2,961 research outputs found

    Stochastic and Optimal Distributed Control for Energy Optimization and Spatially Invariant Systems

    Get PDF
    Improving energy efficiency and grid responsiveness of buildings requires sensing, computing and communication to enable stochastic decision-making and distributed operations. Optimal control synthesis plays a significant role in dealing with the complexity and uncertainty associated with the energy systems. The dissertation studies general area of complex networked systems that consist of interconnected components and usually operate in uncertain environments. Specifically, the contents of this dissertation include tools using stochastic and optimal distributed control to overcome these challenges and improve the sustainability of electric energy systems. The first tool is developed as a unifying stochastic control approach for improving energy efficiency while meeting probabilistic constraints. This algorithm is applied to demonstrate energy efficiency improvement in buildings and improving operational efficiency of virtualized web servers, respectively. Although all the optimization in this technique is in the form of convex optimization, it heavily relies on semidefinite programming (SP). A generic SP solver can handle only up to hundreds of variables. This being said, for a large scale system, the existing off-the-shelf algorithms may not be an appropriate tool for optimal control. Therefore, in the sequel I will exploit optimization in a distributed way. The second tool is itself a concrete study which is optimal distributed control for spatially invariant systems. Spatially invariance means the dynamics of the system do not vary as we translate along some spatial axis. The optimal H2 [H-2] decentralized control problem is solved by computing an orthogonal projection on a class of Youla parameters with a decentralized structure. Optimal H∞ [H-infinity] performance is posed as a distance minimization in a general L∞ [L-infinity] space from a vector function to a subspace with a mixed L∞ and H∞ space structure. In this framework, the dual and pre-dual formulations lead to finite dimensional convex optimizations which approximate the optimal solution within desired accuracy. Furthermore, a mixed L2 [L-2] /H∞ synthesis problem for spatially invariant systems as trade-offs between transient performance and robustness. Finally, we pursue to deal with a more general networked system, i.e. the Non-Markovian decentralized stochastic control problem, using stochastic maximum principle via Malliavin Calculus

    Unified Approach to Convex Robust Distributed Control given Arbitrary Information Structures

    Full text link
    We consider the problem of computing optimal linear control policies for linear systems in finite-horizon. The states and the inputs are required to remain inside pre-specified safety sets at all times despite unknown disturbances. In this technical note, we focus on the requirement that the control policy is distributed, in the sense that it can only be based on partial information about the history of the outputs. It is well-known that when a condition denoted as Quadratic Invariance (QI) holds, the optimal distributed control policy can be computed in a tractable way. Our goal is to unify and generalize the class of information structures over which quadratic invariance is equivalent to a test over finitely many binary matrices. The test we propose certifies convexity of the output-feedback distributed control problem in finite-horizon given any arbitrarily defined information structure, including the case of time varying communication networks and forgetting mechanisms. Furthermore, the framework we consider allows for including polytopic constraints on the states and the inputs in a natural way, without affecting convexity

    System Level Synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty -- such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies.Comment: To appear in Annual Reviews in Contro

    Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: A stabilizing receding-horizon approach

    Get PDF
    This paper addresses the problem of cooperative control of a team of distributed agents with decoupled nonlinear discrete-time dynamics, which operate in a common environment and exchange-delayed information between them. Each agent is assumed to evolve in discrete-time, based on locally computed control laws, which are computed by exchanging delayed state information with a subset of neighboring agents. The cooperative control problem is formulated in a receding-horizon framework, where the control laws depend on the local state variables (feedback action) and on delayed information gathered from cooperating neighboring agents (feedforward action). A rigorous stability analysis exploiting the input-to-state stability properties of the receding-horizon local control laws is carried out. The stability of the team of agents is then proved by utilizing small-gain theorem results

    A digital twin for controlling thermo-fluidic processes

    Get PDF

    A digital twin for controlling thermo-fluidic processes

    Get PDF
    • …
    corecore