new to the literature. The 
basic properties of these three distributions are given in Sections 4.4.2.1.1, 4.4.2.1.2 
and 4.4.2.2.I. Results for the test’s ability to maintain the nominal significance 
level for underlying symmetric distributions, and its power against skew 
alternatives, are presented in Section 4.4.2.4.
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Computer intensive versions of the new test are outlined in Section 4.5. We 
describe bootstrap and randomization variants of the test based on the use of the 
symmetrization device of Efron (1979). The results from a small scale simulation 
study conducted in order to compare the operating characteristics of the large- 
sample, bootstrap and randomization versions of the test are presented in Section 
4.6.

In Section 4.7 we illustrate the application of the developed testing methodology 
with analyses of seven data sets taken from the circular statistics literature. The 
chapter closes, in Section 4.8, with a summary of its content and an indication of 
potential future lines of research related to the testing of circular data for reflective 
symmetry about an unknown central direction.

In the main, the content of Sections 4.1-4.7 draws heavily on that of Pewsey 
(2002b). However, large parts of Sections 4.4 and 4.7 are new, and the detail given 
in Section 4.6 is greater than that presented in the cited paper.

4.2 B ackground to  T estin g  for Sym m etry on  th e  L ine and C ircle

Numerous procedures have been proposed in the literature for testing univariate 
data on the line for reflective symmetry. These tests divide into two main groups, 
the division resulting from whether the centre of symmetry is specified (or assumed 
known) or not. The former group of tests is considered in detail in Chapter 5. The 
second group of procedures, designed for testing the non-parametric hypothesis of 
reflective symmetry about an unknown centre, against asymmetry, is that which is 
of direct relevance to our deliberations in the present chapter. Amongst the 
multifarious tests in this group we cite those of: Gupta (1967), based on the 
coefficient of skewness; Gupta (1967), Antille et al. (1982) and Bhattacharya et al. 
(1982), involving modifications of the one-sample Wilcoxon test centred on the 
sample median; Gastwirth (1971) and Cabilio & Masaro (1996), founded upon the 
difference between the sample mean and median; Finch (1977) and Antille et al.
(1982), involving the size of the gaps between observations; Davis & Quade (1978) 
and Randles et al. (1980), based on the skewness evident in triples of observations; 
Boos (1982) and Koziol (1983), incorporating Cramér-von Mises statistics; Csorgo & 
Heathcote (1987), based on the empirical characteristic symmetry function; 
Schuster & Barker (1987), involving bootstrapping samples from the symmetric 
distribution closest to the empirical distribution function.
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The development of methods for testing circular data for symmetry has been 
nowhere near as extensive. In addition, the situation on the circle is somewhat 
more involved as, due to its compactness and the isometries of rotation and 
reflection, “symmetry” is not uniquely defined. Consequently, there are three, 
rather than two, types of procedure associated with symmetry. The first, that for 
testing for Z-fold, or cyclic, symmetry, has no equivalent on the line. Jupp & Spurr
(1983) introduced rank based procedures which can be used to test for this form of 
symmetry. The second type of procedure is designed for testing for reflective 
symmetry about a specified or known centre. An in-depth treatment of procedures 
of this type is reserved until Chapter 5.

It is the third and arguably most important type of procedure, designed to test 
the null hypothesis of reflective symmetry about an unknown central direction, 
henceforth against the alternative hypothesis of an asymmetric parent 
population, which we consider at length in the present chapter. Despite the fact 
that, as Mardia (1972, p. 10) states, “symmetrical distributions on the circle are 
comparatively rare”, the investigation of this pair of hypotheses has received 
virtually no attention in the literature. This oversight can perhaps best be 
explained by the dominating theoretical role of the von Mises distribution in the 
analysis of circular data and the tacit assumption of symmetry associated with its 
use.

Fisher (1993, Section 4.2) introduces an exploratory graphical technique for 
assessing whether a unimodal distribution is symmetric. He also suggests, p. 80, 
that a formal test of can be based on a standard test for linear data, such as the 
Wilcoxon signed-rank test, with the unknown centre of symmetry estimated by the 
sample median. However, it is inappropriate to apply such tests in this way as they 
are no longer non-parametric when the centre of symmetry has been estimated, the 
significance level and power generally being considerably lower than their nominal 
levels; see, for example, Gastwirth (1971).

Of course, if the data being analyzed are distributed over a reduced arc of the 
circle then can be tested using any one of the linear tests referred to previously, 
after first applying a suitable rotation to the data and unwrapping them to the line. 
However, if the data cover a sizeable arc of the circle then these tests cannot be 
employed as the statistical summaries and distribution theory upon which they are 
based no longer apply. Thus there is a genuine need for procedures which can be
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employed to test truly circular data, covering a substantial arc of the circle, for 
reflective symmetry about an unknown central direction.

4.3 A L arge-sam ple O m nibus T est for C ircular R eflective  

Sym m etry A bout an U nknow n C entral D irection

Our omnibus test of is based on the asymptotic results for the sample second 

sine moment about the mean direction, 62 , given in Theorem 3.1 of Chapter 3. We 

note that the statistic 2̂ bad previously been proposed by Cox (1975) as the basis 

of a test for skew departures from the von Mises distribution.

For a distribution which is reflectively symmetric about a central direction (j) we

have f  {6) = f  {2(j) -  6) and, clearly, f{6)  is also symmetric about (j) + n. If, in 

addition, then p  = ^  and £'(^2 )= 0. An estimate of the variance of in

this context can be obtained using the expression for var(Z?2 ) in (3.3.2) with /?2 =0
  2 M _

and p  and cĉ  replaced by their plug-in estimates, R and = —^ c o s  p {6. - 6 ) ,
^ 1=1

respectively. Thus an asymptotically distribution-free test of can be based on the 

studentized statistic

(4.3.1)

where

1
vâr( Z?2 ) = 

n 2  ̂ R R

which is implicitly assumed to be positive. Large absolute values of (4.3.1) 
compared with the quantiles of the standard normal distribution lead to the 
rejection of symmetry in favour of some skewed alternative.

Given the assumption of Theorem 3.1 that p e (0 , 1), our test can be used with 

data from most, but not all, underlying distributions. The condition that 

p ^ O  excludes the uniform distribution and certain multimodal distributions. The

latter include all multimodal distributions which are either cyclically symmetric, or 
have more than one axis of reflective symmetry, or both. However, if it is thought 

possible that p  = 0 for some underlying multimodal distribution, and the number

of modes, m, of the distribution can be established beforehand, then the test can be
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applied after first employing the device of m-fold wrapping of the circle onto itself 

(see Mardia & Jupp 1999, p. 53). This device consists of multiplying each data 
value by m, by so doing producing a sample from a distribution with a uniquely 

defined central direction. In fact this procedure can be used with data from any 

form of multimodal distribution, and so if there is any doubt as to whether it

would be advisable to apply the test to both the original data and to the wrapped 
data and compare results. Turning our attention to the uniform distribution, it is 
the unique distribution which is invariant under both isometries of reflection and 
rotation. Isotropy plays such a central role in the analysis of circular data that 
numerous methods are available for testing for it (see Mardia & Jupp 1999, 

Chapter 6). The other extreme, when p  = 1, corresponds to the pathological case of 

a point distribution.

4.4 The O perating C h aracteristics o f th e  T est

When assessing the performance of a test of symmetry there are two general 
requirements which it should meet. Firstly, it should be able to maintain the 
nominal significance level over a wide range of symmetrical distributions. Secondly, 
it should be powerful against asymmetric alternatives. In Section 4.4.1 we consider 
the asymptotic power of the test. Results for the small-sample operating 
characteristics of the test are presented in Section 4.4.2.

4.4.1 The Asymptotic Power of the Test

Using the results of Theorem 3.1, under the asymptotic distribution of is 

normal with £q (z?2 )= 0 and

2 P \  P \

assuming varQ {p2  ) to be positive. If the parent population is asymmetric then the 

asymptotic distribution of Z?2 is again normal but with

E ,{ b , ) = P ,+ -

and
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var,\ M = - 2 - - /? [ ' p

assuming var, (fcj ) to be positive. It therefore follows that for a significance level of 

100 a  % the asymptotic power of the test is

1 - 0 + 0
(var, (h; )}1/2 (4.4.1)

The form taken by (4.4.1) as a function of p  is exhibited in Section 4.4.2.4.1 for a 

range of skew parent populations.

4.4.2 Monte Carlo Investigation of the Small-sample Operating 

Characteristics of the Test
In order to assess the test’s ability to maintain the nominal significance level for 
symmetric parent populations, and its power against asymmetric alternatives, we 
conducted a simulation study using a range of underlying unimodal distributions 
with mean direction the origin.

4.4.2.1 Symmetric Models
Four symmetric distributions were used in the study, the first three being the 
wrapped normal, wrapped Laplace and wrapped Cauchy distributions. On the line, 
the unwrapped versions of these distributions are classified as being symmetric 
short, medium and heavy-tailed, respectively. The fourth was a mixture 
distribution having wrapped normal and uniform components, the former with 
standard deviation set equal to 0.4590. The properties of the wrapped normal and 
wrapped Cauchy distributions are well known; see, for example, Mardia & Jupp 
(1999, pp. 50-52). As the other two distributions are new to the literature, we 
briefly review those of their basic properties most relevant to this and the next 
chapter.

4.4.2.1.1 Fundamental Properties of the Wrapped Laplace Distrihution

Consider the (linear) double exponential random variable Z, centred at the origin, 

with probability density function

/(x ;/l)= -exp (-A |x |) Z > 0 ,  —co<x<oo,

and characteristic function
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Then the probability density function of ^ = Z ( mod 2ti) is

/ (  ̂ ; Z ) = — ^  exp(-
1 t=-oo

and its characteristic function {jFe.p • P = 0,±1,...} is given by

As the distribution is symmetric about 0, it follows that p  = p  = 0, where p  

denotes the median direction. Also, = 0, = y/g ^, and thus

p-CC^ = ). Inverting this last expression, we obtain Z = { p / ( l  -

4.4.2.1.2 Fundamental Properties of the Wrapped Normal and Uniform Mixture 
Distrihution

Let ^be a circular random variable with probability density function

171

where denotes the density of the wrapped normal distribution with

mean direction 0 and mean resultant length p^j^ = e  ̂ . Then 6 has a mixture

distribution with wrapped normal and uniform components and mixing proportions 

^ g [0,l] and Thus, its distribution is a special case of the symmetric

wrapped stable -  circular uniform mixture family considered by Sengupta & Pal 

(2001). When q - \  the density reduces to that of the wrapped normal component, 

and when ^ = 0 ^is a circular uniform random variable. We can write.

V  l7 tG  / t = _ o o 2cr'
+ i l z É .

27T

Once again, as the distribution of 6 is symmetric about 0, p  = p  = and Pp = 0. 

Also, Œp = We,p̂  with y/g  ̂ =1 and, for p = ±1,±2,...,
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2k  ( ' \  —
Œp = e {cosp0)= q^cosp6  )dd +  ̂ J c o s dO

- Q P wn-

Hence, the mean resultant length for 6, p, equals = qpŷ f̂  = qe  ̂ . For the 

specified value used in our simulation study of (7 = 0.4590, and

yOG [o,  ̂ ~ [0, 0.9], q= p je  . Thus, as p  ranges between 0 and e , the

distribution of 6 varies between being that of a uniform random variable and that 

of a wrapped normal random variable, the latter with mean direction 0 and mean

resultant length  ̂  ̂ ~ 0.9. Consequently, the heavy-tailedness of the

distribution depends on p.

Linear plots of the densities of the four symmetric distributions considered in 
the simulation study are given in Figure 4.1. The densities shown correspond to the 
respective distributions for a mean resultant length of 0.45.

a) c)
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g
0 . 2 -
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0-4
■2 3-3 •1 0 1 2

b)
X (radians)

0 .5 -

0 .4 -

0 .3 -

0 .2 -

0 .1 -

0-1
3-3 -2 ■1 0 1 2

0 .5 -

0 .4 -

0 .3 -
3

0.2-

0.1-
0-1

■3 ■2 31 0 1 2

d)

X (radians)

0 .5-

0 .4-

0 .3 -

0.2 -

0.1-

0-1
-3 •2 0 31 1 2

X  (radians) X (radians)

Figure 4.1 Linear plots of the symmetric densities used in the simulation study, 
with // = 0 and p = 0.45: a) wrapped normal, b) wrapped Laplace, c) wrapped 
Cauchy, d) wrapped normal and uniform mixture. The dashed vertical lines 
delimit the bounds -n and n.

9 9



Chapter 4 - Testing for Circular Reflective Symmetry About an Unknown Central Direction

4.4.2.2 Asymmetric Models
As asymmetric models we used the wrapped exponential distribution and three 
cases of the wrapped skew-normal distribution on the circle (WSNC) of Pewsey 

(2000b), the latter with values of the associated skewness parameter, À, of 2, 5 and 

oo. The wrapped exponential distribution is new to the literature and so in Section

4.4.2.2.1 we provide a brief summary of its basic properties. Also, in Section 
4.4.2.2.2, we outline those properties of the WSNC distribution most relevant to 
this and the next chapter, a full treatment of the distribution being given in 
Chapter 6.

4.4.2.2.1 Fundamental Properties of the Wrapped Exponential Distrihution 

Consider the (linear) exponential random variable Z, with probability density 

function

/(% ;,!)= /lexp(-A%) yl > 0, A > 0,

and characteristic function

/ \ A ^  4- iÀt

The circular random variable 6 = X  (mod 27t) has probability density function

f{0 \X )=  exp{- à {0 + 27ik)\
k=Q

and characteristic function {wg p : p -  0,±1,...} given by

+ iÀp

Thus, ap = I + p^) and Pp='^ p j { ^  + p^)^ The mean direction is given by 

//=  )= tan"'(l/A), and the mean resultant length is

p  = {a f + = x j . For a specified value of p  the corresponding value

of À is thus À = pj { l -  p^y^. The median direction, p, is such that

Jl+n

As

1 0 0
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J / (  0; A) <̂6» = j l ^ A e x p f  A( 61 + 2®t)}
k=0

= V  fAexp{ - + 2;tâ:)}dO
k=Q

~ ^ —exp{- /%( ̂  + 2 ^ )}  + C,
i t = 0

then

J /(^;/l)û?^  = ^-exp{-y^(//+ ;z: + 2;z^)} -^ -e x p { - / l( /Z  + 2;z^)}
yj =̂0 =̂0

It follows that

P = -^ lo g
1 I l-g~^^

4A.2.2.2 Fundamental Properties of the Wrapped Skew-normal Distrihution on the 
Circle

We show in Section 6.4 of Chapter 6 that if the SN[,(^,7;,A) distribution is 

wrapped onto the circle then the mean direction and mean resultant length of the 
resulting wrapped skew-normal distribution on the circle are given by

// = tan"^[{sin^ + 3(J/7)cos^}/{cosf-3(^/7)sinf}] (4.4.2)

and

p  = 0){l -H 3^ , (4.4.3)

where ô =  À j{l +  C û =  e and for x  >  0,3(x)= J hê '" du , 3 ( -  x)= -3(%) and
0

b = { ijn y ^ . For given values of X and p, one can use (4.4.3) to solve numerically for 

Tj. From (4.4.2), when ^ = 0, the mean direction, , is given by 

Pq = tan"'{3((^77)}. Thus, for a general value of p=^-\rp^ ( mod2;r). It follows 

that f  = ~Pq when // = 0.

For specified values of X and 7 7 , and ^ = 0, the median direction, p ^, can be 

obtained using numerical methods as the solution to

1 0 1
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J 6 Ink 
ri

O U
V r]

For a general value of the median direction, //, is then given hy

(mod In^. It follows that when // = 0, ^ = -//q .

Linear plots of the densities of the wrapped exponential distribution and the 

wrapped skew-normal distribution with À = 2, 5 and o® are given in Figure 4.2. The 

four densities correspond to the respective distributions with p  = 0.45 and mean 

direction 0. As can be seen from this figure, the distribution with A = 2 is only 

moderately skew, while À = ^  corresponds to the highly skew wrapped half-normal 

distribution. The wrapped exponential distrihution is even more skew.
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30 1 2-3 ■2 1
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Figure 4.2 Linear plots of the asymmetric densities used in the simulation study, 
with ju = 0 and p = 0.45: a) wrapped exponential, b) wrapped half-normal, c) 
WSNC (À=5), d) WSNC (À=2). The dashed vertical lines delimit the bounds -n  and 
n.
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4.4.2.S Further Design Features of the Simulation Experiment
The two operating characteristics of the test were explored for sample sizes of 20, 

30, 50, 100, 200 and 500, and, except for the mixture distribution, />values of

0.1(0.05)0.95. For the wrapped normal and uniform mixture distribution the 

maximum /9-value was set at 0.9, close to its maximum possible value (see Section 

4.4.2.1.2). The empirical size and power values were calculated using 3000 

simulated samples for each distribution, sample size and p  combination. The 

nominal significance levels investigated were 10%, 5% and 1%.

4.4.2.4 Results
In the following two subsections we present results for the two operating 
characteristics of the test separately. Only the results for a nominal significance 
level of 5% are given, the general conclusions arising from them also being 
representative of those for the other two significance levels investigated in the 
simulation study.

_  0 .06-

~  0 .05 -

03 0 .04-

m 0 .0 2  —

0 .0 1 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rho

b)
_  0.06

0 .05-

03 0 .04-

0 .03-

0-4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 .05-

0 .03-

0 .0 2 -

0 .0 1 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rho

Rho
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rho

Figure 4.3 Estimated size of the test for the: a) wrapped normal, b) wrapped 
Laplace, c) wrapped Cauchy, d) wrapped normal and uniform mixture
distributions. Sample sizes represented are:----------(n = 20);-----------(n = 50); —
• — (n = 100); (n = 500). The dotted horizontal line delimits the nominal
significance level of or = 0.05.
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4.4.2.4.1 Ability to Maintain the Nominal Significance Level
Figure 4.3 displays the results for this operating characteristic of the test. We have 
omitted the results for sample sizes of 30 and 200 from the four plots making up 
this figure so as not to obscure their content. As each empirical result represented 
in these plots was obtained from 3000 simulated samples, the standard error of any 
such result is approximately 0.004. From a consideration of the plots we observe 
that the test is generally conservative for small sized samples. As might be 
expected, the test’s ability to hold the nominal significance level improves with 
increasing sample size and concentration of the parent population. The results for 
the mixture distribution portrayed in Figure 4.3d are somewhat discordant with 
those in the other three plots, as they indicate that the test is non-conservative for 

certain sample size and p  combinations. For this parent population, the test’s non­

conservatism appears to increase with sample size and diminishing concentration.
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Rho

b)
1.0-
0 .9 -

0 .7 -  
 ̂ 0.6- 

^ 0 .5 -  
(2 0 .4 -  

0 .3 -  
0.2- 
0.1 -  

0-
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0-
0 .9 -

0 .7 -
k  0 .6  —

I  0 .5 -  
Ph 0 .4 -  

0 .3 -  
0.2- 
0.1- 
0-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rho

d)
1.0 -

0 .9 -

0 .7 -
k  0 .6 -

I
(2 0 .4 -  

0 .3 -  
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Rho Rho

•) and empirical power (- -)ofFigure 4.4 Theoretical asymptotic power (• • 
the test for the: a) wrapped exponential, b) wrapped half-normal, c) WSNC (À=5), 
d) WSNC (À=2) distributions. The six curves of each type correspond to sample 
sizes of 20, 30, 50, 100, 200 and 500, the power increasing with sample size. The 
dashed horizontal line delimits the nominal significance level of a = 0.05.

104



Chapter 4 - Testing for Circular Reflective Symmetry About an Unknown Central Direction

4.4.2A.2 Power Against Skew Alternatives
The empirical power results for the test are displayed in Figure 4.4. For this figure, 
the standard error of any result represented is, at most, 0.009. Also included in the 
four plots making up this figure are the corresponding theoretical asymptotic power 
functions calculated using (4.4.1). It can be seen that there is reasonable agreement 
between the two sets of power curves for moderate to large sized samples from 
moderately skew parent populations which are not highly dispersed or highly 
concentrated. The disparities between the theoretical and empirical power curves 
are greatest for the more skew parent populations and the extremes of the 
concentration scale. Regarding this last point, we note that the theoretical results 
upon which the new test is based do not apply for the extreme values of p of 0 and

1. As is to be expected, the true (empirical) power of the test increases with 

increasing sample size. The power also increases with p  before reaching a 

maximum and subsequently decreasing as p  increases further. This deterioration 

in power is particularly abrupt for moderately sized samples from highly skew 

parent populations. Of course, p  = l corresponds to a point distribution and for

such a distribution Z?2 is identically zero.

4.5 R andom ization  and B ootstrap V ersions o f th e  T est

The device of symmetrizing a sample introduced by Efron (1979) can be used to 
define randomization and bootstrap versions of the test based on the pivotal 

statistic (4.3.1). This device produces a symmetric sample of size 2n by augmenting

the original sample with the values 2^ -  6̂  , where ^  is an estimate of the central 

direction. Two obvious estimates of ^ are 6 and the sample median direction, 0 ,

the latter obtained by minimizing the sample circular mean deviation,

1 ” Id{ç)) = 7r • The former is an appropriate estimate so long as
n i=i '

p4^0, it is relatively easy to compute and is the choice favoured by Fisher (1993, 

p. 205). Use of 6 requires the assumption that the median direction is unique and

equal to Whilst this will be the case for a symmetric unimodal distribution, it 

may not be for a multimodal distribution. The precise conditions required to ensure 
uniqueness of the median direction are specified by Purkayastha (1995). The
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robustness of 6 and 6 has been studied by Lenth (1981), Ko and Guttorp (1988),

and He & Simpson (1992). This work shows that 6 is the more robust, although

Fisher (1993, p. 72) contends that the conditions under which there is likely to be 
any great improvement in performance are unlikely to be encountered with real 
data.

Once a symmetrized sample has been produced, randomization and bootstrap 
samples can be generated from it and fed into their respective testing frameworks. 
Here a randomization sample is formed by sampling an element at random from

each of the n pairs ,2 ^-6 ^  ), whereas a bootstrap sample is generated by

sampling n elements at random and with replacement from the symmetrized 

sample. For small samples “exact” tests can be carried out using complete 
enumeration of the resampling distribution. For larger samples, the variance 
reduction technique of balanced resampling can be employed if the storage of large 
arrays is not a problem. The hypothesis is rejected if the value of (4.3.1) for the 
original sample is judged to be extreme when compared to its resampling 
distribution.

4.6 A C om parative M onte Carlo E xperim ent

In order to compare the small-sample properties of the large-sample version of the 
test with those of its randomization and bootstrap counterparts, we carried out a 
small scale simulation experiment. The experiment was based on the same 
unimodal distributions as employed in the Monte Carlo study of Section 4.4.2. 
However, given the vast increase in computer time required to implement the 
randomization and bootstrap versions of the test, only three yovalues were 

considered: 0.2, 0.45 and 0.7. The sample sizes explored were 10, 20, 30, 50 and 

100. For each distribution, p  and sample size combination, we simulated 3000 

samples. In turn, for each one of these samples, 2000 basic bootstrap and 2000 
randomization samples of the same size were generated from the associated

symmetrized sample, with either 6 or 9 being used as an estimate of (f. The

nominal significance levels investigated were 10%, 5% and 1%.
The results obtained from the study are summarized in Tables 4.1 and 4.2. 

Again, we present only those results for a nominal significance level of 5%, these 
being representative of the results for all three significance levels considered. From
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Table 4.1 it can be seen that the randomization versions of the test tend to be non­

conservative, particularly for small p. We also observe that the ability of the test to 

maintain the nominal significance level is improved by bootstrapping, particularly 

for small p. Overall, the bootstrap version of the test with 6 used to symmetrize

samples is identified as maintaining the nominal significance level best. However, 
there would appear to be little advantage gained from using computer intensive 

methods for samples in excess of 30 if p  is moderately large.

From Table 4.2 we observe that the randomization versions of the test are 
consistently the most powerful. Nevertheless, their use is not to be recommended 
due to the fact that, as has been established previously, these versions of the test 
are generally non-conservative. Of the remaining three variants, the bootstrap 

version with 6 used to symmetrize samples is once more identified as having best

overall performance. If the results for this bootstrap version of the test are 
compared with those for its large-sample counterpart, it can be seen that the 
largest gain in power resulting from bootstrapping is 7%, corresponding to a 

sample size of n = 20. As is to be expected, the gain in power resulting from using 

the bootstrap is generally greatest for small sized samples.

4.7 E xam ples

In this section we apply the large-sample and bootstrap versions of the test in the 
analysis of seven data sets taken from the circular statistics literature.

4.7.1 Azimuths of Palaeocurrents in the Belford Anticline
Fisher (1993, pp. 80-81) tests for the reflective symmetry of 30 cross-bed azimuths 
of palaeocurrents measured in the Belford Anticline in New South Wales, taken 
from Fisher & Powell (1989). The data are reproduced in Table 4.3 and represented 
in the form of a raw circular plot in Figure 4.5.

Table 4.3 Ordered cross-bed azimuths, measured in a clockwise direction from 
north (in degrees), of 30 palaeocurrents in the Belford Anticline, New South 
Wales, Australia.

166 177 177 186 214 215 224 224 229 229 232 239 241 242 245 245 
250 254 257 257 267 272 277 281 287 290 294 301 315 329
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The analysis of these data given by Fisher is flawed on two counts. Firstly, it 
makes use of the Wilcoxon signed-rank test after the median direction has been 
estimated, and secondly, the value of the test statistic, its associated significance 
probability and the conclusion are awry. The correct p-value for the Wilcoxon test is 
in fact 0.704, corresponding to a value of the test statistic of 0.38.

E -

Figure 4.5 Raw circular plot of the cross-bed azimuths of Table 4.3.

For these data the values of R and the bias-corrected estimate of p  calculated 

using (3.4.1) both equal 0.78 to two decimal places. Using (3.5.4) and (3.5.5), 95% 

confidence intervals for p  are, to the same accuracy, (0.68, 0.87) and (0.69, 0.88), 

respectively. Whilst these estimates correspond to the region of concentration for 
which the test is relatively powerful, given the small size of the sample, we would 
not expect the absolute power of the test to be high. In fact, the p-value for the 
large-sample version of the test was found to be 0.603, and that for the bootstrap 
version, 0.668. Thus, neither version of the test provides evidence to reject the 
hypothesis of underlying reflective symmetry. In this and all subsequent references 
to the bootstrap version of the test, the number of replications used was 2000. Also, 
in keeping with our findings from the simulaton study of Section 4.6, the sample 

mean direction, 6, was used throughout to symmetrize samples.

4.7.2 Vanishing Angles of Mallard Ducks
Table 1.1 of Mardia (1972, p. 3) reproduces grouped data on the vanishing angles of 
714 non-migratory British mallards, taken from Matthews (1961). Over a period of 
a year, the ducks were taken under sunny conditions from Slimbridge in
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Gloucestershire to various sites at distances of between 30 km and 250 km away. 
When released, the bearing corresponding to the direction at which each bird 
disappeared from view, the so-called ‘Vanishing angle”, was recorded. The bearings 
were measured clockwise from north. The data as given by Mardia are summarized 
in Table 4.4. A linear histogram of the data is given in Figure 4.6.

Table 4.4 Vanishing angles (in degrees) of 714 non-migratory British mallards.

Direction Number of 
ducks

Direction Number of 
ducks

[0-20) 40 [180-200) 3
[20-40) 22 [200-220) 11
[40-60) 20 [220-240) 22
[60-80) 9 [240-260) 24
[80-100) 6 [260-280) 58
[100-120) 3 [280-300) 136
[120-140) 3 [300-320) 138
[140-160) 1 [320-340) 143
[160-180) 6 [340-360) 69

150-1

0 -

140 160 180 200 220240 260 280 300 320 340 0 20 40 60 80 100 120 140

Vanishing angle (degrees)

Figure 4.6 Linear histogram of the mallard data of Table 4.4.

Mardia (1972, p. 10) describes the distribution of the data as being “somewhat 
symmetrical”, whilst Mardia & Jupp (1999, p. 5) classify it as being “fairly 
symmetrical”. Without allowing for grouping in any way, and simply centering the 
observed frequencies in the middle of their respective class intervals, both the 

value of R and the bias-corrected estimate of p  calculated using (3.4.1) equal 0.72
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to two decimal places. The 95% confidence intervals for p, calculated using (3.5.4) 

and (3.5.5), are also the same to two decimal places, corresponding to the interval 

(0.68, 0.75). Given these estimates of p  and the large size of the sample, we would 

not expect the bootstrap version of the test to be any more powerful than the large- 
sample version. However, as the sample size is so large, we would expect the test to 
have considerable power. For these data the p-value for the large-sample version of 
the test is actually 0.124. Thus there exists, in fact, weak to no evidence that the 
underlying distribution is not reflectively symmetric.

4.7.3 Thunder at Kew
Table 1.3 of Mardia (1972, p. 8) presents grouped data on the frequencies of 
thunder recorded at Kew during the summers of 1910-1935 for twelve two hour 
periods of the day. The data were adapted from Bishop (1947). In Table 4.5 we 
reproduce the data as presented by Mardia. Figure 4.7 provides a graphical 
representation of the equivalent angular data in the form of a linear histogram.

Table 4.5 Frequencies of occurrence for the 725 occasions on which thunder was 
recorded at Kew during the summers of 1910-1935.

Time
(G.M.T.)

Equivalent
Angle
(Degrees)

Frequency Time
(G.M.T.)

Equivalent
Angle
(Degrees)

Frequency

[0 0 - 0 2 ) [0-30) 26 [12-14) [180-210) 133
[02-04) [30-60) 24 [14-16) [210-240) 149
[04-06) [60-90) 14 [16-18) [240-270) 1 2 2

[06-08) [90-120) 15 [18-20) [270-300) 80
[08-10) [120-150) 14 [2 0 - 2 2 ) [300-330) 61
[1 0 - 1 2 ) [150-180) 65 [22-24) [330-360) 2 2

Mardia (1972, p. 10) describes the distribution of these data as being “slightly 
asymmetrical”. Again, without allowing for grouping, and employing the same 
device of centering the observed frequencies referred to in the previous example, 

the value of R and the bias-corrected estimate of p  both equal 0.52 to two decimal 

places. The bias-corrected and non-bias-corrected 95% confidence intervals for p  are 

also the same to two decimal places, the common interval being (0.48, 0.57). Whilst 

these estimates of p  correspond to an underlying distribution which is quite
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dispersed, the sample size of 725 is very large, and hence we would expect the 
ability of the test to detect asymmetry to be high. We would also expect little 
benefit to accrue from applying the bootstrap version of the test. In fact, when the 
large-sample version of the test is applied to these data the p-value obtained is zero 
to four places of decimal. Thus, our test emphatically rejects underlying reflective 
symmetry.

I I I I I I I I I I I r
60 90 120 150 180 210 240 270 300 330 0 30 60

Angle (degrees)

Figure 4.7 Linear histogram of the frequencies of thunder at Kew of Table 4.5.

4.7.4 Excessive Rainfall in the USA
Mardia (1972, p. 8) presents, in his Table 1.4, grouped data on the monthly 
frequencies of rainfall in excess of 1” or more per hour in the USA for 1908-1937, 
taken from Dyck & Mattice (1941). The frequencies we consider here are those 
adjusted for length of month. A summary of these adjusted frequencies is given in 
Table 4.6, and in Figure 4.8 we represent their distribution in the form of a linear 
histogram.

Again, Mardia (1972, p. 10) describes these data sets as being “slightly 
asymmetrical”. As the data are grouped, we proceed as in the previous two 
examples and base our analysis on the centred observed frequencies. For these 

centred data, the value of R and the bias-corrected estimate of p  both equal 0.55 to 

two decimal places. The bias-corrected and non-bias-corrected 95% confidence 

intervals for p  are also identical to two decimal places, giving the interval (0.54, 

0.57). As in the previous example, these estimates correspond to relatively small 

values of p. However, the sample size of 7235 is enormous and consequently we 

would expect, firstly, the power of the test to be very high and, secondly, the power 
of the large-sample and bootstrap versions of the test to be similar. In fact, for
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these data, the p-value for the large-sample version of the test is, to four decimal 
places, 0.0004, and so once again we emphatically reject underlying reflective 
symmetry.

Table 4.6 Adjusted monthly frequencies for the 7235 occasions on which 
precipitation of 1” or more per hour occurred in the USA between 1908 and 1937.

Month Equivalent
Angle

(Degrees)

Frequency
(Adjusted)

January [0-30) 101
February [30-60) 104
March [60-90) 231
April [90-120) 406
May [120-150) 683
June [150-180) 1225
July [180-210) 1475
August [210-240) 1381
September [240-270) 907
October [270-300) 382
November [300-330) 195
December [330-360) 145

1 5 0 0 -

5  1000-
6

g  5 0 0 -

0 - a
— I— I— I— I— I— I— I— I— I— I— I—

0 30 60 90 120 150 180 210 240 270 300 330 360

Angle (degrees)

Figure 4.8 Linear histogram of the rainfall data of Table 4.6.

4.7.5 Upper Kamthi River Cross-bed Azimuths
As a last example of a large data set, we consider a sample of grouped data 
introduced to the literature by Sengupta & Rao (1966). The data consist of the 
azimuths of 580 cross-beds in the upper Kamthi river in India. The grouped
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frequencies for this set of data are reproduced in Table 4.7 and represented 
graphically in the form of a linear histogram in Figure 4.9.

Table 4.7 Azimuths (in degrees) of 580 cross-beds in the upper Kamthi river, 
India.

Azimuth
(degrees)

Frequency Azimuth
(degrees)

Frequency

[0-20) 75 [180-200) 0
[20-40) 75 [200-220) 21
[40-60) 15 [220-240) 8
[60-80) 25 [240-260) 24
[80-100) 7 [260-280) 16
[100-120) 3 [280-300) 36
[120-140) 3 [300-320) 75
[140-160) 0 [320-340) 90
[160-180) 0 [340-360) 107

100 -

0 -

140 160 180 200 220 240 260 280 300 320 340 0 20 40 60 80 100120 140

Azimuth (degrees)

Figure 4.9 Linear histogram of the cross-bed azimuths of Table 4.7.

Mardia (1972, p. 10) describes the distribution of these data as being 
“asymmetrical”. Once more, as the data are grouped, we base our analysis on the 
observed frequencies centred in the middle of their respective class intervals. For 

the resulting sample, the value of R and the bias-corrected estimate of p  both 

equal 0.66 to two decimal places. The 95% confidence intervals for p, obtained 

using (3.5.4) and (3.5.5), are also identical to two decimal places, the common 
interval being (0.62, 0.70). Again, these estimates correspond to relatively small 

values of p, but as the sample size is 580 we would expect the test to be powerful.
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For such a large sample size one would also expect the power of the large-sample 
and bootstrap versions of the test to be similar. It transpires that for these data the 
p-value for the large-sample version of the test is, to four decimal places, 0.0014, 
and so once more we have overwhelming evidence that the parent population is 
asymmetric. This result partly explains why Sengupta & Rao (1966) found a 
significant lack of fit when they modelled these data using a von Mises distribution.

4.7.6 Directions of Creek Flow
Fisher (1993, p. 252) presents data on the direction of creek flow at the nearest 
point to the nests of 50 noisy scrub birds. We reproduce the data values in Table 4.8 
and represent their distribution using a raw circular plot in Figure 4.10. The plot 
gives the impression of a bimodal underlying distribution which is potentially 
reflectively, but not cyclically, symmetric.

Table 4.8 Ordered directions of creek flow (in degrees) at the nearest point to the 
nests of 50 noisy scrub birds.

30 90 105 105 105 110 110 125 125 125 125 125 130 130 130 135 135 140
140 140 140 140 145 160 160 160 160 200 200 200 205 215 215 215 225 230
230 240 240 240 240 240 240 250 250 250 250 250 295 295

■270“

180°

Figure 4.10 Raw circular plot of the creek flow data of Table 4.8.

The mean resultant length and bias-corrected estimate of p  for these data are 

0.55 and 0.54, respectively. In addition, the bias-corrected and non-bias-corrected 

95% confidence intervals for p  are (0.43, 0.64) and (0.44, 0.65), respectively. Whilst
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in our Monte Carlo studies we did not investigate the power of the different 
versions of the test for bimodal distributions, given the results for the unimodal 

distributions and for sample sizes and /^-values closest to those for this data set, we 

would not expect either the large-sample or bootstrap versions of the test to be 
particularly powerful. In fact, for this sample, the p-values for these two variants of 
the test were found to be 0.483 and 0.471, respectively. Thus, both versions of the 
test tend to confirm our earlier impression of an underlying distribution which is 
reflectively symmetric.

4.7.7 Orientations of Turtles After Egg Laying
In this, our last, example we consider Gould’s oft studied turtle data, originally 
cited in the statistical literature by Stephens (1969). The angles making up the 
sample correspond to the directions taken by 76 turtles after egg laying. These 
orientations are given in Table 4.9 and represented in the form of a raw circular 
plot in Figure 4.11.

Table 4.9 Ordered orientations, measured in a clockwise direction from north (in 
degrees), of 76 turtles after egg laying.

8 9 13 13 14 18 22 27 30 34 38 38 40 44 45 47 48 48
48 48 50 53 56 57 58 58 61 63 64 64 64 65 65 68 70 73
78 78 78 83 83 88 88 88 90 92 92 93 95 96 98 100 103 106

113 118 138 153 153 155 204 215 223 226 237 238 243 244 250 251 257 268
285 319 343 350

• I

270“ 90“-

180“

Figure 4.11 Raw circular plot of the turtle data of Table 4.9.
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From the circular plot we see that the distribution of the data is bimodal with 
what appear to be two diametrically opposed modes. Hence, whilst the majority of 
the turtles move in directions about the primary modal direction, a minority move 
in directions roughly opposite to those making up the primary mode. It would 
appear that the underlying distribution could well be reflectively symmetric, but is 

certainly not 2-fold, that is antipodally, symmetric. The value of R and the bias- 

corrected estimate of p  for these data are 0.50 and 0.49, respectively. The 95% 

confidence intervals for p, obtained using (3.5.4) and (3.5.5), are identical to two 

decimal places, the common interval being (0.34, 0.65). Given these estimates of p  

and the moderate size of the sample, we would not expect the test to be particularly 
powerful. Nor would we expect there to be any great difference between the powers 
of the large-sample and bootstrap variants of the test. Applying these two versions 
of the test, we found their corresponding p-values to be 0.744 and 0.758, 
respectively. Hence, according to both versions of the test, these data provide no 
evidence against underlying reflective symmetry. If, unnecessarily in this case, the 
device of m-fold wrapping of the circle is applied, i.e. under the assumption of 

antipodal symmetry we double each data value, then the p-values for the same two 

versions of the test are found to be 0.655 and 0.671, respectively.

4.8 Sum m ary and D irection s for F uture R esearch

In this last section of the chapter we summarize the main issues which have been 
addressed within it so far, and outline some potential avenues for future related 
research.

4.8.1 Sum m ary
In this chapter we have addressed the testing of circular data for reflective 
symmetry about an unknown central direction, against asymmetry. We reviewed 
the background to the problem in Section 4.2 and proposed a new large-sample 
omnibus test in Section 4.3.

The operating characteristics of the test were explored in Section 4.4. In Section
4.4.1 we gave the theoretical asymptotic power of the test, whilst in Section 4.4.2 
we presented results from a Monte Carlo experiment designed to explore the test’s 
ability to maintain the nominal significance level and its power. In the latter 
section we also compared the theoretical and empirical power of the test for four
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parent populations of varying skewness. The new test was found, in general, to be 
conservative, its ability to maintain the nominal significance level improving with 
increasing sample size and concentration of the underlying distribution. For a 

finite fixed sample size, the power of the test as a function of p  tends to improve 

with increasing concentration before reaching a maximum and subsequently 

diminishing as p  approaches its limiting value of 1. For p  = 1, of course, is

identically zero.
When describing the background to the Monte Carlo study of Section 4.4.2 we 

also presented results for the fundamental properties of three models which are 
new to the literature: the wrapped Laplace distribution, a wrapped normal and 
uniform mixture distribution and the wrapped exponential distribution.

Randomization and bootstrap versions of the test were introduced in Section 4.5. 
In Section 4.6 we presented results obtained from a further simulation study 
conducted in order to compare the operating characteristics of these new versions of 
the test with those of the original large-sample version. On the basis of the 
admittedly limited results from this study, the bootstrap variant of the test, with 

6 used in the symmetrization of the data, was identified as the version of the test

with best overall performance. However, for samples of size 30 or more, drawn from 
parent populations which are not highly dispersed, the improvement in 
performance of the bootstrap version of the test over its large-sample counterpart is 
only very marginal.

Finally, in Section 4.7, we illustrated the use of the large-sample and bootstrap 
versions of the new omnibus test, presenting analyses of seven data sets taken from 
the circular statistics literature.

4.8.2 Directions for Future Research

The test procedures developed in this chapter follow naturally from the use of 

as a fundamental measure of circular skewness. Our derivation of the large-sample 
version of the omnibus test therefore parallels closely that used by Gupta (1967) in 
deriving an analogous test for linear data based on the coefficient of skewness 

gi = m3 . However, is only one amongst a range of measures which might

be used as the basis of a test for symmetry about an unknown central direction. In 
this regard, a set of tests which suggests itself for future investigation is that 
formed by the circular analogues of procedures which have been found to be
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powerful tests of symmetry for linear data. The findings of Cabilio & Masaro (1996) 
are highly relevant in terms of the identification of the members of this set. These 
two authors used Monte Carlo methods to compare the small-sample operating 
characteristics of numerous tests of symmetry about an unknown centre. Of the 
Stests considered by them, the three tests which performed best were: a test 
proposed by them based on the difference between the sample mean and median; 
the test of Boos (1982) based on a minimum Cramér-von Mises distance 
characterization of a variant of the Hodges-Lehmann location estimator; the test of 
Finch (1977) based on the relative magnitude of the gaps between successive 
ordered observations. However, the development of circular equivalents of the last 
two of these tests would appear to be no easy task. The test of Boos (1982) uses a 
location estimator based on the median of Walsh averages and this immediately 
raises problems in terms of deriving an analogous circular test. The test of Finch 
(1977) requires an ordering of the observations, for which, at least for circular data 
distributed over the complete range of the unit circle, there is no unique circular 
equivalent. The development of a test for circular data analogous to that of Cabilio

& Masaro (1996), based on the statistic 6 - 6 ,  perhaps suggests itself as being

potentially more tractable. Nevertheless, the use of 6 raises certain practical

difficulties because, as Fisher (1993, p.35) points out, for real data the median 
direction need not be uniquely defined, particularly if the data are multimodal or 
isotropic. In addition, to our knowledge, nothing appears to have been published

regarding the joint distribution of 6 and 6. Should the distribution theory of a

test based on some pivotal statistic involving 6 - 6  prove too daunting, one could

always define a computer intensive version of it in which the double bootstrap was

used to approximate the variance of ^

As we explained in Section 4.2, when the data in a sample are distributed over a 
reduced arc of the circle, one can analyze them as if they were linear after applying 
a suitable rotation and unwrapping them to the line. The three tests of symmetry 
referred to in the previous paragraph are powerful tests whose use should be 
contemplated in such a context. We note, however, that the recommendations 
regarding the application of the three tests are based on their performance for data 
from unimodal populations only.
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Related to this last issue, our empirical investigations of the operating 

characteristics of the various versions of our test based on l> 2 were also rather 

limited. It would be of interest to explore their performance for other unimodal 
distributions, as well as for multimodal distributions, and for a more complete 

range of p-values. Given the experience gained from our small scale Monte Carlo 

experiment, the computing resources required to conduct such an in-depth 
investigation would be considerable. It would also be interesting to compare the 
operating characteristics of our test with those of linear tests of symmetry, for 
situations in which both can be applied. From such an investigation one could 
potentially draw up recommendations for the use of the two forms of test based on 
the mean resultant length of a sample. We note that an investigation along similar 
lines is presented in the following chapter.

Testing linear data for symmetry about an unknown centre is well known to be a 
thorny problem, the null and alternative hypotheses embracing all possible forms 
of underlying distribution. It is therefore not surprising that many of the tests of 
symmetry proposed in the literature have low power. The compactness of the circle 
does nothing to improve matters, as most importantly it leads to the loss of the 
notion of “scale”. Consequently, as we have seen, any assessment of the 
performance of a test of reflective symmetry for circular data must take account of 
the concentration of the parent population. One potential means of wresting power 
from where perhaps it should not be wrested is to employ an approach similar to 
that advocated by Kappenman (1988), i.e. convert the problem of testing the non- 
parametric hypothesis of symmetry into a parametric one, with the likelihood ratio 
criterion being used to choose between a member of a rich symmetric class of 
distributions and a member of a rich asymmetric class. Whilst considering that 
such an approach has its merits, we have shied away from pursuing it as we view 
the definition of sufficiently rich classes of circular distributions, capable of 
adequately modelling the wide range of possible empirical distributions of circular 
data, as being an insurmountable task. Should one be prepared to restrict one’s 
attention to unimodal distributions only, such a task might appear less ambitious.
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C hapter 5 T estin g  for C ircular R eflective  Sym m etry  

A bout a K nown or S p ecified  M edian A xis

5.1 In troduction

In Chapter 4 we considered procedures for testing circular data for the null 
hypothesis of an underlying distribution which is reflectively symmetric about an 
unspecified central direction against the alternative hypothesis of a parent 
population which is asymmetric. For the most part, the present chapter is devoted 
to the consideration of procedures designed for testing the null hypothesis of an 
underlying circular distribution which is reflectively symmetric about a known 
median axis against the alternative hypothesis that the underlying distribution is 
skew. To our knowledge, nothing has previously been published regarding the 
testing of this pair of hypotheses.

In Section 5.2 we review the background to testing symmetry about a known or 
specified centre, in the case of data on the line, and median axis for data on the 
circle. In Section 5.3 we introduce two new omnibus procedures for testing for 
circular reflective symmetry about a known median axis against skew alternatives. 
In addition, in Section 5.4 we describe the circular analogues of three linear tests 
which can also be employed in this testing set-up.

Theoretical results for the asymptotic power of the two new test procedures are 
derived in Section 5.5, and in Section 5.6 we present the details of a Monte Carlo 
experiment designed to explore and compare the operating characteristics of the 
two new tests and those of the circular analogues of the three linear tests. The 
empirical results from this simulation study are used to establish, in Section 5.6.3, 
a simple strategy for testing circular data from unimodal populations for reflective 
symmetry about a known median axis against skew alternatives.

In Section 5.7 we change tack and consider the use of the two new procedures as 
tests of symmetry about a specified median axis against rotation alternatives. We 
derive results for the asymptotic power of the two tests against rotation 
alternatives in Section 5.7.1. In Section 5.7.2 we present the details of a simulation
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study designed to compare the small-sample power characteristics of the two new 
tests with those of the circular analogues of four linear tests.

In Section 5.8 we discuss the use and limitations of the various test procedures 
considered in the previous sections. So as to illustrate the application of the testing 
strategy developed in Section 5.6.3, in Section 5.9 we present analyses of four data 
sets collected during animal orientation experiments.

The chapter closes, in Section 5.10, with a summary of its content and a brief 
indication of potential lines of related future research.

5.2 B ackground to th e  Two Types o f T estin g  P roblem  for D ata  on

th e L ine and Circle

In the statistical literature there exists a vast array of procedures designed for 
testing linear data for symmetry when the median of the underlying distribution is 
assumed to be “known” or when the centre of the distribution is “specified”. Some of 
these procedures can be applied in both testing contexts, while others are designed 
specifically for testing one or other of them.

For the set-up in which the median of the underlying distribution is assumed to 
be known, the relevant procedures are used to explore the hypothesis that the 
parent population is symmetric about the known median against the alternative 
that the underlying distribution is skew. Henceforth we refer to these procedures 
as tests of symmetry about a known median against skew alternatives.

In the testing scenario in which the centre of the distribution is specified, the 
underlying distribution is assumed to be symmetric and interest focuses on 
whether the centre of the distribution is correctly specified or not. These latter tests 
are generally referred to as tests of symmetry against location shift alternatives. 
The best known tests of this type are the sign test, the one-sample Wilcoxon test 
and the normal-scores test of Fraser (1957). The sign test is known to be the locally 
most powerful linear rank test against location shift alternatives, as well as being 
asymptotically optimum, when the underlying distribution is Laplace. Similarly, 
the Wilcoxon and normal-scores tests are the locally most powerful linear rank 
tests, as well as being asymptotically optimum, when the parent population is 
logistic or normal, respectively. See, for example, Hâjek & Sidak (1967, Section
III.5.1).

However, there are numerous other procedures which can be used as omnibus 
tests of symmetry against location shift alternatives. Amongst these figure the test
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of Smirnov (1947) and Butler (1969) based on the Kolmogorov-Smirnov statistic, 
and the tests of Orlov (1972), Rothman & Woodroofe (1972), Srinivasan & Godio 
(1974) and Hill & Rao (1977) which employ various Cramér-von Mises statistics. 
These empirical distribution function based procedures can also be used as tests of 
symmetry about a known median against skew alternatives. So can the Wilcoxon 
test, but clearly the sign test cannot usefully be applied in this testing scenario. In 
recent times, a class of procedures has been developed exclusively for testing for 
symmetry about a known median against skew alternatives. Cohen & Menjoge 
(1988) and McWilliams (1990) independently developed a test based on the number 
of runs about the known median. A modification of this test, which incorporated the 
percentile modified test scores of Gastwirth (1965), was considered by Modarres & 
Gastwirth (1996). Tajuddin (1994) proposed a conditional test based on the 
Wilcoxon two-sample test, and Modarres & Gastwirth (1998) introduced a hybrid 
test involving a combination of the sign test and a percentile modified two-sample 
Wilcoxon test.

The development of equivalent procedures for testing circular data for reflective 
symmetry about a known or specified median axis has received considerably less 
attention in the literature. Schach (1969) considered the equivalent of tests of 
symmetry about a specified median and obtained results for locally most powerful 
rank procedures for testing circular data for reflective symmetry about a specified 
median axis against rotation alternatives. In practice, suitably adapted versions of 
the sign and one-sample Wilcoxon tests are usually employed as omnibus 
procedures in this testing context; see, for example, Mardia & Jupp (1999, Section
8.2.1). These versions of the Wilcoxon and sign tests are described in Sections 5.4.1 
and 5.7, respectively.

As far as we are aware, nothing has previously been published regarding 
procedures for testing circular data for reflective symmetry about a known median 
axis against the alternative of an underlying distribution which is skew. This is 
somewhat surprising, as in the modelling of circular data interest will often focus 
on whether the underlying distribution from which the data arise is symmetric 
about an axis associated with the experimental set-up under consideration. For 
instance, in many animal orientation experiments the variable of interest is a 
circular one, namely the direction in which an animal moves in response to a 
stimulus, such as a source of light, heat or sound. A basic question of scientific 
interest in such contexts is whether the animals move in directions described by a 
circular distribution which is symmetric about a particular axis associated with the
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orientation of the stimulus, or whether the distribution about the same axis is 
skew.

Notwithstanding the above, if the data under consideration are concentrated on 
a reduced arc of the unit circle then they can effectively be treated as being linear. 
For the analysis of data of this type, the results from simulation experiments 
reported by McWilliams (1990) and Modarres & Gastwirth (1996, 1998) are of 
particular relevance. These results show that, for linear data from a wide range of 
unimodal asymmetric distributions from the generalized lambda family of Ramberg 
& Schmeiser (1974), the modified runs and hybrid tests of Modarres & Gastwirth 
(1996, 1998) can be the most powerful, nominal 5% sized, procedures known for 
testing for symmetry against skew alternatives. Thus, for data distributed over a 
reduced arc of the unit circle, one would expect the circular analogues of these 
procedures to be powerful tests of circular reflective symmetry about a known 
median axis against skew alternatives. However, for angular data which are 
distributed over a considerable arc of the unit circle, which we will call truly 
circular data, one might envisage the power of such tests to be considerably lower.

In the following section we introduce two simple omnibus procedures designed to 
test truly circular data for reflective symmetry about a known median axis against 
skew alternatives. In Section 5.4 we describe the circular analogues of the one- 
sample Wilcoxon, runs and modified runs tests which might be employed in the 
same testing context. The simulation results reported in Modarres & Gastwirth 

(1998) indicate that, for appropriate combinations of its parameters, and p,

their hybrid test can sometimes be even more powerful than their modified runs 
test. Nevertheless, we do not consider its circular analogue due to what we view as 
a major shortcoming in the original specification of the test. Although Modarres & 

Gastwirth (1998) offer advice on the choice of p, they only present simulation 

results for the combination a  = 0.05, = 0.01 and = 0.0404, and offer only

very imprecise advice as to how and should be chosen for general values of 

or. Given this lack of specification, we fear that the use of their hybrid procedure 

has great potential for converting the original problem into one irrevocably 
confounded by multiple testing.
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5.3 Two A sym ptotica lly  D istribution -free P roced u res for T estin g  for  

C ircular R eflective  Sym m etry About a K now n M edian A xis

In this section we introduce two new omnibus procedures for testing for circular 
reflective symmetry about a known median axis against skew alternatives. The 

first is based on a statistic similar to Z?2 which we used in Chapter 4 as the basis of 

a test of reflective symmetry about an unknown central direction against 
asymmetry. The second uses the difference between the sample mean direction and 
the known median direction as a measure of skewness. As we show, both tests are 
asymptotically distribution-free.

5.3.1 An Omnibus Test Based Upon the Second Sine Moment About a 
Known Median Direction

In what follows we suppose that // is a known median direction, so that a median

axis is known to pass through p, and p-\-n. The first of our proposed tests is based

1 ”upon the statistic = — V  sin 2(^. -  //), the sample second sine moment about the

median direction p. This statistic is closely related to the sample second sine

-  1 " -  
moment about the mean direction, = — Vsin 2(^. - ^ ) ,  used as the basis of the

n /=i

test procedure considered in Chapter 4. The following theorem gives the asymptotic 

distribution of under quite general conditions.

Theorem 5.1 Let be n independently and identically distributed

random variables from an angular distribution for which p ^ l  and p  is known to 

he a median direction. Then, as n -^ °° ,

(5.3.1)

where E{y[)=

v a r ( h ; ) = ^ { l - a ;  - 2 ( / ? j } ,  (5.3.2)

and a*p = E{cos p {6 ~ p )\ and = E{sin p { 6 - p ) }  are the pth cosine and sine 

moments of the random angle 6 about p , respectively.
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P r o o f  Given the definition of , and denoting - / / )  by 0*,

E{bl)=E{sm2[e, - p J f  = E{sin2d*)=Pl

and

var(z?2 ) = — var(sin 29* )

= t  [^(sin^aé^') -  {e(sin 20')}"] 

1 { i -£ : ( cos4 0 ;)} -(A ')

= ̂ { l - a : - 2 ( A * ) '}2n

The asymptotic normality of b*2 follows from the central limit theorem, and hence 

we obtain (5.3.1) under the assumption that the underlying distribution of 6 is not 

a point distribution, i.e. p ^ \ .

For a distribution which is symmetric about p, f (9 )  = f ( 2 p - 9 )  for all 

0E [0,2;r) and P2  = 0. Of course, f (9 )  is also symmetric about the antipodal 

direction p  + 7T. An estimate of the variance of b  ̂ under these conditions can be 

obtained using (5.3.2) with P2  =0 and replaced by the consistent plug-in
Y n

estimate a* = — V  cos 4(^. -  p ) .
n i=i

Given the above, we define the following omnibus test for circular reflective 

symmetry about p.

The b2-star Test
Calculate the studentized statistic

è;/{vâr(è;)}'^", (5.3.3)

where var(h;)= — (l-a ^ ) . Circular reflective symmetry about fl is rejected in
2n

favour of an underlying distribution which is skew, at the 100 level, if the
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absolute value of (5.3.3) is greater than the upper a /2  quantile of the

standard normal distribution. In the sequel we refer to this procedure as the b2- 
star test.

As has already been noted, for an underlying distribution which is symmetric 

about p, e{p*2 ^= P *2 -  0. However, here we make the additional observation that

for an underlying distribution which is asymmetric the expectation of h *2 is also 0

when p *2 = P2  cos 2p -  sin 2p=0,  i.e. when tan 2p = P 2 1^ 2  • order to

illustrate when this occurs for a highly asymmetric unimodal distribution, consider 
the wrapped exponential distribution. Using the results from Section 4.4.2.2.1 of 

Chapter 4, Pi =() for the wrapped exponential distribution when

2.
-^ lo g . -tan  ^

Solving numerically for À, one obtains À, = 1.44337 which corresponds to 

p =  0.82199. Hence, if the underlying distribution is wrapped exponential we

would expect the power of the b2-star test to be low for p-values in the 

neighbourhood of 0.82199.

5.3.2 Am Omnibus Test Based Upon the Difference Between the Sample 
Mean Direction and the Known Median Direction

For our second test we make an additional assumption regarding the underlying 

distribution, namely that the known median direction, p, is the unique median

direction of the distribution. If this is the case then p ^ Q  and the underlying

distribution also has a unique mean direction, p. If, in addition, the parent

population is symmetric then p  = p, and, estimating p  using 6 , the difference

6* =6 -  p,  measured as an angle in the interval suggests itself as a

potential measure of skewness. From Theorem 3.1 of Chapter 3 we have
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var(0 )= ̂ ),
2np^  ̂ '

and that the asymptotic distribution of 0 is normal. For a symmetric parent 

population, P 2  ~ Pi and CC2  =CC*2 . Estimating p  using R , and 0^ using 

1 ”0*2 = — V  COS 2{6̂  - p ) ,  then, for a symmetric underlying distribution, as n
n i=i

>N(0,1), (5.3.4)
{vâr(0)f"

where vâ r(0 )= —L rr-(l-a!).
 ̂  ̂ 2nR^ '  '

Given the distributional result in (5.3.4), we define the second of our 

asymptotically distribution-free tests of circular reflective symmetry about p  

against skew alternatives as follows.

The Theta-bar Test
Calculate the studentized statistic

ë*
(5.3.5)

{vâr(0)f"

Circular reflective symmetry about p  is rejected in favour of an underlying 

distribution which is skew, at the 100 a% level, if the absolute value of (5.3.5) is 

greater than 1 ^ 1 2  • Iri what follows we refer to this procedure as the theta-bar test.

5.4 C ircular A nalogues o f Three L inear T ests

Circular analogues of the standard and most powerful procedures for testing linear 
data for symmetry against skew alternatives can also be used to test for circular 
reflective symmetry about a known median axis against skew alternatives. For a 

known median direction, p,  one first calculates the differences 6* =6^ - p  as

angles in the interval \^n,7t), a transformation of the data equivalent to that

described in Mardia & Jupp (1999, Section 8.2.1). In the descriptions which follow 
we assume the underlying distribution to be continuous.
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5.4.1 The One-sample Wilcoxon Test

For the circular version of the one-sample Wilcoxon test, let denote the

6* values ordered from smallest to largest according to absolute value. Encode the 

signs of the 0^  ̂ using the indicator variables where

s , . f '
[0 otherwise

After assigning the ranks l,...,n to the the test statistic is simply W = ^ i S - .
i=i

Circular symmetry is rejected if W is judged to be extremely large or small when 

compared with the usual critical values of the test.

5.4.2 The Runs Test
In order to conduct the circular version of the runs test of Cohen & Menjoge (1988)

and McWilliams (1990), calculate R = ^  , where
1=2

jo  if 5, =5,.,
[l Otherwise

Circular symmetry is rejected if R is judged to be extremely small in comparison 

with the critical values of the binomial distribution with parameters n - l  and 1/2.

5.4.3 The Modified Runs Test
For the circular version of the modified runs test of Modarres & Gastwirth (1996), 

calculate M ̂  , where
i= n p + 2

,/.\ \ i -n p  if i>np  
[ 0 otherwise

p is a trimming proportion and, for simplicity of notation, np is assumed to be an 

integer. The (p(i) are the percentile modified test scores of Gastwirth (1965). The 

large-sample version of the test rejects circular symmetry if the value of

is judged to be extremely large and negative when 

compared with the quantiles of the standard normal distribution, where

)= {n(l -  p ) ~ l}{n(l -  p)+ 2 } /4 , and
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<7̂ {m p)  - 1} {2n'(l- p)" + 5«(l- p)+ ô}/24.

The results presented in Modarres & Gastwirth (1998) indicate that the choice p = 

0.6 leads to a powerful nominal 5% sized test of symmetry for linear data when the 
underlying distribution is unimodal and skew.

5.5 The A sym ptotic P ow er o f th e  Two N ew  T ests A gainst Skew  

A lternatives

5.5.1 Power of the b2-star Test

Using the results for the distribution of given in the proof of Theorem 5.1, under

the null hypothesis of an underlying distribution which is symmetric about p,  the 

asymptotic distribution of b *2 is normal with mean 0 and variance

varo { b 2 ) = - { l - a ^ )  .

Under the alternative hypothesis of an underlying distribution which is skew the 

asymptotic distribution of is normal with mean Pi and variance

vaq (z?2 )= —  {l -  <̂4 -  2( A  ) }

Thus, for a significance level of 100 a%, the asymptotic power of the b2-star test 

against skew alternatives is given by

1 - 0
{var,

+ 0 (5.5.1)

The form taken by (5.5.1) as a function of p  is exhibited in Figure 5.3 for the same 

four skew distributions used in Chapter 4.

5.5.2 Power of the Theta-bar Test

From the results for the asymptotic distribution of 6 given in Section 5.3.2, under 

the null hypothesis of an underlying distribution which is symmetric about the 

median direction p,  the asymptotic distribution of 6 is normal with mean p  and 

variance

1 3 1
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Under the alternative hypothesis of an underlying distribution which is skew the 

asymptotic distribution of 6 is normal with mean

[e)= A
2np‘ 

and variance

It follows that, for a significance level of 100 a%, the asymptotic power of the test

against skew alternatives is given by

1 - 0 + 0
far,

(5.5.2)

where (^*)= (^  ) -  // measured as an angle in the interval [-;r,;r). The form

taken by (5.5.2) as a function of p  is illustrated in Figure 5.4.

5.6 M onte Carlo In vestigation  o f th e  O perating C h aracteristics o f  

th e  T ests A gainst Skew  A lternatives

5.6.1 Design of the Simulation Experiment
In order to make recommendations regarding the potential uses of our two new 
tests and the circular analogous of the three linear tests considered in Section 5.4, 
an assessment is required of their ability to maintain the nominal significance level 
for symmetric parent populations, and their power against asymmetric 
alternatives. So as to investigate these two operating characteristics of the various 
tests for samples drawn from unimodal populations, we conducted a simulation 
study.

The unimodal distributions used in the study were the same ones as employed in 
Chapter 4, namely the wrapped normal, wrapped Laplace, wrapped Cauchy, 
wrapped normal and uniform mixture, wrapped exponential and wrapped skew- 

normal distributions, the latter with values of the skewness parameter, equal to 

2, 5, and oo. Plots of the densities of these various distributions were given in 

Figures 4.1 and 4.2 of Chapter 4. In addition, the same sample sizes, yOvalues and 

nominal significance levels as described in Section 4.4.2.3 were used. However, in 
the study presently under consideration, the asymmetric distributions were centred 
so as to have the zero direction as their median direction, and the number of
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samples simulated for each distribution, sample size and p  combination was 5000. 

In keeping with the findings of Modarres & Gastwirth (1998), we limited our 
attention to the asymptotic version of the modified runs test with p = 0.6. The 

Wilcoxon and runs tests were randomized so as to have sizes as exactly specified.

5.6.2 Results
The results obtained for the two operating characteristics of the various tests are 
presented separately in the following two subsections. Once again, only the results 
for a nominal significance level of 5% are given, the conclusions drawn from them 
also being representative of those for the other two significance levels considered in 
the study.

5.6.2.1 Ability to Maintain the Nominal Significance Level
In Figures 5.1 and 5.2 we display the results for the estimated size of the b2-star 
and theta-bar tests, respectively, for the four symmetric distributions used in the 
study. As in Chapter 4, the results for sample sizes 30 and 200 have been omitted 
from these figures so as not to obscure their content. Given that 5000 simulated 
samples were used to obtain each of the empirical results represented in these 
plots, the standard error of any such result is approximately 0.003.

It can be seen from Figure 5.1 that the b2-star test’s ability to maintain the 
nominal significance level is very good for all the various distribution, sample size 

and p  combinations considered. The deviations about the nominal significance level 

are what might be expected of the empirical significance level of a truly 5% sized 
test under random variation.

Turning to Figure 5.2, we see that the theta-bar test’s ability to hold the nominal 

level is not nearly as good. For small p-values the test is non-conservative, 

particularly for small-sized samples. This behaviour is perhaps to be expected given 

that as p  ^ 0  all four distributions tend to the uniform distribution and the

variabilty oî 6* increases greatly, particularly for small-sized samples. As one

might also have envisaged, the test’s non-conservatism for small yOvalues

diminishes with increasing sample size.
The circular analogues of the three linear tests all maintained the nominal 

significance well across the complete range of distribution, sample size and p  

combinations considered.
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Figure 5.1 Estimated size of the b2-star test for the distributions: a) wrapped 
normal, b) wrapped Laplace, c) wrapped Cauchy, d) wrapped normal and uniform
mixture. Sample sizes represented are: -    {n -  20);-----------{n = 50); — • —
{n = 100); -------  {n = 500). The dotted horizontal line delimits the nominal
significance level of a = 0.05.
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Figure 5.2 Estimated size of the theta-bar test for the distributions: a) wrapped 
normal, b) wrapped Laplace, c) wrapped Cauchy, d) wrapped normal and uniform
mixture. Sample sizes represented are: {n = 20);-----------(n = 50); — • —
(n = 100); -------  (n = 500). The dotted horizontal line delimits the nominal
significance level of a = 0.05.
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5.6.2.2 Power Against Skew Alternatives
Displayed in Figures 5.3 and 5.4 are the empirical power results for the b2-star and 
theta-bar tests, respectively. The standard error of any empirical result 
represented in these two figures is, at most, 0.007.
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Figure 5.3 Theoretical asymptotic power (• •) and empirical power (- -) of
the b2-star test for the distributions: a) wrapped exponential, b) wrapped half­
normal, c) WSNC (/l=5), d) WSNC (/l=2). The six curves of each type correspond to 
sample sizes of 20, 30, 50, 100, 200 and 500, the power increasing with sample 
size. The dashed horizontal line delimits the nominal significance level of 
Q. = 0.05.

We have also included in the plots making up these two figures the theoretical 
asymptotic power functions calculated using (5.5.1) and (5.5.2), respectively. The 
agreement between the empirical results and their theoretical counterparts for the 
h2-star test is excellent, even for sample sizes as small as 20. In general, the 
disparities between the two sets of results for the theta-bar test are more 
pronounced, the lack of agreement being greatest for small-sized samples drawn 
from close to isotropic parent populations. The overzealous inclination of the theta- 
bar test to reject symmetry under these conditions is in keeping with its non­
conservatism established in Section 5.6.2.1.

Returning to the results portrayed in Figure 5.3, we see that the power of the b2- 

star test is greatest for middling values of p. The pronounced power deficiency of
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the test for />-values of around 0.85 is consistent with the observations made in 

Section 5.3.1 regarding the expected value of b*2 in this region of concentration. 

Notwithstanding the poor performance of the test for such /évalues, as a 

comparison of the results in Figures 5.3 and 5.4 attests, for data distributed around 
a considerable arc of the unit circle the b2-star test is considerably more powerful 
than the theta-bar test. Moreover, the b2-star test does not suffer from the 
problems of non-conservatism displayed by the theta-bar test for data from close to 
uniform populations. However, for data drawn from more concentrated 
distributions one might feel inclined to employ the theta-bar test.
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•) and empirical power (- -)ofFigure 5.4 Theoretical asymptotic power (• • 
the theta-bar test for the distributions: a) wrapped exponential, b) wrapped half­
normal, c) WSNC (A=5), d) WSNC (À=2). The six curves of each type correspond to 
sample sizes of 20, 30, 50, 100, 200 and 500. The dashed horizontal line delimits 
the nominal significance level of a = 0.05.

In fact, the theta-bar test is not the only test which outperforms the b2-star test 
when the parent population is more concentrated. As we might have expected, the 
circular analogues of the linear tests perform well under these conditions. In 
Figures 5.5-5.8 we portray some of the empirical results obtained for the b2-star 
test and the circular versions of the runs and modified runs tests. The latter two 
tests were found to consistently outperform the theta-bar and Wilcoxon tests. Each 
of the figures represents the results for a specific parent population. The low power
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of all three tests exhibited in Figure 5.8 reflects the fact that the WSNC (/l=2) 

distribution is close to being symmetric, as can be appreciated from Figure 4.2d of 

Chapter 4. Also delimited in each plot is the />value for which the empirical power 

of the h2-star test equals that of the circular analogue of the modified runs test. 
From a consideration of these four figures we see that the b2-star test consistently 

outperforms the other two tests for p-values less than, approximately, 0.45. 

Similarly, for values of p  in excess of around 0.7, the modified runs test consistently 

outperforms, or is as powerful as, the other two tests.
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Figure 5.5 Empirical power against the wrapped exponential distribution for 
sample sizes of: a) 20, b) 50, c) 100, d) 500. The results represented are for the: b2-
star (------), runs (------ ) and modified runs (------- ) tests. The dotted horizontal line
delimits the nominal significance level of u = 0.05. The dotted vertical line 
indicates the point at which the empirical power of the b2 -star test equals that of 
the modified runs test.
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Figure 5.6 Empirical power against the wrapped half-normal distribution for 
sample sizes of: a) 20, b) 50, c) 100, d) 500. The results represented are for the: b2-
star (-----), runs (----- ) and modified runs (----- ) tests. The dotted horizontal line
delimits the nominal significance level of a = 0.05. The dotted vertical line 
indicates the point at which the empirical power of the b2-star test equals that of 
the modified runs test.
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Figure 5.7 Empirical power against the WSNC (À=5) distribution for sample 
sizes of: a) 20, b) 50, c) 100, d) 500. The results represented are for the: b2-star
(-----), runs (------ ) and modified runs (------) tests. The dotted horizontal line
delimits the nominal significance level of a = 0.05. The dotted vertical line 
indicates the point at which the empirical power of the b2-star test equals that of 
the modified runs test.
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Figure 5.8 Empirical power against the WSNC (Â=2) distribution for sample 
sizes of: a) 20, b) 50, c) 100, d) 500. The results represented are for the: b2-star
(------), runs (-------) and modified runs (-------) tests. The dotted horizontal line
delimits the nominal significance level of a = 0.05. The dotted vertical line 
indicates the point at which the empirical power of the b2 -star test equals that of 
the modified runs test.

5.6.3 A Simple Testing Strategy for Circular Data Drawn From Continuous 
Unimodal Populations

A more in-depth consideration of the full range of our results, including those for 
nominal significance levels of 10% and 1%, suggested the following testing strategy 
when the underlying distribution can be assumed to be continuous and unimodal.

If the sample size is less than 100, apply the b2-star test if the sample 

mean resultant length, R , is less than 0.45, and the circular analogue 

of the modified runs test if 7? > 0.65. For a sample of 100 or more

observations, apply the b2-star test if R is less than 0.5, and the 

circular analogue of the modified runs test if i? > 0.7. If in either case

the value of R lies between the specified limits, it would be advisable to 
compare the results obtained from both tests to check for any glaring 
disparities.
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Given the rather limited scope of the skew distributions used in our simulation 

study, the limits for R referred to in the above testing strategy should be 
interpreted as guidelines, not hard and fast restrictions. From a practical point of 

view, for instance, the quoted upper bounds on R for the optimality of the b2-star 
test may well be too low as they were established on the basis of the empirical 
power results for the wrapped exponential and wrapped half-normal distributions, 
two extremely skew models perhaps of limited relevance to the modelling of real 
circular data.

5.7 The U se o f th e  N ew  P roced ures as T ests o f Sym m etry A gainst  

R otation  A lternatives

Having considered the power of our new procedures as tests of circular reflective 
symmetry about a known median axis against skew alternatives, in this section we 
explore their power as omnibus tests of circular reflective symmetry about a 
specified median axis against rotation alternatives. This is the testing scenario 
studied by Schach (1969) for which, as has already been mentioned, the circular 
analogues of the Wilcoxon and sign tests are usually employed as omnibus test 
procedures.

The circular analogue of the sign test rejects symmetry ahout the specified 
median axis in favour of symmetry about a displaced median axis if the number of

the differences {o* :i = in [0,;r) is either extremely large or extremely

small when compared with the critical values of the binomial distribution with 

parameters n and 1/2.

Given the poor performance of the runs and modified runs tests for the 
equivalent testing context for linear data, one would not expect the circular 
analogues of these tests to have high power as tests of symmetry against rotation 
alternatives. Nevertheless, at this juncture we do not exclude them from our 
deliberations. On the other hand, given the measures upon which our two new 
procedures are hased, one might expect them to provide powerful competitors to the 
circular analogues of the sign and Wilcoxon tests.

In Section 5.7.1 we derive the asymptotic power of our new procedures as tests of 
circular reflective symmetry about a specified median axis against rotation 
alternatives. The details of a simulation study designed to compare the small- 
sample power properties of the two new tests with those of the sign, Wilcoxon, runs 
and modified runs tests are given in Section 5.7.2.
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5.7.1 The Asymptotic Power of the Two New Tests Against Rotation 

Alternatives
5.7.1.1 Power of the b2-star Test

Suppose under the null hypothesis, H q, the underlying distribution is symmetric 

about a specified median direction, jl, whilst under the alternative hypothesis. 

H i , the underlying distribution is symmetric about a displaced median direction, 

p,+8. Substituting these two hypotheses for those used in the original definition of

the b2-star test given in Section 5.3.1, the implementation of the test is as 
described there.

Under H q, let be n independently and identically distributed random

variables from an angular distribution which is symmetric about ]X and for which 

p  ^ 1. Then, given the results in Section 5.3.1 and the fact that the distribution is 

symmetric about p , the asymptotic distribution of under H^ is normal with

mean (^2) -  A*0 and variance var  ̂ ), where

a* 0 = f{cos - p ) }  and q = £:{sin - / / ) }  = 0.

Under Hi,  let 6̂ ,̂...,6̂  ̂ be n independently and identically distributed random 

variables from an angular distribution which is symmetric ahout fl + 0 and for 

which p ^ \ .  The asymptotic distribution of under Hi is normal with mean 

Fj {pŸ} and variance vaq (^2 )• We obtain,

= E{sin 2 { 0 , .+ S -p )}

= £:[sin 2{0 q. -P )+ S }]

= E{sin 2(6^ -ju)cos2S + cos 2(6^ - //)s in  2S]

= /?2,o COS 28 + sin 28 

= (%2.oSm2  ̂= )g2 ̂ , say.

Also,

where

1 ( ^ 2  ) -  “  2( s ) },var,
2n
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als=E{cosA{e^^-Jl)]

= f [cos4{(<9o; - / / )+ ^ } ]

=  f { c o s  4( 5̂  - P ) c o s A Ô  -  s i n  4( 6̂  - p )  cos 4S}
= orJ o cos 4S -  PI q sin 4S 

= Q cos 4 S .

Thus,

varj (b*2 ) = ̂  {1 -  Q cos 4 J  -  2 sin^ 25 ( al ̂  }

= — [l-(^3f2o) +cos4(^{((%2,o)

Given these results, it follows that, for a significance level of 100 a%, the

asymptotic power of the b2-star test against rotation alternatives is

1 - 0
 ̂Z./2 faro {K  -  E, {bl f

1/2 + 0 a/2
1/2

V " ' y

. (5.7.1)

The form taken by (5.7.1) as a function of p  is exhibited in Figure 5.9 for the four 

symmetric distributions referred to previously in Section 5.6.1.

5.7.1.2 Power of the Theta-bar Test
When implementing the theta-bar test in this testing scenario, we assume the 
underlying distribution to be symmetric and to have a unique central direction. 

Under the null hypothesis, H q, the underlying distribution is assumed to be 

symmetric about p  = p, whilst under the alternative hypothesis, , the 

underlying distribution is symmetric about the displaced central direction, 

P + Ô = p  +5. Substituting these two hypotheses in place of their counterparts

used in the original definition of the theta-bar test given in Section 5.3.2, one 
carries out the test as described there.

Given the results referred to in Section 5.3.2 and the fact that the distribution is 

assumed to be symmetric about p  = p, the asymptotic distribution of 0 under H q

is normal with mean Fq ( ^ ) = p  and variance var  ̂( # )=   ------
2np

Under H ^, the asymptotic distribution of 6 is normal with mean 

£'1( 0 )=/ /  + ^ and variance vaq ( ^ )=  vrIq (^).  It therefore follows that, for a
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significance level of 100 a%, the asymptotic power of the theta-bar test against 

rotation alternatives is

1 - 0 Ô -hO s
■̂or/2

{var„ ( ë ) f  "
(5.7.2)

We illustrate the form taken by (5.7.2) as a function of p  in Figure 5.10.

5.7.2 Monte Carlo Investigation of the Small-sample Power of the Tests 

Against Rotation Alternatives
In Section 5.6.2.1 we presented the details of a simulation experiment designed to 
explore the ability of the two new procedures to maintain the nominal significance 
level under the null hypothesis of an underlying distribution which is symmetric 
about a known median axis. Those results clearly hold equally well for the present 
testing set-up in which the median axis is specified rather than known. In order to 
investigate the small-sample power of the new procedures as tests of symmetry 
against rotation alternatives, and to compare their power characteristics with those 
of the circular analogues of the sign, Wilcoxon, runs and modified runs tests, we 
conducted another simulation experiment.

Our study used data simulated from the same four symmetric unimodal 
distributions employed in the Monte Carlo experiment reported in Section 5.6. We 

explored the power of the various tests for the same sample sizes, p-values and 

nominal significance levels as used in that earlier study. For 5, the parameter 

representing the displacement in location, we used values of 2°, 4°, 6° and 8°

from the zero direction. For each distribution, sample size, p  and ô  combination, 

5000 samples were simulated. The sign, Wilcoxon and runs tests were randomized 
so as to have sizes as exactly specified.
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•) and empirical power (- -) ofFigure 5.9 Theoretical asymptotic power (• • 
the b2-star test against rotation alternatives for J = 6° and the distributions: a)
wrapped normal, b) wrapped Laplace, c) wrapped Cauchy, d) wrapped normal and 
uniform mixture. The six curves of each type correspond to sample sizes of 20, 30, 
50, 100, 200 and 500, the power increasing with sample size. The dashed 
horizontal line delimits the nominal significance level of a = 0.05.

For illustrative purposes, in Figures 5.9 and 5.10 we present the empirical 
results obtained for the b2-star and theta-bar tests, respectively, corresponding to a 

nominal significance level of 5% and a value of ^  of 6°. The standard error of any

empirical result represented in these two figures is, at most, 0.007, Also included in 
these plots are the corresponding theoretical asymptotic power functions of the two 
tests calculated from (5.7.1) and (5.7.2), respectively. We note the generally close 
agreement between the two sets of curves, even for sample sizes as small as 20. 
Again, the major disparities between the theoretical and empirical results are those 
for the theta-bar test when used with data sampled from close to isotropic 
populations. The artificially high power of the theta-bar test under these conditions 
is consistent with our earlier findings portrayed in Figures 5.2 and 5.4.
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Figure 5.10 Theoretical asymptotic power ( ) and empirical power (------- ) of
the theta-bar test against rotation alternatives for S = 6° and the distributions: a)
wrapped normal, b) wrapped Laplace, c) wrapped Cauchy, d) wrapped normal and 
uniform mixture. The six curves of each type correspond to sample sizes of 20, 30, 
50, 100, 200 and 500. The dashed horizontal line delimits the nominal significance 
level o fa  = 0.05.
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Figure 5.11 Empirical power against rotation alternatives for the wrapped 
normal distribution, (5 = 6° and sample sizes of: a) 20, b) 30, c) 50, d) 100. The
results represented are for the: theta-bar (------- ), b2-star (— • —), sign (---------)
and Wilcoxon (--------- ) tests. The dotted horizontal line delimits the nominal
significance level of a = 0.05.
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As expected, the power of the circular analogues of the runs and modified runs 
tests was found to be consistently lower than that of the other four tests. In Figures 
5.11-5.14 we present representative results so as to aid a comparison of the power 
characteristics of those four tests. The empirical results portrayed correspond to 
sample sizes of 20, 30, 50 and 100, and a displacement in location under the 

alternative hypothesis of 6°.

From Figure 5.11 it can be seen that the theta-bar and Wilcoxon tests have 
almost identical power characteristics when the underlying distribution is wrapped 

normal, apart from when p  is small. Both tests are more powerful than the sign 

and b2-star tests, but one would be ill-advised to use the theta-bar test for data 
drawn from highly dispersed cases of the distribution due to its pronounced non­
conservatism under such conditions.
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Figure 5.12 Empirical power against rotation alternatives for the wrapped 
Laplace distribution, J  = 6° and sample sizes of: a) 20, b) 30, c) 50, d) 100. The
results represented are for the: theta-bar (- -), b2-star (— • —), sign (-------- )
and Wilcoxon (--------- ) tests. The dotted horizontal line delimits the nominal
significance level of a = 0.05.

Considering Figures 5.12 and 5.13, it can be observed that the sign test 
outperforms the other tests when the underlying population is wrapped Laplace or 
wrapped Cauchy. Interestingly, from Figure 5.14 we see that, for large n, the b2-
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Figure 5.13 Empirical power against rotation alternatives for the wrapped 
Cauchy distribution, S = 6° and sample sizes of: a) 20, b) 30, c) 50, d) 100. The
results represented are for the: theta-bar (------- ), b2-star (— • —), sign (-------- )
and Wilcoxon (----------) tests. The dotted horizontal line delimits the nominal
significance level of a = 0.05.
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Figure 5.14 Empirical power against rotation alternatives for the wrapped 
normal and uniform mixture distribution, 0 = 6° and sample sizes of: a) 20, b) 30,
c) 50, d) 100. The results represented are for the: theta-bar (------- ), b2-star (— •
—), sign (-------- ) and Wilcoxon (-------- ) tests. The dotted horizontal line delimits
the nominal significance level of « = 0.05.
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star test generally has the best power characteristics of the four tests considered 
when the parent population is the wrapped normal and uniform mixture 

distribution. However, as p  approaches its maximum possible value for this 

distribution (= 0.9), with the distribution tending to a limiting normal distribution, 

the theta-bar and Wilcoxon tests dominate.

5.8 U se and L im itations o f the V arious T est P roced u res
The strategy introduced in Section 5.6.3 for testing underlying unimodal 
distributions for symmetry about a known median axis against skew alternatives is 
based upon the use of the b2-star and the circular analogue of the modified runs 
tests. The assumptions underlying the b2-star test are minimal. Indeed, the only 

assumption made in addition to p  being a known median direction is that the

underlying distribution is not a point distribution. In contrast, the use of the 
circular analogue of the modified runs test is more restricted as, strictly, the test 
requires the underlying distribution to be continuous. We also note that the b2-star 
test is a ‘true’ test of symmetry about a known median axis. By this we mean that 

the conclusions drawn from the test are unaffected if we replace p  by p - fn .  This,

however, is not the case for the circular analogue of the modified runs test. Indeed, 
the modified runs test was specifically designed to be powerful against asymmetry 
in the tails of a linear distribution and therefore its circular analogue will not 
perform well for underlying distributions whose asymmetry manifests itself in 

regions close to the known median direction p.

Clearly, our developed strategy does not apply when the testing of circular 
reflective symmetry against rotation alternatives is of interest. In this context, the 
results presented in Section 5.7.2 highlight the difficulties inherent in identifying a 
consistently powerful omnibus test. Whilst the theta-bar test is competitive when 
the parent population is the wrapped normal, wrapped Laplace or wrapped mixture 

distribution, apart, of course, from when p  is small, it does not perform well for an 

underlying wrapped Cauchy distribution. In a similar vein, the b2-star test 
performs best for the mixture distribution, moderately well for the wrapped Cauchy 
distribution, and not particularly well when the parent population is wrapped 
normal or wrapped Laplace. In addition to their power characteristics, the extreme 
simplicity of the sign test and the availability of software capable of performing the
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Wilcoxon test certainly count greatly in favour of their usage. However, as our 
results attest, the blanket application of these two procedures can result in 
appreciable power loss. Moreover, the circular analogue of the Wilcoxon test is not 
a true test of symmetry about a specified median axis against rotation alternatives, 
in the sense that the conclusions reached upon using it will depend on whether 

p  ov jl + n  is used as the reference direction. Given our earlier comments, there is

equally little to recommend the blanket usage of either the b2-star or the theta-bar 
tests in this testing scenario.

5.9 Illu strative  E xam ples
In this section we apply the testing strategy developed in Section 5.6.3 to four data 
sets collected during animal orientation experiments.

5.9.1 Orientations of Red Ants
We first consider two data sets recorded during an orientation experiment with red 
wood ants {Formica rufa L.) described in Jandar (1957). Ants were placed singly in 
the centre of an arena and the initial direction in which they moved in relation to 

visual stimuli was recorded to the nearest 10°. In a first version of the experiment

(A) a black target was placed at an angle of 180° from the zero direction, while in a 

second (B), two black targets were used; one positioned at 90° from the zero 

direction, and the other at 180°. The ants tended to move towards these targets. A 

basic question of interest in this context is whether the directions followed by the 

ants are distributed symmetrically about the central directions of 180° and 135°,

respectively, associated with the positions of the targets used in the two versions of 
the experiment.

The frequency distribution of the directions in which the 730 ants used in 
version A of the experiment moved is reproduced in Table 5.1 and represented 
graphically in the form of a raw circular plot in Figure 5.15. The sample median 

direction for these data is 180°, identical to the direction associated with the 

position of the single black target. Hence it would indeed appear reasonable to 

assume the underlying median direction to be known and equal to 180°. The 

sample mean resultant length is 0.620 and thus according to our developed testing
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strategy we should compare the results obtained from applying both the b2-star 
and modified runs tests.

Table 5.1 Frequency distribution of the directions (in degrees) followed by the 
730 ants in version A of an orientation experiment in which a single black target 
was positioned at 180° from the zero direction.

Angle Frequency Angle Frequency Angle Frequency Angle Frequency

0 10 90 10 180 110 270 5
10 5 100 10 190 95 280 5
20 5 110 5 200 70 290 5
30 5 120 5 210 35 300 5
40 5 130 15 220 30 310 5
50 10 140 20 230 20 320 5
60 10 150 40 240 5 330 5
70 10 160 50 250 5 340 5
80 10 170 75 260 10 350 10

90“

0“ 4# #180“

270“

Figure 5.15 Raw circular plot of the ant orientation data of Table 5.1. Each dot 
represents the direction followed by five ants.

However, the data under consideration are discrete and so before being able to 
apply the modified runs test one first needs to employ some device in order to 
resolve the related problems of ties and the enumeration of runs. The device we 
used in order to achieve this was to add a random angle from the uniform 

distribution on (-1x10”®, 1x10"®) to each original angle measured in radians.

Although this continuity inducing device resolves the problems arising from ties, it 
does so at the expense of introducing a p-value which is stochastic. Whilst we would 
not expect the conclusions reached from different randomizations of the original
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data to differ greatly, such disparities are possible nonetheless. For moderate to 
large samples they are, however, unlikely.

The p-values obtained from applying the b2-star and modified runs tests with 

p  = 180° were 0.011 and 0.084, respectively. These two p-values thus provide

evidence that the underlying distribution is, in fact, not symmetric about p  =

180°. Given that the population median direction under the null hypothesis is

identical to the sample median direction for these data, it would appear reasonable 
to interpret the rejection of underlying circular reflective symmetry as indicating 

that the parent population is asymmetric about p  = 180°. It is therefore rather

unfortunate that Batschelet (1981, pp. 48,49) chose to fit a von Mises distribution, 
and Sengupta & Pal (2001) a mixture distribution with symmetric wrapped stable 
and circular uniform components, to these data.

The frequency distribution presented in Table 5.2 summarizes the directions 
taken by the 1260 ants used in version B of the experiment. Figure 5.16 provides a 
graphical representation of the same data in the form of a raw circular plot. We 
note that the form taken by the sample distribution is perhaps what one might 
expect for an underlying mixture distribution with two equally weighted, and 

potentially symmetric, unimodal component distributions, one centred upon 90°

and the other upon 180°.

Table 5.2 Frequency distribution of the directions (in degrees) followed by the 
1260 ants in version B of an orientation experiment in which two black targets 
were positioned at 90° and 180° from the zero direction.

Angle Frequency Angle Frequency Angle Frequency Angle Frequency

0 15 90 70 180 75 270 10
10 10 100 75 190 60 280 15
20 10 110 70 200 40 290 20
30 15 120 55 210 20 300 15
40 20 130 65 220 25 310 10
50 25 140 65 230 20 320 15
60 40 150 70 240 15 330 15
70 50 160 65 250 15 340 15
80 55 170 75 260 10 350 15
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The sample median direction for these data is equal to the central direction 

defined by the experimental layout, i.e. 135°. The sample mean resultant length is 

0.445, and so according to our testing strategy we should apply the b2-star test. 

The p-value for the b2-star test used with Jx -  135° was found to be 0.818, and so 

we have no reason to reject the null hypothesis of circular reflective symmetry 

about p  = 135°. For purely comparative purposes, the corresponding p-value for

the circular analogue of the modified runs test, obtained after applying the 
continuity inducing device described in the analysis of the previous data set, was 
found to be 0.648. Again, this result provides us with no evidence to reject the null 
hypothesis.

Figure 5.16 Raw circular plot of the ant orientation data of Table 5.2. Each dot 
represents the direction followed by five ants.

5.9.2 The Chinese Painted Quail Data Revisited
In Section 3.7.1 of Chapter 3 we presented data from an orientation experiment 
involving Chinese painted quail reported by Merkel & Fischer-Klein (1973). The 
data were reproduced in Table 3.1 and represented graphically in Figure 3.1 of the 
same chapter. The question we address here is whether the underlying distribution 

is symmetric about p  = -15°, the angle associated with the orientation of the last

0.5m stretch of the dog-leg corridor used in the design of the experiment. A visual 
inspection of Figure 3.1 would suggest that the underlying distribution is not 
symmetric. The sample median direction is -15.5°, and thus the assumption of a

known median direction of p  = -15° would appear reasonable.
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The sample mean resultant length for these data is 0.962 and so according to our 
testing strategy we should apply the circular analogue of the modified runs test. 
After applying the continuity inducing device referred to previously, the p-value for 
this test was found to be 0.089. Thus, the findings from the modified runs test 
partially support the initial visual impression of an underlying asymmetric 

distribution about p  = -15°. Purely as a comparison, the p-values for the runs and

b2-star tests were found to be 0.014 and 0.672, respectively. Thus, according to the 

runs test, the evidence against symmetry about p  = -15° is stronger than that

implied by the result from the modified runs test. The p-value for the b2-star is 
consistent with the low power expected of this test for such a large mean resultant 
length and a sample size of 100.

5.9.3 Hisada’s Dragonfly Data Revisited
In this last illustrative example we analyze once more the dragonfly data reported 
by Hisada (1972) which we presented in Section 3.7.3 of Chapter 3. Here we test 
the hypothesis that the underlying bimodal distribution is reflectively symmetric 
about a median axis assumed to be known and equal to the zero direction defined 
by the sun’s azimuth. A visual inspection of Figure 3.5 suggests that symmetry 

about this direction is unlikely. The sample median direction is 50°, but we note

that the density of observations around the zero direction is extremely low.
Although our testing strategy was developed on the basis of findings for data 

drawn from unimodal distributions only, the sample mean resultant length for 

these data is 0.118 and such a low value of R would certainly favour the 
application of the b2-star test. In fact, the p-value for the b2-star test was found to 
be 0.020, providing strong evidence that the underlying distribution is not 
symmetric about the zero direction. Purely for comparative purposes, the p-values 
for the runs and modified runs tests, obtained after applying the continuity 
inducing device described earlier, were 0.050 and 0.142, respectively. We note that 
the results for the b2-star and runs tests tend to confirm our earlier findings in 
Section 3.7.3 regarding the asymmetry of the parent population from which these 
data were drawn.
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5.10 Sum m ary and D irection s for F uture R esearch

In this last section of the chapter we provide a summary of the content of the 
preceding sections and discuss potential lines of related future research.

5.10.1 Sum m ary
The main focus of the present chapter has been the testing of circular reflective 
symmetry about a known median axis against skew alternatives. In Section 5.2 we 
provided a review of the background to this testing problem, relating it to the 
testing of linear data for symmetry about a known or specified median.

In Section 5.3 we introduced two new asymptotically distribution-free 
procedures, the b2-star and theta-bar tests, which can be used as omnibus tests of 
symmetry about a known median axis against skew alternatives. Circular 
analogues of three linear tests were described in Section 5.4, these tests being 
proposed as competitors to the b2-star and theta-bar tests.

In Section 5.5 we derived theoretical results for the asymptotic power of the b2- 
star and theta-bar tests as procedures for testing for circular reflective symmetry 
about a known median axis against skew alternatives. The details of a simulation 
study designed to explore and compare the operating characteristics of the various 
procedures were presented in Section 5.6. From a consideration of the results from 
this study, summarized in Section 5.6.2, we found that the b2-star, Wilcoxon, runs 
and modified runs tests maintained the nominal significance level well. However, 
the theta-bar test proved to be non-conservative for data sampled from highly 
dispersed parent populations, particularly when the sample size was small.

In Section 5.6.2.2 we considered the results for the power characteristics of the 
various procedures against skew alternatives. The b2-star test was identified as 
being a powerful test for data distributed over a considerable arc of the unit circle, 
but to be power deficient for data sampled from more concentrated parent 
populations. Given the theta-bar test’s previously established non-conservatism, we 
concluded that its use as a test of symmetry about a known median axis against 
skew alternatives could not be recommended for data drawn from highly dispersed 
populations. Nevertheless, the power characteristics of this test for data distributed 
over a reduced arc of the unit circle were identified as being superior to those of the 
b2-star test. Our results also showed that the modified runs test had even better 
power properties than the theta-bar test for data drawn from continuous unimodal 
distributions with levels of concentration which are moderate to high. On the basis
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of a comparison of the empirical power properties of the b2-star and modified runs 
tests, in Section 5.6.3 we proposed a simple testing strategy for circular data drawn 
from continuous unimodal populations.

Although the b2-star and theta-bar tests were originally conceived as tests of 
circular reflective symmetry about a known median axis against skew alternatives, 
in Section 5.7 we considered their use as tests of symmetry about a specified 
median axis against rotation alternatives. In Section 5.7.1 we derived the 
asymptotic power of the tests, and in Section 5.7.2 presented results from a 
simulation study conducted in order to explore and compare the small-sample 
power properties of the b2-star, theta-bar, sign, Wilcoxon, runs and modified runs 
tests in this testing set-up. The runs and modified runs tests were identified as 
having poor power properties, whilst the b2-star and theta-bar tests proved to be 
competitive with the sign and Wilcoxon tests for certain parent population and 
concentration combinations.

In Section 5.8 we discussed the usage and limitations of the various test 
procedures. The b2-star test was identified as relying on minimal assumptions and 
being a true test of circular reflective symmetry about a given median axis. The 
sign and runs tests are also true tests of circular reflective symmetry about a given 
median axis, but the Wilcoxon and modified runs tests are not. In addition, the use 
of the latter tests is more restricted as both tests require the parent population to 

be continuous. Use of the theta-bar test requires the assumption that 2l

constraint which excludes the uniform distribution and, at first sight, all 
multimodal distributions which are either cyclically symmetric, or have more than 
one axis of symmetry, or both. However, if the underlying distribution is thought to 

be multimodal with p  = 0, and the number of modes, m, of the distribution can be

established beforehand, one can always administer the theta-bar test after first 
applying the device of w-fold wrapping of the circle onto itself, as described in 

Section 4.3 of Chapter 4.
In Section 5.9 we illustrated the application of our testing strategy in the 

analysis of four data sets collected during animal orientation experiments. Our 
illustrative examples highlighted the problems inherent in the application of the 
modified runs test to real circular data, some form of continuity inducing device 
having to be applied prior to carrying out the test.
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5.10.2 Directions for Future Research
In this chapter we introduced two new test procedures specifically designed for 

testing truly circular data for symmetry about a known median axis, p,, against

skew alternatives. Both tests are based on natural measures of skewness about p. 

As has been pointed out in Section 5.3.1, the b2-star test is an adaptation of the 

test based on 62 considered in Chapter 4. This pair of tests can be considered as 

the circular equivalent of a pair of tests for linear data considered by Gupta (1967); 

one based on the coefficient of skewness and the other on an

adaptation of in which the sample mean in its definition is replaced by the 

population median. The second of our tests, based on the difference between the 

sample mean direction and p, effectively combines ideas for linear measures of

skewness proposed early in the literature by Yule (1911) and Hotelling and 
Solomon (referred to by Kendall & Stuart (1963, p. 93)) and adapts them to the 
equivalent testing scenario for circular data. Also considered in our investigations 
were the circular analogues of some of the most powerful procedures known for 
testing linear data for symmetry against skew alternatives. Indeed, the testing 
strategy outlined in Section 5.6.3 reflects the strengths of a test designed 
specifically for truly circular data (the b2-star test) as well as those of the circular 
analogue of a powerful linear test (the modified runs test). For reasons given in 
Section 5.2, we did not consider the circular analogue of the hybrid test of Modarres 
& Gastwirth (1998) in our investigations. If the problems with the specification of 
the linear test can be resolved, it would be interesting to compare the operating 
characteristics of its circular analogue with those of the b2-star test and the 
circular analogue of the modified runs test. However, we note that, like the circular 
analogue of the modified runs test, the circular analogue of the hybrid test of 
Modarres & Gastwirth (1998), being based on a percentile modified two-sample 
Wilcoxon test, would not be a true test of circular reflective symmetry about a 
median axis in the sense described in Section 5.8. As with the circular analogue of 
the modified runs test, in theory its use would also be restricted to data drawn from 
continuous populations only.

Our testing strategy was developed on the basis of empirical results from a 
rather limited range of unimodal circular distributions. It would clearly be of 
interest to know just how robust this testing strategy is to the form of the 
underlying distribution, not only for other unimodal distributions but also for
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multimodal distributions. Regarding this issue, we note that the published 
recommendations concerning the use of the runs test of Cohen & Menjoge (1988) 
and McWilliams (1990), the modified runs test of Modarres & Gastwirth (1996), the 
conditional test of Tajuddin (1994) and the hybrid test of Modarres & Gastwirth 
(1998), were established solely on the basis of empirical results obtained from 
Monte Carlo experiments involving data simulated from unimodal populations 
only.
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C hapter 6 The W rapped Skew -norm al D istrib u tion  on  

th e C ircle

6.1 In troduction

In the preceding two chapters we considered test procedures which can be 
employed in the analysis of circular data in order to establish whether the 
assumption of underlying circular reflective symmetry is reasonable or not. But 
what if symmetry is rejected? What options are available to us in terms of 
modelling circular data which are skew? In Section 6.2 we provide a necessarily 
brief review of the asymmetric models for circular data which have been proposed 
in the literature. The remainder of the chapter is devoted almost exclusively to the 
wrapped skew-normal distribution on the circle, henceforth the WSNC distribution, 
a new model motivated by the need for distributional forms capable of modelling 
the asymmetry often manifested by real circular data.

In Section 6.3 we define the distribution and obtain its fundamental properties. 
We note that the derivation of the characteristic function which appears in Section
6.3.2 is due to Professor Toby Lewis.

The following four sections address issues of inference for the WSNC 
distribution. Sections 6.4, 6.5 and 6.6 discuss the estimation of the distribution’s 
parameters. A viable approach to method of moments estimation is presented in 
Section 6.4, and maximum likelihood estimation is discussed in Section 6.5. A 
detailed evaluation of these competing approaches to estimation is given in Section 
6.6. In Section 6.7 we consider procedures for testing for three limiting cases of the 
WSNC class.

The application of the developed methodology is illustrated in Section 6.8 using 
a large data set consisting of the headings of migrating birds. The chapter closes, in 
Section 6.9, with a summary of its content and a discussion of potential lines of 
related future research.

In the main, the treatment of the WSNC distribution given here follows that 
published in Pewsey (2000b). However, much of the content of Sections 6.2, 6.3, 6.4 
and 6.7, and all of that of Sections 6.5 and 6.6, is new. In addition, the analysis of
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the illustrative example presented in Section 6.7 differs in important ways from 
that given in Pewsey (2000b), and is effectively that presented at the 19th Leeds 
Annual Statistics Research Workshop which took place at the University of Leeds 
in July 2000, and at the 25th National Conference of Statistics and Operational 
Research held at the University of Jaén, Übeda, Spain in November 2001.

6.2 A sym m etric M odels for C ircular D ata

Of the continuous models for circular data, the best known and most frequently 
applied are unimodal and symmetric. Amongst this class of models figure the 
cardioid, wrapped Cauchy, wrapped normal and von Mises distributions. As was 
previously pointed out in Section 4.2 of Chapter 4, historically the von Mises 
distribution has played a dominating role in the analysis of circular data.

In contrast to the situation for linear data, relatively few asymmetric models 
have been proposed in the literature for circular data. Mardia (1972, pp. 51-53) 
considered a family of skew triangular distributions and the class of projected 
normal distributions. The latter class can be used to model bimodality as well as 
asymmetry.

Batschelet (1981, Section 15.6) refers to two distributional families capable of 
modelling skewness. The first is due to Papakonstantinou (1979) who proposed the 
class defined by the density

/ ( ^ ) =  — + - ^  sin (^  + vsin ^), (6.2.1)

where [o, 2;r), |v| < 1 and |/r| < 1. The shape of the distribution depends on the 

values taken by both K  and v, the latter of the two parameters determining the 

skewness of the distribution. The special case of V = 0 corresponds to the symmetric 

cosine distribution (see, for example, Batschelet (1981, p. 283)), whilst the uniform 

distribution results if K = 0.

The second class is a particular extension of the von Mises distribution, defined 

by the density

/ ( ^ ) =  cexp{Arcos(^ + vcos^)} , (6.2.2)

where, once more, |y[ < 1, and c is a normalizing constant which must be calculated

numerically. Again, v plays the role of a skewness parameter, the von Mises

distribution with concentration parameter A*resulting when V =  0.
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Figure 6.1 Linear plots of Equations: a) (6.2.1), b) (6.2.2). Both pairs of curves 
correspond to the choices k = 0.8 and v = 0.2 (dashed curve) and v = 0.98 (solid 
curve). In b) the normalizing constant c has been set equal to 1.

Papakonstantinou (1979, pp. 28-29) derived the trigonometric moments of the 
density given in (6.2.1) and hence the second central sine moment of the 
distribution. Otherwise, we are unaware of any other published work extending the 
results of these two authors. Here we briefly mention two rather undesirable 
features of both families. Firstly, as defined, neither model contains a location 
parameter. Secondly, whilst the densities described by (6.2.1) and (6.2.2) are 

monotone decreasing about a main mode when |v| < 1, as |y| 1 they take on rather

unappealing shapes. To illustrate this common behaviour, in Figure 6.1 we graph

(6.2.1) and (6.2.2), the latter with c = l , for K = 0.8 and V equal to 0.2 and 0.98. 

These changes in shape are a consequence of the fact that the parameter v not only 

controls the skewness of the two distributions but, if allowed to freely vary, also 

determines the number of modes manifested by them. The constraint that |v|

should be less than 1 ensures that the derivatives of (6.2.1) and (6.2.2) do not 
vanish, but is not sufficient to avoid the changes in shape of both densities evident 
in Figure 6.1.

A simple yet highly useful means of generating skew models for circular data is 
to wrap a suitably chosen skew linear class onto the unit circle. This idea is by no 
means new, indeed its first use dates back at least to the work of Schmidt (1917). 
Mardia (1971) referred briefly to the possibility of wrapping the flexible Pearson 
family of distributions onto the circle, but to our knowledge this option has not 
subsequently been pursued in the literature. Another family of distributions of this 
type which has great potential in the modelling of skew circular data is the 
wrapped stable class. This family includes the symmetric wrapped normal and
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wrapped Cauchy distributions as special cases. Relevant published work regarding 
this class is that of Winter (1947) and Sengupta & Pal (2001). The wrapped 
exponential distribution introduced in Section 4.4.2.2.1 of Chapter 4 provides 
another example of the application of this general approach to obtaining circular 
distributions from linear ones.

One of the most striking features of the treatment given in the literature to 
asymmetric models is its almost universal statistical superficiality. Whilst the 
basic properties of the various distributions are, in the main, well documented, it is 
hard, if not impossible, to find anything published regarding inference for such 
distributions. It is not, therefore, surprising to find that, as Fisher (1994, p. 56) 
comments, models capable of modelling asymmetry have rarely been applied in the 
analysis of circular data. In an attempt to redress this situation, we dedicate the 
greater part of this chapter to a consideration of the wrapped skew-normal 
distribution on the circle as a potential model for skew circular data.

6.3 D efin ition  and F undam ental P rop erties o f th e  WSNC 

D istribution

6.3.1 Definition and Limiting Cases

Following the notation of Chapter 1, suppose ~ SNp(^,77,/l) with -oo<^  <oo,

/; > 0 and -  < A < oo. Wrapping the random variable 7  ̂ onto the unit circle, we

denote the resulting circular random variable as 6^ =7^ (mod2;r). Then 6^ has 

density

2 / 6 + 27rr-^^ 6 + iTir -  ̂
n

(6.3.1)
ri

for 0 < 6 < 2 ti. We will say that 6^ has a WSNC distribution with direct 

parameters and denote this distributional relation as

e^~W SNCo(lri,A).

There are five limiting cases of the WSNC distribution. As t; —> 0, the 

distribution tends to a point distribution, whereas, as > oo, the limiting

distribution is the circular uniform. When À = 0 the density (6.3.1) reduces to that 

of the wrapped normal distribution. Considering the two extremes of the À scale, 

the distribution tends to the wrapped half-normal distribution and the wrapped
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negative half-normal distribution as À tends to +<  ̂ and -  , respectively. Circular

plots of four WSNCp(0,1, a ) densities with pertinent positive values of Â are 

presented in Figure 6.2.

a) c)

90°

-180°

270° 270°

b) d)

90°

270°

Figure 6.2 Circular plots of WSNCpCO, 1, Â) densities with: a) À = 0 (wrapped 
standard normal distribution); b) Â = 2; c) d = 5 ; d) À = 20.

6.3.2 Characteristic Function and Trigonometric Moments
In Section 4.4.2.2.1 we gave results for the median direction of the WSNC 
distribution. Here, we derive the characteristic function of the distribution and 
identify its trigonometric moments.

Consider the linear standard skew-normal random variable X ~ SN(/l). The

characteristic function of %, is given by

( r) = )= E( cos )-h sin )

= 2 ^costx(p{x)t^{Ax)dx + i 2 jsin tx(l){x)^{Ax)dx

which, using an obvious notation, we will represent as =

Now,
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=  2 1  COS (p{ %)% (f){Ax)dx = 0,

the integrand being an odd function. Thus,

Also,

So,

C { t ,X ) =  C { t ,0 )=  ^costx(l){x)dx = e .

= 2 Jjvcostx (Z>( a:)o ( Ax)<ù:

= -2^costx^{Ax)d(l){x)

=  2  j  ^ (x ){ -ts in tJcO (/lx )+ /lco stc^ (> lx )}d 'x  

= —tiS'(t,A)+2 A J  costx— e x p — Y  ̂1 + ~̂ dx. 

+ t6 '( h A ) = ( 2 j n y ^  ^ ^ ^2y/2 ex p { - j t Y ( l  + A ^)j

= Z ? ( ^ e x p { - + A^) }.

Thus,

à

and hence

K.2

S{t,X)e^^ =c-\-^be^'' dv. 
0

Now, as 5'(0, A)= 0, c = 0, and therefore,

5(t,A)= e dv.
0

Thus, the characteristic function ofX is
I 2 f &  I 2

¥xO )~  1 + i be^'’ dv

It follows that the characteristic function of the general skew-normal random 

variable + -  SNd(^,/7,A), y/ (t), is given by
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(  S r\t

= e

= e

where, for positive x,

2
3(%)= d u ,

and 3 (-% )=  -3(%). As we shall see, the function 3(-) is highly important in 

terms of inference for the WSNC distribution. We used numerical methods of 

integration to calculate values of S (x), although other approaches are possible as 

3 (x ) is closely related to Dawson’s integral (see, for example, Spanier & Oldham 

(1987, Chapter 42)). Table 6.1 provides some representative values of the function 

3 (x ) for a range of %-values. These, along with all other required values of 3 (x ),

were calculated using 15-point Gauss-Legendre quadrature (see, for example, 
Carnahan et al. (1969, Chapter 2)).

Table 6.1 Values of S(x) for a range of values of x.

X 3(%) X 3(4

0.0 0.00000 6.0 8.99783x10®
0.5 0.41621 8.0 8.00475x10''
1.0 0.95344 10.0 4.17947x10'“
2.0 3.77312 15.0 3.85416x10''
3.0 28.2385 20.0 2.89001x10®®
4.0 643.127 25.0 1.66619x10'"
5.0 44800.0 32.0 5.70151x10"“

Having derived the characteristic function of , that of =Y^ (modlTr), 

•P = 0 .± lv .} , i

3.5.7)),

p' P = U, ±1,...G is given by (see, for example, Mardia & Jupp (1999, Section

=Vy^{p)= g " { l+ ;3(<y?7p)}. 

From (6.3.2), one obtains the cosine moments

Œp = f (c o s p6^")=co^ ( c o s - Z { S jjp) sin p^),

(6.3.2)

( 6.3.3)
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and the sine moments,

Pp = E(sin pOj^)=co^ (sin p ^  + 3{Srjp) cos p^),  (6.3.4)
_ 1 „ 2

where co = e  ̂ . Given these trigonometric moments, an alternative representation

for the density of is,

LU
l + 2 ^ ty ^  { c o s p (^ - f )+ S (^ p p )s in p (^ -^ )}

p=\

6.4 M ethod o f M om ents E stim ation

6.4.1 Introduction
Having outlined the fundamental properties of the WSNC distribution, in this and 
the following two sections we consider the issue of estimating the distribution’s 
parameters. As in previous chapters, we start with a discussion of method of 
moments estimation before moving on to a consideration of likelihood based 
inference.

Using the trigonometric moments in (6.3.3) and (6.3.4), one can, in principle, 
obtain method of moments (MM) estimates for the direct parameters of the WSNC 

distribution by equating the expressions for and P2 , say, with their sample

counterparts a ,, and , and solving for the direct parameters ÿ, Tj and A.

Nevertheless, in addition to the problem as to exactly which of the trigonometric 
moments should be used in this exercise, there are many potential ways of solving 
the resulting systems of equations. We explored numerous variants of this 
approach but found in each case that the systems of equations generated by them 
sometimes had no solution. After trying in vain to identify a version of this 
approach which always led to a soluble system of equations, we were led to 
conclude that the problem was a consequence of the inherent instability of the 

estimates obtained when attempting to solve directly for p and A.

6.4.2 Estimation Based on a Circular Parametrization
In the search for a set of parameters more amenable to moment based estimation, 
we pursued the logic of Azzalini’s centred parametrization discussed in Section
1.4.2 of Chapter 1. Clearly, the centred parameters of the linear skew-normal 
distribution will not generally represent useful properties of a circular distribution. 
However, as we saw in Chapter 3, analogous measures which represent the central
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location, dispersion and skewness of a circular distribution are at our disposal. 
Given the results derived in Chapter 3, we chose to work with the parametrization 

(//(.,p,y 2̂ )î [0,2;r) being the mean direction, pG [O, l] the mean resultant

length and P2  ^  the second central sine moment. Here and in the

remainder of the chapter we use fi with the subindex C to indicate that the 

parameter concerned is a circular one. To avoid potential confusion, later we use 

//l to denote the mean associated with Azzalini’s centred parametrization for a 

skew-normal distribution on the line. Henceforth we refer to the

circular parametrization of the WSNC distribution. Apart from the fact that in the 
modelling of circular data the circular parameters may well be of interest in their 
own right, a major advantage of this parametrization is that the moment estimates 

of Pq, p  and P2  , he. 6 , R and Z?2 , always provide estimates which lie within the

admissible ranges specified for their population counterparts.
Using (6.3.3) and (6.3.4) together with the identity

PiP^ ) P i - A  OC2 , (6.4.1)

it follows that the circular parameters can be expressed in terms of the direct 
parameters as

Pf. = tan"‘[{sinÿ + 3(^7;)cosÿ}/{cosf-3(<^;7)sinÿ}], (6.4.2)

p  = û)[l + y { ô r ] ' ^ ' \  (6.4.3)

Â  =ffl4s(2<y?7){l-3H<5'7)}-23(^;7)] / { l  + 3"(5^)} , (6.4.4)

where, as previously, ^  = /y (l + Â and 0) = e .

If estimation is to be based on the initial estimation of the circular parameters 
but the direct parameters are of principal interest, a means of calculating the direct 
parameters from the circular ones is obviously required. The values of the direct 
parameters can be obtained from the circular ones, firstly by solving numerically 

for 5rj in

Â  3(2^;;){ i -3^(<J,;)}-23(<5/7)

The value of rj can then be obtained using

7] = [ - 2 log, p  + log,{l + 3 X , (6.4.6)
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and thence that of S. The value of ^ ( mod2;r) is that solution to

tan(f) = {tan//c ~3(^7;)}/{ i + 3((^/7) tan//^.}, 

which satisfies (6.3.3) or, equivalently, (6.3.4). Given the role of the location 

parameter one might expect the performance of this sequential approach to

estimating the direct parameters to be reasonable for close to symmetric parent 

populations. However, as À tends to ±00 we might equally expect its performance 

to deteriorate.
Results for the moment based estimation of the mean direction, mean resultant 

length and second central sine moment were presented in Chapter 3. For the 
WSNC distribution we have (6.4.3) and (6.4.4). Using these results and those for 
the trigonometric moments of the WSNC distribution given in (6.3.3) and (6.3.4), 
together with the identities in (3.3.1) of Chapter 3, we obtain 

«2 =<̂ * {l-3^(<y??)+23(<Î77)3(2^;7)}/{l + 3^(^/;)}, 

a , = of  [l-33"(^;;)+3(<y/;)3(3<y;;){3-3 '(^/;)}]/{l + 3'(<y;7)F,

Â  [3(5;/){3"(5;;)-3}+3(3^;7){l-33H <y;;)}]/{l + 3T <y/;)F , (6.4.7) 

_  [i + 3^(5?;){3^(5?7)-6}+43(^77)3(4^;7){i -3^(^;7)}]

{l + 3^(<J;7)f

Thus, in order to apply the large-sample inferential procedures of Chapter 3 for an 

underlying distribution assumed to be WSNC, one first requires estimates for T] 

and 5. These can be obtained using the procedure for transforming from the 

circular parameters to the direct ones based on (6.4.5) and (6.4.6), with A  p  

replaced by Z?2 and R , respectively.

6.4.3 Sampling Properties of the Circular Parameter Estimates
In order to investigate the adequacy of the theoretical results of Chapter 3 when 
applied to the WSNC distribution, we designed a Monte Carlo experiment in which

simulation was conducted for a wide range of (n,p,X) combinations. For each such

combination considered we simulated large numbers of samples of size n from a 

WSNC distribution with skewness parameter A and mean resultant length p. In 

the following three subsections we summarize the findings obtained from this 
simulation study regarding: i) the shapes of the sampling distributions of the
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estimates, 11) the validity of the theoretical asymptotic results for the bias and 
variance of the estimates, and 111) the efficacy of bias-correction.

6.4.3.1 Sampling Distributions of the Individual Parameter Estimates

a) d)
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Figure 6.3 Empirical sampling distributions of the method of moments 
estimates 6, R and 6g obtained from 3000 simulated samples of size 100 from 
the WSNC distribution with  ̂= 0, À = 0 and: a), b), c) p= 0.3; d), e),f)p= 0.9.

In Figures 6.3 and 6.4 we Illustrate the forms assumed by the sampling 

distributions of 6, R and 6̂  . Each set of three histograms In these figures Is

based on the estimates obtained from 3000 samples of size n = 100 simulated from 

a WSNC distributions with ^ = 0  and, for those on the left-hand side of each figure, 

p  = 0.3, and, for those on the right-hand side, p  = 0.9. The samples used to produce 

Figure 6.3 were simulated from the symmetric wrapped normal distribution, whilst
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those on which Figure 6.4 is based were simulated from the highly skew case of the 

WSNC distribution corresponding to a value of the skewness parameter of À = 20. 

As can be appreciated from Figure 6.2, this latter distribution is very similar in 
form to a wrapped half-normal distribution. Even for such a highly skew parent 
population, as we can see from Figure 6.4, for a sample size of 100 the normal 
distribution provides a reasonable approximation to the sampling distributions of 

all three estimators. The most skew of the sampling distributions is that of Z?2 

corresponding to the highly skew and highly concentrated case of the distribution 

with À = 20 and p  = 0.9.
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Figure 6.4 Empirical sampling distributions of the method of moments 
estimates 6, R and obtained from 3000 simulated samples of size 100 from 
the WSNC distribution with  ̂= 0, À = 20 and: a), b), c) p= 0.3; d), e), f) p = 0.9.
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In Figures 6.5 and 6.6 we present sampling distributions analogous to those 
presented in Figures 6.3 and 6.4, obtained using simulated samples of size 20 
instead of 100. Although for such small sized samples the sampling distributions 
are not generally so well approximated by normal distributions, the sampling 
distributions of all three estimates are still, nevertheless, unimodal. However, we 

note that, as p  tends further towards 0, the sampling distribution of G tends to the

uniform distribution on Comparing the sampling distributions

corresponding to p  = 0.3 and p  = 0.9. in both figures, we see that the degree of 

skewness of the sampling distributions of R and bj depends heavily on the 

concentration of the parent population.
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Figure 6.5 Empirical sampling distributions of the method of moments 
estimates 6, R and obtained from 3000 simulated samples of size 20 from 
the WSNC distribution with  ̂= 0, A = 0 and: a), b), c) p = 0.3; d), e), f) /? = 0.9.
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Figure 6 .6  Empirical sampling distributions of the method of moments 
estimates 6, R and bg obtained from 3000 simulated samples of size 20 from 
the WSNC distribution with |  = 0, Â = 20 and: a), b), c) p =  0.3; d), e) , f ) p=  0,9.

6.4.S.2 Validity of the Theoretical Asymptotic Bias and Variance Results 

In Tables 6.2-6.7 we present empirical results for the biases and variances of 0,

R and bg . Also given are the equivalent theoretical asymptotic values calculated 

using (3.3.1) and (3.3.2) of Chapter 3 in conjunction with the central trigonometric 
moments for the WSNC distribution given in (6.4.7).
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Table 6.2 Empirical and, in brackets, theoretical asymptotic bias of 6 quoted to 
four decimal places. Each empirical bias estimate is based on 5000 simulated 
samples of size n from the WSNC distribution with mean direction 0, mean 
resultant length p  and skewness parameter À.

À n 0 . 1 0 . 3

P

0 . 5 0 . 7 0 . 9

0 2 0 - 0 . 0 2 7 0 ( 0 . 0 0 0 0 ) 0 . 0 0 4 6 ( 0 . 0 0 0 0 ) 0 . 0 0 8 3 ( 0 . 0 0 0 0 ) - 0 . 0 0 2 9 ( 0 . 0 0 0 0 ) 0 . 0 0 0 7 ( 0 . 0 0 0 0 )

3 0 0 . 0 0 9 5 ( 0 . 0 0 0 0 ) 0 . 0 0 4 9 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 8 ( 0 . 0 0 0 0 ) 0 . 0 0 0 3 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 1 ( 0 . 0 0 0 0 )

5 0 0 . 0 0 5 2 ( 0 . 0 0 0 0 ) - 0 . 0 0 1 0 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 6 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 9 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 4 ( 0 . 0 0 0 0 )

1 0 0 - 0 . 0 0 8 9 ( 0 . 0 0 0 0 ) 0 . 0 0 6 7 ( 0 . 0 0 0 0 ) 0 . 0 0 1 0 ( 0 . 0 0 0 0 ) 0 . 0 0 1 4 ( 0 . 0 0 0 0 ) 0 . 0 0 0 1 ( 0 . 0 0 0 0 )

2 0 0 - 0 . 0 1 0 0 ( 0 . 0 0 0 0 ) 0 . 0 0 1 2 ( 0 . 0 0 0 0 ) 0 . 0 0 2 5 ( 0 . 0 0 0 0 ) - 0 . 0 0 1 0 ( 0 . 0 0 0 0 ) 0 . 0 0 0 3 ( 0 . 0 0 0 0 )

5 0 0 0 . 0 0 2 2 ( 0 . 0 0 0 0 ) 0 . 0 0 1 3 ( 0 . 0 0 0 0 ) 0 . 0 0 0 1 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 2 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 2 ( 0 . 0 0 0 0 )

2 2 0 0 . 0 0 4 0 ( 0 . 0 0 3 6 ) 0 . 0 0 6 8 ( 0 . 0 0 6 1 ) 0 . 0 1 1 4 ( 0 . 0 0 5 6 ) 0 . 0 0 0 4 ( 0 . 0 0 3 6 ) 0 . 0 0 2 6 ( 0 . 0 0 0 9 )

3 0 0 . 0 0 4 9 ( 0 . 0 0 2 4 ) 0 . 0 0 5 2 ( 0 . 0 0 4 1 )  -- 0 . 0 0 5 5 ( 0 . 0 0 3 8 )  •- 0 . 0 0 2 7 ( 0 . 0 0 2 4 ) - 0 . 0 0 0 6 ( 0 . 0 0 0 6 )

5 0 0 . 0 0 2 5 ( 0 . 0 0 1 4 ) - 0 . 0 0 0 1 ( 0 . 0 0 2 5 ) 0 . 0 0 3 7 ( 0 . 0 0 2 3 ) 0 . 0 0 1 8 ( 0 . 0 0 1 4 ) 0 . 0 0 1 1 ( 0 . 0 0 0 4 )

1 0 0 - 0 . 0 0 3 4 ( 0 . 0 0 0 7 ) - 0 . 0 0 0 7 ( 0 . 0 0 1 2 ) 0 . 0 0 1 5 ( 0 . 0 0 1 1 ) - 0 . 0 0 1 5 ( 0 . 0 0 0 7 ) - 0 . 0 0 0 5 ( 0 . 0 0 0 2 )

2 0 0 - 0 . 0 0 3 5 ( 0 . 0 0 0 4 ) - 0 . 0 0 0 9 ( 0 . 0 0 0 6 ) 0 . 0 0 0 4 ( 0 . 0 0 0 6 ) 0 . 0 0 0 5 ( 0 . 0 0 0 4 ) 0 . 0 0 0 4 ( 0 . 0 0 0 1 )

5 0 0 - 0 . 0 0 2 5 ( 0 . 0 0 0 1 ) - 0 . 0 0 0 4 ( 0 . 0 0 0 2 ) 0 . 0 0 0 4 ( 0 . 0 0 0 2 ) - 0 . 0 0 0 3 ( 0 . 0 0 0 1 ) - 0 . 0 0 0 2 ( 0 . 0 0 0 0 )

5 2 0 - 0 . 0 1 9 4 ( 0 . 0 2 6 5 ) 0 . 0 1 3 0 ( 0 . 0 2 2 2 ) 0 . 0 0 8 5 ( 0 . 0 1 3 9 ) 0 . 0 0 4 6 ( 0 . 0 0 7 4 ) 0 . 0 0 1 4 ( 0 . 0 0 1 7 )

3 0 0 . 0 1 0 6 ( 0 . 0 1 7 6 ) 0 . 0 1 5 4 ( 0 . 0 1 4 8 ) 0 . 0 1 0 8 ( 0 . 0 0 9 3 ) 0 . 0 0 5 7 ( 0 . 0 0 4 9 ) 0 . 0 0 1 1 ( 0 . 0 0 1 1 )

5 0 0 . 0 2 1 8 ( 0 . 0 1 0 6 ) 0 . 0 0 4 8 ( 0 . 0 0 8 9 ) 0 . 0 0 5 9 ( 0 . 0 0 5 6 ) 0 . 0 0 4 7 ( 0 . 0 0 3 0 ) 0 . 0 0 0 7 ( 0 . 0 0 0 7 )

1 0 0 - 0 . 0 0 4 7 ( 0 . 0 0 5 3 ) 0 . 0 0 1 2 ( 0 . 0 0 4 4 ) 0 . 0 0 0 3 ( 0 . 0 0 2 8 ) 0 . 0 0 2 2 ( 0 . 0 0 1 5 ) 0 . 0 0 0 0 ( 0 . 0 0 0 3 )

2 0 0 - 0 . 0 0 1 7 ( 0 . 0 0 2 6 ) 0 . 0 0 8 0 ( 0 . 0 0 2 2 )  ■- 0 . 0 0 0 1 ( 0 . 0 0 1 4 )  ■- 0 . 0 0 0 4 ( 0 . 0 0 0 7 ) 0 . 0 0 0 0 ( 0 . 0 0 0 2 )

5 0 0 - 0 . 0 0 1 2 ( 0 . 0 0 1 1 ) - 0 . 0 0 1 3 ( 0 . 0 0 0 9 ) 0 . 0 0 1 2 ( 0 . 0 0 0 6 ) 0 . 0 0 0 2 ( 0 . 0 0 0 3 ) - 0 . 0 0 0 4 ( 0 . 0 0 0 0 )

2 0  2 0 - 0 . 0 2 4 4 ( 0 . 0 9 9 5 ) 0 . 0 3 7 6 ( 0 . 0 3 5 3 ) 0 . 0 2 1 1 ( 0 . 0 1 8 0 ) 0 . 0 0 9 8 ( 0 . 0 0 8 9 ) 0 . 0 0 1 5 ( 0 . 0 0 2 0 )

3 0 - 0 . 0 0 4 2 ( 0 . 0 6 6 3 ) 0 . 0 1 5 0 ( 0 . 0 2 3 5 ) 0 . 0 1 1 8 ( 0 . 0 1 2 0 ) 0 . 0 0 6 6 ( 0 . 0 0 5 9 ) 0 . 0 0 2 7 ( 0 . 0 0 1 3 )

5 0 0 . 0 0 1 1 ( 0 . 0 3 9 8 ) 0 . 0 1 3 1 ( 0 . 0 1 4 1 ) 0 . 0 1 1 7 ( 0 . 0 0 7 2 ) 0 . 0 0 4 2 ( 0 . 0 0 3 6 ) 0 . 0 0 1 0 ( 0 . 0 0 0 8 )

1 0 0 - 0 . 0 0 1 2 ( 0 . 0 1 9 9 ) 0 . 0 0 4 5 ( 0 . 0 0 7 1 ) 0 . 0 0 3 0 ( 0 . 0 0 3 6 ) 0 . 0 0 2 0 ( 0 . 0 0 1 8 ) 0 . 0 0 0 2 ( 0 . 0 0 0 4 )

2 0 0 0 . 0 0 2 7 ( 0 . 0 0 9 9 ) 0 . 0 0 6 8 ( 0 . 0 0 3 5 ) 0 . 0 0 1 7 ( 0 . 0 0 1 8 ) 0 . 0 0 1 7 ( 0 . 0 0 0 9 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

5 0 0 0 . 0 0 5 1 ( 0 . 0 0 4 0 ) 0 . 0 0 1 0 ( 0 . 0 0 1 4 ) - - 0 . 0 0 1 0 ( 0 . 0 0 0 7 ) 0 . 0 0 0 0 ( 0 . 0 0 0 4 )  -- 0 . 0 0 0 2 ( 0 . 0 0 0 1 )

From a consideration of the results presented in these six tables, it can be 
appreciated that the agreement between the empirical and theoretical results is 
generally excellent. The largest differences between the two types of result are 

those for the variance of 6 and, for an underlying distribution which is highly

skew, the bias of bg . As is to be expected, the disparities are largest for small sized 

samples drawn from highly dispersed cases of the distribution. The differences 
between the empirical and theoretical results under these conditions should be no 

surprise to us, firstly because as p  —> 0 the WSNC distribution tends to the 

uniform distribution, the mean direction of which is undefined, and, secondly, 
because the theoretical results under consideration are asymptotic ones.
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T a b l e  6 . 3  E m p i r i c a l  a n d ,  i n  b r a c k e t s ,  t h e o r e t i c a l  a s y m p t o t i c  v a r i a n c e  o f  G 
q u o t e d  t o  f o u r  d e c i m a l  p l a c e s .  E a c h  e m p i r i c a l  v a r i a n c e  e s t i m a t e  i s  b a s e d  o n  5 0 0 0  

s i m u l a t e d  s a m p l e s  o f  s i z e  n f r o m  t h e  W S N C  d i s t r i b u t i o n  w i t h  m e a n  d i r e c t i o n  0 ,  

m e a n  r e s u l t a n t  l e n g t h  p  a n d  s k e w n e s s  p a r a m e t e r  X.

À n 0 . 1 0 . 3

P
0 . 5 0 . 7 0 . 9

0  2 0 1 . 8 4 2 0 ( 2 . 4 9 9 8 ) 0 . 3 8 0 7 ( 0 . 2 7 5 5 ) 0 . 0 9 6 7 ( 0 . 0 9 3 8 ) 0 . 0 3 8 4 ( 0 . 0 3 8 8 ) 0 . 0 1 0 4 ( 0 . 0 1 0 6 )

3 0 1 . 5 7 9 0 ( 1 . 6 6 6 5 ) 0 . 2 3 9 8 ( 0 . 1 8 3 7 ) 0 . 0 6 5 2 ( 0 . 0 6 2 5 ) 0 . 0 2 5 6 ( 0 . 0 2 5 8 ) 0 . 0 0 7 0 ( 0 . 0 0 7 1 )

5 0 1 . 2 8 6 9 ( 0 . 9 9 9 9 ) 0 . 1 2 3 3 ( 0 . 1 1 0 2 ) 0 . 0 3 6 8 ( 0 . 0 3 7 5 ) 0 . 0 1 5 2 ( 0 . 0 1 5 5 ) 0 . 0 0 4 2 ( 0 . 0 0 4 2 )

1 0 0 0 . 8 1 8 3 ( 0 . 5 0 0 0 ) 0 . 0 5 7 7 ( 0 . 0 5 5 1 ) 0 . 0 1 9 2 ( 0 . 0 1 8 8 ) 0 . 0 0 7 8 ( 0 . 0 0 7 8 ) 0 . 0 0 2 2 ( 0 . 0 0 2 1 )

2 0 0 0 . 3 6 9 1 ( 0 . 2 5 0 0 ) 0 . 0 2 8 0 ( 0 . 0 2 8 0 ) 0 . 0 0 9 3 ( 0 . 0 0 9 4 ) 0 . 0 0 3 8 ( 0 . 0 0 3 9 ) 0 . 0 0 1 0 ( 0 . 0 0 1 1 )

5 0 0 0 . 1 1 3 6 ( 0 . 1 0 0 0 ) 0 . 0 1 1 2 ( 0 . 0 1 1 0 ) 0 . 0 0 3 9 ( 0 . 0 0 3 8 ) 0 . 0 0 1 5 ( 0 . 0 0 1 6 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 )

2  2 0 1 . 8 5 1 1 ( 2 . 4 9 9 8 ) 0 . 3 6 3 4 ( 0 . 2 7 4 7 ) 0 . 0 9 8 0 ( 0 . 0 9 2 5 ) 0 . 0 3 8 7 ( 0 . 0 3 8 0 ) 0 . 0 1 0 5 ( 0 . 0 1 0 5 )

3 0 1 . 6 1 8 9 ( 1 . 6 6 6 5 ) 0 . 2 3 7 5 ( 0 . 1 8 3 1 ) 0 . 0 6 2 8 ( 0 . 0 6 1 7 ) 0 . 0 2 5 8 ( 0 . 0 2 5 3 ) 0 . 0 0 7 1 ( 0 . 0 0 7 0 )

5 0 1 . 2 1 0 6 ( 0 . 9 9 9 9 ) 0 . 1 2 3 1 ( 0 . 1 0 9 9 ) 0 . 0 3 8 8 ( 0 . 0 3 7 0 ) 0 . 0 1 5 1 ( 0 . 0 1 5 2 ) 0 . 0 0 4 0 ( 0 . 0 0 4 2 )

1 0 0 0 . 7 6 1 5 ( 0 . 5 0 0 0 ) 0 . 0 5 6 7 ( 0 . 0 5 4 9 ) 0 . 0 1 8 6 ( 0 . 0 1 8 5 ) 0 . 0 0 7 8 ( 0 . 0 0 7 6 ) 0 . 0 0 2 2 ( 0 . 0 0 2 1 )

2 0 0 0 . 3 5 7 4 ( 0 . 2 5 0 0 ) 0 . 0 2 7 7 ( 0 . 0 2 7 5 ) 0 . 0 0 9 1 ( 0 . 0 0 9 3 ) 0 . 0 0 3 8 ( 0 . 0 0 3 8 ) 0 . 0 0 1 0 ( 0 . 0 0 1 0 )

5 0 0 0 . 1 1 3 6 ( 0 . 1 0 0 0 ) 0 . 0 1 0 7 ( 0 . 0 1 1 0 ) 0 . 0 0 3 7 ( 0 . 0 0 3 7 ) 0 . 0 0 1 5 ( 0 . 0 0 1 5 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 )

5  2 0 1 . 7 8 5 4 ( 2 . 5 0 0 0 ) 0 . 3 7 8 3 ( 0 . 2 7 5 0 ) 0 . 0 9 9 7 ( 0 . 0 9 1 5 ) 0 . 0 3 6 8 ( 0 . 0 3 7 1 ) 0 . 0 1 0 2 ( 0 . 0 1 0 3 )

3 0 1 . 6 0 1 2 ( 1 . 6 6 6 7 ) 0 . 2 2 6 9 ( 0 . 1 8 3 4 ) 0 . 0 6 5 2 ( 0 . 0 6 1 0 ) 0 . 0 2 5 3 ( 0 . 0 2 4 7 ) 0 . 0 0 6 8 ( 0 . 0 0 6 9 )

5 0 1 . 2 3 5 1 ( 1 . 0 0 0 0 ) 0 . 1 2 2 2 ( 0 . 1 1 0 0 ) 0 . 0 3 6 7 ( 0 . 0 3 6 6 ) 0 . 0 1 5 4 ( 0 . 0 1 4 8 ) 0 . 0 0 4 0 ( 0 . 0 0 4 1 )

1 0 0 0 . 7 4 8 2 ( 0 . 5 0 0 0 ) 0 . 0 5 6 3 ( 0 . 0 5 5 0 ) 0 . 0 1 7 6 ( 0 . 0 1 8 3 ) 0 . 0 0 7 7 ( 0 . 0 0 7 4 ) 0 . 0 0 2 1 ( 0 . 0 0 2 1 )

2 0 0 0 . 3 6 6 0 ( 0 . 2 5 0 0 ) 0 . 0 2 7 8 ( 0 . 0 2 7 5 ) 0 . 0 0 9 3 ( 0 . 0 0 9 2 ) 0 . 0 0 3 7 ( 0 . 0 0 3 7 ) 0 . 0 0 1 0 ( 0 . 0 0 1 0 )

5 0 0 0 . 1 1 4 7 ( 0 . 1 0 0 0 ) 0 . 0 1 1 1 ( 0 . 0 1 1 0 ) 0 . 0 0 3 7 ( 0 . 0 0 3 7 ) 0 . 0 0 1 5 ( 0 . 0 0 1 5 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 )

2 0  2 0 1 . 7 9 5 5 ( 2 . 5 0 0 0 ) 0 . 3 6 2 5 ( 0 . 2 7 5 7 ) 0 . 0 9 8 5 ( 0 . 0 9 1 3 ) 0 . 0 3 6 0 ( 0 . 0 3 6 8 ) 0 . 0 1 0 4 ( 0 . 0 1 0 3 )

3 0 1 . 5 7 6 7 ( 1 . 6 6 6 7 ) 0 . 2 3 3 2 ( 0 . 1 8 3 8 ) 0 . 0 6 3 1 ( 0 . 0 6 0 9 ) 0 . 0 2 5 4 ( 0 . 0 2 4 5 ) 0 . 0 0 6 9 ( 0 . 0 0 6 8 )

5 0 1 . 3 1 6 1 ( 1 . 0 0 0 0 ) 0 . 1 1 9 5 ( 0 . 1 1 0 3 ) 0 . 0 3 7 9 ( 0 . 0 3 6 5 ) 0 . 0 1 4 9 ( 0 . 0 1 4 7 ) 0 . 0 0 4 3 ( 0 . 0 0 4 1 )

1 0 0 0 . 7 2 2 4 ( 0 . 5 0 0 0 ) 0 . 0 5 9 2 ( 0 . 0 5 5 1 ) 0 . 0 1 8 1 ( 0 . 0 1 8 3 ) 0 . 0 0 7 3 ( 0 . 0 0 7 4 ) 0 . 0 0 2 0 ( 0 . 0 0 2 1 )

2 0 0 0 . 3 6 5 2 ( 0 . 2 5 0 0 ) 0 . 0 2 8 0 ( 0 . 0 2 7 6 ) 0 . 0 0 9 3 ( 0 . 0 0 9 1 ) 0 . 0 0 3 7 ( 0 . 0 0 3 7 ) 0 . 0 0 1 0 ( 0 . 0 0 1 0 )

5 0 0 0 . 1 1 6 8 ( 0 . 1 0 0 0 ) 0 . 0 1 1 0 ( 0 . 0 1 1 0 ) 0 . 0 0 3 5 ( 0 . 0 0 3 7 ) 0 . 0 0 1 5 ( 0 . 0 0 1 5 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 )

6 . 4 . 3 . 3  T b e  U s e  o f  B i a s - c o r r e c t i o n

In Section 3.4 of Chapter 3 we proposed general expressions for bias-corrected 
estimators which are relevant to our current deliberations. Although it would be 

possible to derive other bias-corrected estimators for //(., p  and designed

specifically for use with an assumed underlying WSNC distribution, we decided to 
use simulation to compare the performance of the non-bias-corrected method of 

moments estimators Q, R and bg with that of the relevant bias-corrected 

estimators as originally specified in Equation (3.4.1) of Section 3.4.
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Table 6.4 Empirical and, in brackets, theoretical asymptotic bias of R quoted to 
four decimal places. Each empirical bias estimate is based on 5000 simulated 
samples of size n from the WSNC distribution with mean direction 0, mean 
resultant length p  and skewness parameter X.

A n 0 . 1 0 . 3

P
0 . 5 0 . 7 0 . 9

0 2 0 0 . 1 1 9 7 ( 0 . 1 2 5 0 ) 0 . 0 4 2 3 ( 0 . 0 4 1 3 ) 0 . 0 1 7 4 ( 0 . 0 2 3 4 ) 0 . 0 1 3 8 ( 0 . 0 1 3 6 ) 0 . 0 0 4 9 ( 0 . 0 0 4 8 )

3 0 0 . 0 8 4 4 ( 0 . 0 8 3 3 ) 0 . 0 3 0 0 ( 0 . 0 2 7 6 ) 0 . 0 1 4 5 ( 0 . 0 1 5 6 ) 0 . 0 0 9 1 ( 0 . 0 0 9 0 ) 0 . 0 0 3 3 ( 0 . 0 0 3 2 )

5 0 0 . 0 5 5 9 ( 0 . 0 5 0 0 ) 0 . 0 1 7 8 ( 0 . 0 1 6 5 ) 0 . 0 1 0 1 ( 0 . 0 0 9 4 ) 0 . 0 0 5 8 ( 0 . 0 0 5 4 ) 0 . 0 0 1 8 ( 0 . 0 0 1 9 )

1 0 0 0 . 0 2 8 0 ( 0 . 0 2 5 0 ) 0 . 0 0 8 9 ( 0 . 0 0 8 3 ) 0 . 0 0 4 7 ( 0 . 0 0 4 7 ) 0 . 0 0 3 0 ( 0 . 0 0 2 7 ) 0 . 0 0 0 9 ( 0 . 0 0 1 0 )

2 0 0 0 . 0 1 3 3 ( 0 . 0 1 2 5 ) 0 . 0 0 5 0 ( 0 . 0 0 4 1 ) 0 . 0 0 2 9 ( 0 . 0 0 2 3 ) 0 . 0 0 1 5 ( 0 . 0 0 1 4 ) 0 . 0 0 0 4 ( 0 . 0 0 0 5 )

5 0 0 0 . 0 0 4 9 ( 0 . 0 0 5 0 ) 0 . 0 0 1 9 ( 0 . 0 0 1 7 ) 0 . 0 0 0 9 ( 0 . 0 0 0 9 ) 0 . 0 0 0 6 ( 0 . 0 0 0 5 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

2 2 0 0 . 1 1 8 4 ( 0 . 1 2 5 0 ) 0 . 0 4 6 9 ( 0 . 0 4 1 2 ) 0 . 0 2 5 6 ( 0 . 0 2 3 1 ) 0 . 0 1 2 6 ( 0 . 0 1 3 3 ) 0 . 0 0 4 9 ( 0 . 0 0 4 7 )

3 0 0 . 0 8 5 1 ( 0 . 0 8 3 3 ) 0 . 0 2 8 6 ( 0 . 0 2 7 5 ) 0 . 0 1 5 4 ( 0 . 0 1 5 4 ) 0 . 0 0 8 3 ( 0 . 0 0 8 9 ) 0 . 0 0 3 5 ( 0 . 0 0 3 1 )

5 0 0 . 0 5 6 0 ( 0 . 0 5 0 0 ) 0 . 0 1 6 2 ( 0 . 0 1 6 5 ) 0 . 0 0 9 4 ( 0 . 0 0 9 3 ) 0 . 0 0 5 3 ( 0 . 0 0 5 3 ) 0 . 0 0 1 5 ( 0 . 0 0 1 9 )

1 0 0 0 . 0 2 7 3 ( 0 . 0 2 5 0 ) 0 . 0 0 8 8 ( 0 . 0 0 8 2 ) 0 . 0 0 4 6 ( 0 . 0 0 4 6 ) 0 . 0 0 2 3 ( 0 . 0 0 2 7 ) 0 . 0 0 0 8 ( 0 . 0 0 0 9 )

2 0 0 0 . 0 1 3 7 ( 0 . 0 1 2 5 ) 0 . 0 0 4 1 ( 0 . 0 0 4 1 ) 0 . 0 0 2 0 ( 0 . 0 0 2 3 ) 0 . 0 0 2 0 ( 0 . 0 0 1 3 ) 0 . 0 0 0 3 ( 0 . 0 0 0 5 )

5 0 0 0 . 0 0 4 9 ( 0 . 0 0 5 0 ) 0 . 0 0 1 4 ( 0 . 0 0 1 6 ) 0 . 0 0 1 0 ( 0 . 0 0 0 9 ) 0 . 0 0 0 6 ( 0 . 0 0 0 5 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

5 2 0 0 . 1 1 7 3 ( 0 . 1 2 5 0 ) 0 . 0 4 5 7 ( 0 . 0 4 1 3 ) 0 . 0 2 5 4 ( 0 . 0 2 2 9 ) 0 . 0 1 4 2 ( 0 . 0 1 3 0 ) 0 . 0 0 4 9 ( 0 . 0 0 4 6 )

3 0 0 . 0 8 7 2 ( 0 . 0 8 3 3 ) 0 . 0 3 1 9 ( 0 . 0 2 7 5 ) 0 . 0 1 3 6 ( 0 . 0 1 5 3 ) 0 . 0 0 7 0 ( 0 . 0 0 8 7 ) 0 . 0 0 2 5 ( 0 . 0 0 3 1 )

5 0 0 . 0 5 7 0 ( 0 . 0 5 0 0 ) 0 . 0 1 8 5 ( 0 . 0 1 6 5 ) 0 . 0 1 0 2 ( 0 . 0 0 9 2 ) 0 . 0 0 4 0 ( 0 . 0 0 5 2 ) 0 . 0 0 1 7 ( 0 . 0 0 1 9 )

1 0 0 0 . 0 2 9 8 ( 0 . 0 2 5 0 ) 0 . 0 0 7 9 ( 0 . 0 0 8 3 ) 0 . 0 0 4 0 ( 0 . 0 0 4 6 ) 0 . 0 0 2 3 ( 0 . 0 0 2 6 ) 0 . 0 0 0 9 ( 0 . 0 0 0 9 )

2 0 0 0 . 0 1 3 9 ( 0 . 0 1 2 5 ) 0 . 0 0 3 8 ( 0 . 0 0 4 1 ) 0 . 0 0 2 1 ( 0 . 0 0 2 3 ) 0 . 0 0 1 5 ( 0 . 0 0 1 3 ) 0 . 0 0 0 4 ( 0 . 0 0 0 5 )

5 0 0 0 . 0 0 4 8 ( 0 . 0 0 5 0 ) 0 . 0 0 2 3 ( 0 . 0 0 1 7 ) 0 . 0 0 0 6 ( 0 . 0 0 0 9 ) 0 . 0 0 0 5 ( 0 . 0 0 0 5 ) 0 . 0 0 0 3 ( 0 . 0 0 0 2 )

2 0  2 0 0 . 1 2 0 0 ( 0 . 1 2 5 0 ) 0 . 0 4 2 9 ( 0 . 0 4 1 4 ) 0 . 0 2 1 1 ( 0 . 0 2 2 8 ) 0 . 0 1 2 2 ( 0 . 0 1 2 9 ) 0 . 0 0 5 0 ( 0 . 0 0 4 6 )

3 0 0 . 0 8 4 5 ( 0 . 0 8 3 3 ) 0 . 0 2 5 6 ( 0 . 0 2 7 6 ) 0 . 0 1 4 3 ( 0 . 0 1 5 2 ) 0 . 0 0 7 5 ( 0 . 0 0 8 6 ) 0 . 0 0 2 6 ( 0 . 0 0 3 1 )

5 0 0 . 0 5 3 7 ( 0 . 0 5 0 0 ) 0 . 0 1 7 7 ( 0 . 0 1 6 5 ) 0 . 0 0 6 1 ( 0 . 0 0 9 1 ) 0 . 0 0 4 5 ( 0 . 0 0 5 2 ) 0 . 0 0 1 5 ( 0 . 0 0 1 8 )

1 0 0 0 . 0 2 9 1 ( 0 . 0 2 5 0 ) 0 . 0 0 9 9 ( 0 . 0 0 8 3 ) 0 . 0 0 4 4 ( 0 . 0 0 4 6 ) 0 . 0 0 3 4 ( 0 . 0 0 2 6 ) 0 . 0 0 0 8 ( 0 . 0 0 0 9 )

2 0 0 0 . 0 1 3 2 ( 0 . 0 1 2 5 ) 0 . 0 0 4 5 ( 0 . 0 0 4 1 ) 0 . 0 0 2 6 ( 0 . 0 0 2 3 ) 0 . 0 0 0 3 ( 0 . 0 0 1 3 ) 0 . 0 0 0 4 ( 0 . 0 0 0 5 )

5 0 0 0 . 0 0 6 2 ( 0 . 0 0 5 0 ) 0 . 0 0 1 4 ( 0 . 0 0 1 7 ) 0 . 0 0 1 0 ( 0 . 0 0 0 9 ) 0 . 0 0 0 8 ( 0 . 0 0 0 5 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

For each of a wide range of {n,p,X) combinations, we simulated 3000 samples 

of size n from the WSNC distribution with skewness parameter À, mean resultant 

length p, and mean direction = 0. Our comparison in performance was based on

the empirical bias and MSE of the individual bias-corrected and non-bias-corrected 
estimates obtained for the simulated samples. Also, in an attempt to explore the 
types of phenomena referred to in Section 3.6 of Chapter 3, we recorded the 

percentage of the bias-corrected estimates of p  and which lay outside the 

admissible ranges of [O, l] and [-1, l], respectively. Rather than present the

detailed results obtained, instead we summarize our general findings.
Overall, the results for bias-correction were disappointing. Although it was 

found generally to reduce the bias in the estimation of p, it did not lead to a
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universal reduction in bias for the estimation of the other two parameters. More 
damningly, it always led to an increase in mean squared error. Consequently, the 

use of the bias-corrected estimators for p  and /?g cannot be recommended

when the parent population is WSNC.

Table 6.5 E m p i r i c a l  a n d ,  i n  b r a c k e t s ,  t h e o r e t i c a l  a s y m p t o t i c  v a r i a n c e  o f  R 
q u o t e d  t o  f o u r  d e c i m a l  p l a c e s .  E a c h  e m p i r i c a l  v a r i a n c e  e s t i m a t e  i s  b a s e d  o n  5 0 0 0  

s i m u l a t e d  s a m p l e s  o f  s i z e  n f r o m  t h e  W S N C  d i s t r i b u t i o n  w i t h  m e a n  d i r e c t i o n  0 ,  

m e a n  r e s u l t a n t  l e n g t h  p  a n d  s k e w n e s s  p a r a m e t e r  À.

/ I n 0 . 1 0 . 3

P
0 . 5 0 . 7 0 . 9

0 2 0 0 . 0 1 2 2 ( 0 . 0 2 4 5 ) 0 . 0 1 6 7 ( 0 . 0 2 0 7 ) 0 . 0 1 3 0 ( 0 . 0 1 4 1 ) 0 . 0 0 6 2 ( 0 . 0 0 6 5 ) 0 . 0 0 0 9 ( 0 . 0 0 0 9 )

3 0 0 . 0 0 8 8 ( 0 . 0 1 6 3 ) 0 . 0 1 1 9 ( 0 . 0 1 3 8 ) 0 . 0 0 8 9 ( 0 . 0 0 9 4 ) 0 . 0 0 4 2 ( 0 . 0 0 4 3 ) 0 . 0 0 0 6 ( 0 . 0 0 0 6 )

5 0 0 . 0 0 6 0 ( 0 . 0 0 9 8 ) 0 . 0 0 7 6 ( 0 . 0 0 8 3 ) 0 . 0 0 5 4 ( 0 . 0 0 5 6 ) 0 . 0 0 2 6 ( 0 . 0 0 2 6 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 )

1 0 0 0 . 0 0 3 5 ( 0 . 0 0 4 9 ) 0 . 0 0 4 0 ( 0 . 0 0 4 1 ) 0 . 0 0 2 8 ( 0 . 0 0 2 8 ) 0 . 0 0 1 3 ( 0 . 0 0 1 3 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

2 0 0 0 . 0 0 2 0 ( 0 . 0 0 2 5 ) 0 . 0 0 2 0 ( 0 . 0 0 2 1 ) 0 . 0 0 1 4 ( 0 . 0 0 1 4 ) 0 . 0 0 0 6 ( 0 . 0 0 0 7 ) 0 . 0 0 0 1 ( 0 . 0 0 0 1 )

5 0 0 0 . 0 0 1 0 ( 0 . 0 0 1 0 ) 0 . 0 0 0 8 ( 0 . 0 0 0 8 ) 0 . 0 0 0 5 ( 0 . 0 0 0 6 ) 0 . 0 0 0 3 ( 0 . 0 0 0 3 ) 0 . 0 0 0 0 ( 0 . 0 0 0 0 )

2 2 0 0 . 0 1 2 3 ( 0 . 0 2 4 5 ) 0 . 0 1 7 4 ( 0 . 0 2 0 8 ) 0 . 0 1 3 5 ( 0 . 0 1 4 4 ) 0 . 0 0 6 9 ( 0 . 0 0 6 9 ) 0 . 0 0 1 0 ( 0 . 0 0 1 0 )

3 0 0 . 0 0 8 7 ( 0 . 0 1 6 3 ) 0 . 0 1 2 2 ( 0 . 0 1 3 9 ) 0 . 0 0 8 9 ( 0 . 0 0 9 6 ) 0 . 0 0 4 6 ( 0 . 0 0 4 6 ) 0 . 0 0 0 7 ( 0 . 0 0 0 7 )

5 0 0 . 0 0 6 0 ( 0 . 0 0 9 8 ) 0 . 0 0 7 8 ( 0 . 0 0 8 3 ) 0 . 0 0 5 8 ( 0 . 0 0 5 7 ) 0 . 0 0 2 7 ( 0 . 0 0 2 8 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 )

1 0 0 0 . 0 0 3 5 ( 0 . 0 0 4 9 ) 0 . 0 0 4 1 ( 0 . 0 0 4 2 ) 0 . 0 0 2 9 ( 0 . 0 0 2 9 ) 0 . 0 0 1 4 ( 0 . 0 0 1 4 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

2 0 0 0 . 0 0 2 1 ( 0 . 0 0 2 5 ) 0 . 0 0 2 0 ( 0 . 0 0 2 1 ) 0 . 0 0 1 5 ( 0 . 0 0 1 4 ) 0 . 0 0 0 7 ( 0 . 0 0 0 7 ) 0 . 0 0 0 1 ( 0 . 0 0 0 1 )

5 0 0 0 . 0 0 0 9 ( 0 . 0 0 1 0 ) 0 . 0 0 0 9 ( 0 . 0 0 0 8 ) 0 . 0 0 0 6 ( 0 . 0 0 0 6 ) 0 . 0 0 0 3 ( 0 . 0 0 0 3 ) 0 . 0 0 0 0 ( 0 . 0 0 0 0 )

5 2 0 0 . 0 1 1 7 ( 0 . 0 2 4 5 ) 0 . 0 1 7 4 ( 0 . 0 2 0 7 ) 0 . 0 1 4 2 ( 0 . 0 1 4 6 ) 0 . 0 0 6 9 ( 0 . 0 0 7 3 ) 0 . 0 0 1 0 ( 0 . 0 0 1 1 )

3 0 0 . 0 0 9 1 ( 0 . 0 1 6 3 ) 0 . 0 1 2 0 ( 0 . 0 1 3 8 ) 0 . 0 0 9 8 ( 0 . 0 0 9 7 ) 0 . 0 0 4 7 ( 0 . 0 0 4 9 ) 0 . 0 0 0 7 ( 0 . 0 0 0 8 )

5 0 0 . 0 0 5 9 ( 0 . 0 0 9 8 ) 0 . 0 0 7 6 ( 0 . 0 0 8 3 ) 0 . 0 0 5 7 ( 0 . 0 0 5 8 ) 0 . 0 0 3 0 ( 0 . 0 0 2 9 ) 0 . 0 0 0 4 ( 0 . 0 0 0 5 )

1 0 0 0 . 0 0 3 6 ( 0 . 0 0 4 9 ) 0 . 0 0 4 2 ( 0 . 0 0 4 1 ) 0 . 0 0 3 0 ( 0 . 0 0 2 9 ) 0 . 0 0 1 5 ( 0 . 0 0 1 5 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

2 0 0 0 . 0 0 2 0 ( 0 . 0 0 2 5 ) 0 . 0 0 2 0 ( 0 . 0 0 2 1 ) 0 . 0 0 1 5 ( 0 . 0 0 1 5 ) 0 . 0 0 0 7 ( 0 . 0 0 0 7 ) 0 . 0 0 0 1 ( 0 . 0 0 0 1 )

5 0 0 0 . 0 0 0 9 ( 0 . 0 0 1 0 ) 0 . 0 0 0 9 ( 0 . 0 0 0 8 ) 0 . 0 0 0 6 ( 0 . 0 0 0 6 ) 0 . 0 0 0 3 ( 0 . 0 0 0 3 ) 0 . 0 0 0 0 ( 0 . 0 0 0 0 )

2 0 2 0 0 . 0 1 2 1 ( 0 . 0 2 4 5 ) 0 . 0 1 7 2 ( 0 . 0 2 0 7 ) 0 . 0 1 4 1 ( 0 . 0 1 4 7 ) 0 . 0 0 7 3 ( 0 . 0 0 7 5 ) 0 . 0 0 1 1 ( 0 . 0 0 1 2 )

3 0 0 . 0 0 8 6 ( 0 . 0 1 6 3 ) 0 . 0 1 2 2 ( 0 . 0 1 3 8 ) 0 . 0 0 9 3 ( 0 . 0 0 9 8 ) 0 . 0 0 4 8 ( 0 . 0 0 5 0 ) 0 . 0 0 0 8 ( 0 . 0 0 0 8 )

5 0 0 . 0 0 5 8 ( 0 . 0 0 9 8 ) 0 . 0 0 7 6 ( 0 . 0 0 8 3 ) 0 . 0 0 5 7 ( 0 . 0 0 5 9 ) 0 . 0 0 2 9 ( 0 . 0 0 3 0 ) 0 . 0 0 0 5 ( 0 . 0 0 0 5 )

1 0 0 0 . 0 0 3 5 ( 0 . 0 0 4 9 ) 0 . 0 0 4 0 ( 0 . 0 0 4 1 ) 0 . 0 0 2 8 ( 0 . 0 0 2 9 ) 0 . 0 0 1 5 ( 0 . 0 0 1 5 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

2 0 0 0 . 0 0 2 1 ( 0 . 0 0 2 5 ) 0 . 0 0 2 0 ( 0 . 0 0 2 1 ) 0 . 0 0 1 4 ( 0 . 0 0 1 5 ) 0 . 0 0 0 7 ( 0 . 0 0 0 7 ) 0 . 0 0 0 1 ( 0 . 0 0 0 1 )

5 0 0 0 . 0 0 0 9 ( 0 . 0 0 1 0 ) 0 . 0 0 0 8 ( 0 . 0 0 0 8 ) 0 . 0 0 0 6 ( 0 . 0 0 0 6 ) 0 . 0 0 0 3 ( 0 . 0 0 0 3 ) 0 . 0 0 0 0 ( 0 . 0 0 0 0 )

We conclude our observations regarding bias-correction by noting that the 

frequencies of inadmissible bias-corrected estimates for p  and were greatest for 

small-sized samples drawn from highly dispersed cases of the WSNC distribution. 

The frequencies of inadmissible bias-corrected estimates for ŷg were consistently 

higher than their counterparts for p. Whilst the latter frequencies decreased 

rapidly with increasing sample size and concentration of the parent population, the 

frequencies of inadmissible bias-corrected estimates of P2  decreased much more
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slowly, with an increase in concentration of the parent population leading to a more 
pronounced decrease in such frequencies than an increase in sample size. The 
skewness of the parent population was found to have only a marginal effect on both 
sets of frequencies.

T a b l e  6 . 6  E m p i r i c a l  a n d ,  i n  b r a c k e t s ,  t h e o r e t i c a l  a s y m p t o t i c  b i a s  o f  b g  q u o t e d  t o

f o u r  d e c i m a l  p l a c e s .  E a c h  e m p i r i c a l  b i a s  e s t i m a t e  i s  b a s e d  o n  5 0 0 0  s i m u l a t e d  

s a m p l e s  o f  s i z e  n f r o m  t h e  W S N C  d i s t r i b u t i o n  w i t h  m e a n  d i r e c t i o n  0 ,  m e a n  

r e s u l t a n t  l e n g t h  p  a n d  s k e w n e s s  p a r a m e t e r  X.

n 0 . 1 0 . 3

P
0 . 5 0 . 7 0 . 9

0 2 0 - 0 . 0 0 2 2 ( 0 . 0 0 0 0 ) 0 . 0 0 1 3 ( 0 . 0 0 0 0 ) - 0 . 0 0 1 1 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 8 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 1 ( 0 . 0 0 0 0 )

3 0 0 . 0 0 0 8 ( 0 . 0 0 0 0 ) - 0 . 0 0 1 4 ( 0 . 0 0 0 0 ) 0 . 0 0 0 4 ( 0 . 0 0 0 0 ) 0 . 0 0 1 5 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 5 ( 0 . 0 0 0 0 )

5 0 - 0 . 0 0 0 4 ( 0 . 0 0 0 0 ) 0 . 0 0 0 1 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 2 ( 0 . 0 0 0 0 ) 0 . 0 0 1 6 ( 0 . 0 0 0 0 ) 0 . 0 0 0 2 ( 0 . 0 0 0 0 )

1 0 0 - 0 . 0 0 0 4 ( 0 . 0 0 0 0 ) 0 . 0 0 0 8 ( 0 . 0 0 0 0 ) 0 . 0 0 0 1 ( 0 . 0 0 0 0 ) 0 . 0 0 1 0 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 3 ( 0 . 0 0 0 0 )

2 0 0 0 . 0 0 0 2 ( 0 . 0 0 0 0 ) 0 . 0 0 1 0 ( 0 . 0 0 0 0 ) 0 . 0 0 0 2 ( 0 . 0 0 0 0 ) - 0 . 0 0 0 2 ( 0 . 0 0 0 0 ) 0 . 0 0 0 0 ( 0 . 0 0 0 0 )

5 0 0 0 . 0 0 0 3 ( 0 . 0 0 0 0 ) 0 . 0 0 0 1 ( 0 . 0 0 0 0 ) 0 . 0 0 0 7 ( 0 . 0 0 0 0 ) 0 . 0 0 0 3 ( 0 . 0 0 0 0 ) 0 . 0 0 0 0 ( 0 . 0 0 0 0 )

2 2 0 0 . 0 0 6 8 ( 0 . 0 0 7 1 ) 0 . 0 1 6 4 ( 0 . 0 0 9 3 ) 0 . 0 1 1 3 ( 0 . 0 0 5 8 ) 0 . 0 0 4 4 ( 0 . 0 0 3 9 ) 0 . 0 0 3 2 ( 0 . 0 0 2 8 )

3 0 0 . 0 0 2 1 ( 0 . 0 0 4 7 ) 0 . 0 0 8 2 ( 0 . 0 0 6 2 ) 0 . 0 0 6 0 ( 0 . 0 0 3 9 ) 0 . 0 0 2 8 ( 0 . 0 0 2 6 ) 0 . 0 0 2 6 ( 0 . 0 0 1 9 )

5 0 0 . 0 0 1 8 ( 0 . 0 0 2 8 ) 0 . 0 0 7 2 ( 0 . 0 0 3 7 ) 0 . 0 0 6 1 ( 0 . 0 0 2 3 ) 0 . 0 0 2 5 ( 0 . 0 0 1 5 ) 0 . 0 0 1 2 ( 0 . 0 0 1 1 )

1 0 0 0 . 0 0 1 2 ( 0 . 0 0 1 4 ) 0 . 0 0 4 1 ( 0 . 0 0 1 9 ) 0 . 0 0 2 3 ( 0 . 0 0 1 2 ) 0 . 0 0 1 0 ( 0 . 0 0 0 8 ) 0 . 0 0 0 7 ( 0 . 0 0 0 6 )

2 0 0 0 . 0 0 1 2 ( 0 . 0 0 0 7 ) 0 . 0 0 2 0 ( 0 . 0 0 0 9 ) 0 . 0 0 0 5 ( 0 . 0 0 0 6 ) 0 . 0 0 0 6 ( 0 . 0 0 0 4 ) 0 . 0 0 0 4 ( 0 . 0 0 0 3 )

5 0 0 0 . 0 0 0 4 ( 0 . 0 0 0 3 ) - 0 . 0 0 0 2 ( 0 . 0 0 0 4 ) 0 . 0 0 0 7 ( 0 . 0 0 0 2 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 ) 0 . 0 0 0 0 ( 0 . 0 0 0 1 )

5 2 0 0 . 0 0 7 6 ( 0 . 0 5 2 9 ) 0 . 0 4 1 9 ( 0 . 0 3 5 5 ) 0 . 0 2 8 1 ( 0 . 0 1 4 1 ) 0 . 0 1 4 7 ( 0 . 0 0 8 9 ) 0 . 0 0 7 4 ( 0 . 0 0 5 5 )

3 0 0 . 0 0 9 2 ( 0 . 0 3 5 3 ) 0 . 0 2 9 5 ( 0 . 0 2 3 6 ) 0 . 0 1 9 8 ( 0 . 0 0 9 4 ) 0 . 0 1 1 5 ( 0 . 0 0 6 0 ) 0 . 0 0 3 6 ( 0 . 0 0 3 6 )

5 0 0 . 0 0 8 6 ( 0 . 0 2 1 2 ) 0 . 0 1 6 6 ( 0 . 0 1 4 2 ) 0 . 0 1 1 6 ( 0 . 0 0 5 6 ) 0 . 0 0 7 0 ( 0 . 0 0 3 6 ) 0 . 0 0 1 9 ( 0 . 0 0 2 2 )

1 0 0 0 . 0 0 7 3 ( 0 . 0 1 0 6 ) 0 . 0 0 7 9 ( 0 . 0 0 7 1 ) 0 . 0 0 4 9 ( 0 . 0 0 2 8 ) 0 . 0 0 4 0 ( 0 . 0 0 1 8 ) 0 . 0 0 1 1 ( 0 . 0 0 1 1 )

2 0 0 0 . 0 0 4 4 ( 0 . 0 0 5 3 ) 0 . 0 0 4 9 ( 0 . 0 0 3 5 ) 0 . 0 0 2 5 ( 0 . 0 0 1 4 ) 0 . 0 0 1 8 ( 0 . 0 0 0 9 ) 0 . 0 0 0 5 ( 0 . 0 0 0 5 )

5 0 0 0 . 0 0 2 5 ( 0 . 0 0 2 1 ) 0 . 0 0 1 6 ( 0 . 0 0 1 4 ) 0 . 0 0 1 1 ( 0 . 0 0 0 6 ) 0 . 0 0 0 9 ( 0 . 0 0 0 4 ) 0 . 0 0 0 4 ( 0 . 0 0 0 2 )

2 0  2 0 0 . 0 3 9 3 ( 0 . 1 9 8 9 ) 0 . 0 5 6 7 ( 0 . 0 6 0 1 ) 0 . 0 3 4 2 ( 0 . 0 1 8 7 ) 0 . 0 1 9 8 ( 0 . 0 1 1 3 ) 0 . 0 0 7 9 ( 0 . 0 0 6 4 )

3 0 0 . 0 3 5 3 ( 0 . 1 3 2 6 ) 0 . 0 4 2 9 ( 0 . 0 4 0 1 ) 0 . 0 2 4 7 ( 0 . 0 1 2 5 ) 0 . 0 1 2 7 ( 0 . 0 0 7 5 ) 0 . 0 0 4 7 ( 0 . 0 0 4 3 )

5 0 0 . 0 3 2 2 ( 0 . 0 7 9 6 ) 0 . 0 2 8 0 ( 0 . 0 2 4 0 ) 0 . 0 1 4 2 ( 0 . 0 0 7 5 ) 0 . 0 0 9 0 ( 0 . 0 0 4 5 ) 0 . 0 0 2 8 ( 0 . 0 0 2 6 )

1 0 0 0 . 0 2 5 9 ( 0 . 0 3 9 8 ) 0 . 0 1 5 2 ( 0 . 0 1 2 0 ) 0 . 0 0 8 1 ( 0 . 0 0 3 7 ) 0 . 0 0 4 1 ( 0 . 0 0 2 3 ) 0 . 0 0 1 6 ( 0 . 0 0 1 3 )

2 0 0 0 . 0 1 8 2 ( 0 . 0 1 9 9 ) 0 . 0 0 6 9 ( 0 . 0 0 6 0 ) 0 . 0 0 4 0 ( 0 . 0 0 1 9 ) 0 . 0 0 1 5 ( 0 . 0 0 1 1 ) 0 . 0 0 0 7 ( 0 . 0 0 0 6 )

5 0 0 0 . 0 0 8 1 ( 0 . 0 0 8 0 ) 0 . 0 0 3 2 ( 0 . 0 0 2 4 ) 0 . 0 0 1 6 ( 0 . 0 0 0 7 ) 0 . 0 0 0 8 ( 0 . 0 0 0 5 ) 0 . 0 0 0 4 ( 0 . 0 0 0 3 )

6.4.4 Sam pling D istributions of the Corresponding D irect and Centred  

Param eter Estim ates

As mentioned in Section 6.4.2, the circular parameters of the WSNC will often be of 
interest in their own right. However, if, for instance, we are interested in properties 
related to the density of the distribution then, as the density of the WSNC cannot 
be expressed analytically in terms of the circular parameters, it is necessary to 
work with the corresponding direct or centred parameters. Here and in the 
remainder of the chapter we will denote the centred parameters of the general
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skew-normal distribution defined on the real line as crand , the subindex L 

of //l being used to differentiate the parameter considered from the mean 

direction, jâç. , of the WSNC distribution.

Table 6.7 Empirical and, in brackets, theoretical asymptotic variance of bg
quoted to four decimal places. Each empirical variance estimate is based on 5000 
simulated samples of size n from the WSNC distribution with mean direction 0, 
mean resultant length p  and skewness parameter X.

2 n 0 . 1 0 . 3

P
0 . 5 0 . 7 0 . 9

0 2 0 0 . 0 2 3 7 ( 0 . 0 2 5 0 ) 0 . 0 2 3 2 ( 0 . 0 2 4 3 ) 0 . 0 1 9 5 ( 0 . 0 2 0 2 ) 0 . 0 1 0 6 ( 0 . 0 1 1 2 ) 0 . 0 0 1 2 ( 0 . 0 0 1 3 )

3 0 0 . 0 1 5 3 ( 0 . 0 1 6 7 ) 0 . 0 1 5 3 ( 0 . 0 1 6 2 ) 0 . 0 1 3 0 ( 0 . 0 1 3 5 ) 0 . 0 0 7 2 ( 0 . 0 0 7 5 ) 0 . 0 0 0 8 ( 0 . 0 0 0 9 )

5 0 0 . 0 0 9 9 ( 0 . 0 1 0 0 ) 0 . 0 0 9 7 ( 0 . 0 0 9 7 ) 0 . 0 0 7 9 ( 0 . 0 0 8 1 ) 0 . 0 0 4 3 ( 0 . 0 0 4 5 ) 0 . 0 0 0 5 ( 0 . 0 0 0 5 )

1 0 0 0 . 0 0 5 0 ( 0 . 0 0 5 0 ) 0 . 0 0 4 7 ( 0 . 0 0 4 9 ) 0 . 0 0 4 1 ( 0 . 0 0 4 0 ) 0 . 0 0 2 1 ( 0 . 0 0 2 2 ) 0 . 0 0 0 3 ( 0 . 0 0 0 3 )

2 0 0 0 . 0 0 2 5 ( 0 . 0 0 2 5 ) 0 . 0 0 2 4 ( 0 . 0 0 2 4 ) 0 . 0 0 2 0 ( 0 . 0 0 2 0 ) 0 . 0 0 1 1 ( 0 . 0 0 1 1 ) 0 . 0 0 0 1 ( 0 . 0 0 0 1 )

5 0 0 0 . 0 0 1 0 ( 0 . 0 0 1 0 ) 0 . 0 0 1 0 ( 0 . 0 0 1 0 ) 0 . 0 0 0 8 ( 0 . 0 0 0 8 ) 0 . 0 0 0 5 ( 0 . 0 0 0 4 ) 0 . 0 0 0 1 ( 0 . 0 0 0 1 )

2 2 0 0 . 0 2 3 7 ( 0 . 0 2 5 0 ) 0 . 0 2 2 1 ( 0 . 0 2 4 0 ) 0 . 0 1 8 5 ( 0 . 0 1 9 4 ) 0 . 0 1 0 8 ( 0 . 0 1 0 8 ) 0 . 0 0 1 4 ( 0 . 0 0 1 6 )

3 0 0 . 0 1 5 8 ( 0 . 0 1 6 7 ) 0 . 0 1 5 5 ( 0 . 0 1 6 0 ) 0 . 0 1 2 5 ( 0 . 0 1 3 0 ) 0 . 0 0 6 9 ( 0 . 0 0 7 2 ) 0 . 0 0 1 0 ( 0 . 0 0 1 0 )

5 0 0 . 0 0 9 9 ( 0 . 0 1 0 0 ) 0 . 0 0 9 4 ( 0 . 0 0 9 6 ) 0 . 0 0 7 2 ( 0 . 0 0 7 8 ) 0 . 0 0 4 3 ( 0 . 0 0 4 3 ) 0 . 0 0 0 6 ( 0 . 0 0 0 6 )

1 0 0 0 . 0 0 4 9 ( 0 . 0 0 5 0 ) 0 . 0 0 4 8 ( 0 . 0 0 4 8 ) 0 . 0 0 3 8 ( 0 . 0 0 3 9 ) 0 . 0 0 2 2 ( 0 . 0 0 2 2 ) 0 . 0 0 0 3 ( 0 . 0 0 0 3 )

2 0 0 0 . 0 0 2 5 ( 0 . 0 0 2 5 ) 0 . 0 0 2 4 ( 0 . 0 0 2 4 ) 0 . 0 0 2 0 ( 0 . 0 0 1 9 ) 0 . 0 0 1 1 ( 0 . 0 0 1 1 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

5 0 0 0 . 0 0 1 0 ( 0 . 0 0 1 0 ) 0 . 0 0 0 9 ( 0 . 0 0 1 0 ) 0 . 0 0 0 8 ( 0 . 0 0 0 8 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 ) 0 . 0 0 0 1 ( 0 . 0 0 0 1 )

5 2 0 0 . 0 2 3 7 ( 0 . 0 2 5 0 ) 0 . 0 2 3 6 ( 0 . 0 2 3 8 ) 0 . 0 1 8 4 ( 0 . 0 1 8 1 ) 0 . 0 1 0 1 ( 0 . 0 1 0 2 ) 0 . 0 0 1 7 ( 0 . 0 0 2 0 )

3 0 0 . 0 1 5 9 ( 0 . 0 1 6 7 ) 0 . 0 1 6 1 ( 0 . 0 1 5 8 ) 0 . 0 1 2 1 ( 0 . 0 1 2 0 ) 0 . 0 0 6 7 ( 0 . 0 0 6 8 ) 0 . 0 0 1 2 ( 0 . 0 0 1 3 )

5 0 0 . 0 0 9 9 ( 0 . 0 1 0 0 ) 0 . 0 0 9 6 ( 0 . 0 0 9 5 ) 0 . 0 0 7 1 ( 0 . 0 0 7 2 ) 0 . 0 0 4 0 ( 0 . 0 0 4 1 ) 0 . 0 0 0 8 ( 0 . 0 0 0 8 )

1 0 0 0 . 0 0 5 0 ( 0 . 0 0 5 0 ) 0 . 0 0 4 9 ( 0 . 0 0 4 8 ) 0 . 0 0 3 6 ( 0 . 0 0 3 6 ) 0 . 0 0 2 0 ( 0 . 0 0 2 0 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 )

2 0 0 0 . 0 0 2 5 ( 0 . 0 0 2 5 ) 0 . 0 0 2 4 ( 0 . 0 0 2 4 ) 0 . 0 0 1 8 ( 0 . 0 0 1 8 ) 0 . 0 0 1 0 ( 0 . 0 0 1 0 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

5 0 0 0 . 0 0 1 0 ( 0 . 0 0 1 0 ) 0 . 0 0 1 0 ( 0 . 0 0 1 0 ) 0 . 0 0 0 7 ( 0 . 0 0 0 7 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 ) 0 . 0 0 0 1 ( 0 . 0 0 0 1 )

2 0 2 0 0 . 0 2 4 2 ( 0 . 0 2 4 9 ) 0 . 0 2 6 3 ( 0 . 0 2 3 5 ) 0 . 0 1 8 7 ( 0 . 0 1 7 5 ) 0 . 0 0 9 9 ( 0 . 0 1 0 1 ) 0 . 0 0 1 9 ( 0 . 0 0 2 1 )

3 0 0 . 0 1 6 6 ( 0 . 0 1 6 6 ) 0 . 0 1 7 9 ( 0 . 0 1 5 6 ) 0 . 0 1 1 9 ( 0 . 0 1 1 7 ) 0 . 0 0 6 4 ( 0 . 0 0 6 7 ) 0 . 0 0 1 4 ( 0 . 0 0 1 4 )

5 0 0 . 0 1 0 4 ( 0 . 0 1 0 0 ) 0 . 0 1 0 3 ( 0 . 0 0 9 4 ) 0 . 0 0 7 0 ( 0 . 0 0 7 0 ) 0 . 0 0 4 1 ( 0 . 0 0 4 0 ) 0 . 0 0 0 8 ( 0 . 0 0 0 9 )

1 0 0 0 . 0 0 5 3 ( 0 . 0 0 5 0 ) 0 . 0 0 4 9 ( 0 . 0 0 4 7 ) 0 . 0 0 3 5 ( 0 . 0 0 3 5 ) 0 . 0 0 2 1 ( 0 . 0 0 2 0 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 )

2 0 0 0 . 0 0 2 9 ( 0 . 0 0 2 5 ) 0 . 0 0 2 4 ( 0 . 0 0 2 3 ) 0 . 0 0 1 8 ( 0 . 0 0 1 7 ) 0 . 0 0 1 1 ( 0 . 0 0 1 0 ) 0 . 0 0 0 2 ( 0 . 0 0 0 2 )

5 0 0 0 . 0 0 1 1 ( 0 . 0 0 1 0 ) 0 . 0 0 1 0 ( 0 . 0 0 0 9 ) 0 . 0 0 0 7 ( 0 . 0 0 0 7 ) 0 . 0 0 0 4 ( 0 . 0 0 0 4 ) 0 . 0 0 0 1 ( 0 . 0 0 0 1 )

If ~ ) then, using (1.4.6) of Chapter 1, the circular random

variable Oç. =7^ (mod2;z') has the density, expressed as a function of the centred 

parameters, given by

177



Chapter 6 - The Wrapped Skew-normal Distribution on the Circle

(l + c V r f i

1

(l + c V f f
''e  + 2 m I

xO cy,1/3

;

(6.4.8)

where 0< ^ < 2n,-<=  ̂< cr > 0,-0.99527 <y^ < 0.99527, b = (2/;r)^^̂  and 

c = {2/(4-;r)y^^. We will say that is distributed according to the WSNC 

distribution with centred parameters ), and denote the fact using the

notation dç. ~ WSNCc(//^,cr,y^ ).

Having obtained method of moments estimates of Pq, p  and /?g » can

transform them to obtain estimates of the direct parameters ^  ( mod 2;r), rj and X

as described in Section 6.4.2. Using the results in Section 1.2.3 of Chapter 1, 
estimates for the centred parameters can be calculated from those for the direct 
parameters using the relations

(m od2;r)=^(m od27r)+bijS,

a  = J]{l-b'^S^y^, (6.4.9)

bS^{2b^-l)
r ,  =

( i - b ^ s T '

In order to illustrate the forms taken by the sampling distributions obtained 
using this approach, in Figures 6.7 we provide histograms of the estimates of the 
direct and centred parameters obtained by transforming the estimates of the 
circular parameters whose sampling distributions were portrayed in the three 
histograms appearing in the left-hand side of Figure 6.3. Despite the perfectly 
regular nature of those original three histograms, the corresponding sampling 
distributions of the direct and centred parameters are, in general, not nearly as 

appealing. Specifically, those for S  and ŷ  are bimodal, while those for rj and G

are highly skew. Although such sampling behaviour does not necessarily 
inconvenience the point estimation of the relevant parameters, it clearly has 
important implications for other forms of inference such as confidence interval 
construction and hypothesis testing, at least if classical approaches to inference are 
to be employed. Of course, such irregular sampling behaviour is immaterial for
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computer intensive methods of inference such as the bootstrap and Monte Carlo 
significance tests.

a ) d)
0 .6 -

0 .5 -

% 0 .4 -

fl 0 .3 -

0.2 -

0 .1-

0-
Estimate of xi

b)

c )

0 .7 -
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0 .2 -

0 .1 -

0-
Estimate of eta

4 -

3 -

I
1-

0-
Estimate of delta

0 .6 -

0 .5 -

m 0 .3 -

0 .2 -

0 .1 -

0-
3■2 0 1 
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2-3 ■1
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e )

f)

2-1

0-
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0 .5 -
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0 .1-
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Estimate of gamma-1

Figure 6.7 Empirical sampling distributions of the method of moments 
estimates of the direct parameters: a) ^ (mod 2n), b) rj and c) Ô, and the centred 
parameters: d) (mod 271), e) <r and f) ŷ , obtained using transformation of the 
estimates of the circular parameters displayed in Figure 6.3a, b and c.

6.5 M axim um  L ikelihood E stim ation

From our work on moment based inference in the previous section, there are three 
parametrizations which one might contemplate using within the general 
framework of maximum likelihood (ML) estimation. The circular parametrization 
rules itself out as the likelihood function cannot be expressed analytically as a 
function of the circular parameters. In addition, it is not generally advisable to use
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the direct parametrization for the reasons related to its parameter redundancy for 
the normal distribution discussed in Section 1.4.1.2 of Chapter 1. Thus, as on the 
line, we advocate the use of the centred parametrization.

Using (6.4.8), it follows that, for a random sample of size n, 6_ç̂ = ],

from the WSNC distribution with centred parameters a  and Y\ , the log- 

likelihood is given by

I \6 ç^= n \n 2 -n \n (7 -^ \n ( l  + c^yll^)

1=1

1 (6.5.1)

x O
cy,1/3

1/2
+ 2jir //l ^^1/3

Numerical methods of optimization must be employed in order to maximize (6.5.1) 
and hence identify the maximum likelihood estimates. In practice, the infinite 
summation in (6.5.1) can be reduced to include just a small number of its central 
terms. The central three terms suffice for most applications, whilst the first seven 
central terms are more than adequate for data sampled from even the most 
dispersed of parent populations.

Our approach to maximizing (6.5.1) was similar to that described in Section
1.4.2.2 of Chapter 1 for the general skew-normal distribution on the line. We used 
the Nelder-Mead simplex combined with a grid of starting values. The use of a grid 
of initial values rather than, say, the estimates obtained from method of moments 
estimation as the sole starting values, is advisable as, firstly, the method of 
moments estimates of the centred parameters do not necessarily provide good 
initial values for the optimization process, and, secondly, because multiple maxima 
can occur on the log-likelihood surface. In Figure 6.8 we illustrate the general lack 
of any strong relation between the MM estimates of the centred parameters and 
their ML counterparts when the parent population is highly dispersed. The 
estimates displayed in the three scatterplots making up this figure are those 
obtained from the same 3000 simulated samples of size 100 used to derive the 
sampling distributions of the MM estimates portrayed in the three histograms 
making up the left-hand side of Figure 6.3, and those of Figure 6.7. We note, 
however, that as the concentration of the parent WSNC distribution increases, so
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does the strength of the relationships between the MM and ML estimates of the 
centred parameters.

•*  .

2 3 4 5
MM estimate of sigma

- 2 - 1 0 1 2  
MM estimate of mu-L

MM estimate of gamma-1

Figure 6.8 S c a t t e r p l o t s  o f  t h e  M L  v e r s u s  t h e  M M  e s t i m a t e s  o f  t h e  c e n t r e d

p a r a m e t e r s :  a )  ( m o d  2 ; ^ ) ,  b )  c r  a n d  c )  Y\-> o b t a i n e d  f r o m  t h e  s a m e  3 0 0 0

s i m u l a t e d  s a m p l e s  o f  s i z e  1 0 0  u s e d  i n  t h e  p r o d u c t i o n  o f  t h e  l e f t - h a n d  s i d e  o f  

F i g u r e  6 . 3 ,  a n d  F i g u r e  6 . 7 .  T h e  v a l u e s  o f  t h e  c e n t r e d  p a r a m e t e r s  f o r  t h e  p a r e n t

W S N C  d i s t r i b u t i o n  a r e  =  0 ,  c r =  1 . 5 5 1 8  a n d  -  0 .

During the process of optimization it is also necessary to check that the 
maximum of the log-likelihood function does not correspond to a wrapped half­
normal distribution. For reasons of simplicity, and as parameter redundancy is not 
an issue on the relevant boundaries of the parameter space, this check can be 
carried out using numerical optimization of the log-likelihood function expressed in 

terms of the direct parameters with X set equal to ± o o . This representation of the 

log-likelihood function is easily derived from (6.3.1). Once more, only a small 
number of the central terms making up the infinite summation appearing in the 
resulting log-likelihood need to be used in the optimization process. Again, we 

recommend the use of a range of starting values, in this case, for ^ and rj.
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Figure 6.9 Empirical sampling distributions of the maximum likelihood 
estimates of the direct parameters: a) ^ (mod 2;r), b) rj and c) S, and the centred 
parameters: d) jû  (mod 271), e) <j and f) for the same 3000 samples of size 100 
used in the production of Figure 6.7.

Clearly, once ML estimation has been employed to obtain estimates of the 
centred parameters, these estimates can be transformed to obtain estimates of the 
direct or circular parameters, as and when required. The direct parameters can be 
calculated from the centred ones using the relations

^ ( mod 2;r) = //l ( mod 27t) - cyl^̂ cr,

T] = (j{i+

À  =
1/3

1/2
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The estimates of the circular parameters can then be calculated from those for the 
direct parameters using Equations (6.4.2)-(6.4.4) of Section 6.4.2. We note however 
that the sampling distributions of the estimators for all three parametrizations are 
not, in general, particularly appealing. To illustrate this fact, in Figure 6.9 we 
display the sampling distributions of the individual ML estimates of the direct and 
centred parameters obtained for the same 3000 simulated samples of size 100 used 
previously in the production of Figures 6.3, 6.7 and 6.8. In Figure 6.10 we portray 
the sampling distributions of the corresponding estimates of the circular 
parameters. A comparison of the histograms represented in these two figures with 
their counterparts in Figures 6.7 and 6.3, respectively, provides an indication of the 
similarities, as well as the differences, that exist between the sampling 
distributions of the MM and ML estimates of the various parameters.

a ) b)
1.4-(

1.2 -

1.0 -

0 .4 -

0 .2 -

0 -

Estimate of mu-C

6“
5 -

4—

!3 -

2 -

1 -

0 -

0.50.3
Estimate of rho

0.40.1 0.2

c )

J L
-0.15 -0.10 -0.05 0 0.05 0.10 0.15

Estimate of beta2-bar

Figure 6.10 Empirical sampling distributions of the maximum likelihood
estimates of the circular parameters: a) jUq, h) p and c) P2  > for the same 3000
samples of size 100 used to produce the histograms making up the left-hand side 
of Figure 6.3.
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6.6 D eta iled  E m pirical C om parison o f MM and ML E stim ation

As an extension of the Monte Carlo experiment described in Section 6.4.3, we used 
simulation to compare the performance of method of moments and maximum 
likelihood estimation in greater detail. In order to be consistent with the 
parametrization used in Section 1.4.2.3 of Chapter 1, in Tables 6.8-6.10 we present, 
individually, the results obtained for the estimates of the centred parameters. 
Given that this parametrization is the one advocated for use with ML estimation, 
whereas our approach to MM estimation is based on the circular parametrization, 
one might perhaps expect our decision to represent the results for the centred 
parameters to be favourable towards ML estimation.

Table 6.8 Bias and, in brackets, MSE for the MM and ML estimates of For
each {ji, p, Â) combination the bias and MSE values were calculated using 3000 
simulated samples of size n from the WSNC distribution with ^=0 and p and À as 
specified.

p 0.3 0.5 0.7 0.9
1 n MM ML MM ML MM ML MM ML

0 20 0.0308 0.0101 -0.0070 0.0091 0.0049 0.0037 0.0013 0.0001
(1.2455) (1.1744) (0.1975) (0.2437) (0.0421) (0.0474) (0.0123) (0.0112)

50 -0.0031 0.0223 -0.0046 -0.0045 0.0057 0.0037 -0.0024 -0.0006
(0.9240) (1.3168) (0.0659) (0.1083) (0.0170) (0.0161) (0.0057) (0.0042)

100 -0.0247-0.0144 0.0003 0.0041 0.0017 0.0014 0.0005 0.0001
(0.4941) (1.1192) (0.0328) (0.0192) (0.0095) (0.0077) (0.0036) (0.0021)

2 20 -0.2183 -0.2494 -0.0313 -0.0473 0.0162 -0.0089 0.0198 -0.0052
(1.3544) (1.2750) (0.2108) (0.2697) (0.0417) (0.0490) (0.0120) (0.0109)

50 -0.1793 -0.1302 -0.0124 -0.0136 0.0212 -0.0062 0.0297 -0.0033
(0.9335) (1.3401) (0.0707) (0.1216) (0.0162) (0.0156) (0.0058) (0.0043)

100 -0.1490 -0.0941 0.0043 -0.0006 0.0265 -0.0017 0.0365 -0.0021
(0.5334) (1.1550) (0.0322) (0.0392) (0.0091) (0.0076) (0.0037) (0.0022)

5 20 -0.4773 -0.4867 -0.0342 -0.0746 0.0233 -0.0139 0.0337 0.0003
(1.4813) (1.3278) (0.2463) (0.2157) (0.0472) (0.0495) (0.0122) (0.0114)

50 -0.2527 -0.1576 0.0004 0.0057 0.0248 -0.0082 0.0375 -0.0061
(0.9444) (1.1149) (0.0733) (0.0793) (0.0170) (0.0154) (0.0055) (0.0042)

100 -0.1440 -0.0294 0.0099 0.0045 0.0245 -0.0039 0.0378 -0.0030
(0.4677) (0.6819) (0.0329) (0.0276) (0.0091) (0.0075) (0.0035) (0.0020)

20 20 -0.5567 -0.5185 -0.0354 -0.0403 0.0353 0.0202 0.0364 0.0093
(1.4776) (1.1467) (0.2364) (0.1312) (0.0493) (0.0378) (0.0121) (0.0105)

50 -0.2670 -0.1585 -0.0085 -0.0165 0.0213 0.0027 0.0387 0.0005
(0.9471) (0.6153) (0.0784) (0.0428) (0.0195) (0.0151) (0.0057) (0.0040)

100 -0.0947 -0.0338 -0.0064 -0.0001 0.0211 -0.0039 0.0375 -0.0031
(0.4578) (0.2536) (0.0378) (0.0199) (0.0094) (0.0070) (0.0035) (0.0020)
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Table 6.9 Bias and, in brackets, MSE for the MM and ML estimates of (J. For 
each in, p, Â) combination the bias and MSE values were calculated using 3000 
simulated samples of size n from the WSNC distribution with ^ = 0  and p  and Â as 
specified.

p  0.3 0.5 0.7 0.9
X n MM ML MM ML MM ML MM ML

0 20 0.3271 0.1015 0.0239 0.0661 0.0472 -0.0105 -0.0531 0.0032
(1.1693) (0.1464) (0.1269) (0.0730) (0.0282) (0.0256) (0.0081) (0.0062) 

50 0.2621 0.3540 0.0015 0.0689 -0.0361 -0.0008 -0.0389 -0.0021
(0.5498) (0.3055) (0.0257) (0.0448) (0.0096) (0.0092) (0.0038) (0.0042) 

100 0.1346 0.3450 0.0085 0.0241 -0.0334 -0.0063 -0.0322 -0.0027
(0.1127) (0.2836) (0.0112) (0.0162) (0.0051) (0.0038) (0.0022) (0.0011)

2 20 0.3313 0.0646 -0.0030 0.0401 -0.0511 0.0075 -0.0601 -0.0019
(1.2978) (0.1472) (0.1160) (0.0672) (0.0278) (0.0266) (0.0093) (0.0067) 

50 0.1791 0.2819 -0.0210 0.0562 -0.0393 0.0021 -0.0469 -0.0021
(0.4463) (0.2574) (0.0262) (0.0427) (0.0111) (0.0109) (0.0045) (0.0027) 

100 0.0810 0.2948 -0.0211 0.0165 -0.0412 -0.0070 -0.0438 -0.0022
(0.1260) (0.2593) (0.0133) (0.0180) (0.0064) (0.0044) (0.0031) (0.0013)

5 20 0.2261 0.1018 -0.0248 -0.0243 -0.0617 -0.0291 -0.0644 -0.0111
(1.4629) (0.1440) (0.1371) (0.0600) (0.0336) (0.0259) (0.0105) (0.0066) 

50 0.0953 0.1294 -0.0320 0.0158 -0.0457 -0.0009 -0.0573 -0.0009
(0.5013) (0.1971) (0.0355) (0.0337) (0.0135) (0.0108) (0.0058) (0.0029) 

100 -0.0100 0.1177 -0.0309 0.0071 -0.0398 -0.0016 -0.0564 -0.0016
(0.1505) (0.1449) (0.0175) (0.0172) (0.0078) (0.0054) (0.0045) (0.0015)

20 20 0.0366 -0.2473 -0.0337 -0.0846 -0.0517 -0.0490 -0.0694 -0.0288
(1.1878) (0.1816) (0.1468) (0.0548) (0.0341) (0.0223) (0.0118) (0.0065) 

50 -0.0765 -0.0384 -0.0447 -0.0306 -0.0472 -0.0146 -0.0629 -0.0080
(0.6889) (0.1250) (0.0784) (0.0223) (0.0151) (0.0092) (0.0067) (0.0024) 

100 -0.0135 -0.0050 -0.0380 -0.0066 -0.0381 -0.0024 -0.0609 -0.0027
(0.1942) (0.0739) (0.0207) (0.0119) (0.0094) (0.0044) (0.0051) (0.0013)

The results in the three tables are heavily conditioned by the fact that, as both n 

and p  decrease, the fitted distributions obtained from MM and ML estimation are, 

or effectively are, wrapped half-normal, whatever the degree of asymmetry of the 
parent population. This fact is most clearly reflected in the content of Table 6.10. 

As can be appreciated from that table, for small p-values the problem of boundary

ML estimates of /j is more acute than that of inadmissible MM estimates of ,

particularly when n is small. As both n and p  increase, the frequency of

inadmissible MM estimates for outstrips the corresponding frequency of

boundary ML estimates. Clearly, if the ML estimate of ŷ  is a boundary estimate it

follows that those for and (J correspond to the best fitting wrapped half-normal

distribution. It would appear reasonable to interpret an inadmissible MM estimate
1 8 5
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Table 6.10 Performance measures for the MM and ML estimates of The
measures given are: mean; (mean squared error); {percentage of inadmissible or 
boundary estimates, respectively}; [percentage of samples for which MM estimate 
was inadmissible and ML estimate was a boundary estimate]. For each (n, p, À) 
combination the measures were calculated using 3000 simulated samples of size n 
from the WSNC distribution with ^= 0 and p  and X as specified.

p  0.3 0.5 0.7 0.9
A n MM ML MM ML MM ML MM ML

0 20 -0.0036 -0.0016 0.0028 0.0083 -0.0008-0.0087 -0.0083 -0.0028
(0.6786) (0.9463) (0.5425) (0.8320) (0.4442) (0.6143) (0.4327) (0.5763) 
(42.57) (94.23) (27.67) (78.90) (19.67) (52.63) (22.87) (48.10)

[41.77] [24.27] [13.63] [14.40]
50 -0.0054 0.0162 0.0046 -0.0025 0.0032 -0.0028 -0.0267 -0.0143

(0.6130) (0.8759) (0.3661) (0.4877) (0.2404) (0.2147) (0.2514) (0.1854) 
(28.20) (81.57) (8.83) (30.87) (2.47) (7.40) (6.63) (5.07)

[25.63] [3.93] [0.53] [0.93]
100 -0.0181 -0.0143 -0.0099 -0.0101 0.0021 0.0034 0.0045 0.0038

(0.4967) (0.7015) (0.2289) (0.2308) (0.1368) (0.0865) (0.1412) (0.0727)
(13.10) (52.60) (1.40) (6.00) (0.40) (0.23) (0.90) (0.20)

[8.90] [0.20] [0] [0]

2 20 -0.4022 -0.4165 -0.2106 -0.2054 -0.0716 -0.0716 -0.0231 -0.0323
(0.6194) (0.6200) (0.4652) (0.4971) (0.3284) (0.3679) (0.3133) (0.3423)
(45.37) (95.60) (29.03) (79.47) (26.47) (59.23) (35.27) (55.27)

[44.57] [25.83] [19.10] [23.17]
50 -0.3219 -0.3312 -0.1204 -0.1100 0.0192 -0.0167 0.1003 -0.0101

(0.5886) (0.5820) (0.3057) (0.3423) (0.1783) (0.1568) (0.1906) (0.1328)
(27.33) (80.93) (11.73) (36.87) (11.73) (12.50) (25.40) (9.27)

[24.27] [6.13] [2.93] [4.40]
100 -0.2771 -0.2940 -0.0575 -0.0695 0.0561 -0.0177 0.1833 -0.0010

(0.5206) (0.5255) (0.1905) (0.1792) (0.0991) (0.0659) (0.1336) (0.0546)
(13.60) (55.33) (4.97) (8.33) (4.67) (0.87) (21.47) (0.73)

[9.87] [0.93] [0.17] [0.43]

5 20 -0.6541 -0.6801 -0.3201 -0.3016 -0.1354 -0.0397 -0.0948 -0.0688
(0.7047) (0.4377) (0.3979) (0.2541) (0.1929) (0.1496) (0.1704) (0.1240) 
(48.43) (95.77) (41.07) (85.27) (48.50) (66.27) (59.77) (77.53)

[47.37] [37.00] [36.40] [49.17]
50 -0.4131 -0.4196 -0.1351 -0.0751 -0.0154 -0.0122 0.0569 -0.0007

(0.5190) (0.3736) (0.1601) (0.1585) (0.0599) (0.0427) (0.0419) (0.0385) 
(37.73) (81.53) (36.07) (44.77) (45.90) (35.77) (73.23) (36.17)

[33.03] [19.73] [19.60] [28.53]
100 -0.2546 -0.2429 -0.0486 -0.0300 0.0426 -0.0042 0.1067 0.0055

(0.3400) (0.2574) (0.0640) (0.0415) (0.0248) (0.0159) (0.0231) (0.0140) 
(29.93) (56.07) (34.83) (20.20) (46.63) (9.97) (81.20) (8.03)

[19.70] [9.10] [5.27] [7.07]

(continued overleaf)
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Table 6.10 (Continued)

p 0.3 0.5 0.7 0.9
A n MM ML MM ML MM ML MM ML

20 20 -0.6463 -0.5991 -0.3379 -0.2041 -0.1698 -0.0411 -0.1570 -0.0631
(0.6539) (0.3186) (0.3458) (0.1284) (0.1384) (0.0500) (0.1265) (0.0492) 
{52.60} (96.77) (48.97) (93.60) (61.00) (92.07) (67.73) (94.40)

[51.83] [47.40] [57.80] [65.47]
50 -0.3609 -0.2571 -0.1563 -0.0377 -0.0703 -0.0050 -0.0279 -0.0034

(0.4119) (0.1940) (0.1093) (0.0472) (0.0344) (0.0065) (0.0163) (0.0052) 
(49.50) (90.30) (52.30) (80.97) (65.63) (87.50) (85.83) (87.73)

[46.03] [44.83] [58.03] [75.53]
100 -0.1741 -0.0790 -0.0825 -0.0106 -0.0260 0.0001 -0.0009 -0.0003 

(0.1666) (0.0557) (0.0356) (0.0063) (0.0074) (0.0007) (0.0025) (0.0007) 
(53.17) (82.20) (56.23) (63.13) (72.83) (65.53) (93.77) (64.13)

[45.80] [36.83] [47.67] [60.00]

of /i as indicating that the parent population is half-normal. However, the 

associated MM estimates of and a  will not generally be equal to the MM

estimates obtained from fitting a wrapped half-normal distribution directly.
The tendencies of the two types of estimation to lead to solutions corresponding 

to wrapped half-normal distributions are reflected strongly in the MSEs of the 
individual estimates. When the underlying distribution is close to symmetric and 
highly dispersed, the MM estimates are competitive with, if not superior to, their 
ML counterparts. However, when the parent population is highly skew, or 
moderately skew but concentrated, the estimates obtained from ML estimation are 
superior.

6.7 T ests for L im iting  Cases

As mentioned in Section 6.3.1, there are five limiting cases of the WSNC 
distribution. These are the: i) point, ii) uniform, iii) wrapped normal, iv) wrapped 
positive half-normal and v) wrapped negative half-normal, distributions. These five 
cases warrant special consideration as they can he expressed in terms of fewer 
parameters than the three of the WSNC class. Case i) is pathological and is easily 
identified. Tests for uniformity are legion; see, for example, Mardia & Jupp (1999, 
Section 6.3). Here we propose new procedures for testing for departures within the 
WSNC class from the other three limiting cases of the distribution. All three
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procedures are based on the large-sample results for the sampling distribution of 

Z?2 established in Section 3.3 of Chapter 3.

6.7.1 A Large-sample Test for an Underlying Wrapped Normal Distribution
6.7.1.1 Derivation of the Test
Using the results in Equations (3.3.1) and (3.3.2), the relations (6.4.3) and (6.4.4) 

and the identities in (6.4.7), the sampling distribution of under the null 

hypothesis of an underlying wrapped normal, i.e. a WSNC g( ^ ,O ) ,  distribution 

is asymptotically normal with mean 0 and variance

j_ 
n

with p - e ^ ^  . Estimating p  using R, a moment based estimate of vai^(z?2 ) is 

given by

vâr„ (^2 )= h  ( 1 -  )+ ( I  * -  R ̂  - 1) }.

Thus, a large-sample test for an underlying wrapped normal distribution can be 
based on the statistic

\  . (6.7.1)
{vâr„(6j

Large absolute values of (6.7.1) compared with the quantiles of the standard 
normal distribution lead to the rejection of the null hypothesis of an underlying 
wrapped normal distribution in favour of some skew alternative within the WSNC 
class.

6.7.1.2 The Asymptotic Power of the Test
For data sampled from a skew member of the WSNC class, the asymptotic 

distribution of Z?2 is again normal but with

£,(&,)= A + -
n

and

( ^ a ) = -

 ̂ A  A  .
p p" p''

(6.7.2)

var, ^
n

(6.7.3)
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For a specific WSNCp(^,77,/l) distribution, the values of (6.7.2) and (6.7.3) can be 

calculated using (6.4.3), (6.4.4) and (6.4.7). Given these asymptotic results, together 

with those for bj under the null hypothesis, the asymptotic power of the test for a 

significance level of 100 a  % is

1 - 0
{var,

(è j )

{var, (fcj
. (6.7.4)

6.7.1.8 Empirical Investigation of the Operating Characteristics of the Test
In order to investigate the ability of the test to maintain the nominal significance 
level, and its power against skew alternatives from the WSNC class, we performed 
a further simulation experiment. These two fundamental operating characteristics 

of the test were explored using simulated samples of size, n, equal to 20, 30, 50, 

100, 200 and 500, drawn from WSNC distributions with A-values of 0, 2, 5 and 

and yOvalues of 0.1(0.05)0.95. For each (n, p, À) combination we simulated 5000 

samples of size n from the WSNC distribution with mean direction 0, mean 

resultant length p  and skewness parameter À,. Each empirical size, or power, value, 

as appropriate, was established by performing the test for each of the 5000 samples 
concerned and noting the proportion of such samples for which the null hypothesis 
was rejected. The nominal significance levels investigated were 10%, 5% and 1%, 
although here we present results for just the 5% level.

The results for the test’s ability to maintain the nominal significance level are 
represented graphically in Figure 6.11. Those for the sample sizes of 30 and 200 
have been omitted from the figure in order to improve its clarity. We note that the 
standard error of each empirical result represented in this figure is approximately 
0.003. As is evident from a consideration of the content of this figure, the test 
maintains the nominal significance level very well indeed, even for a sample size as 
small as 20.
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Figure 6.11 Estimated size of the test for the null hypothesis of an underlying
wrapped normal distribution. Sample sizes represented are:   {n = 20); —
— — (n = 50); — • — (n = 100); {n = 500). The dotted horizontal line
delimits the nominal significance level of « = 0.05.
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-)ofFigure 6.12 Theoretical asymptotic power (..........) and empirical power (—
the test for the null hypothesis of an underlying wrapped normal distribution 
when the parent population is WSNC with: a) À = 2, b) À = 5, c) À = °°. The six 
curves of each type correspond to sample sizes of 20, 30, 50, 100, 200 and 500, the 
power increasing with sample size. The dashed horizontal line delimits the 
nominal significance level of a = 0.05.
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Figure 6.12 provides a graphical representation of the empirical results obtained 

for the power of the test for the samples drawn from WSNC distributions with X 

equal to 2, 5 and oo. For comparative purposes, we have also included in the three 

plots making up this figure the corresponding theoretical asymptotic power 
functions calculated using (6.7.4). In general, the agreement between the empirical 
and theoretical results is very good, the largest differences between the two 
occurring for highly concentrated, and highly skew and dispersed, cases of the 
WSNC distribution. As is to be expected, such disparities tend to be most 
pronounced for samples of small size. A comparison of the results portrayed in this 
figure with their counterparts in Figure 4.4 provides an assessment of the gain in 
power of the present test over that of the omnibus test for symmetry introduced in 
Section 4.3 of Chapter 4.

6.7.2 A Large-sample Test for an Underlying Wrapped Half-normal 
Distribution 

6.7.2.1 Derivation of the Test
In the definition of a test for an underlying wrapped (positive) half-normal 

distribution based on the asymptotic results for the sampling distribution of 

introduced in Chapter 3, one first needs to specify how the direct parameter T] 

might be estimated. From (6.4.3), when 1, we have

= « '’' { 1+ 3 " ('?)}•

Estimating p  using the moment estimate R, an estimate, fj, of r] is provided by 

the solution to

F - e " ' ’ {l + 3 ^ (/7 )}  = 0 , (6.7.5)

which must be solved using numerical methods.

An estimate of the theoretical value of ^ 2  an assumed underlying wrapped 

(positive) half-normal distribution, ŷ2 ( 7 )? say, can then be calculated from (6.4.4) 

with S=1  and rj replaced by fj. Similarly, an estimate of the large-sample variance

of Z?2 for an underlying wrapped (positive) half-normal distribution, vâr  ̂(^2 )» say, 

can be obtained using (6.7.3) together with (6.4.3), (6.4.4) and (6.4.7), with 5  set 

equal to 1, and T] equal to fj.
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A large-sample test for an underlying wrapped (positive) half-normal 
distribution can then be based on the statistic

2̂ -  A  ( 7 ) 
{ v â r „ ( ï j f "

(6.7.6)

Large positive values of (6.7.6) compared with the upper quantiles of the standard 
normal distribution lead to the rejection of the hypothesis of an underlying 
wrapped (positive) half-normal distribution in favour of some less positively skew 
alternative within the WSNC class.

For an equivalent test for an underlying wrapped negative half-normal 
distribution, the test statistic becomes

4  + A  ( 7 )
{varo (^2 ) T

(6.7.7)

Here, large negative values of (6.7.7) compared with the lower quantiles of the 
standard normal distribution lead to the rejection of the hypothesis of an 
underlying wrapped negative half-normal distribution in favour of some less 
negatively skew alternative within the WSNC class.

G.7.2.2 The Asymptotic Power of the Test
Using the asymptotic results of Chapter 3 once more, under the null hypothesis of 
an underlying wrapped (positive) half-normal distribution, equivalent to a 

WSNCd(^ ,/7,°®) distribution, the asymptotic distribution of is normal with 

mean

4 (6 2  ) = A + -n p  p" p"
\

and variance

van l-cc.
-2^2 -  A  +

2a. (1-^2  )1 
P I

(6.7.8)

(6.7.9)

The mean resultant length and the central trigonometric moments appearing in 

(6.7.8) and (6.7.9) can be calculated using (6.4.3), (6.4.4) and (6.4.7) with 5 set equal 

to 1.
Under the alternative hypothesis of an underlying WSNC distribution with 

/19̂ 00, the asymptotic distribution of is normal with mean A (^2 )
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variance vaij (z?2 ). The values of A (^2 ) varj (^2 ) can be obtained in the same 

way as described for £'o(z>2 ) and varo(z?2 ), the only difference being that the 

equivalent value of S corresponding to the specified value of À should be used 

instead of = 1. It follows that the asymptotic power of the test for a significance 

level of 100 or % is given by

Za{varo )F - ^ 1  (*2 )+ 4 )1 - 0
{var, {b, ) F

(6.7.10)

6.7.2.S Empirical Investigation of the Operating Characteristics of the Test
As in Section 6.7.1.3, we used simulation to investigate the present test’s ability to 
maintain the nominal significance level and its power. This investigation made use 

of simulated samples of size, n, equal to 20, 30, 50, 100, 200 and 500 drawn from 

WSNC distributions with A-values of 5, 2, 0, - 2, -5 and -°o, and p-values of 

0.3(0.05)0.95. The lower value of p  was set at 0.3 so as to avoid potential overflow 

problems in FORTRAN during the computation of the values of the function 3(*) 

required in the calculation of the central trigonometric moments appearing in

(6.4.7). The empirical size, or power, value corresponding to a particular (n, p, X) 

combination was computed using 5000 samples of size n simulated from the WSNC 

distribution with mean direction 0, mean resultant length p  and skewness 

parameter X. Again, the nominal significance levels investigated were 10%, 5% and 

1%. The results presented below are those obtained for the nominal significance 
level of 5%.

Figure 6.13 provides a graphical representation of the results obtained for the 
empirical size of the test, calculated using the samples simulated from the wrapped 

(positive) half-normal distribution, i.e. the WSNCd(^, 77, ©o) distribution. The 

standard error of any empirical result portrayed in this figure is, at most, 0.0053. 

From this figure we see that, for />values less than 0.6, the test is non­

conservative. However, as the sample size increases, the ability of the test to 

maintain the nominal significance level improves. For /^values in excess of 0.7 the 

test is conservative, its conservatism increasing with the concentration of the 
parent population and the sample size.
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Figure 6.13 Estimated size of the test for the null hypothesis of an underlying
wrapped (positive) half-normal distribution. Sample sizes represented are:-------
~{n = 20);-----------(n. = 30); — * — {n -  50); — • • — {n = 100); — * • • — {n = 200);
 in = 500). The dotted horizontal line delimits the nominal significance level
of « = 0.05.

The empirical results for the power of the test are portrayed in the six plots 
making up Figure 6.14. Also included in these plots are the corresponding 
theoretical asymptotic power functions calculated from (6.7.10). As is to be 
expected, the agreement between the two sets of results improves with increasing 
sample size. Nevertheless, in general, the theoretical asymptotic power tends to 
underestimate the true power of the test. We see that the power of the test 

generally increases with increasing p, before reaching a maximum and

subsequently decreasing as p  increases yet further. This drop off in power as p

tends to 1 is consistent with the corresponding increasing conservatism of the test 
noted previously.

6.T.2.4 A Monte Carlo Variant of the Test
As observed in the previous section, the disparities between the theoretical and 
empirical power results for the large-sample test are often sizeable. Such 
disparities are perhaps to be expected for two principal reasons. Firstly, there is the 

potential source of bias introduced by the need to estimate rj. Secondly, as is 

evident from Figure 6.6f, the normal distribution does not provide a good 

approximation to the sampling distribution of for small sized samples drawn 

from highly skew parent WSNC populations.
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Figure 6.14 Theoretical asymptotic power (..........) and empirical power (---------) of
the test for the null hypothesis of an underlying wrapped (positive) half-normal 
distribution when the parent population is WSNC with: a) A = 5, b) A = 2, c) 
A = 0, d) A = -2, e) A = -5, f) A = -°o. The six curves of each type correspond to 
sample sizes of 20, 30, 50, 100, 200 and 500, the power increasing with sample 
size. The dashed horizontal line delimits the nominal significance level of 
a = 0.05.

Instead of using a test based on a large-sample normal approximation to the 
sampling distribution of (6.7.6) we might choose to use a Monte Carlo version of the 
test which approximates the sampling distribution of an equivalent test statistic 
empirically. Such a variant of the test can be based upon the rank associated with 

the value of 6g for the original data when ordered amongst the values of the same

statistic calculated for simulated samples of the same size from a WSNCo(0, oo) 

distribution with Tj estimated using the solution to (6.7.5). As this computer
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intensive approach to testing obviates the need for a normal approximation, one 
might expect this variant of the test to be capable of maintaining the nominal 
significance level better. However, it is not obvious whether its power will be higher 
than that of the original large-sample version of the test. Also, although the use of 
simulation circumvents potential problems associated with the inadequacy of the 
normal approximation, the need to estimate r] persists.

6.8  An Illu strative  Exam ple

6.8.1 Introduction to the Data
The data set we use to illustrate our methodology was introduced in the 
ornithological literature by Bruderer & Jenni (1990), and consists of the “headings” 
of 1827 birds recorded at an observational post near Stuttgart during the autumnal 
migratory period of 1987. Here, the term “heading” refers to the direction, 
measured in a clockwise direction from magnetic North, of a bird’s body during 
flight. The data in question are listed in their entirety in Appendix 1 and 
summarized in the form of a frequency distribution in Table 6.11. A linear

histogram of the data, converted to radians in [0,2;r) and grouped using class

intervals of width equivalent to 10“, is given in Figure 6.15. From a consideration of 
this linear histogram it is evident that the distribution is negatively skew with a 
modal direction of around 4 radians, or 230“.

Table 6.11 Frequency distribution of the headings of 1827 birds recorded during 
the autumnal migratory period of 1987.

Heading
(degrees)

Frequency Heading
(degrees)

Frequency Heading
(degrees)

Frequency

[0 - 1 0 ) 2 [120-130) 1 0 [240-250) 169
[1 0 - 2 0 ) 4 [130-140) 15 [250-260) 163
[20-30) 4 [140-150) 25 [260-270) 116
[30-40) 3 [150-160) 35 [270-280) 79
[40-50) 3 [160-170) 54 [280-290) 53
[50-60) 4 [170-180) 6 8 [290-300) 25
[60-70) 8 [180-190) 84 [300-310) 9
[70-80) 6 [190-200) 1 2 0 [310-320) 1 2

[80-90) 8 [2 0 0 - 2 1 0 ) 162 [320-330) 6

[90-100) 8 [2 1 0 - 2 2 0 ) 161 [330-340) 6

[1 0 0 - 1 1 0 ) 14 [220-230) 168 [340-350) 6

[1 1 0 - 1 2 0 ) 1 2 [230-240) 2 0 0 [350-360) 5
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Figure 6.15 Histogram of the bird-flight headings together with fitted densities:
 ,MMsolutionWSNCo(4.66, 1.10,-1.79);---------, ML solution WSNC^(4.70,
1 .2 1 , -2.22);------- , ML solution UWSNCg(0.10, 4.56, 0.92, -2.07).

6.8.2 Fit of the WSNC Distribution
When applied, the large sample tests of Section 6.7 emphatically rejected the 
wrapped normal, wrapped positive half-normal and wrapped negative half-normal 
distributions as potential models for the underlying distribution, their respective p- 
values all being effectively equal to 0.

We therefore explored the fit of the wrapped skew-normal distribution on the 
circle. Proceeding as described in Sections 6.4.2 and 6.4.3, the MM solution, 
obtained by estimating the circular parameters of the distribution and then 

transforming to the direct parameters, was found to be WSNCd(4.66, 1.10, -1.79). 

For the ML estimation of the parameters we used the Nelder-Mead simplex to 
optimize the direct parameter representation of the log-likelihood derived from
(6.3.1). The use of this representation of the log-likelihood was not considered 
problematic for these data given the prior rejection of the hypothesis of an 
underlying wrapped normal distribution. The fitted distribution corresponding to 

the ML solution was WSNCd(4.70, 1.21, -2.22), with an associated value of the log- 

likelihood of -2202.06. In Figure 6.15, the densities for these two solutions have 

been overlaid upon the linear histogram of the data. Visually, the densities are very 
similar. However, it is clear that neither density provides a particularly good fit to 
the distribution of the data. Specifically, both fitted densities are incapable of 
simultaneously modelling the peakedness and long ‘tails’ evident in the empirical 
distribution. These visual impressions are supported by the results from chi- 
squared goodness-of-fit analyses. The value of the chi-squared statistic for the MM
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solution, based on 26 class intervals with expected frequencies in excess of 5, was 
244.32. The equivalent value of the test statistic for the ML solution was 152.94. 
Comparing these two values with the quantiles of the chi-squared distribution on 
22 degrees of freedom, the associated p-values are both effectively equal to 0. Hence 
the WSNC distribution is emphatically rejected as a suitable model for these data.

6.8.3 Fit of a Uniform and WSNC Mixture Model
In our search for a plausible model which could adequately model the data, we 
pursued the logic of the following argument. Given the dominant direction of 
migration and the angular spread of the data, it would appear improbable that the 
directions making up the distribution’s tails correspond to birds moving in the 
general direction of migration. It seems more likely that these directions 
correspond to birds pursuing other needs of an avian existence, such as tracking 
down the next meal or pursuing a potential mate. Moreover, as we have no reason 
to assume that the directions followed by such birds are restricted exclusively to 
the tails of the empirical distribution, a circular uniform distribution suggests itself 
as a potential model for the headings of this background of presumably non­
migrating birds. As, overall, the empirical distribution is asymmetric, a skew 
member of the parsimonious WSNC class would appear to be a reasonable model 
for the data making up the remainder of the empirical distribution. Viewed in this 
way, the form taken by the empirical distribution is a consequence of the mixing of 
data from two distinct populations. As there is no additional information which 
might be used to classify the individuals as belonging to one or other of the two 
component distributions, we explored the fit of the model with density

2 ,7 T  T j
(6.8.1)

corresponding to a mixture distribution with circular uniform and WSNC
components. We denote the distribution having this density as

UWSNCg( p, yl), where p denotes the mixing probability and, once more, the

subindex D refers to the direct parametrization.
The ML solution obtained from maximizing the log-likelihood derived from

(6.8.1) was UWSNCd(0.10, 4.56, 0.92, -2.07), the associated value of the log- 

likelihood being -2128.03. The density corresponding to this ML solution is also 

displayed in Figure 6.15. A comparison of this density with the histogram and the 
other two fitted densities represented in that figure provides us with the visual
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impression of an overall improvement in fit. The results obtained from the use of a 
generalized likelihood ratio test also support this impression of an improvement in 
fit over that of the best fitting WSNC distribution. Comparing 

-2(-2202.06 + 2128.03) = 148.06 with the quantiles of the chi-squared distribution

with 1 degree of freedom, the improvement in fit is highly significant, the p-value of 
the test effectively being equal to 0. We also conducted a chi-squared goodness-of-fit 
test in order to investigate the overall fit of the mixture model. Using 33 class 
intervals with expected frequencies in excess of 5, the value of the chi-squared test 
statistic was found to be 34.03 on 28 degrees of freedom. The p-value of around 0.2 
associated with this result confirms our previous impressions regarding the fit of 
the mixture model.

In conclusion, the proposed mixture model provides a much improved fit to the 
empirical distribution and a plausible behavioural model for the data containing 
just one additional parameter to those of the WSNC class. According to the fitted 
density, 10% of the headings correspond to birds making up the circular uniform 
background, and the remaining 90% to birds whose headings are distributed 

according to the WSNCd(4.56, 0.92, -2.07) distribution.

6.9 Sum m ary and D irection s for F uture R esearch

We close the present chapter with a summary of the main points that have so far 
been addressed within it and a discussion of some potential lines for future related 
research.

6 .9 .1  S u m m a r y

Chapters 4 and 5 were dedicated to testing for circular reflective symmetry. In this 
chapter we have addressed the issue as to how one might proceed if the circular 
data under consideration are identified as being drawn from an underlying skew 
distribution. In Section 6.2 we briefly reviewed the asymmetric models which have 
been proposed in the literature for use with circular data, outlining in passing some 
shortcomings of two models proposed by Papakonstantinou (1979) and Batschelet 
(1981).

The remainder of the chapter was devoted to a detailed consideration of the 
wrapped skew-normal distribution on the circle. In Section 6.3 we provided a 
definition of the distribution and derived its fundamental properties such as its 
characteristic function and trigonometric moments.
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Proceeding to a consideration of issues of inference for the distribution, in 
Section 6.4 we described how the parameters of the distribution might be estimated 
using the method of moments. Our approach hinged upon the use of the so-called 
circular parametrization of the distribution involving the mean direction, mean 
resultant length and second central sine moment. These were the circular 
measures for which large-sample inferential procedures were derived in Chapter 3. 
In Section 6.4.2 we gave the relations between the circular and direct parameters, 
and described how the general results of Chapter 3 might be used to conduct 
inference for the circular parameters of the distribution. Various sampling 
properties of the method of moments were investigated in Section 6.4.3. 
Specifically, we presented empirical results obtained from a simulation experiment 
designed to explore the shapes of the sampling distributions of the estimates, the 
validity of the theoretical asymptotic results for the bias and variance of the 
estimates, and the efficacy of bias-correction. These empirical results provided 
evidence of the generally regular forms assumed by the sampling distributions of 
the estimates, and the wide-ranging validity of the theoretical asymptotic bias and 
variance results of Chapter 3 when applied to the estimation of the circular 
parameters of the WSNC distribution. On the other hand, the results obtained for 
the general bias-corrected estimates introduced in Chapter 3 led us to the 
conclusion that their use in the estimation of the circular parameters of the WSNC 
distribution cannot be recommended.

Although the circular parameters of the WSNC distribution may well be of 
interest in their own right, in other contexts the direct, or centred, parameters of 
the distribution will be of greater interest. In Section 6.4.4 we considered the forms 
assumed by the sampling distributions of the estimates of the direct and centred 
parameters obtained by transforming the method of moments estimates of the 
circular parameters. In comparison with the sampling distributions of the latter, 
those for the corresponding estimates of the direct and centred parameters were 
classified as being, in general, far less regular.

Section 6.5 was dedicated to likelihood based methods of estimation. We 
proposed an approach to maximizing the log-likelihood function, expressed in terms 
of the centred parameters, based on a grid based search used in conjunction with 
the Nelder-Mead simplex. We also gave details of how estimates of the direct or 
circular parameters can be obtained by transforming those for the circular 
parameters. In general, the sampling distributions of the resulting estimates were 
found to be unappealing.
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In Section 6.6 we presented empirical results derived from a detailed simulation 
based investigation of the sampling properties of the method of moments and 
maximum likelihood estimates. Generally, the estimates obtained using the 
maximum likelihood method were identified as having superior properties, apart 
from when the underlying distribution is close to symmetric and highly dispersed, 
in which case the method of moments estimates can be superior.

Tests for the limiting cases of the wrapped normal, wrapped positive half-normal 
and wrapped negative half-normal distributions were proposed in Section 6.7. The 

derivation of all three test procedures drew on the large-sample results for 

given in Chapter 3. In Sections 6.7.1.2 and 6.7.2.2 we gave results for the 
theoretical asymptotic power of two of the tests, and in Sections 6.7.1.3 and 6.7.2.3 
presented empirical results for two of their primary operating characteristics. The 
test for an underlying wrapped normal distribution was found to maintain the 
nominal significance level very well, even for sample sizes as small as 20. Also, the 
agreement between the theoretical asymptotic power and the true empirical power 
of the test was identified as being very close. Our large-sample test for an 
underlying (positive) half-normal distribution is somewhat more involved as it 

requires the estimation of the dispersion parameter Tj. We found that this test does 

not hold the nominal significance level well, and that the agreement between its 
theoretical asymptotic power and true empirical power is not particularly good for 
certain sample size and mean resultant length combinations. With a view to 
improving the operating characteristics of this test, in Section 6.7.2.4 we proposed a 
Monte Carlo variant of it.

In order to illustrate certain aspects of the methodology elaborated throughout 
the chapter, in Section 6.8 we presented an analysis of a large data set consisting of 
the headings of migrating birds. Although, on its own, the WSNC distribution was 
found not to adequately model these data, it did provide the major component of a 
parsimonious mixture model which fitted the data well.

6.9.2 Directions for Future Research
In this chapter we have concentrated principally on the basic properties of the 
WSNC class, the point estimation of its parameters using the method of moments 
and maximum likelihood approaches, and tests for three of its limiting cases. 
Clearly, the contributions made within the chapter address only some of the many 
issues of potential interest regarding the WSNC class. It would, for instance, be
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interesting to compare the performance of MM and ML based estimation with that 
of other approaches. In this context, an extension of the work of Liseo (1990) on 
Bayesian inference to deal with data distributed on the circle suggests itself as a 
potentially fruitful line of investigation.

The method of moments based tests for the limiting cases of the WSNC class 

discussed in Section 6.7 are appealing as, being based on 62 , they are relatively 

simple to perform. This is particularly true for the test for an underlying wrapped 
normal distribution. As we saw in Section 6.7.1.3, this test also has good operating 
characteristics. Those for the test for an underlying wrapped half-normal 
distribution are not as impressive. It would therefore be interesting to compare the 
operating characteristics of the large-sample version of this latter test with those of 
the Monte Carlo variant of it described in Section 6.7.2.4. Alternatively, rather 
than use a method of moments based test, another possibility would be to use 
generalized likelihood ratio procedures to test for the limiting cases of the class. 
One inconvenience of such tests is that they require specialist software in order to 
numerically optimize the log-likelihood function of an assumed underlying WSNC 
distribution. Another is that, when testing for an underlying wrapped half-normal 
distribution, the standard asymptotic properties of the generalized likelihood ratio 
statistic cannot be appealed to, a wrapped half-normal distribution corresponding 
to one on the boundary of the parameter space of the WSNC class. Given the form 

of the sampling distribution of the ML estimate of displayed in Figure 6.9c, one 

might also envisage potential problems with applying standard theory to a test for 
an underlying wrapped normal distribution based on the generalized likelihood 
ratio statistic.

Similar comments apply regarding the use of standard likelihood theory in the 
construction of confidence sets for the parameters of the WSNC distribution. In 
contrast, the sampling distributions of the MM estimates are, as we have seen, 
particularly well behaved and the large-sample results of Chapter 3 can be used in 
conjunction with the assumption of an underlying WSNC distribution to easily 
derive confidence regions for the distribution’s circular parameters. If required, 
confidence regions for the direct or centred parameters can be obtained by 
transforming those for the circular parameters.

In testing the goodness-of-fit of the WSNC distribution to the bird migration 
data of Section 6.8, we used the standard chi-squared procedure. Whilst this is 
certainly a relatively easy test to apply, its operating characteristics are known to

2 0 2



Chapter 6 - The Wrapped Skew-normal Distribution on the Circle

depend heavily on the choice of class intervals used in its application. In principle, 

it would be possible to develop variants of Kuiper’s test or Watson’s test for

testing the goodness-of-fit of a WSNC distribution whose parameters have been 
estimated. We note that the only work published specifically on testing the fit of an 
assumed (linear) skew-normal distribution is that of Gupta & Chen (2001). These 
authors provide tables of the distribution function of the standard skew-normal 
distribution which can be used in conjunction with the usual chi-squared or 
Kolmogorov-Smirnov tests to test the fit of a specified standard skew-normal 
distribution.

Although, on its own, the WSNC distribution did not adequately model the bird 
migration data, it did contribute the major component of a mixture model found to 
fit the data well. This fact points up an important potential use of the WSNC 
distribution. Whilst, as, for example, McLachlan & Peel (2000, Chapter 1) show, 
asymmetry can be modelled using mixture models with symmetric component 
distributions, the use of WSNC distributions as components of finite mixture 
models raises the possibility of modelling skew distributed circular data more 
parsimoniously. Of course, this assumes we have no a priori reason for using 
symmetric component distributions in the mixture based modelling of asymmetry. 
Similar arguments apply to the potential role of the WSNC distribution in the 
modelling of multimodal circular data exhibiting asymmetry.

The primary focus of the current chapter has been the WSNC distribution, a 
distribution capable of modelling varying degrees of asymmetry. The methodology 
developed and illustrated in the preceding sections hopefully provides a strong case 
for the potential applicability of the WSNC distribution in the modelling of skew 
circular data. However, in Section 6.2 we referred to two families of distributions 
which, due to their greater flexibility, perhaps have even greater potential in this 
role. An ambitious line of future potential research would be to develop methods of 
inference for the wrapped Pearson and wrapped stable families.

Instead of assuming a given parametric form for an underlying distribution, an 
alternative modern approach to inference is that of empirical likelihood; see, for 
example, Owen (2001). The associated methodology draws heavily on other modern 
methods such as the bootstrap and kernel based density estimation. Although there 
now exists an extensive literature associated with empirical likelihood, we are 
aware of only one application of this methodology in the analysis of directional 
data. Fisher et al. (1996) combine the use of empirical likelihood and the bootstrap
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to construct confidence regions for the mean direction associated with data 
distributed on the surface of the unit sphere.

204



Appendix 1 -  The Bird-flight Headings of Bruderer & Jenni (1990)

A ppendix 1 The B ird-flight H eadings o f B ruderer & 
Jen n i (1990)

The headings, in degrees, are listed in increasing numerical,order.

5 8 14 16 18 19 2 1 24 29 29 33 34 35 44 45 47 52 54
55 55 61 61 62 62 64 67 6 8 69 70 71 72 78 78 78 80 84
85 85 87 87 8 8 89 92 92 95 96 97 98 99 99 1 0 0 1 0 2 1 0 2 1 0 2

103 103 104 104 105 107 108 109 109 109 1 1 0 1 1 0 1 1 1 1 1 1 1 1 2 115 115 116
117 117 118 119 1 2 1 124 124 125 125 125 126 128 128 129 131 133 133 134
134 134 134 135 135 136 137 138 138 139 139 140 142 142 142 142 143 143
143 144 144 144 145 145 146 146 146 147 147 147 148 148 149 149 149 149
151 151 152 152 152 153 153 153 153 153 153 153 154 154 154 154 155 155
155 155 155 155 155 156 156 156 157 157 157 158 159 159 159 159 159 160
160 160 160 161 162 162 162 162 162 162 163 163 163 163 164 164 164 164
164 164 165 165 165 166 166 166 166 166 166 166 166 166 167 167 167 167
167 167 167 168 168 168 168 168 168 168 168 168 168 169 169 169 169 170
170 170 170 170 171 171 171 171 171 171 171 171 171 172 172 172 172 173
173 173 173 173 173 173 173 173 174 174 174 174 174 174 174 175 175 175
175 175 175 176 176 176 176 176 176 176 176 176 177 177 177 177 177 177
177 177 178 178 178 178 178 178 178 179 179 179 179 180 180 180 180 180
180 180 180 180 181 181 181 181 181 181 181 181 181 181 181 181 181 181
182 182 182 182 182 182 182 183 183 183 183 183 184 184 184 184 184 184
184 184 184 184 185 185 185 186 186 186 186 186 186 186 186 186 187 187
187 187 187 187 187 187 187 188 188 188 188 188 188 188 188 189 189 189
189 189 189 189 189 189 189 190 190 190 190 190 190 190 191 191 191 191
191 191 191 191 191 191 191 192 192 192 192 192 192 192 192 192 193 193
193 193 193 193 193 193 193 193 193 193 193 194 194 194 194 194 194 194
194 194 194 194 194 195 195 195 195 195 195 195 195 195 195 195 195 195
195 195 195 196 196 196 196 196 196 196 196 196 196 196 197 197 197 197
197 197 197 197 197 197 197 197 197 197 197 197 198 198 198 198 198 198
198 198 198 198 198 198 199 199 199 199 199 199 199 199 199 199 199 199
199 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 1 2 0 1 2 0 1 2 0 1

2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2

203 203 203 203 203 203 203 203 203 203 203 203 203 204 204 204 204 204
204 204 204 204 204 204 204 204 204 204 204 204 204 205 205 205 205 205
205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 206
206 206 206 206 206 206 206 206 206 206 206 206 206 206 207 207 207 207
207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207
208 208 208 208 208 208 208 208 208 208 208 208 208 208 208 208 209 209
209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209
209 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 1 2 1 1

2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2

2 1 2 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213
213 213 214 214 214 214 214 214 214 214 214 214 214 214 214 215 215 215
215 215 215 215 215 215 215 215 215 215 215 216 216 216 216 216 216 216
216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216
216 216 216 217 217 217 217 217 217 217 217 217 217 217 217 218 218 218
218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218
219 219 219 219 219 219 219 219 219 219 219 219 219 219 219 219 219 219
2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 1

2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 223 223 223 223 223
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223 223 223 223 223 223 223 223 223 224 224 224 224 224 224 224 224 224
224 224 224 224 224 224 224 225 225 225 225 225 225 225 225 225 225 225
225 225 225 225 225 225 225 226 226 226 226 226 226 226 226 226 226 226
226 226 226 226 226 226 226 226 226 226 226 226 226 226 227 227 227 227
227 227 227 227 227 227 227 227 227 228 228 228 228 228 228 228 228 228
228 228 228 228 228 228 228 228 229 229 229 229 229 229 229 229 229 229
229 229 229 229 229 229 230 230 230 230 230 230 230 230 230 230 230 230
230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 231 231 231
231 231 231 231 231 231 231 231 231 231 232 232 232 232 232 232 232 232
232 232 232 232 232 232 233 233 233 233 233 233 233 233 233 233 233 233
233 233 233 233 233 233 233 233 234 234 234 234 234 234 234 234 234 234
234 234 234 234 234 234 234 234 234 234 235 235 235 235 235 235 235 235
235 235 235 235 235 235 236 236 236 236 236 236 236 236 236 236 236 236
236 236 236 236 236 236 236 236 236 236 236 236 236 236 236 237 237 237
237 237 237 237 237 237 237 237 237 237 237 237 237 237 237 237 237 237
237 237 237 237 238 238 238 238 238 238 238 238 238 238 238 238 238 238
238 238 238 238 239 239 239 239 239 239 239 239 239 239 239 239 239 239
239 239 239 239 239 239 239 239 240 240 240 240 240 240 240 240 240 240
240 240 240 240 240 240 241 241 241 241 241 241 241 241 241 241 241 241
241 241 241 241 241 241 241 242 242 242 242 242 242 242 242 242 242 242
242 242 242 242 242 242 242 242 243 243 243 243 243 243 243 243 243 243
243 243 243 243 243 243 243 243 243 243 243 243 244 244 244 244 244 244
244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244
244 245 245 245 245 245 245 245 245 246 246 246 246 246 246 246 246 246
246 246 246 246 246 246 246 246 247 247 247 247 247 247 247 247 247 247
247 247 247 247 247 247 247 247 247 247 248 248 248 248 248 248 248 248
248 248 248 248 249 249 249 249 249 249 249 249 249 249 249 250 250 250
250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 251 251
251 251 251 251 251 251 251 251 251 251 251 252 252 252 252 252 252 252
252 252 252 252 252 252 252 252 252 252 252 253 253 253 253 253 253 253
253 253 253 253 253 253 253 253 254 254 254 254 254 254 254 254 254 254
254 254 254 254 254 254 254 254 254 254 254 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 256 256 256 256 256 256 256
256 256 256 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257
257 257 257 257 257 257 257 257 258 258 258 258 258 258 258 258 258 258
259 259 259 259 259 259 259 259 259 259 259 259 259 259 259 259 260 260
260 260 260 260 260 260 261 261 261 261 261 261 261 261 261 261 261 261
262 262 262 262 262 262 262 262 262 262 262 262 262 262 262 262 263 263
263 263 263 263 263 263 263 263 263 263 263 263 263 263 263 264 264 264
264 264 264 264 264 264 264 264 265 265 265 265 265 265 265 265 265 265
266 266 266 266 266 266 266 266 266 267 267 267 267 267 267 267 268 268
268 268 268 268 268 268 268 268 268 268 268 269 269 269 269 269 269 269
269 269 269 269 269 269 270 270 270 270 270 270 270 270 270 270 270 270
270 270 270 270 270 271 271 271 271 271 271 271 271 271 272 272 272 272
272 272 272 272 273 273 273 273 273 273 273 274 274 274 274 274 274 274
274 274 274 274 275 275 275 275 276 276 276 277 277 278 278 278 278 278
278 278 278 278 278 278 279 279 279 279 279 279 279 280 280 280 280 280
280 280 280 280 280 281 281 281 281 281 282 282 282 283 283 283 283 283
283 283 284 284 284 284 284 284 284 284 285 285 285 285 285 286 286 286
286 287 287 287 287 287 287 288 288 288 288 289 290 290 290 290 291 292
292 292 292 293 293 294 294 295 296 296 296 297 297 297 298 298 299 299
299 300 301 301 302 302 304 305 307 308 310 310 313 313 313 313 313 315
315 317 318 319 320 325 326 326 327 328 331 334 334 336 338 339 341 341
342 344 345 345 350 352 354 356 358
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