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Abstract

An omnibus test for spherical symmetry in R2 is proposed, employing
localized empirical likelihood. The thus obtained test statistic is distri-
bution-free under the null hypothesis. The asymptotic null distribution
is established and critical values for typical sample sizes, as well as the
asymptotic ones, are presented. In a simulation study, the good perfor-
mance of the test is demonstrated. Furthermore, a real data example is
presented.

JEL codes: C12, C14.
Key words: Asymptotic distribution, distribution-free, empirical like-
lihood, hypothesis test, spherical symmetry.

1 Introduction

Spherically symmetric distributions are an important class of distributions:

They are a generalization of the multivariate standard normal distribution and

include, amongst others, also multivariate Laplace and t distributions. Further-

more, spherical symmetry is a distributional assumption which is associated
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metrics & OR and CentER, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Nether-
lands (E-mail: mariagantner@gmail.com).
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with many statistical models, see [6]. For instance, only recently a relation-

ship between L1 spherical symmetry and Archimedean copulas was discovered

in [11]. Another example is [9], where univariate general linear models are

considered with an error term that is spherically symmetric distributed. More

applications of spherically symmetric distributions in statistics, such as in min-

imax estimation or stochastic processes, are discussed in [3]. For a general

introduction to symmetry see [13]. Our focus is on spherical symmetry in R2.

There exist several approaches to test for spherical symmetry, cf. the sur-

vey papers [7] or [10] for a good overview. An often used basis, that is also

underlying this paper, is the stochastic representation: Let X = (X1, X2) be a

bivariate random vector. Define the radius S :=
√
X2

1 +X2
2 and the direction

Z := X/S. Then X is bivariate spherically symmetric (in the L2-norm) if and

only if S is independent of Z, and Z is uniformly distributed on the unit circle.

Other nonparametric tests based on this stochastic representation include [15]

and [1], whereas the test proposed in [8] uses multivariate distribution functions

(df’s) and a multivariate extension of quantile functions.

We will moreover use that uniform random variables on a circle which are

projected on a tangent to that circle are Cauchy distributed on that tangent

(see, amongst others, [16]). More precisely, set Y := X2/X1; (1, Y ) is the

projection of Z on the tangent at (1, 0). If Z is uniformly distributed on the

unit circle it follows that Y is standard Cauchy distributed. Since such a

projection cannot distinguish between (X1, X2) and (−X1,−X2), we project

those (X1, X2) with X1 > 0 on the line x1 = 1, whereas the (X1, X2) with

X1 < 0 are projected on x1 = −1. Denoting δ := sign(X1), both Y | δ = −1

and Y | δ = 1 are then also standard Cauchy distributed.

We wish to test

H0 : X is spherically symmetric around the origin

on the basis of (S, Y, δ), but, for the first time, the test is developed in an

empirical likelihood framework. The empirical likelihood method has the nice

features which are known from parametric likelihood theory, but the data are

used directly, i.e. in a nonparametric manner (see the monograph [12]). By

localizing a functional equation, see [5], we create an omnibus test for spherical

symmetry. More precisely, a functional equation is ‘split up’ in infinitely many
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pointwise equations and then standard empirical likelihood theory is used to

deal with these pointwise constraints. Finally the infinitely many likelihood

ratios are considered simultaneously as a stochastic process and an integral of

this stochastic process is taken.

In Section 2, we derive the test statistic and present its limiting behavior

under H0. The test is consistent against all alternatives. In Section 3, critical

values are computed, and in a simulation study we examine the performance

of the test by power calculations for normal distributions and by a comparison

to the test proposed in [8]. Furthermore, an application to a financial data set

is presented. The proof of the main result is deferred to Section 4.

2 Main result

Let (S, Y, δ), as introduced in Section 1, have df F with marginals FS, FY ,

and Fδ. Define the subdistribution functions by F−(s, y) := F (s, y,−1) and

F+(s, y) := F (s, y, 1)− F−(s, y) and denote their marginals with F±S and F±Y .

Then the null hypothesis of spherical symmetry can be written as

H0 : F−(s, y) = F+(s, y) = 1
2
FS(s)G(y), for all s ∈ R+, y ∈ R,

with G denoting the standard Cauchy df.

Consider n independent random variables (X11, X21), . . . , (X1n, X2n) dis-

tributed as (X1, X2). Write (Si, Yi, δi), i = 1, . . . , n, for the transformed ran-

dom vectors and denote with Fn their empirical df. Define the nonparametric

likelihood L(F̃ ) =
∏n

i=1 P̃ ({(Si, Yi, δi)}), where P̃ is the probability measure

corresponding to F̃ . Furthermore, define for fixed (s, y) ∈ R+×R the localized

empirical likelihood ratio

R(s, y) =
sup?{L(F̃ )}
sup{L(F̃ )}

, (1)

where sup? is the supremum taken under the constraints given by H0 and the

corresponding marginal constraints:

F̃−(s, y) = F̃−S (s)G(y), F̃+(s, y) = F̃+
S (s)G(y),

F̃−Y (y) = 1
2
G(y), F̃+

Y (y) = 1
2
G(y),

F̃−S (s) = F̃+
S (s) = 1

2
F̃S(s), F̃−(∞,∞) = F̃+(∞,∞) = 1

2
,
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and sup is the maximum over the unrestricted likelihood obtained at F̃ = Fn,

i.e., giving each observation mass 1
n
.

Define, for either choice of sign, the bivariate empirical subdistribution func-

tions

F±n (s, y) = 1
n

n∑
i=1

1[0,s]×(−∞,y]×{±1}(Si, Yi, δi),

and write N := nF−n (∞,∞). Observe that N is the number of data points

with X1i ≤ 0.

Consider for (Si, Yi, δi), i = 1, . . . , n, and either choice of sign, the regions

A±3 = [0, s]× (y,∞)× {±1}, A±4 = (s,∞)× (y,∞)× {±1},
A±1 = [0, s]× (−∞, y]× {±1}, A±2 = (s,∞)× (−∞, y]× {±1}.

Denote with Pn the empirical measure corresponding to Fn. Let F±Sn and F±Tn
denote the respective marginal df’s of F±n . Observe that

Pn(A±3 ) = F±Sn(s)− F±n (s, y), Pn(A±4 ) = F±n (∞,∞)− F±Sn(s)− F±Sn(y)

+F±n (s, y),

Pn(A±1 ) = F±n (s, y), Pn(A±2 ) = F±Sn(y)− F±n (s, y).

To maximize the numerator of (1), F̃ should put equal mass p−j , say, on

each observation in A−j and mass p+
j on each observation in A+

j , j = 1, . . . , 4.

Hence we need to maximize

4∏
j=1

(
p−j
)nPn(A−j ) (

p+
j

)nPn(A+
j )

under the constraints

nPn(A−1 )p−1 =
(
nPn(A−1 )p−1 + nPn(A−3 )p−3

)
G(y),

nPn(A+
1 )p+

1 =
(
nPn(A+

1 )p+
1 + nPn(A+

3 )p+
3

)
G(y),

nPn(A−1 )p−1 + nPn(A−2 )p−2 = 1
2
G(y),

nPn(A+
1 )p+

1 + nPn(A+
2 )p+

2 = 1
2
G(y),

nPn(A−1 )p−1 + nPn(A−3 )p−3 = nPn(A+
1 )p+

1 + nPn(A+
3 )p+

3 ,
4∑
j=1

p−j nPn(A−j ) = 1
2
,

4∑
j=1

p+
j nPn(A+

j ) = 1
2
.
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This yields, for either choice of sign, the maximum empirical likelihood estima-

tors

p̂±3 = FSn(s)(1−G(y))

2nPn(A±3 )
, p̂±4 = (1−FSn(s))(1−G(y))

2nPn(A±4 )
,

p̂±1 = FSn(s)G(y)

2nPn(A±1 )
, p̂±2 = (1−FSn(s))G(y)

2nPn(A±2 )
.

Define, for either choice of sign,

logR±(s, y) = nPn(A±1 ) log
FSn(s)G(y)

2Pn(A±1 )
+ nPn(A±2 ) log

(1− FSn(s))G(y)

2Pn(A±2 )

+ nPn(A±3 ) log
FSn(s)(1−G(y))

2Pn(A±3 )
+ nPn(A±4 ) log

(1− FSn(s)) (1−G(y))

2Pn(A±4 )
,

(2)

where 0 log(a/0) = 0, then we have

logR(s, y) = logR−(s, y) + logR+(s, y).

Consider the test statistic

Tn = −2

∫ ∞
−∞

∫ ∞
0

logR(s, y)dFSn(s)dG(y).

Clearly, Tn is distribution-free; selected critical values are provided in Table 1.

We now consider the limiting distribution of Tn. In order to define the

limiting random variable, we denote with W a standard Wiener process on

[0, 1]3, i.e. a centered Gaussian process with Cov (W (u, v, w),W (ũ, ṽ, w̃)) =

(u ∧ ũ)(v ∧ ṽ)(w ∧ w̃), and with B(u, v, w) = W (u, v, w) − uvwW (1, 1, 1) the

standard trivariate Brownian bridge. We also define B−(u, v) := B(u, v, 1
2
) and

B+(u, v) := B(u, v, 1) − B−(u, v). Observe B−(1, 1) = −B+(1, 1). Further-

more, let, for either choice of sign, W±
0 be a four-sided tied-down “half” Wiener

process on [0, 1]2 defined by W±
0 (u, v) := B±(u, v) − vB±(u, 1) − uB±(1, v) +

uvB±(1, 1). Finally write

K(u, v) =
W−

0 (u, v)2 +W+
0 (u, v)2

1
2
u(1− u)v(1− v)

+ 4B−(1, 1)2

+
[B−(u, 1)− uB−(1, 1)−B+(u, 1) + uB+(1, 1)]

2

u(1− u)

+
[B−(1, v)− vB−(1, 1)]

2
+ [B+(1, v)− vB+(1, 1)]

2

1
2
v(1− v)

.
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Theorem 2.1 Let FS be continuous. Then, under H0,

Tn
d→
∫ 1

0

∫ 1

0

K(u, v) du dv.

The proof of the theorem is given in Section 4.

Note that for fixed s and y, under H0,

−2 logR(s, y)
d→ K(FS(s), G(y))

d
= χ2

6.

This is a special case of Owen’s [12] nonparametric version of the classical Wilks

theorem.

Also note that within the localized empirical likelihood framework a test

based directly on (S,Z) can be constructed as well, but such a test has typically

less power.

3 Simulation study and real data example

Table 1 provides selected critical values for the proposed test statistic Tn. The

values for n = 50, 100 and 200 are based on 100 000 samples in each case.

For n = ∞, the quantiles of the limiting distribution are given, also based on

100 000 repetitions.

Percentage points

n 90% 95% 97.5% 99%

50 8.83 10.01 11.23 12.81

100 8.83 9.99 11.20 12.80

200 8.77 9.96 11.17 12.74

∞ 8.61 9.83 11.02 12.66

Table 1: Critical values for the test for bivariate spherical symmetry.

To evaluate the power of the test (based on the critical values from Table 1),

we regard data from a bivariate normal distribution with means 0, variances

1, and correlation ρ. The calculations, which are presented in Table 2, are

based on 1000 replications. At the 5% significance level we see a high power

for ρ = 0.6 (n = 100), and for n = 200, ρ = 0.4 is already well detected.
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n = 100 n = 200

Significance level

ρ 10% 5% 2.5% 1% 10% 5% 2.5% 1%

0.1 0.10 0.05 0.03 0.01 0.17 0.08 0.04 0.02

0.2 0.20 0.11 0.07 0.03 0.37 0.22 0.12 0.06

0.3 0.38 0.24 0.14 0.06 0.68 0.54 0.41 0.24

0.4 0.61 0.46 0.31 0.17 0.94 0.86 0.78 0.60

0.5 0.86 0.75 0.62 0.44 1.00 0.99 0.98 0.93

0.6 0.98 0.95 0.90 0.75 1.00 1.00 1.00 1.00

0.7 1.00 1.00 0.99 0.97 1.00 1.00 1.00 1.00

0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Power of the test for bivariate normal distributions with different corre-
lations for sample sizes n = 100 and n = 200.

Next, we compare the performance of our localized empirical likelihood

(LEL-) test with the test proposed in [8] (KL-test), see Table 3. It needs to

be pointed out that the null hypothesis in [8] is broader: There the center is

unknown. Therefore the powers cannot be likened directly: A positive compar-

ison for the LEL-test can be seen as an advise to use that test in case a center

is given. We consider all the alternatives introduced in [8]:

H
(1)
1 : X1 ∼ Exp(1) and X2 ∼ Exp(2), X1 and X2 independent, with Exp(λ)

the exponential distribution with mean 1/λ;

H
(2)
1 : X1 ∼ N(0, 1) and X2 ∼ Exp(1), X1 and X2 independent;

H
(3)
1 : Mixture (with parameter 1/2) of two normal distributions with identity

covariance matrices and with means (−1.5, 0) and (1.5, 0);

H
(4)
1 : Uniform distribution on an equilateral triangle, centered at the origin.

Especially H
(1)
1 and H

(2)
1 are clearly visible as non-symmetric by the naked

eye and should therefore lead to a high power. To center the data around

the origin, we transform the data of H
(1)
1 and H

(2)
1 by subtracting the medians,

hence we consider (X1−med(X1), X2−med(X2)). This is in line with [8], where

the empirical spatial median is chosen to estimate the center. The results are
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Significance level

Distribution n 10% 5% 1%

LEL KL LEL KL LEL KL

100 1.00 0.23 1.00 0.16 1.00 0.04
H

(1)
1 200 1.00 0.94 1.00 0.86 1.00 0.55

100 0.97 0.92 0.89 0.90 0.46 0.52
H

(2)
1 200 1.00 1.00 1.00 0.92 1.00 0.63

100 0.93 0.14 0.83 0.11 0.39 0.02
H

(3)
1 200 1.00 0.92 1.00 0.83 0.99 0.44

100 0.73 0.47 0.53 0.21 0.21 0.07
H

(4)
1 200 0.99 0.81 0.97 0.57 0.78 0.19

Table 3: Powers of the localized empirical likelihood (LEL) test and the test in [8]
(KL).

again based on 1000 repetitions of the LEL-test, whereas the results for the KL-

test are taken from [8] (100 repetitions). The LEL-test outperforms the KL-test

in nearly every setting and typically performs even considerably better. For

the alternative hypotheses H
(1)
1 , H

(3)
1 , and H

(4)
1 , the LEL-test has for n = 100

already about the same power as the KL-test for n = 200. Only for H
(2)
1 ,

n = 100, both tests have comparable power.

Finally we present a real data application. The bivariate data are the

daily exchange rate log-returns of the Yen to the Dollar and the Pound to

the Euro from January 2nd, 2009, to December 31st, 2009. The data set has

size n = 251 and is available from http://wrds-web.wharton.upenn.edu,

see Figure 1. The returns are known to be centered at the origin; this is

affirmed by an estimated spatial median of (−3.3 · 10−5,−3.0 · 10−4). We want

to test whether these data are spherically symmetric and find Tn = 6.84, which

is clearly below the asymptotic critical value at the 10% significance level.

Therefore the null hypothesis is not rejected. As a consequence, a further

statistical analysis of these data leads to more accurate inference, since it can

be performed assuming spherical symmetry.

As an example, consider the estimation of the probability p that X1 and

X2 are both positive (gains for Dollar and Euro) and that the radius S (the

size of the gains) is above a certain threshold s0. In general, we can estimate
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Figure 1: Daily exchange rate log-returns of Yen-Dollar and Pound-Euro, from
January 2, 2009 to December 31, 2009.

this with the empirical probability p̂, but under the null hypothesis we can

estimate it with 1
4
p̂s0 , with p̂s0 the empirical probability of {(x1, x2) : x2

1 +x2
2 >

s2
0}. For s0 = 0.015 this leads to an asymptotic 95% confidence interval of

(0.0303, 0.0534), whereas the confidence interval based on p̂ is more than double

as wide: (0.0214, 0.0742).

4 Proof of Theorem 2.1

Write QS, Q for the quantile functions corresponding to FS, G, set Ui = FS(Si)

and Vi = G(Yi), and let Γn be the empirical df of the (Ui, Vi, Fδ(δi)) and ΓSn,

ΓY n, and Γδn the corresponding marginals. Furthermore, write Γ−n (u, v) :=

Γn(u, v, 1
2
), hence Γ−n is the empirical subdistribution function of the (Ui, Vi),

for which δi = −1, with marginals Γ−Sn and Γ−Y n, and note that Γ−n (1, 1) = N
n

.

Define Γ+
n similarly.

Let 0 < ε ≤ 1
2
. It suffices to show that, as n→∞,

T1n = −2

∫ Q(1−ε)

Q(ε)

∫ QS(1−ε)

QS(ε)

logR(s, y) dFSn(u) dG(y)

d→
∫ 1−ε

ε

∫ 1−ε

ε

K(u, v) du dv, (3)
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and

T2n = Tn − T1n = OP (
√
ε) (4)

uniformly in ε; see [2] (Theorem 4.2).

First, consider T1n and decompose it further to

T1n = −2

∫ 1−ε

ε

∫ 1−ε

ε

logR−(QS(u), Q(v)) dΓSn(u)dv

−2

∫ 1−ε

ε

∫ 1−ε

ε

logR+(QS(u), Q(v)) dΓSn(u) dv =: T−1n + T+
1n.

Because of symmetry, we will first only consider T−1n. From (2), applying a

Taylor expansion of log(1+x), it follows that, uniformly in s ∈ [QS(ε), QS(1− ε)]
and y ∈ [Q(ε), Q(1− ε)],

logR−(s, y) =
n

2
−N − n

8

[(
FSn(s)G(y)− 2Pn(A−1 )

)2
Pn(A−1 )

+

(
(1− FSn(s))G(y)− 2Pn(A−2 )

)2
Pn(A−2 )

+

(
FSn(s) (1−G(y))− 2Pn(A−3 )

)2
Pn(A−3 )

+

(
(1− FSn(s)) (1−G(y))− 2Pn(A−4 )

)2
Pn(A−4 )

]
+ oP (1)

=
n

2
−N − F−Sn(s)

8Pn(A−1 )Pn(A−3 )

[√
n
(
FSn(s)G(y)− 2Pn(A−1 )

)]2
−

N
n
− F−Sn(s)

8Pn(A−2 )Pn(A−4 )

[√
n
(
(1− FSn(s))G(y)− 2Pn(A−2 )

)]2
−

N
n
− F−Tn(y)

8Pn(A−3 )Pn(A−4 )

[√
n
(
F+
Sn(s)− F−Sn(s)

)]2 − [√
n
(
1− 2N

n

)]2
8Pn(A−4 )

+ 2

√
n
(
1− 2N

n

)
8Pn(A−4 )

[√
n
(
F+
Sn(s)− F−Sn(s)

)
+
√
n ((1− FSn(s))G(y)

− 2Pn(A−2 )
)]

+ 2

√
n
(
F+
Sn(s)− F−Sn(s)

)
8Pn(A−3 )

√
n
(
FSn(s)G(y)− 2Pn(A−1 )

)
− 2

√
n
(
F+
Sn(s)− F−Sn(s)

)
8Pn(A−4 )

√
n
(
(1− FSn(s))G(y)− 2Pn(A−2 )

)
+ oP (1).

10



Observe that

√
n
(
FSn(s)G(y)− 2Pn(A−1 )

)
=
√
n (FSn(s)− FS(s))G(y) − 2

√
n
(
Pn(A−1 )− 1

2
FS(s)G(y)

)
,

√
n
(
(1− FSn(s))G(y)− 2Pn(A−2 )

)
= −2

√
n
(
F−Tn(y)− 1

2
G(y)

)
−
√
n
(
FSn(s)G(y)− 2Pn(A−1 )

)
,

and

√
n
(
F+
Sn(s)− F−Sn(s)

)
=
√
n
(
F+
Sn(s)− F+

S (s)
)
−
√
n
(
F−Sn(s)− F−S (s)

)
.

It follows from the Glivenko-Cantelli theorem that

N
n

P→ 1
2
,

sup
QS(ε)≤s≤QS(1−ε)
Q(ε)≤y≤Q(1−ε)

∣∣∣∣ F−Sn(s)

8Pn(A−1 )Pn(A−3 )
− 1

4FS(s)G(y) (1−G(y))

∣∣∣∣ = oP (1),

sup
QS(ε)≤s≤QS(1−ε)
Q(ε)≤y≤Q(1−ε)

∣∣∣∣∣ N
n
− F−Sn(s)

8Pn(A−2 )Pn(A−4 )
− 1

4 (1− FS(s))G(y) (1−G(y))

∣∣∣∣∣ = oP (1),

sup
QS(ε)≤s≤QS(1−ε)
Q(ε)≤y≤Q(1−ε)

∣∣∣∣∣ N
n
− F−Tn(y)

8Pn(A−3 )Pn(A−4 )
− 1

4FS(s) (1− FS(s)) (1−G(y))

∣∣∣∣∣ = oP (1),

sup
QS(ε)≤s≤QS(1−ε)
Q(ε)≤y≤Q(1−ε)

∣∣∣∣ 1

8Pn(A−3 )
− 1

4FS(s) (1−G(y))

∣∣∣∣ = oP (1),

sup
QS(ε)≤s≤QS(1−ε)
Q(ε)≤y≤Q(1−ε)

∣∣∣∣ 1

8Pn(A−4 )
− 1

4 (1− FS(s)) (1−G(y))

∣∣∣∣ = oP (1). (5)

Writing α−n (u, v) :=
√
n
(
Γ−n (u, v)− 1

2
uv
)
, α+

n (u, v) :=
√
n
(
Γ+
n (u, v)− 1

2
uv
)
,

and αn(u, v) := α−n (u, v)+α+
n (u, v), we have, using (5) uniformly for ε ≤ u, v ≤

11



1− ε,

logR−(QS(u), Q(v))

=
n

2
−N −

[√
n (ΓSn(u)− u) v − 2

√
n
(
Γ−n (u, v)− 1

2
uv
)]2

4uv(1− v)

−
[
2
√
n
(
Γ−Y n(v)− 1

2
v
)

+
√
n (ΓSn(u)− u) v − 2

√
n
(
Γ−n (u, v)− 1

2
uv
)]2

4(1− u)v(1− v)

−
[√
n
(
Γ+
Sn(u)− 1

2
u
)
−
√
n
(
Γ−Sn(u)− 1

2
u
)]2

4u(1− u)(1− v)
−
[√
n
(
Γ−n (1, 1)− 1

2

)]2
(1− u)(1− v)

−
√
n
(
Γ−n (1, 1)− 1

2

)
(1− u)(1− v)

[√
n
(
Γ+
Sn(u)− 1

2
u
)
−
√
n
(
Γ−Sn(u)− 1

2
u
)

−2
√
n
(
Γ−Y n(v)− 1

2
v
)
−
√
n (ΓSn(u)− u) v + 2

√
n
(
Γ−n (u, v)− 1

2
uv
)]

+

√
n
(
Γ+
Sn(u)− 1

2
u
)
−
√
n
(
Γ−Sn(u)− 1

2
u
)

2u(1− u)(1− v)

[√
n (ΓSn(u)− u) v

−2
√
n
(
Γ−n (u, v)− 1

2
uv
)

+ 2u
√
n
(
Γ−Y n(v)− 1

2
v
)]

+ oP (1)

=
n

2
−N − [vαn(u, 1)− 2α−n (u, v)]

2

4uv(1− v)
− [2α−n (1, v) + vαn(u, 1)− 2α−n (u, v)]

2

4(1− u)v(1− v)

− [α+
n (u, 1)− α−n (u, 1)]

2

4u(1− u)(1− v)
− α−n (1, 1)2

(1− u)(1− v)

− α−n (1, 1)

(1− u)(1− v)

[
α+
n (u, 1)− α−n (u, 1)− 2α−n (1, v)− vαn(u, 1) + 2α−n (u, v)

]
+
α+
n (u, 1)− α−n (u, 1)

2u(1− u)(1− v)

[
vαn(u, 1) + 2uα−n (1, v)− 2α−n (u, v)

]
+ oP (1). (6)

Applying

− [vαn(u, 1)− 2α−n (u, v)]
2

4uv(1− v)
− [2α−n (1, v) + vαn(u, 1)− 2α−n (u, v)]

2

4(1− u)v(1− v)

= − [vαn(u, 1)− 2α−n (u, v)]
2

4u(1− u)v(1− v)
− α−n (1, v)

(1− u)v(1− v)

[
vαn(u, 1)− 2α−n (u, v)

]
− α−n (1, v)2

(1− u)v(1− v)
,

− [vαn(u, 1)− 2α−n (u, v)]
2

4uv(1− v)(1− u)
− [α+

n (u, 1)− α−n (u, 1)]
2

4u(1− u)(1− v)
= − [α+

n (u, 1)− α−n (u, 1)]
2

4u(1− u)

− [vα−n (u, 1)− α−n (u, v)]
2

u(1− u)v(1− v)
− α+

n (u, 1)− α−n (u, 1)

2u(1− u)(1− v)

[
vαn(u, 1)− 2α−n (u, v)

]
,

12



− [vα−n (u, 1)− α−n (u, v)]
2

uv(1− v)(1− u)
− α−n (1, v)2

(1− u)v(1− v)
= 2

α−n (1, v)

(1− u)v(1− v)

[
vα−n (u, 1)

−α−n (u, v)
]
− [vα−n (u, 1)− α−n (u, v) + uα−n (1, v)]

2

u(1− u)v(1− v)
− α−n (1, v)2

v(1− v)
,

− [vα−n (u, 1)− α−n (u, v) + uα−n (1, v)]
2

uv(1− v)(1− u)
− α−n (1, 1)2

(1− u)(1− v)

= − [vα−n (u, 1) + uα−n (1, v)− α−n (u, v)− uvα−n (1, 1)]
2

uv(1− v)(1− u)
− (1− uv)

· α−n (1, 1)2

(1− u)(1− v)
− 2

α−n (1, 1)

(1− u)(1− v)

[
vα−n (u, 1) + uα−n (1, v)− α−n (u, v)

]
,

−α
−
n (1, v)2

v(1− v)
+

uvα−n (1, 1)2

(1− u)(1− v)
= − [α−n (1, v)− vα−n (1, 1)]

2

v(1− v)

+2
α−n (1, v)

1− v
α−n (1, 1) +

vα−n (1, 1)2

(1− u)(1− v)
,

− [α+
n (u, 1)− α−n (u, 1)]

2

4u(1− u)
− α−n (1, 1)

1− u
[
α+
n (u, 1)− α−n (u, 1)

]
= − [α+

n (u, 1)− α−n (u, 1) + 2uα−n (1, 1)]
2

4u(1− u)
+
uα−n (1, 1)2

1− u
,

to the right-hand side of (6) yields

logR−(QS(u), Q(v))

=
n

2
−N − [vα−n (u, 1) + uα−n (1, v)− α−n (u, v)− uvα−n (1, 1)]

2

uv(1− v)(1− u)
− α−n (1, 1)2

− [α−n (1, v)− vα−n (1, 1)]
2

v(1− v)
− [α+

n (u, 1)− α−n (u, 1) + 2uα−(1, 1)]
2

4u(1− u)
+ oP (1).

Because of symmetry we obtain a similar expression for logR+(QS(u), Q(v)).

13



Hence we find

−2 logR(QS(u), Q(v))

=
[α−n (u, v)− vα−n (u, 1)− uα−n (1, v) + uvα−n (1, 1)]

2

1
2
u(1− u)v(1− v)

+
[α+
n (u, v)− vα+

n (u, 1)− uα+
n (1, v) + uvα+

n (1, 1)]
2

1
2
u(1− u)v(1− v)

+
[α−n (1, v)− vα−n (1, 1)]

2

1
2
v(1− v)

+
[α+
n (1, v)− vα+

n (1, 1)]
2

1
2
v(1− v)

+
α−n (1, 1)2

1
4

+
[α+
n (u, 1)− uα+

n (1, 1)− α−n (u, 1) + uα−n (1, 1)]
2

u(1− u)
+ oP (1).

Standard empirical process theory and the Skorohod construction (but keeping

the same notation), yield, for either choice of sign,

sup
0≤u,v≤1

∣∣α±n (u, v)−B±(u, v)
∣∣→ 0 a.s.

Hence T1n can be replaced by∫ 1−ε

ε

∫ 1−ε

ε

K(u, v) dv dΓSn(u).

Because the integrand is uniformly continuous, this implies (3) by the Helly-

Bray theorem.

To show (4), we only consider integration over the L-shaped region

Cε =
{

(u, v) ∈ (0, 1)2 : 0 < u ≤ ε, 0 < v ≤ 1
2

or 0 < u ≤ 1
2
, 0 < v ≤ ε

}
,

because of symmetry arguments. Consider the following five regions

Cε,1,1 =
{

(u, v) ∈ (0, 1)2 : 0 < u ≤ n−3/5, n−3/8 ≤ v ≤ 1
2

}
,

Cε,1,2 =
{

(u, v) ∈ (0, 1)2 : n−3/8 ≤ u ≤ 1
2
, 0 < v ≤ n−3/5

}
,

Cε,2 =
{

(u, v) ∈ (0, n−3/8]2
}
,

Cε,3,1 =
{

(u, v) ∈ (0, 1)2 : n−3/5 < u ≤ ε, n−3/8 ≤ v ≤ 1
2

}
Cε,3,2 =

{
(u, v) ∈ (0, 1)2 : n−3/8 ≤ u ≤ 1

2
, n−3/5 < v ≤ ε

}
,

which cover Cε. We will use the following bound: For any η > 0 there exists

a positive constant Mη, such that

P (ΓSn(u) ≤ uMη, ΓY n(u) ≤ uMη, for all 0 ≤ u ≤ 1) > 1− η , (7)

14



see [14], p. 419.

For Cε,1,1, Cε,1,2, and Cε,2 we only consider logR−, logR+ is treated simi-

larly. We regard the four terms of (2) separately. For Cε,1,1 and Cε,2 we get,

with (7) and if Pn(A±j ) ≥ 1
n
, j = 1, . . . , 4, with probability 1− η,∣∣∣∣nΓ−n (u, v) log

ΓSn(u)v

2Γ−n (u, v)

∣∣∣∣ ≤ nΓSn(u) log

(
v
2
n

∨ 2ΓY n(v)

ΓSn(u)v

)
≤ Mηun log

(
n ∨ 2Mη

1
n

)
≤ Mηun log(2Mηn),

and ∣∣∣∣∣n (Γ−Sn(u)− Γ−n (u, v)
)

log
ΓSn(u)(1− v)

2
(
Γ−Sn(u)− Γ−n (u, v)

)∣∣∣∣∣
≤ nΓSn(u) log

(
n ∨ 2(1− ΓY n(v))

ΓSn(u)(1− v)

)
≤ Mηun log(4n),

and, with | log(1 + x)| ≤ 2|x| for x ≥ −0.5, with probability 1− η,∣∣∣∣∣n (Nn − Γ−Sn(u)− Γ−Y n(v) + Γ−n (u, v)
)

log
(1− ΓSn(u)) (1− v)

2
(
N
n
− Γ−Sn(u)− Γ−Y n(v) + Γ−n (u, v)

)∣∣∣∣∣
≤ n

∣∣(1− ΓSn(u)) (1− v)− 2N
n

+ 2Γ−Sn(u) + 2Γ−Y n(v)− 2Γ−n (u, v)
∣∣

≤ n
∣∣ΓSn(u)v − 2Γ−n (u, v)

∣∣ + n
∣∣2Γ−Y n(v)− v

∣∣+ n
∣∣ΓSn(u)− 2Γ−Sn(u)

∣∣
+ n

∣∣1− 2N
n

∣∣
≤ n

(
ΓSn(u) + 2Γ−n (u, v)

)
+ n

∣∣2Γ−Y n(v)− v
∣∣+ n

(
ΓSn(u) + 2Γ−Sn(u)

)
+ n

∣∣1− 2N
n

∣∣
≤ 6nMηu + 2n

∣∣Γ−Y n(v)− 1
2
v
∣∣+ 2n

∣∣Γ−n (1, 1)− 1
2

∣∣
= 6nMηu + 2n1/2

∣∣α−n (1, v)
∣∣+ 2n1/2

∣∣α−n (1, 1)
∣∣ . (8)

Furthermore, for Cε,2, we have, with probability 1− η,∣∣∣∣∣n (Γ−Y n(v)− Γ−n (u, v)
)

log
(1− ΓSn(u)) v

2
(
Γ−Y n(v)− Γ−n (u, v)

)∣∣∣∣∣ ≤ Mηv n log(2Mηn),

and for Cε,1,1, employing the Taylor expansion as in (8), with probability 1−η,∣∣∣∣∣n (Γ−Y n(v)− Γ−n (u, v)
)

log
(1− ΓSn(u)) v

2
(
Γ−Y n(v)− Γ−n (u, v)

)∣∣∣∣∣
≤ n

∣∣(1− ΓSn(u)) v − 2Γ−Y n(v) + 2Γ−n (u, v)
∣∣ ≤ 3nMηu + 2n

∣∣Γ−Y n(v)− 1
2
v
∣∣

= 3nMηu + 2n1/2
∣∣α−n (1, v)

∣∣ .
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Combining the above, we have that with probability 1− 2η∫∫
Cε,1,1

∣∣logR−(QS(u), Q(v))
∣∣ dΓSn(u) dv ≤

∫∫
Cε,1,1

Mηun (log(2Mηn)

+ log(4n)) + 9nMηu+ 4n1/2
∣∣α−n (1, v)

∣∣+ 2n1/2
∣∣α−n (1, 1)

∣∣ dΓSn(u) dv

≤
(

2Mηn
2/5 log(4Mηn) + 9Mηn

2/5 + 4n1/2 sup
0≤v≤1

∣∣α−n (1, v)
∣∣+ 2n1/2

∣∣α−n (1, 1)
∣∣)

·
∫ 1/2

n−3/8

∫ n−3/5

0

dΓSn(u) dv → 0,

and∫∫
Cε,2

∣∣logR−(QS(u), Q(v))
∣∣ dΓSn(u) dv ≤

∫∫
Cε,2

(Mηu+Mηv)n log(2Mηn)

+ Mηun log(4n) + 6nMηu+ 2n1/2
∣∣α−n (1, v)

∣∣+ 2n1/2
∣∣α−n (1, 1)

∣∣ dΓSn(u) dv

≤
(

3Mηn
5/8 log(4Mηn) + 6Mηn

5/8 + 2n1/2 sup
0≤v≤1

∣∣α−n (1, v)
∣∣+ 2n1/2

∣∣α−n (1, 1)
∣∣)

·
∫ n−3/8

0

∫ n−3/8

0

dΓSn(u) dv → 0.

The region Cε,1,2 can be treated in a similar way as Cε,1,1.

For Cε,3,1 and Cε,3,2 we use | log(1 + x) − x| ≤ x2, for x ≥ −0.5, and the

convergence in probability of Pn/P uniform over certain rectangles (the A±j )

to 1. This follows from, e.g., [4], Inequality 2.9 or Theorem 3.3. Then, with

probability tending to 1,

|logR(QS(u), Q(v))| ≤ [vα−n (u, 1)− uvα−n (1, 1)− α−n (u, v) + uα−n (1, v)]
2

1
2
u(1− u)v(1− v)

+
[vα+

n (u, 1)− uvα+
n (1, 1)− α+

n (u, v) + uα+
n (1, v)]

2

1
2
u(1− u)v(1− v)

+
[α−n (1, v)− vα−n (1, 1)]

2

1
2
v(1− v)

+
[α+
n (1, v)− vα+

n (1, 1)]
2

1
2
v(1− v)

+
[α+
n (u, 1)− uα+

n (1, 1)− α−n (u, 1) + uα−n (1, 1)]
2

u(1− u)
+ 4α−n (1, 1)2

≤ 4
α−n (u, v)2 + v2α−n (u, 1)2 + u2α−n (1, v)2 + u2v2α−n (1, 1)2

1
2
u(1− u)v(1− v)

+ 4
α+
n (u, v)2 + v2α+

n (u, 1)2 + u2α+
n (1, v)2 + u2v2α+

n (1, 1)2

1
2
u(1− u)v(1− v)
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+ 2
α−n (1, v)2 + v2α−n (1, 1)2

1
2
v(1− v)

+ 2
α+
n (1, v)2 + v2α+

n (1, 1)2

1
2
v(1− v)

+ 2α+
n (1, 1)2

+ 4
α+
n (u, 1)2 + u2α+

n (1, 1)2 + α−n (u, 1)2 + u2α−n (1, 1)2

u(1− u)
+ 2α−n (1, 1)2

≤ 32

[
α−n (u, v)2 + α+

n (u, v)2

uv
+
α−n (u, 1)2 + α+

n (u, 1)2

u

+
α−n (1, v)2 + α+

n (1, v)2

v
+ 2α−n (1, 1)2

]
.

Theorem 3.1 in [4] yields, for either choice of sign,

sup
0<u,v≤1

|α±n (u, v)|
(uv)1/4

= OP (1).

Hence we find ∫∫
Cε,3,1∪Cε,3,2

|logR(QS(u), Q(v))| dΓSn(u) dv

= OP (1) ·
∫∫

Cε,3,1∪Cε,3,2

(
1√
uv

+ 1√
u

+ 1√
v

+ 1
)
dΓSn(u) dv

= OP (1) ·
∫∫

Cε,3,1∪Cε,3,2

1√
uv
dΓSn(u) dv = OP (

√
ε),

uniformly in ε, because of (7). This completes the proof of (4). �
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