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Abstract

Improving energy efficiency and grid responsiveness of buildings requires sensing,

computing and communication to enable stochastic decision-making and distributed

operations. Optimal control synthesis plays a significant role in dealing with the

complexity and uncertainty associated with the energy systems.

The dissertation studies general area of complex networked systems that consist of

interconnected components and usually operate in uncertain environments. Specif-

ically, the contents of this dissertation include tools using stochastic and optimal

distributed control to overcome these challenges and improve the sustainability of

electric energy systems.

The first tool is developed as a unifying stochastic control approach for improving

energy efficiency while meeting probabilistic constraints. This algorithm is applied to

demonstrate energy efficiency improvement in buildings and improving operational

efficiency of virtualized web servers, respectively. Although all the optimization in

this technique is in the form of convex optimization, it heavily relies on semidefinite

programming (SP). A generic SP solver can handle only up to hundreds of variables.

This being said, for a large scale system, the existing off-the-shelf algorithms may

not be an appropriate tool for optimal control. Therefore, in the sequel I will exploit

optimization in a distributed way.

The second tool is itself a concrete study which is optimal distributed control for

spatially invariant systems. Spatially invariance means the dynamics of the system do

not vary as we translate along some spatial axis. The optimal H2 [H-2] decentralized

vii



control problem is solved by computing an orthogonal projection on a class of Youla

parameters with a decentralized structure. Optimal H∞ [H-infinity] performance is

posed as a distance minimization in a general L∞ [L-infinity] space from a vector

function to a subspace with a mixed L∞ and H∞ space structure. In this framework,

the dual and pre-dual formulations lead to finite dimensional convex optimizations

which approximate the optimal solution within desired accuracy. Furthermore, a

mixed L2 [L-2] /H∞ synthesis problem for spatially invariant systems as trade-offs

between transient performance and robustness. Finally, we pursue to deal with a more

general networked system, i.e. the Non-Markovian decentralized stochastic control

problem, using stochastic maximum principle via Malliavin Calculus.
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Chapter 1

Introduction

The dissertation studies the general area of complex networked systems that consist of

interconnected components and usually operate in uncertain environments and with

incomplete information.

The work in this dissertation is inspired by two facts in today’s power system.

Firstly, significant potential for energy savings exist by optimally controlling building

systems to reduce consumption while maintaining comfort constraints. Secondly,

problems associated with complex networked systems are typically large-scale and

computationally intractable.

The goal of this dissertation is to develop foundational theories and tools to exploit

those structures that can lead to computationally-efficient and distributed solutions,

and apply them to improve systems operations and energy efficiency. We present two

tools for stochastic and distributed control to overcome these challenges and improve

the sustainability of electric power systems.

Specifically, this dissertation focuses on two concrete areas. The first one is

to design stochastic control algorithms to manage energy efficient buildings and

virtualized web servers; the second one is to design distributed optimization rules

for large-scale interconnected engineering systems.
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1.1 Problem Descriptions

Different components of the system are linked together with communication paths and

sensor nodes to provide interoperability between them, e.g., distribution, transmission

and other substations, such as residential, commercial, and industrial sites.

Due to increasing price of fossil fuels, environmental impact and energy security

concerns coupled with improvements in wind turbines and solar panels, there has

been a great increase in the penetration level of renewable energy around the world.

However, the deployment of intermittent renewable sources will inevitably lead to

frequent imbalance between supply and demand, as exemplified by the difficulties in

maintaining system balance due to renewable energy variability. Advanced control

algorithm is certain to play a significant role in dealing with the complexity and

uncertainty associated with energy efficient buildings, with stochastic (distributed)

control being a natural choice.

1.1.1 Preliminaries of building climate control

Buildings consume up to 40% of the energy produced in the US [3]. Advanced sensors

and controls have the potential to reduce the energy consumption of buildings by

20-40% [4, 5]. Heating, Ventilation and Air Conditioning (HVAC) systems play a

fundamental role in maintaining a comfortable temperature environment in buildings

and account for 50% of building energy consumption [3]. Significant potential for

energy savings exist by optimally controlling HVAC systems to reduce consumption

while maintaining comfort constraints.

1.1.2 Preliminaries of virtual machines

Recently, energy-efficient computing is becoming a hot topic in the design and

operation of enterprise servers and modern data centers. It is well known that the

Internet services (e.g., online banking and online business, etc.), data storage and

2



telecommunications industries are crucial parts of the American information economy,

the repaid growth of these industries have led to a huge increase in electricity use

[1]. As reported by the U.S. Department of Energy, the energy consumption for

a data center can be 100 times higher than that of a typical commercial building.

Furthermore, it is estimated that energy consumption will contribute more than 50

% of the IT budget in the next few years. Virtual machine (VM) or virtualized web

servers (VWS) technology, as an important enabler of cloud computing [3], has been

widely employed in modern data centers. Thus, the ultimate goal of this work is to

improve those sectors energy efficiency, which will provide significant energy and cost

saving, as well as reduce the carbon pollution.

1.1.3 Preliminaries of Distributed control

There has been resonant interest in analysis and synthesis of distributed coordination

and control algorithms for spatially interconnected systems. For recent work on

this class and some of the background for the present work, for example, we refer

the reader to [6, 7, 8, 9, 10], and the references therein. We consider distributed

parameter systems where the underlying dynamics are spatially invariant, and where

the controls and measurements are spatially distributed. These systems arise in

many applications such as the control of vehicular platoons, flow control, micro-

electromechanical systems (MEMS), smart structures, and systems described by

partial differential equations with constant coefficients and distributed controls and

measurements [6].

1.1.4 Applications and Challenges

• Control (Energy Saving): Heating, Ventilation and Air Conditioning

(HVAC) systems play a fundamental role in maintaining a comfortable tem-

perature environment in buildings and account for 50% of building energy

consumption [3]. Significant potential for energy savings exist by optimally

3



controlling HVAC systems to reduce consumption while maintaining comfort

constraints. The virtualization technology can support environment isolation,

fault isolation for multi VMs. These VMs can run different operating systems

and applications as if they are running on the physical separate machines,

but the contention of shared resource (i.e. processor, last level cache and

bandwidth) among multiple customer applications leads to a performance

interference effect [11]. Moreover, the workloads of web applications show

highly volatile variation and unexpected burst in terms of request arrival rate

[12]. It is infeasible to decide the resource allocation solution (e.g. how many

resources should be allocated and how to assign them) in a fixed way. In such

environments, the control approach needs to be robust and adaptive to dynamic

variations in workload.

• Optimization (Distributed Control): A networked system is a collection

of dynamic units that interact over an information exchange network. Such

systems are ubiquitous in diverse areas of science and engineering [13]. There

are many important problems that have been cast in the form of a large-scale

finite-dimensional or an infinite-dimensional constraint optimization problem

[14]. Such problems can range from physical, biological to mechanical and

social systems [15, 16, 17, 18, 19]. Distributed control has become a successful

strategy to handle such design issues as coordinated control, formation control

and synchronization of multi-agent systems [20, 21, 22, 23, 24, 25].

While the technique is promising, there are a lot of challenging issues for these

applications.

Typical building controls are set-point based, where zone-level temperature

measurement is used for taking control action to keep the zone temperature in a

comfortable range. To make buildings more energy and cost efficient, intelligent

predictive automation can be used instead of conventional automation. For instance,

the predictive automation controllers can operate the buildings passive thermal

storage, based on predicted future disturbances (e.g. weather forecast), by making

4



use of low cost energy sources [26]. The goal is to design an optimal controller that

can realize the temperature requirement and minimize energy consumptions.

One of the most productive recent development is that of the theory of optimal

control of systems with distributed parameters. This class of systems is much broader

than simple systems with only lumped parameters. Actually, many of the real

problems in control and design in airframe, shipbuilding, electronics, nucleonics, and

other engineering fields are, in essence, problems of control of systems with distributed

parameters. Spatial invariance is a strong property of a given system, which means

that the dynamics of the system do not vary as we translate along some spatial axis

[27].

As mentioned in [28], the main difference between distributed parameter systems

and lumped parameter systems is that the former are characterized not by a finite

set of quantities, coordinates of the object, that vary only in time, but generally

by a set of functions that show the dependence of the parameters on the time and

spatial variables or any combination of them. In the majority of cases, ideal control

designed for lumped systems is not realizable because of the presence of additional

constraints imposed on state functions and controlling actions. In particular, these

constraints are related with spatial variables on which the state and control functions

depend. The impossibility of realizing a perfect control process posed the problem

of deriving an optimal process according to a definite, preassigned criterion. Hence,

an optimal control problem of distributed parameter systems obviously leads to the

powerful apparatus of functional analysis [28].

Even if the subsystems interact locally, the optimal controller will need global

information to produce the feedback signal. Standard control design techniques are

inadequate since most optimal control techniques cannot handle systems of very high

dimensions and with a large number of inputs and outputs. A preferred alternative is

to have control signals computed using only local communication among neighboring

subsystems as motivated in [6] and [7]. Using an approach based on spatial Fourier
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transforms and operator theory, Bamieh et al. discussed the optimal control of linear

spatially invariant systems with standard linear quadratic (LQ) criterion in [6].

What’s more, synchronization of multiple heterogeneous linear systems has been

studied in [8, 10], where the interconnection topology is represented by an arbitrary

graph, using a conservative analysis - LMI. A similar problem is investigated

under both fixed and switching communication topologies heterogeneous spatially

distributed systems [29, 30]. Using an approach based on spatial Fourier transforms

and operator theory, Bamieh et al. [6] discussed the optimal control of linear spatially

invariant systems with standard linear quadratic(LQ) criterion. Although rigorous,

as pointed out in [31, 32], this approach is valid when system operator could generate

a semigroup on L2(Rn) for a given state-space, which is a non-trivial task.

1.2 Previous Works

1.2.1 Building climate control

Building climate control leads naturally to probabilistic constraints as current

standards explicitly state, zone temperatures should be kept within a comfort

range with a predefined probability [33, 34]. In order to address this issue and

explicitly account for system uncertainties, some efforts have been made for studying a

stochastic version of MPC (SMPC) including probabilistic constraints. [35] employed

stochastic MPC technique to compute the control strategy for a cost function which

was linear in the control variable for the thermal dynamics in a linear state-space

model, which described thermal energy and temperatures. [36] proposed a tractable

approximation method for the problem. Both schemes in [35] and [36] considered

chance constraints and solved them by using affine disturbance feedback.
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1.2.2 Virtualized Web Servers

Feedback control approaches have been widely used to guarantee the performance

and power request in virtualized environment [37, 38, 39, 40]. For example, Wang et

al. introduce two-layer feedback control architecture to achieve the goal of response

time optimization and power saving by controlling CPU resource allocation and CPU

frequency in separate loops [37]. However, the models of their systems are designed

in a way that heavily relies on off-line system identification for specific workloads.

Although these approaches can theoretically guarantee the system stability and

control accuracy within a range, they cannot adapt to a time varying workload.

1.2.3 Distributed control

After the recent advances in communication technologies, the design of distributed

controllers for physically interconnected systems has become an attractive and

fruitful research direction [9, 41]. A body of literature has been worked out

for the spatially distributed systems, where all signals are functions of both

spatial and temporal variables. The linear matrix inequality (LMI) conditions for

spatially interconnected systems consisting of homogeneous units are introduced

in [9, 42]. Control synthesis results have employed consensus-based observer to

guarantee leaderless synchronization of multiple identical linear dynamic systems

under switching communication topologies[43]; neighbor-based observer to solve the

synchronization problem for general linear time-invariant systems [44]; and individual-

based observer with low-gain technique to synchronize a group of linear systems

[45]. Synchronization of multiple heterogeneous linear systems has been studied in

[8, 10], where the interconnection topology is represented by an arbitrary graph,

using a conservative analysis-LMI. A similar problem is investigated under both fixed

and switching communication topologies heterogeneous spatially distributed systems

[29, 30].
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Recently, another theoretical mechanism for decentralized stochastic control was

proposed in [46]. A general model of decentralized stochastic control called partial

history sharing information structure is presented. In this model, at each step the

controller of each individual agent shares part of their observation and control history

with each neighboring agent. The optimal control problem at the coordinator level

is assumed to follow a partially observable Markov decision process (POMDP), i.e. a

“memoryless” process.

1.3 Motivations and Contributions

Energy optimization and control design is a critical issue in electrical power systems

for security and energy efficient applications, which cannot be guaranteed using

traditional deterministic algorithms. Although lots of work have been done on

protection and control for smart grid, however, most of them mainly focus on trivial

model based or involving impractical constraints and relaxations, little effort has been

made to explore how to efficiently use various estimation and control techniques to

guarantee reliability and better performance in smart grid with complicated models.

Specifically, finding the optimal minimum for the distributed control problem is very

difficult, since it is a non-convex optimization problem under infinite dimension.

Researchers will therefore have to resort to suboptimal methods, which yield solutions

satisfying the constraints while trying to minimize the norm of the model error.

However, none of these suboptimal solutions could guarantee how far are the

suboptimal solutions away from the true optimal solutions.

In this dissertation, we study a quadratic cost function in terms of temperature

errors and control inputs, which is subject to several constraints on the room

temperature and control input. In particular, we only consider the case where we

assume that the disturbance is Gaussian and the problem is formulated to minimize

the expected cost subject to a linear constraint on control input and a probabilistic

constraint on the state. We also propose an efficient algorithm to reduce the
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probabilistic constraint to a hard constraint on the control input exactly [47]. The

problems are formulated into semidefinite optimization problems which may be solved

through semidefinite programming (SDP) for the optimal solutions efficiently.

Despite the importance of stochastic control for single building systems or

Virtualized web servers, little is known about doing distributed control for power gird

or energy-efficient buildings. We consider the problem of optimal distributed control

of spatially invariant systems. We have been investigating optimal performance of this

problem by utilization of norm based criteria. We develop an input-output framework

for problems of this class. Spatially invariant systems are viewed as multiplication

operators from a particular Hilbert function space into itself in the Fourier domain.

Optimal distributed performance is then posed as a distance minimization in a general

H2,L∞ and L2/H∞ spaces, respectively. In this framework, a generalized version of

the Youla parametrization plays a central role. Our approach is purely input-output

and does not use any state space realization.

We start by the optimal H2 control problem for spatially invariant systems.

In particular, the H2 optimal control problem is solved via the computation of an

orthogonal projection of a tensor Hilbert space onto a particular subspace. The

optimal H2 decentralized control problem is solved by computing an orthogonal

projection on a class of Youla parameters with a decentralized structure. Furthermore,

we use Riesz projections after invoking a particular L2-basis.

After that, we form a centralized distance minimization in a mixed L∞ and H∞

space structure. The duality structure of the problem is characterized by computing

various dual and pre-dual spaces. The annihilator and pre-annihilator subspaces

are also calculated for the dual and pre-dual problems. We show that these spaces

together with the pre-annihilator and annihilator subspaces can be realized explicitly

as specific tensor spaces and subspaces, respectively. The tensor space formulation

leads to a solution in terms of an operator given by a tensor product. Specifically,

the optimal distributed control performance for spatially invariant systems is equal

to the operator induced norm of this operator. Meanwhile, we show that these spaces
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together with the pre-annihilator and annihilator subspaces can be realized explicitly

as specific tensor spaces and subspaces, respectively. The tensor space formulation

leads to a solution in terms of an operator given by a tensor product. The results

bridge the gap between control theory and the metric theory of tensor product spaces.

Henceforth the dual and pre-dual formulations lead to finite dimensional convex

optimizations which approximate the optimal solution within desired accuracy.

Then we investigate minimizing the mixed L2/H∞ norm of the spatial,

temporal closed loop systems, respectively. Such a mixed norm is induced by the

aforementioned disturbances, which allows for more flexible and accurate specification

of the desirable closed-loop behavior We solve this problem by utilizing the orthogonal

projection techniques. Provided θ fixed, the counterpart involving H∞-norm could

be achieved by following standard techniques in solving model matching problem.

Finally, we turn our attention to a stochastic version of the distributed control

problem. Instead of using the solution from Markov Decision Process, we consider a

controlled Itô-Lévy process where the ’Markovian’ property doesn’t hold any

more. It should be noted that this is a more complicated situation than the case

where standard stochastic maximum principle would fail. Therefore, we need to

apply a Malliavin calculus approach to derive a maximum principle, where the adjoint

processes are explicitly expressed by the parameters and the states of the system.

1.4 Dissertation Outline

The dissertation is organized as follows: In Chapter 2, we analyze a unifying stochastic

control approach for achieving joint performance and power control of Energy Efficient

Buildings and Virtualized Web Servers. Starting from Chapter 3, we start our second

topic - distributed control for spatially-invariant systems. We first introduce some of

the notations that will be used throughout the following chapters. It is followed by

an optimal distributed H2 control problem for spatially-invariant systems in Chapter

4. In Chapter 5 we analyze the open problem in Optimal Distributed Control by
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using a novel Duality and Operator Theoretic Approach. Distributed Mixed L2/H∞

control problem Synthesis for Spatially Invariant Systems in Chapter 6. Furthermore,

an initial attempt of using Malliavin calculus based stochastic maximum principle to

solve the decentralized stochastic control problem has been explained in Chapter 7.

Finally, we conclude this dissertation with a summary of work and directions for

future work in Chapter 8.
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Part I

Stochastic Control for Energy

Optimization
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Chapter 2

Stochastic Control for Energy

Optimization in Energy Efficient

Buildings and Virtualized Web

Servers

Building climate control and data centers consume most of the power in smart grids.

In this chapter, we propose a unifying stochastic control approach for achieving joint

performance and power control of Energy Efficient Buildings and Virtualized Web

Servers. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by

minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The

problem is formulated to minimize the expected cost subject to a linear constraint and

a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite

optimization problem, where the optimal control can be computed efficiently by

Semidefinite programming (SDP). Simulation results are provided to demonstrate

the effectiveness and power efficiency by utilizing the proposed control approach.

Parts of the results in this chapter appeared in [48, 49, 50].
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2.1 Introduction

The key goal in energy efficient buildings is to reduce energy consumption of Heating,

Ventilation, and Air-Conditioning (HVAC) systems while maintaining a comfortable

temperature and humidity in the building. Virtualization machine (VM) technology,

as an important enabler of cloud computing [51], has been widely used in the modern

data centers. Both HVAC units and data centers are energy consuming monsters in

modern smart grids. Buildings alone consume up to 40% of the energy produced in

the US [3]. Advanced sensors and controls have the potential to reduce the energy

consumption of buildings by 20-40% [4, 5]. Heating, Ventilation and Air Conditioning

(HVAC) systems play a fundamental role in maintaining a comfortable temperature

environment in buildings and account for 50% of building energy consumption [3].

Furthermore, the data processing, data storage and telecommunications industries

are crucial parts of the American information economy, the rapid growth of these

industries have led to an increase in electricity use. Therefore, significant potential

for energy savings exist by optimally controlling HVAC systems data centers to reduce

consumption, as well as reducing the carbon pollution.

2.1.1 Building Climate Control

Typical building controls are set-point based, where zone-level temperature measure-

ment is used for taking control action to keep the zone temperature in a comfortable

range. To make buildings more energy and cost efficient, intelligent predictive

automation can be used instead of conventional automation. For instance, the

predictive automation controllers can operate the buildings passive thermal storage,

based on predicted future disturbances (e.g. weather forecast), by making use of low

cost energy sources [26]. The goal is to design an optimal controller that can realize

the temperature requirement and minimize energy consumptions.
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The accuracy of the controller heavily depends on the assumption that the

sensor always provides exact temperature measurement. However, this assumption

is not always valid due to the measurement error or real-world environment noise.

Consequently, an effective controller for HVAC systems should incorporate time-

dependent energy costs, bounds on the control actions, noise from the sensors, as

well as account for system uncertainties, i.e., weather conditions and occupancy.

Compared with the deterministic control approaches, a key advantage of stochastic

control approaches is that a noise term is considered in the model, which represents

the unknown and uncertain elements in the system.

Building climate control leads naturally to probabilistic constraints as current

standards explicitly state, zone temperatures should be kept within a comfort

range with a predefined probability [33, 34]. In order to address this issue and

explicitly account for system uncertainties, some efforts have been made for studying a

stochastic version of MPC (SMPC) including probabilistic constraints. [35] employed

stochastic MPC technique to compute the control strategy for a cost function which

was linear in the control variable for the thermal dynamics in a linear state-space

model, which described thermal energy and temperatures. [36] proposed a tractable

approximation method for the problem. Both schemes in [35] and [36] considered

chance constraints and solved them by using affine disturbance feedback.

2.1.2 Virtualized Web Servers

Similaryly, an energy-efficient virtualized server should guarantee the desired ap-

plication performance by dynamically adjusting the power states of the processor.

The virtualization technology can support environment isolation, fault isolation

for multi virtual machines (VMs), these VMs can run different operating systems

and applications as if they are running on the physical separate machines, but

the contention of shared resource (i.e. processor, last level cache and bandwidth)

among multiple customer applications leads to a performance interference effect
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[11]. Moreover, the workloads of web applications show highly volatile variation and

unexpected burst in terms of request arrival rate [12]. It is infeasible to decide the

resource allocation solution (e.g. how many resources should be allocated and how

to assign them) in a fixed way. In such environments, the control approach needs to

be robust and adaptive to dynamic variations in workload.

It aims at addressing the instability and inefficiency issues due to dynamic Web

workloads. It features a coordinated control architecture that optimizes the resource

allocation and minimizes the overall power consumption while guaranteeing the

server level agreements (SLAs). Due to the interference effect among the co-located

virtualized web servers and time-varying workloads, the relationship between the

hardware resource assignment to different virtual servers and the web applications’

performance is considered as a coupled Multi-Input-Multi-Output (MIMO) system

and formulated as a robust optimization problem.

The goal of proposed control system is to dynamically select the resource

allocations and scale the CPU frequency to reduce power consumption without

performance degradation. The processer is our control objective because it is the

main contributor to the total power consumption of a server.

2.1.3 Unifying Approach

Now it is clear that both the two services share similar performance requirements

and challenges from the control point of view. In this chapter, we consider a unifying

stochastic control approach for achieving joint performance and power control of

Energy Efficient Buildings and Virtualized Web Servers. We study a quadratic

cost function in terms of temperature errors and control inputs, which is subject

to several constraints on the room temperature and control input. In particular, we

only consider the case where we assume that the disturbance is Gaussian and the

problem is formulated to minimize the expected cost subject to a linear constraint on

control input and a probabilistic constraint on the state. The latter constraint can
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be reduced to a hard constraint on control input exactly [47]. It should be remarked

that the power of this proposed control technique could be extended to a more general

norm-bounded case with distribution unknown and the problem is formulated as a

min-max problem. By using the cSLQC approach proposed in [47, 52], the optimal

solutions of problems in both cases may be solved via semidefinite programming

exactly. Such control technique has already been applied in doubly-fed induction

generator (DFIG) to help make full use of wind energy as well as producing and

absorbing reactive power [53, 54, 55, 56, 57].

The rest of the chapter is organized as follows: In section 2.2, a general

Constrained Stochastic Linear-quadratic control (cSLQC) problem is formulated. In

section 2.3, we introduce the control techniques used in this work and solve the

problems. Section 2.4 presents the simulation results to show the performance of the

methods in controlling the building climate. In Section 2.5, numerical examples are

provided to verify the effectiveness of the proposed methods for virtualized servers.

Section 2.6 concludes this chapter.

2.2 Problem Formulation

We apply the cSLQC theory [47] to design the controller. cSLQC is a tractable control

technique that can deal with stochastic discrete-time linear systems in the presence

of control and state constraints. This characteristic makes the cSLQC well suited for

building climate control.

2.2.1 Cost Function

We consider the problem where the temperature t1 is required to remain within certain

bounds of a constant in the presence of the disturbance vector d. Moreover, we can

assign setpoints for t1, t2 and t3, but without any other constraints on t2 and t3.

Thus, we can regulate the output error ek := xk − xr at time k, where xr is the
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setpoint vector of x. We hope to minimize the error e to keep the temperature t1

close to the desired value. Meanwhile, we also hope to use as less power as we can

to save energy. Thus, our objective is to find for the system (2.14) discretized, the

M -control sequence {u0, · · · , uM−1} , where ui := u(ti), i = 0, · · · , M ; M is an

integer large enough, ti = i∆T , where 4T is the sampling period; and corresponding

state sequence {x0, · · · , xM−1} and error sequence {e0, · · · , eM−1} , that minimize the

finite horizon objective function:

VN (e0,u, ω) := 1
2
[(xN − xr)TP (xN − xr) +

N−1∑
k=1

eTkQek +
N−1∑
k=0

uk
TRuk] (2.1)

where P ≥ 0, Q ≥ 0 (i.e., semi-definite positive matrices), R > 0 (i.e., positive

definite matrix), N is the prediction horizon, and

x := [xT0 , ..., x
T
N ]T

u := [uT0 , ..., u
T
N−1]T

ω := [ωT0 , ..., ω
T
N−1]T (2.2)

The differences between the cost function above and those considered in [35] and

[36] are that [35] used a linear cost function in the control input and [36] assumed

the disturbance was 0 in the cost function which simplified the problem.

2.2.2 Constraints

Due to the unknown disturbances dk, the state xk is not exactly known. It is more

reasonable to utilize the soft constraints on the state, i.e. we do not require constraints

on the response time to be satisfied at all time, but only with a predefined probability.

For example, constraint (2.3) requires that the condition Gix > gi is fulfilled with

probability smaller or equal than αi. Hence, instead of using hard constraints on the

state or no constraint, we use the uncertain linear constraints in a probabilistic sense

[47]. Thus, similar as [35] and [36], the constraint on xk can be described by the
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so-called chance constraint as follows:

P [Gix > gi] ≤ αi (2.3)

The above constraint is non-convex and hard to resolve directly. In the first case

when the disturbance is Gaussian, as shown in [35] and [36], the authors took uk as

affine disturbance feedback to approximate and simplify this constraint. However,

if we do not assume any form of the control input, we can still simplify the chance

constraint to a hard constraint exactly as already shown in [47].

Assume the ω are independent and normally distributed, i.e., ω ∼ N (µ,Σ), where

Σ > 0. Then, we have the following theorem from [47].

Theorem 2.1. [47] Consider a linear system with the state written as

x = Ãx0 + B̃u + C̃ω (2.4)

Then, the constraint

pTu ≤ q (2.5)

where p = B̃TGi, q = gi −GiÃx0 −GiC̃µ− ‖ Σ
1
2 C̃TGi ‖2 Φ−1(1 − αi) implies the

chance constraint (2.3).

Meanwhile, the control efforts are required to remain in a certain interval:

umin ≤ uk ≤ umax. (2.6)

Then, the problem can be formulated as follows:

Problem 2.2. Find

u(x0) := arg minu EωVN (2.7)

subject to (2.5), (2.6), and discretized version of the state-space model.
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In the previous cost function, Eω(•) denotes the expectation operator with respect

to the Gaussian disturbance ω.

In the next section, we employ the technique developed in [47] to transform the

problem to a semidefinite optimization problems, where they can be solved efficiently.

2.3 Control Strategies

If there is no constraint, the optimization problem under Gaussian disturbance can

be solved by linear quadratic regulator (LQR) through Bellman’s recursion. However,

with constraints, this approach involves a huge amount of computation to find the

optimal solution. To find the optimal values for each problem, we employ the SLQC to

find the solution by formulating the problems as semidefinite optimization problems.

2.3.1 SDP Approach for Problem 2.2

In this section, we applied the technique in [47] to formulate Problem 2.2 as a

semidefinite optimization problem. Unlike the MPC method, which is quadratic

programming, the problem will be converted to an SDP optimization problem. An

obvious result about the cost function is given in the following proposition.

Proposition 2.3. The cost function (2.1) can be written as:

VN (e0,u, ω) = 2aT e0 + eT0 Ae0 + 2bTu + uTBu + 2cTω

+ ωTCω + 2uTDω + l̂ (2.8)

for vectors a,b, c and matrices A,B,C,D with appropriate dimensions, and where

B > 0,C ≥ 0.

Proof: The proof can be found in the Appendix A.1.

Similarly as [47], let h = c−DTB−1b and F = B−1/2D, then by eliminating the

constant terms and take u = B−1/2y−B−1b, the cost function above can be further
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reduced to be:

ṼN (e0,y,w) = yTy + 2hTw + 2yTFω + ωTCω (2.9)

Taking the expectation of the above cost, we have

V̂N (e0,y, ω) = yTy + 2hTµ+ 2yTFµ+ trace(CΣ) (2.10)

Again, taking away constant terms, the cost to be minimized is V̂N (e0,y, ω) = yTy+

2yTFµ. Then, the problem 2.2 is equivalent to find u(x0) := arg minu V̂N . This

problem can be solved through SDP to obtain the optimal solution, as shown in the

next theorem.

Theorem 2.4. Problem 2.2 may be solved by the following semidefinite optimization

problem:

minimize z

subject to (2.18), (2.5) IN y + Fµ

yT + µTFT z + (Fµ)TFµ

 ≥ 0 (2.11)

in decision variables y and z.

Proof: The proof is given below by following the technique in Theorem 3 in

[47].

First, note the minimization of V̂N (e0,y,w) can be rewritten as

minimize z

subject to z − yTy − 2yTFµ ≥ 0 (2.12)
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The constraint (2.12) can be further written as

z − yTy − 2yTFµ− (Fµ)TFµ+ (Fµ)TFµ ≥ 0

m

z + (Fµ)TFµ− (y + Fµ)T (y + Fµ) ≥ 0 (2.13)

Then, by Schur complement lemma, (2.13) can be formulated as (2.11). Moreover,

note that (2.6) and (2.5) are linear constraints on the control input, which can be

added without increasing the complexity type. Thus, we obtain the statement.

2.3.2 Chance Constraints on the Performance

Another interesting requirement is the performance guarantee. The work in [47] has

demonstrated that the probability

P(VN (e0,u, ω) > v) ≤ ε

may be implied by a convex quadratic constraint, which can be added to either

problem without raising the complexity type.

2.4 Numerical Example I - HVAC Systems

2.4.1 Building Climate Plant

It is well known that the HVAC control can be approached using Model Predictive

Control (MPC) strategy. In this section, we describe the model used in this work and

formulate the problem. The system model was proposed in [26] and employed in [35].

We briefly describe the model in this section.
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Building Model

Consider the following continuous-time Linear Time Invariant (LTI) system based

on the dynamics of the room temperature, interior-wall surface temperature, and

exterior-wall core temperature:

ṫ1 = 1
C1

[(K1 +K2)(t2 − t1) +K5(t3 − t1) +K3(δ1 − t1) + uh

+uc + δ2 + δ3]

ṫ2 = 1
C2

[(K1 +K2)(t1 − t2) + δ2]

ṫ3 = 1
C3

[K5(t1 − t3) +K4(δ1 − t3)]

where the parameters used in the above model are defined as:

t1 : room air temperature [◦F ]

t2 : interior-wall surface temperature [◦F ]

t3 : exterior-wall core temperature [◦F ]

uh : heating power (≥ 0) [kW ]

uc : cooling power (≤ 0) [kW ]

δ1 : outside air temperature [◦F ]

δ2 : solar radiation [kW ]

δ3 : internal heat sources [kW ]

with constants chosen as:

C1 = 9.356 · 105 kJ/◦F C2 = 2.970 · 106 kJ/◦F

Cw = 6.695 · 105 kJ/◦F K1 = 16.48 kW/◦ F

K2 = 108.5 kW/◦ F K3 = 5 kW/◦F

K4 = 30.5 kW/◦ F K5 = 23.04 kW/◦F

The system states are the room air temperature t1, interior wall surface

temperature t2, and exterior wall core temperature t3. The control signals uh and

uc represent heating and cooling power, and they can be combined as one variable
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u = uh+uc because heating and cooling are not simultaneous. For more details about

this model, please refer to [26, 35].

Define the state vector x, the control signal vector u, and the environment

stochastic disturbance vector ω as:

x :=


t1

t2

t3

 , u :=

 uh

uc

 , ω :=


δ1

δ2

δ3


The continuous-time state-space model can then be described compactly as:

ẋ = Acx+Bcu+ Ccω (2.14)

where

Ac :=


− 1
C1

(K1 +K2 +K3 +K5) 1
C1

(K1 +K2) K5

C1

K1+K2

C2
− (K1+K2)

C2
0

K1

C3
0 − (K5+K4)

C3



Bc :=


1
C1

+ 1
C2

0

0

 , Cc :=


K3

C1

1
C1

1
C1

0 1
C2

0

K4

C3
0 0

 . (2.15)

Discretizing system (2.14) with period hk and applying a zero-order-hold, one obtains:

xk+1 = Adxk +Bduk + Cdωk (2.16)

where the parameters can be computed from the continuous-time model, and xk =

[t1,k, t2,k, t3,k]
T .
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We assume the following constraints are imposed on the temperatures during a

day to satisfy the requirement:

68◦F ≤ t1,k ≤ 80.6◦F (2.17)

Additionally, we also assume that the control input is the critical actuator yielding

its own working properties and conditions. It is meaningful to set a reasonable bound

for the uk. Otherwise, it would cost a lot to build and drive the actuator.

Therefore the control constraint is assumed to be written in terms of uk as:

− 50 ≤ uk ≤ 200 (2.18)

where uk > 0 means heating and the opposite means cooling.

From above constraints, we can observe that both the room air temperature and

control signal are constrained. In the next section, the control problem is formulated.

2.4.2 Description of the experimental setup

In this section, we present simulation results which demonstrate validity of the SLQC

method in the above problems. The system model is described in Section ??. As

mentioned before, this model was proposed in [26] and employed in [35]. The desired

temperature or reference temperature of the room is set as 22◦C = 71.6◦F . The

temperature is sampled every 10 minutes, and we plot t1 and the control input for

each method during a period of 10 days in the sequel. The disturbances corresponding

to different states are shown in Fig. 2.1.

2.4.3 Hysteresis band

It should be noted that the AC continues to cool the building for a few minutes even

after it is turned off because of the dynamics of the heat pump. Specifically, it takes

a while for the evaporator that cools the air to warm up, and so it keeps cooling
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Figure 2.1: Disturbance to the building climate system.
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Figure 2.2: Room temperature t1 comparison with/without control using LQR.
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Figure 2.3: Room temperature t1 and control power in 10 days using cSLQC in
Theorem 2.4.

the air for some time after the heat pump is turned off [58]. Therefore, there exists

a “delay” in the system model. For the purpose of approximating the real energy

consumption of HVAC, we have to consider a 0.5◦F hysteresis band (k = 0.5◦F) in

the control scheme.

Practically, we use this hysteresis band to represent the delay of the cooling system

for example. In order to cool the room to reach the setting temperature, i.e. xr, we

need to turn off the cooling unit k◦F before reaching xr. This also helps save energy

consumption as shown in Sec. 2.4.4.

2.4.4 Summary of the results

The Disturbance Distribution is Gaussian

First, we plot the trend of t1 using LQR control in Fig. 2.2, and using SDP through

(2.11) in Fig. 2.3. It is obvious that both LQR and cSLQC techniques can keep room

temperature t1 in the desired range and close to the reference temperature. Notice

that the control input is also bounded below by −50, which is as desired.
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Figure 2.4: Room temperature t1 comparison with/without control using cSLQC in
Theorem 2.4.

To evaluate the control performance for both of the controllers, we compare the

room temperature t1 with and without enabling the controller as shown in Fig. 2.2

and Fig. 2.4.

Simulation results show that without the controller, the temperature will depart

far away from the reference temperature.

To further illustrate the difference in energy saving between the two control

principles, we compute the total input energy, i.e. the energy cost in all the 10

days denoted by ‖ u ‖2 (2-norm) for both methods.

For LQR controller, ‖ u ‖2= 1665.3; while for cSLQC, ‖ u ‖2= 1268.3, which show

that the proposed cSLQC technique achieves a more efficient control policy which

contributes to reducing energy consumption.

Control with hysteresis band

As discussed in Sec.2.4.3, here we incorporate the proposed cSLQC with a 0.5◦F

hysteresis band to approximate the real working condition of HVAC as well as

pursuing more energy efficiency. In the stage of the experiments we set the control

signal to be zero as long as the temperature t1 reaches the hysteresis band. Basically,
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we compare the energy consumption, thereby the energy cost, of the three control

strategies running for 10 days and 30 days separately. It should be remarked that

the disturbance is not exactly the same value for each day. In stead, the disturbance

follows the same distribution, while the values may not be equal for different days.

The results shown in Fig. 2.5 and Fig. 2.6 clearly indicate that both our controllers

outperform the current LQR controller in terms of both energy use and violations of

the thermal comfort range. It can be seen from Fig. 2.5 that the cSLQC controller

never breaks the desired comfort band constraints, while the LQR controller tends to

have violations of the lower bound on the temperature.

Moreover, the temperature variations are smaller with cSLQC, which is a more

favorable behavior in terms of comfort. The improvements in energy saving for both

short-term and long-term can be explained by Fig. 2.6, where the hysteresis effect is

also considered.

2.5 Numerical Example II - Virtualized Web Servers

As green computing is becoming a popular computing paradigm, the issue of energy-

efficient data center with performance assurance becomes increasingly important. In
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Figure 2.6: Comparison of power consumption for control inputs in 10 days / 30 days.

this example, we apply the same control approach for joint performance and power

control of co-located multiple virtualized web servers.

2.5.1 System Modeling

For a virtualized server that hosts n virtual machines, T1 is the control period. As

the control variable, rti(k) is the average response time of VMi in the time interval

[(k − 1)T1, kT1]. ri(k) is the relative response time of VMi, namely, ri(k) = rti(k)
di

,

where di is the maximum allowed response time of VMi. The reference r̂(k) denotes

the average relative response time of all VMs, namely, r̂(k) =
∑n

i=1 ri(k)/n. As the

manipulated variable u, we use weight to assign the CPU resource to virtual machine.

Specifically, the amount of CPU resource allocation to each VM is proportional to

the weight value.

Specifically, let u(k) = [u1(t), u2(t), . . . , un(t)]T be the input vector and r(k) =

[r1(t), r2(t), . . . , rn(t)]T be the output vertor. Instead of directly using u(k) and r(k),

we use their differences ∆r(k) = r(k) − r̂(k) and ∆u(k) = u(k) − û, where û is a
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typical value in Xen. The system model can be described as:

∆r(k + 1) = A(k)∆r(k) + B(k)∆u(k) + C(k)ω(k) (2.19)

where ω(k) ∈ Rn is the disturbance vector (an unknown quantity), the matrices

A(k) ∈ Rn×n, B(k) ∈ Rn×n, and C(k) ∈ Rn×n respectively. The typical assumption

is that the disturbances ω are independent and normally distributed (i.i.d), i.e., ω ∼

N (0, I).

Hence the finite horizon cost function based on the current state ∆r(0) can be

described as follow:

J1(∆r(0),∆u, ω) =
N∑
k=1

∆r(k)TQ∆r(k) +
N−1∑
k=0

∆u(k)TR∆u(k) (2.20)

where Q and R are positive-semidefinite weighting matrices that establish a trade-off

between control error and control cost. we choose the resource allocation solution that

performs best for the most pessimistic disturbance ω within a reasonable uncertainty

set Θ. Specifically, we search for an optimal control ∆u∗ such that

min
∆u∈RN×n

{max
ω∈Θ

J1(∆r(0),∆u, ω)}. (2.21)

2.5.2 Load Balancing

To evaluate the cSLQC controller performance in the load balancing layer, the

controller in the second layer temporarily disabled. Fig. 2.7 shows an example of time

varying incoming workloads to each of the three virtual machines. The strength of

concurrency level exhibits time-of-day variations typical of many enterprise workloads

and the concurrency level changes significantly within a vary short time period. The

synthetic web workloads used in our experiment, in part, referring to the log files from

the Soccer World Cup 1998 Web site [59]. To quantify and compare the performance

of cSLQC with a benchmark solution PARTIC [37].
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Figure 2.7: High dynamical workloads
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(b) cSLQC method.

Figure 2.8: Comparison with different method in term of performance.

Fig. 2.8a is the performance of PARTIC. It shows that the response time of each

VM is unstable and exhibiting large oscillation seriously during the whole process,

since it is an offline method and the control accuracy is limited to a certain range.

Obviously, PARTIC cannot adapt to the high dynamical workload case. cSLQC

achieves the performance target by dynamically adjusting the CPU resource allocation

among the three virtual machines. From the Fig. 2.8b and 2.9a, we see that the

controller gives different portions of CPU resource to the three virtual machines such
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Figure 2.9: Performance analysis of cSLQC controller.

that each VM converge to the average response time of all VMs. Hence the target is

met.

Fig. 2.9b compares the performance assurance capability of cSLQC controller on

VM1 with that of PARTIC in the face of high dynamical workload. We can see

that cSLQC could achieve small relative response time after the first several step. It

implies that it can provide performance guarantee in terms of response time when

the workload varies significantly. cSLQC controller significantly outperformed the

PARTIC in terms of control accuracy and stability, since most of the control error is

below 0.1 (i.e., defined limit level).

Fig. 2.10 illustrates the improvement in performance efficiency by cSLQC

controller for various constraint violations, compared with PARTIC. It demonstrated

that the performance of cSLQC controller degrades when allowing more constraint

violations.

2.5.3 System Robustness

In this experiment, we evaluate the performance of stochastic control under a bursty

workload. As a case study, we apply a bursty workload to VM2 as shown in Fig.

2.11. The workload of VM1 and VM3 is running at the normal level 60 during the
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Figure 2.10: Overall control performance.
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Figure 2.11: Performance of cSLQC under the bursty workload

whole process. Furthermore, we add white Gaussian noise to the concurrency level to

simulate the unknown and unpredictable requests. Fig. 2.11 shows that the stochastic

control can provide the same response time for all three VMs in the face of the bursty

workload case. Clearly, VM1 and VM3 experience a longer response time during

the burstiness periods, since cSLQC controller dynamically assigns less resource to

VM1 and VM3, and correspondingly assigns more resource to VM2 to cope with the

abrupt changes in the workload. As a result, the response time of all three VMs

converge to the average response time, which means the desired response time has

been guaranteed.
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2.6 Summary

In this chapter, we proposed a unifying cSLQC controller for energy efficient buildings

and virtualized web servers, aiming at reducing the energy consumption in smart

grids. The constrained SLQC approach is employed to solve stochastic optimization

problems with chance constraints by SDP. We first present an investigation of

constrained quadratic control of room temperature on a dynamic building climate

model. Moreover, the proposed cSLQC controller has also been applied onto

Virtualized Web Servers.

The mechanism to account for the probabilistic nature of the disturbances affecting

the comfort indicators is simplified to a hard constraint exactly without using affine

disturbance feedback. Moreover, we consider a stochastic quadratic cost function,

which is taken expectation with respect to Gaussian disturbances.
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Part II

Optimal Distributed Control for

Spatially Invariant Systems
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Chapter 3

Spatially Invariant Systems

This chapter introduces the notation that will be used throughout the following

chapters. This includes both the functional spaces that will be considered as well

as our mathematical performance specification for control systems. One of the main

themes in modern control theory is the utilization of norm based criteria to measure

the optimal performance of a given control system [60]. We shall first introduce some

normed spaces and basic notions of linear operator theory, in particular, the Hardy

spaces H2 and H∞. Then we discussed the a special class of large-scale systems, i.e.

discrete Spatio-Temporal invariant systems. The original problem will be transformed

into a standard feedback configuration which lies the foundation for the following

chapters.

3.1 Distributed Parameter Systems

One of the most productive recent development is that of the theory of optimal control

of systems with distributed parameters. This class of systems is much broader than

simple systems with only lumped parameters. Actually, many of the real problems

in control and design in airframe, shipbuilding, electronics, nucleonics, and other

engineering fields are, in essence, problems of control of systems with distributed

parameters. Spatial invariance is a strong property of a given system, which means
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that the dynamics of the system do not vary as we translate along some spatial axis

[27].

As mentioned in [28], the main difference between distributed parameter systems

and lumped parameter systems is that the former are characterized not by a finite set

of quantities, coordinates of the object, that vary only in time, but generally by a set

of functions that show the dependence of the parameters on the time and spatially

variables or any combination of them. In the majority of cases, ideal control designed

for lumped systems is not realizable because of the presence of additional constraints

imposed on state functions and controlling actions. In particular, these constraints

are related with spatial variables on which the state and control functions depend.

The impossibility of realizing a perfect control process posed the problem of deriving

an optimal process according to a definite, preassigned criterion.

Hence, an optimal control problem of distributed parameter systems obviously

leads to the powerful apparatus of functional analysis [28]. In this case, the optimal

control processes can be visually and geometrically interpreted in the functional phase

space of the system. Then a variational of the state of the controlled system, if it

occurs in time, is characterized by a definite point in the functional space of the

system, and the transition of the system from one state to another, i.e., evolution

in time, is characterized by a trajectory in the functional space. Therefore, in place

of the usual finite-dimensional phase space of the system we must use the infinite

dimensional functional space. The application of functional analysis methods permits

us to generalized the important duality theory for distance minimization problem to

systems with parameters distributed in space.

3.2 Hardy Spaces

We use the following notation in this work. The real and complex numbers are

denoted by R and C, respectively. The complex open unit disc is D; its boundary,

the unit circle, is T; and the closed unit disc is D̄ .
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In particular, we denote as following:

D = {z; |z| < 1}

T = {z; |z| = 1}

D̄ = {z; |z| ≤ 1}

As mentioned in [61], it is a fact that if f(x) is analytic at z0 and also at each

point in some neighborhood of z0. Hence a function analytic at z0 has a power series

representation at z0. Recall that the converse is also true such that a complex-valued

function f is analytic in D provided that it is the sum of a convergent power series

[62]

f(z) =
∞∑
n=0

anz
n (3.1)

Let V be a vector space over C (or R) and let ‖· ‖ be a norm defined on V . Then

V is a normed space. A normed space is said to be complete if every Cauchy sequence

in V converges in V . A complete normed space is called a Banach space. A Hilbert

space is a complete inner product space with the norm induced by the inner product.

Definition 3.1. [63] A function g(z), z ∈ C, is in Hp(D), 1 ≤ p ≤ ∞, if

1. : g is analytic in D,

2. : it is defined almost everywhere on T, and

3. : its p−norm defined by

‖g‖p = sup
r<1

(
1

2π

∫ 2π

0

|g(rejθ)|pdθ
)1/p

, (1 ≤ p <∞)

=

(
ess sup

r<1, θ∈[0,2π]

|g(rejθ)|

)
(p =∞)

is finite.

If only the first condition is not satisfied with r = 1, then it is in Lp(T).
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Two of the most important norms employed in modern control analysis and design

are the H2-norm and H∞-norm.

The set L2(T) is the Hilbert space of Lebesgue measurable functions on T, which

are square integrable, with inner product

〈F,G〉 =
1

2π

∫ 2π

0

trace(F ∗(ejθ)G(ejθ))dθ (3.2)

Definition 3.2. The Hardy space H2 consists of all analytic functions having power

series representations with square-summable coefficients. That is,

H2 =

{
f : f(z) =

∞∑
n=0

anz
n and

∞∑
n=0

|an|2 <∞

}
. (3.3)

Theorem 3.3. Every function in H2 is analytic on the open unit disk.

It should be noticed that converse of the above theorem is not true since we could

find such a counter-example as f(z) = 1
1−z . It’s obvious that 1

1−z =
∑∞

n=0 z
n, while

the coefficients of f are not square-summable.

Theorem 3.4. [64] For every z0 ∈ D, the mapping f 7→ f(z0) is a bounded linear

functional on H2.

As is standard, H2 denotes the Hardy space of functions analytic outside the

closed unit disc, and at infinity, with square-summable power series.

H2 =

{
f : {∞} ∪ C \ D̄ −→ C | ∃x ∈ L2(Z+) s.t. f(z) =

∞∑
k=0

xkz
−k

}
(3.4)

The set H⊥2 is the orthogonal complement of H2 in L2. The prefix R indicates the

subsets of proper real rational functions. That is, RL2 is the set of transfer functions

with no poles on T, and RH2 is the set of transfer functions with no poles on or

outside T.
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Theorem 3.5. [64] Let f be analytic on D. Then f ∈ H2 if and only if

sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|2dθ <∞ (3.5)

Moreover, for f ∈ H2,

‖f‖2 = sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|2dθ (3.6)

Definition 3.6. [64] The space H∞ consists of all the functions that are analytic

and bounded on the open unit disk. The vector operations are the usual point-wise

addition of functions and multiplication by complex scalars. the norm of a function

f in H∞ is defined by ‖f‖∞ = sup {|f(z)| : z ∈ D}.

Since convergence in the norm on H∞ implies uniform convergence on the disk, it

is easily seen that H∞ is a Banach space. Furthermore, every function in H∞ is also

in H2.

Definition 3.7. A function m ∈ H∞(D) is called inner if |m(z)| ≤ 1 for all z ∈ D

and |m(ejθ)| = 1 a.e. θ ∈ [0, 2π].

This can be treated as all pass transfer functions since the inner functions always

carry constant magnitude a.e. on T.

Definition 3.8. A function g ∈ H∞(D) is called outer if the closure of gL+ in H2(D)

is the whole space H2(D), where L+ =
{∑n

k=0 akz
k, ak ∈ C, n ≥ 0

}
.

Note that the outer functions don’t have a zero in D, however may have zeros on

T, this would guarantee g to be invertible in H∞(D).

We denote Rm×n as the set of m × n matrices in R. This notation will also be

used to denote m× n block matrices, where the dimensions of the blocks are implied

by the context.

Also, we denote the subspace L∞(T) as the set of Lebesgue measurable functions

which are bounded on T. Similarly, H∞ is the subspace of L∞ with functions
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analytic outside of T, and H−∞ is the subspace of L∞ with functions analytic inside

T. Consequently, RH∞ is the set of transfer functions with no poles outside of T.

Note that, in this case, RH2 = RH∞ ; we will use these spaces interchangeably.

For any Hilbert spaces S, T and bounded operator G : S −→ T , we let G∗ : T −→

S denote its adjoint operator. The special case is when G is a real matrix; in which

case, GT denotes its transpose. Also, the following notation denotes the image of G.

GS = {G(F ) ∈ T |F ∈ S} (3.7)

Some useful facts about Hardy spaces which we will make use of in this work are :

• if G ∈ L∞, then GL2 ⊂ L2

• if G ∈ H∞, then GH2 ⊂ H2

• if G ∈ H−∞, then GH⊥2 ⊂ H⊥2

For transfer functions F ∈ RL2, we use the notation

F (z) =

 A B

C D

 = C(zI − A)−1B +D (3.8)

Lastly, we define PH2 : L∈ → H2 as the orthogonal projection onto H2.

Definition 3.9. [61] Two normed spaces V1 and V2 are said to be linearly isometric,

denoted by V1 ' V2, if there exists a linear operator T of V1 onto V2 such that

‖Tx‖ = ‖x‖

for all x in V1. In this case, the mapping T is said to be an isometric isomorphism.

Let H be a Hilbert space and M ⊂ H a subset. Then the orthogonal complement

of M , denoted by M⊥ or H	M , is defined as

M⊥ = {x : 〈x, y〉 = 0, ∀y ∈M,x ∈ H} . (3.9)
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Definition 3.10. [61] Let M and N be subspaces of a vector space V . V is said to

be the direct sum of M and N , written V = M ⊕ N , if M ∩ N = {0} , and every

element v ∈ V can be expressed as v = x+ y with x ∈M and y ∈M .

Theorem 3.11. [61] Let H be a Hilbert space, and let M be a closed subspace of H.

Then for each vector v ∈ H, there exist unique vectors x ∈M and y ∈M⊥ such that

v = x+ y, i.e., H = M ⊕M⊥.

3.3 Discrete Spatio-Temporal Invariant Systems

The spatially invariant systems are composed of identical subsystems connected to

their nearest neighbors. The primary motivation for this kind of system is to explore

control design and analysis for interconnected systems. These systems are comprised

of many similar units that interact directly with their nearest neighbors, and that

have sensing and actuating capabilities at every unit. The resulting interconnected

systems often display rich and complex behavior, even when the units have tractable

models and interact with their neighbors in a simple and predictable manner.

In addition to formation flight problem [65, 66], there are many examples of

such engineered systems, including automated highway systems [67] and trajectory

optimization for formation control of vehicles [68, 69]; Cross-Directional control in the

paper processing applications and chemical process industry [70, 71]; decentralized

control of power systems [72, 73, 74] and micro-cantilever array control for massively

parallel data storage [75]. One can also consider lumped approximations of partial

differential equations (PDEs) examples include the deflection of beams, plates,

and membranes, and the temperature distribution of thermally conductive materials

[76, 77]. A general structure of spatially invariant systems is captured in Figure 3.1.

Spatial invariance has been recognized as a powerful tool for simplifying the design

of a controller for large-scale systems. For example, the early works treated spatially

invariant systems as systems over modules [78, 79]. Later, the papers [80, 81, 82, 76]

have used Fourier techniques or algebraic transformations to derive implementable
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Figure 3.1: Infinite interconnection of identical subsystems in a hexagonal lattice.

and scalable optimal control algorithms, which could even handle interconnected

systems consisting of infinite number of subsystems. This is feasible because spatial-

invariance yields a tractable model for analysis and obtaining analytical performance

bounds as it allows ys to apply multi-dimensional Discrete Fourier Transform to

generate algebraic relationships between the system’s performance and the network

and controller parameters [83]. More recently, spatially invariant systems have been

widely studied for their role in modelling, analysis and control of large-scale systems

[81, 84, 85, 25]. It also seems to be appropriate for power grid, in particular, spatially-

invariant DC power grid model is discussed in [83].

In general, the characteristic and advantage of doing distributed control are

summarized in Figure 3.2.

3.3.1 Preliminaries

Following [84, 81], we consider signals that are both functions of discrete time t and

discrete space i, denoted u(t, i). Spatially invariant spatio-temporal systems act on

signals by convolution. If y(t, i) denotes the output of a spatially invariant systems
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Figure 3.2: Comparisons of Centralized, Distributed, and Decentralized Control
Design and Implementation [1].

G then y = Gu, where

y(t, i) =
∞∑

j=−∞

∞∑
τ=−∞

ĝ(t− τ, i− j)u(τ, j), (3.10)

where ĝ(t, i) denotes the spatio-temporal impulse response of G.

We assume temporal causality [84, 81], that is,

ĝ(t, i) = 0, for t < 0. (3.11)

The λ-transform of ĝ(t, i) is defined as

g(λ, i) =
∞∑
t=0

ĝ(t, i)λt. (3.12)

The spatial-temporal transfer functions is given by:

G22(z, λ) :=
∞∑

i=−∞

g(λ, i)zi. (3.13)
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The input-output relationship is given by the expression:

Y (z, λ) = G(z, λ)U(z, λ), (3.14)

where U(z, λ) is the transform of u(t, i), and Y (z, λ) is the transform of y(t, i).

The system G(z, λ) can be viewed as a multiplication operator on L2(T, D̄) where

T is the unit circle and D̄(D) is the closed (open) unit disc of the complex domain

C. If we assume that G(z, λ) is stable, then [84, 81]:

G(z, λ) : L2(T, D̄) −→ L2(T, D̄),

u −→ Gu = G(eiθ, λ)u(eiθ, λ),

where θ ∈ [0, 2π), |λ| ≤ 1.

Then we define the operator induced norm as [84, 81]:

‖G‖ = sup
‖u‖2≤1

‖Gu‖2 = ‖G‖∞

= esssup
0≤θ<2π
‖λ‖≤1

|G(eiθ, λ)| <∞,

where

‖u‖2
2 =

∫
D̄

∫
[0,2π)

|G(eiθ, λ)u(eiθ, λ)|2dθdλ.

3.4 Summary

This is a transient chapter which focuses on the preliminary knowledge about

functional spaces and the mathematical performance specification for control systems.

A class of Spatio-Temporal invariant systems is introduced at the end of this chapter.

Computing finite horizon centralized controllers for this particular class of systems is

equivalent to solve a finite-dimensional convex problem, so there exist many methods

for finding an optimal lower triangular matrix Q. However, in the sequel, we turn to
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infinite-dimensional problems, in which we consider transfer functions, greater care

is required to find optimal solutions.
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Chapter 4

Optimal Distributed H2 Control of

Spatially Invariant Systems

In this chapter, the optimal H2 control problem for spatially invariant systems is

considered. The framework adopted is borrowed from the work pioneered by Voulgaris

et al. In particular, the H2 optimal control problem is solved via the computation of

an orthogonal projection of a tensor Hilbert space onto a particular subspace. Next,

the optimal H2 decentralized control problem is solved by computing an orthogonal

projection on a class of Youla parameters with a decentralized structure. The latter

uses Riesz projections after invoking a particular L2-basis. Moreover, a numerical

example is included to explain the performance of the developed controller.

Parts of the results in this chapter appeared in [86].

4.1 Introduction

This chapter is concerned with designing distributed coordination and control

algorithms for spatially interconnected systems. The goal is to perform distributed

computations over a communication network to implicitly solve a global optimization

problem. The theory of such systems has been worked out in some detail. We consider
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only spatially invariant distributed systems. Early work for this class of systems has

been done in the control systems community, we refer the reader to [6, 7, 8, 9, 10]

and references therein.

A networked system is a collection of dynamic units that interact over an

information exchange network. Even if the subsystems interact locally, the optimal

controller will need global information to produce the feedback signal. It’s challenging

to inherit the standard control design techniques for systems of very high dimensions

and with a large number of inputs and outputs. A preferred alternative is to

have control signals computed using only local communication among neighboring

subsystems as motivated in [6] and [7].

After the recent advances in communication technologies, the design of distributed

controllers for physically interconnected systems has become an attractive and fruitful

research direction [9, 41]. In the literature, much attention has been paid to consensus

of first order or second order integrator dynamics [87]. However, for a large scale

networked systems, it is more interesting to study synchronization of general linear

systems [88, 44, 45, 89], which includes the integrator dynamics (of any order) as

a special case. For general linear time-invariant plants with either an H2 objective,

there is no known method of computing the optimal distributed controller.

The origin of the synthesis problem of distributed control lie in the team decision

problems, which were introduced by Radner [90]. For systems with feedback, the

well-known example of Witsenhausen showed that the optimal H2 controller is in

general nonlinear. Moreover, many of such problems are shown to be computational

intractable in [91]. The optimal distributed controllers of spatially invariant systems

were stated by Bamieh et al. [6], who claimed that the dependence of a controller

on information coming from other parts of the system decays exponentially as one

moves away from that controller at least for state operators which generate semigroups

in L2 [32]. An alternative algorithm for the problem is to reformulate the optimal

control problems using a model-matching framework [92]. The approach was based on

Youla parameterization and worked under the assumption that a closed-loop transfer
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function is affine in the Youla parameter [93]. However, as claimed in [85], in the

distributed setup, the nonlinearity of the mapping from the controller to the Youla

parameter removes the convexity of the constraint set. In other words, a convex

constraint set for controller is not always mapped to a convex constraint set for the

parameter.

Due to the non-convexity of the design problem with respect to some state-space

design parameters, only suboptimal controllers could be achieved after employing

certain relaxations and numerical optimization algorithms [85]. To ensure the closed-

loop maps are convex, a broader class of problems, called quadratically-invariant, was

developed in [94]. In [94], the result was derived under the fact that the H2 norm

does not change when a matrix transfer function is vectorized. However, it may only

apply to systems with very few states due to the numerical issues discussed in [95].

Certain subspaces of localized systems which remain invariant under this nonlinear

mapping have been characterized. The pioneering work by Bamieh and Voulgaris

[96] and Voulgaris et al. [84] introduce the important ideas such as subspaces of

cone causal and funnel causal systems, respectively. A similar but more general

characterization, termed quadratic invariance, was introduced in [97]. It is important

to note that constructs such as cone and funnel causality lead to optimal control

problems that are convex in the Markov (i.e., impulse response) parameters of the

Youla variable, but not in the state-space parameters.

Most of the early work on the optimal distributed controller design problem dealt

with the non-convex problem using a variety of relaxations and numerical optimization

algorithms to the original problem, thereby rendering suboptimal controllers. Using

an approach based on spatial Fourier transforms and operator theory, Bamieh et al.

discussed the optimal control of linear spatially invariant systems with standard linear

quadratic (LQ) criterion in [6]. Although rigorous, as pointed out in [31, 32], this

approach is valid when system operator could generate a semigroup on L2(Rn) for a

given state-space, which is a non-trivial task. Therefore, one is still faced with solving

a realization problem for a distributed system.
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In the previous chapter, we used the fact that spatially invariant systems can

be viewed as multiplication operators from a particular Hilbert function space into

itself in the Fourier domain. We have successfully posed the optimal distributed

performance as a distance minimization in a general L∞ space, from a vector

function to a subspace with a mixed L∞ and H∞ space structure via a spatial-

temporal Youla parametrization [84]. In [98], we explained that the dual and pre-dual

formulations lead to finite dimensional convex optimizations which approximate the

optimal solution within desired tolerance. In [99], the duality structure of the problem

is characterized in terms of tensor product spaces. We show that these spaces together

with the pre-annihilator and annihilator subspaces can be realized explicitly as specific

tensor spaces and subspaces, respectively. Specifically, the optimal distributed control

performance for spatially invariant systems is equal to the operator induced norm of

an operator given by a tensor product.

In this chapter, the H2 control problem for spatially invariant systems in the

framework proposed by Voulgaris et al [84, 81] is considered. First, the optimal H2

control problem is solved by an orthogonal projection from a tensor Hilbert space of

L2 and H2 onto a particular subspace. Next, the optimal H2 decentralized control

problem is solved by constructing an orthogonal projection onto the Youla parameters

with a particular decentralized structure. This is achieved by using {zn}∞n=−∞ as a

basis for L2 and invoking Riesz projections.

The rest of the chapter is organized as follows. In Section 4.2, we introduce

mathematical preliminaries for discrete spatio-temporal invariant systems. We define

the H2-distributed control problem and shed light on how to solve this problem in

Section 4.3. In Section 4.4 the optimal decentralized H2 control problem is solved.

In Section 4.5, we present a numerical experiment through which we show that the

proposed approach achieves a better performance. Finally, some concluding remarks

are drawn in Section 4.6.
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4.2 Discrete Spatio-Temporal Invariant Systems

Following [84, 81], we consider signals that are both functions of discrete time t and

discrete space i, denoted u(t, i). Spatially invariant spatio-temporal systems act on

signals by convolution. If y(t, i) denotes the output of a spatially invariant systems

G then y = Gu, where

y(t, i) =
∞∑

j=−∞

∞∑
τ=−∞

ĝ(t− τ, i− j)u(τ, j) (4.1)

where ĝ(t, i) denotes the spatio-temporal impulse response of G.

We assume temporal causality [84, 81], that is,

ĝ(t, i) = 0, for t < 0 (4.2)

The λ-transform of ĝ(t, i) is defined as

g(λ, i) =
∞∑
t=0

ĝ(t, i)λt (4.3)

The spatial-temporal transfer functions is given by:

G22(z, λ) :=
∞∑

i=−∞

g(λ, i)zi (4.4)

The input-output relationship is given by the expression:

Y (z, λ) = G(z, λ)U(z, λ) (4.5)

where U(z, λ) is the transform of u(t, i), and Y (z, λ) is the transform of y(t, i).

The system G(z, λ) can be viewed as a multiplication operator on L2(T, D̄) where

T is the unit circle and D̄(D) is the closed (open) unit disc of the complex domain
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C. If we assume that G(z, λ) is stable, then [84, 81]:

G(z, λ) : L2(T, D̄) −→ L2(T, D̄),

u −→ Gu = G(eiθ, λ)u(eiθ, λ),

where θ ∈ [0, 2π), |λ| ≤ 1.

Following [81], the `2-norm of G can be defined as

‖G‖2 =

(
∞∑

i=−∞

∞∑
t=0

|ĝ(t, i)|2
) 1

2

, (4.6)

and the H2-norm of its transform G(z, λ) is given by

‖G‖H2 =

[( 1

2π

)2
∫
θ∈[0,2π)

∫
w∈[0,2π)

∣∣G(eiθ, eiw)
∣∣2dwdθ] 1

2

(4.7)

And

‖G‖2 = ‖G‖H2 (4.8)

The system G is said to be stable if its uniform norm

‖G‖∞ = esssup
0≤θ<2π
‖λ‖≤1

|G(eiθ, λ)| <∞ (4.9)

In the next section, the H2 optimal control problem for spatially invariant systems is

formulated and solved. Note that the optimal solution does not necessarily result in

distributed or decentralized controllers.
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4.3 H2 Optimal Control Problem Formulation

Consider the standard feedback configuration of Figure 4.1, where w is the external

disturbance, z is the controlled output, y is the measurement signal, and u is the

control for all spatio-temporal sequences. The plant G and controller K are spatially

and temporally invariant systems.

w

Figure 4.1: Standard Feedback Configuration

We assume that G is stable, and the transmission from w to z is denoted by Tzw.

We have:

(
z

y

)
=

(
G11 G12

G21 G22

)(
w

u

)
(4.10)

All stabilizing spatio-temporal invariant controllers [84]

K = −Q(I −G22Q)−1 (4.11)

with Q stable, denote

Q ∈ H∞(L∞(D̄)) (4.12)

The subspace H∞(L∞(D̄)) is defined as follows:

For f ∈ H∞(L∞(D̄)), for each θ ∈ [0, 2π), f(eiθ, ·) ∈ L∞(T), and for each λ ∈

D̄, f(·, λ) ∈ H∞.
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In other words, all functions f ∈ H∞(L∞(D̄)) can be viewed as H∞ functions

which take values in L∞(D̄), i.e., L∞(D̄) valued H∞ functions. This interpretation

is carried out to other subspaces in a similar vein.

With the parametrization (4.11), the H2-control problem is formulated as:

µ2 := inf
Kstabilizing

‖Tzw‖H2

= inf
Q∈H∞(L∞(D̄))

‖T1 − T2Q‖H2 , (4.13)

where T2, T1 ∈ H2(L2), that is, L2-valued functions belonging to H2.

For this problem to make sense, the system transform G(z, λ) must be strictly proper

in the frequency λ. This makes the subspace {T2Q : Q ∈ H∞(L∞(D̄))} not closed.

As a result, there may not exist a minimizer Q.

The space H2(L2) can be viewed as the closure of the tensor Hilbert space H2⊗L2

in the norm (6.5). The inner product on H2 ⊗ L2 is defined as for f1 ⊗ g1, f2 ⊗ g2:

fi ∈ H2, gi ∈ L2, i = 1, 2 :

〈f1 ⊗ g1, f2 ⊗ g2〉 = 〈f1, f2〉H2 〈g1, g2〉L2 , (4.14)

where 〈·, ·〉H2 and 〈·, ·〉L2 are the standard inner products in H2 and L2, respectively.

The norm induced by the inner product (4.14) is

α(f) =
√
〈f, f〉, f ∈ H2 ⊗ L2. (4.15)

The completion of the tensor space H2 ⊗ L2 with respect to (4.15) will be denoted

henceforth, by H2 ⊗α L2.

Then we have

H2(L2) = H2 ⊗α L2. (4.16)
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Therefore, these spaces will be used interchangeably.

A standard result from Hp-theory [100] asserts that if f ∈ H2, then f(ejw) ∈ L2,

that is, H2 may be viewed as a closed subspace of L2. For example,

L2(−∞,∞) = L2 (−∞, 0]⊕ L2 [0,∞) (4.17)

Each function f in L2(−∞,∞) has a unique decomposition f = f1 + f2 with f1 ∈

L2(−∞, 0] and f2 ∈ L2[0,∞):

f1(t) = f(t), f2(t) = 0, t ≤ 0,

f1(t) = 0, f2(t) = f(t), t > 0.

The function f → f1 from L2(−∞,∞) to L2 (−∞, 0] is an operator, the orthogonal

projection of L2(−∞,∞) onto L2 (−∞, 0]. It’s easy to prove that its norm equals 1

[92].

Letting H2⊥ be the orthogonal complement in L2, then

L2 = H2 ⊕H2⊥, (4.18)

that is, every f ∈ L2 can be written uniquely as:

f = f1 + f2, (4.19)

with f1 ∈ H2 and f2 ∈ H2⊥.

Definition 4.1. The set of functions {ejnw}∞n=−∞ is an orthogonal basis for L2, i.e.,

L2 = span{ejnw}∞n=−∞,∀f ∈ L2

f(ejw) =
∞∑

n=−∞

ane
jnw. (4.20)
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Similarly,

H2 = span{ejnw}∞n=0,

H2⊥ = span{ejnw}−1
n=−∞,

where if A is a set, Ā denotes its closure.

Every function g ∈ H2, and h ∈ H2⊥ satisfy

g(ejw) =
∞∑
n=0

gne
jnw (4.21)

h(ejw) =
−1∑

n=−∞

hne
jnw (4.22)

Define the positive and negative Riesz projections from L2 into H2 and H2⊥,

respectively, as:

P+ : L2 → H2

f → P+f(ejw) =
∞∑
n=0

ane
jnw (4.23)

P− : L2 → H2⊥

f → P−f(ejw) =
−1∑

n=−∞

ane
jnw (4.24)

where P+ and P− are orthogonal projections.

By a result in [101], if I denotes the identity operator in the space L2 (of functions of

ejθ), then P+⊗α I is the orthogonal projection of L2⊗α L2 onto H2⊗α L2. Similarly,

P− ⊗α I is the orthogonal projection onto H2⊥ ⊗α L2.
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Assuming T1(ejθ, λ) is strictly proper in λ and for fixed θ, T2(eiθ, ·) as a function

of λ is non-zero on the boundary of D̄, i.e., ∂D̄.

Then by using the spatio-temporal inner-outer factorization, we have:

T2(ejθ, λ) = T2in(ejθ, λ)T2out(e
jθ, λ) (4.25)

where T2in(ejθ, λ) is an isometry and T2out(e
jθ, λ) is outer invertible.

The optimal H2−control problem is then solved in the following theorem.

Theorem 4.2. Under the assumptions above, the infimum in (4.13) is achieved, i.e.,

µ2 = min
Q∈H∞(L∞(D̄))

‖T ∗2inT1 − T2outQ‖L2 (4.26)

= ‖(P− ⊗α I)(T ∗2inT1)(ejθ, λ)‖L2 (4.27)

and the minumum is achieved by choosing any Q ∈ H∞(L∞(D̄)) such that

T2outQ = (P+ ⊗α I)(T ∗2inT1) (4.28)

or equivalently, Q =
(P+⊗αI)(T ∗2inT1)

T2out
.

Proof. Write

T ∗2inT1 = (P+ ⊗α I)(T ∗2inT1) + (P− ⊗α I)(T ∗2inT1). (4.29)
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Since

(P+ ⊗α I)(T ∗2inT1) ∈ H2 ⊗α L2, (4.30)

and

(P− ⊗α I)(T ∗2inT1) ∈ H2⊥ ⊗α L2. (4.31)

By Pythagorean theorem, for any Q we have

‖T ∗2inT1 − T2outQ‖2
L2 = ‖(P+ ⊗α I)(T ∗2inT1)− T2outQ‖2

L2

+ ‖(P− ⊗α I)(T ∗2inT1)‖2
L2 (4.32)

≥ ‖(P− ⊗α I)(T ∗2inT1)‖2
L2 . (4.33)

Notice the equality (and therefore the minimum) is achieved by choosing Q satisfying:

T2outQ = (P+ ⊗α I)(T ∗2inT1)

or equivalently,

Q =
(P+ ⊗α I)(T ∗2inT1)

T2out

(4.34)

and the theorem is proved. ���

Remark 4.3. The solution provided in Theorem 4.2 may not in general be distributed

or decentralized. To derive optimal decentralized controllers, we adopt the framework

proposed in [84], where subspaces of cone causal and funnel causal systems which

remain invariant under the Youla parametrization were studied. In particular, the

authors considered a relaxation problem to the original decentralized problem where

the first N coefficients

Q(λ, z) = Q0(z) +Q1(z)λ+ · · · (4.35)
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are constrained to correspond to band-operator Qi with (zi+1)−diagonal for i =

0, 1, · · · , N−1, where N is arbitrary [84]. This problem is interesting in its own right.

The authors in [84] show how it can be solved, and that it provides a lower bound

to the original optimal decentralized control problem. The lower bound converges to

the optimal solution as N → ∞ [84]. In [85], the authors introduce a state-space

framework to the relaxed problem, and provide a variety of numerical optimization

algorithm to compute suboptimal controllers.

In the next section, we consider the original optimal decentralized control problem.

In particular, we give an exact solution which relies on the fact that {zn}∞n=−∞ is a

basis for L2 and the principle of orthogonality using Riesz projections as in Theorem

4.2.

4.4 Design ofH2 Optimal Decentralized Controllers

The framework considered in this section is borrowed from [84], where the particular

structure of interest is when the spatio-temporal transform G22 yields the following

form [84]:

G22(z, λ) =
∞∑

i=−∞

gi(λ)zi (4.36)

with gi(λ) = λ|i|g̃i(λ) (4.37)

where as previously λ corresponds to the temporal transform variable, and z

corresponds to the spatial two-sided transform.

The transfer functions g̃i(λ), i = 1, 2, · · · correspond to temporal causal systems [84].

The interpretation of this framework is that the input ui to the ith system gi affects

the output yj of the jth system gj which is |j− i| spatial location aways with a delay

of |j − i| time steps [84].
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The controllers K we are looking for are assumed to have the same structure as

G22, that is,

k(z, λ) =
∞∑

i=−∞

ki(λ)zi, (4.38)

with ki(λ) = λ|i|k̃i(λ), (4.39)

which means that the measurements of the jth location are made available at the ith

system after |j − i| time steps [84].

The following proposition asserts that the Youla parametrization transforms the

decentralized constraints on K to convex constraints on the Youla parameter Q [84].

Proposition 4.4. [84] All stabilizing controllers K with the structure (4.38)-(4.39)

are given by

K = −Q(I −G22Q)−1, (4.40)

with Q stable given by

Q(z, λ) =
∞∑

i=−∞

qi(λ)zi, (4.41)

where

qi(λ) = λ|i|q̃i(λ), (4.42)

where q̃i is stable.

The H2-decentralized optimal control problem can then be formulated as:

µ2d := inf
Kstabilizing s.t.(4.38)−(4.39) hold

‖Tzw‖H2 (4.43)
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= inf
Q stable s.t.(6.16)−(6.17) hold

‖T1 − T2Q‖H2 , (4.44)

where Tzw is defined in (5.1).

Again, using inner-outer factorization of T2, we can write T2 = T2inT2out with

T ∗2inT2in = I. Then, (4.44) reduces to:

µ2d = inf
Q stable s.t.(6.16)−(6.17) hold

‖T ∗2inT1 − T2outQ‖L2

(4.45)

Notice that the outer function T2out admits the following expansions w.r.t. the

basis {zi}∞−∞, such that:

T2out(z, λ) =
∞∑

i=−∞

υi(λ)zi,

with υi(λ) stable.

Therefore

T2out(z, λ)Q(z, λ) =
∞∑

i=−∞

˜̃qi(λ)zi, (4.46)

with ˜̃qi(z) stable, and

˜̃qi(λ) =
∑
j

λ|j|q̃j(λ)υi−j(λ).

Since {zi}∞i=−∞ is an orthogonal basis of L2, T ∗2inT1 can be written as:

T ∗2inT1(z, λ) =
∞∑

i=−∞

T̃i(λ)zi (4.47)
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where

T̃i (λ) ∈ L2

Substituting (4.46) and (4.47) into the decentralized optimization (4.45) yields:

µ2
2d = inf

˜̃qi(λ) stable −∞<i<∞
‖
∞∑

i=−∞

T̃i(λ)zi −
∞∑

i=−∞

˜̃qi(λ)zi‖2
L2 (4.48)

Using Parseval’s identity, we get:

µ2
2d = inf

˜̃qi(λ) stable−∞<i<∞

∞∑
i=−∞

‖T̃i(λ)− ˜̃qi(λ)‖2
L2 . (4.49)

Remark 4.5. The optimal decentralized control problem for spatially invariant

systems using this framework reduces to applying the orthogonality principle.

The following theorem gives the optimal solution.

Theorem 4.6. Under the assumptions above, the infimum in (4.48) is achieved, i.e.,

µ2
2d = inf

˜̃qi(λ) stable

∞∑
i=−∞

‖T̃i(λ)− ˜̃qi(λ)‖2
L2 (4.50)

=
∞∑

i=−∞

‖P−T̃i(λ)‖2
L2 , (4.51)

and the minimum is achieved by ˜̃qi(λ) s.t.

˜̃qi(λ) = P+(T̃i(λ)), (4.52)

with i = · · · ,−2,−1, 0, 1, 2, · · · .

Proof: First note that:

µ2
2d ≥

∞∑
i=−∞

inf
˜̃qi(λ) stable‖T̃i(λ)− ˜̃qi(λ)‖2

L2 (4.53)
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By orthogonality for each i, for all ˜̃qi(λ) we have

‖T̃i(λ)− ˜̃qi(λ)‖2
L2 = ‖P+(T̃i(λ))− ˜̃qi(λ)‖2

L2 + ‖P−(T̃i(λ))‖2
L2 (4.54)

≥ ‖P−(T̃i(λ))‖2
L2 . (4.55)

The equality and therefore the minimum is achieved by choosing ˜̃qi(λ) satisfying:

˜̃qi(λ) = P+(T̃i(λ)), −∞ < i <∞ (4.56)

and the theorem is proved.

The optimal decentralized Youla parameter is then

T2outQ(z, λ) =
∞∑

i=−∞

˜̃qi(z)zi, (4.57)

which implies that:

Q(z, λ) =

∞∑
i=−∞

P+(T̃i(λ))zi

T2out(z, λ)
. (4.58)

From (6.15), the corresponding optimal decentralized controller K is then given by:

K = −Q(I −G22Q)−1

= −

∞∑
i=−∞

P+(T̃i(λ))zi

T2out(z, λ)
×

(I −G22(z, λ)

∞∑
i=−∞

P+(T̃i(λ))zi

T2out(z, λ)


−1

. (4.59)

4.5 Numerical Examples

In this section, the proposed approach is tested on the same numerical example as

given in Voulgaris et al. [84]. As discussed in Section 4.4, the proposed orthogonal

projection technique leads to a solution to the optimal H2 decentralized control
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problem.

We consider the following spatio-temporal system which comes from the finite-

difference discretization of a certain PDE.

y(i, k + 1)− y(i, k) =
T

L2
y(i+ 1, k)− 2y(i, k) + y(i− 1, k)

− εy(i, k) + u(i, k) (4.60)

Taking the appropriate transforms one obtains the transfer function, weighting

function and stabilizing controller parameterization.

We want to compute a decentralized controller for optimal H2 attenuation of an

additive disturbance on the system output with weighting function

W (z, λ) =
λ

1− (1
8
z−1 + 1

4
+ z

8
)λ .

(4.61)

We assume W (z;λ) to be asymptotically stable and yield the same structure as the

plant itself.

As defined in [84], with K(z, λ) and Q(z, λ) of the prescribed form, the problem

can be stated as

inf
Q
‖(1−GQ)W‖∞ = inf

Q
‖H − UQ‖∞, (4.62)

where

H(z, λ) =
λ

1− r(z)λ
,

U(z, λ) =
Tλ2

(1− ρ(z)λ)(1− r(z)λ)
, (4.63)
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and

ρ(z) = z−1/6 + 1/3 + z/6,

r(z) = z−1/8 + 1/4 + z/8. (4.64)

An inner−outer factorization of U(z, λ) yields

Uin(z, λ) = λ2, (4.65)

Uout(z, λ) =
T

(1− ρ(z)λ)(1− r(z)λ) .
(4.66)

By plugging in the corresponding T ∗2inT1 here in this example, we compute the

negative Riesz projection and obtain the optimal solution as developed in Theorem

4.6.

Ideally, we want to have the whole set of functions {ejnw}∞n=−∞ to be the

orthogonal basis for L2. However, we have to pick a finite number N as the

discretization resolution.

As shown in Figure. 4.2, we choose N varying from 2000 to 3000 with 100

increment for each run. As expected, better performance is achieved by assigning

a more fine discretization. Moreover, we compare the results of the proposed work

with those benchmarks reported in Paper I [84] and Paper II [85]. Clearly, we see

our proposed distributed technique (red line) achieves better performance than both

existing techniques (represented by black and blue lines). Finally, we also provide the

best centralized results using proposed algorithm denoted by green line in the figure.

4.6 Summary

In this chapter, the optimal H2 control problem for spatially invariant systems was

considered in the framework proposed in [84, 81]. In particular, the H2 optimal

control problem was solved via the computation of an orthogonal projection of a
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Figure 4.2: Comparison for optimal H2 performance

tensor Hilbert space onto a particular subspace. The optimal H2 decentralized

control problem was solved by computing an orthogonal projection on a class of

Youla parameters with a decentralized structure. The latter uses Riesz projections

after invoking a particular L2-basis.
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Chapter 5

Optimal H∞ Control Problem for

Spatially Invariant Systems

We consider the problem of optimal distributed control of spatially invariant systems.

We develop an input-output framework for problems of this class. Spatially invariant

systems are viewed as multiplication operators from a particular Hilbert function

space into itself in the Fourier domain. Optimal distributed performance is then

posed as a distance minimization in a general L-infinity space from a vector function

to a subspace with a mixed L∞ and H∞ space structure. In this framework, a

generalized version of the Youla parametrization plays a central role. The duality

structure of the problem is characterized by computing various dual and pre-dual

spaces. The annihilator and pre-annihilator subspaces are also calculated for the

dual and pre-dual problems. Furthermore, the latter is used to show the existence of

optimal distributed controllers and dual extremal functions under certain conditions.

Our approach is purely input-output and does not use any state space realization. We

show that these spaces together with the pre-annihilator and annihilator subspaces

can be realized explicitly as specific tensor spaces and subspaces, respectively. The

tensor space formulation leads to a solution in terms of an operator given by a

tensor product. Specifically, the optimal distributed control performance for spatially
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invariant systems is equal to the operator induced norm of this operator. The

results obtained in this chapter bridge the gap between control theory and the metric

theory of tensor product spaces. The dual and pre-dual formulations lead to finite

dimensional convex optimizations which approximate the optimal solution within

desired accuracy. These optimizations can be solved using convex programming

methods. This chapter is concluded with a numerical example.

Parts of the results in this chapter appeared in [98, 99].

5.1 Introduction

There has been resonant interest in analysis and synthesis of distributed coordination

and control algorithms for spatially interconnected systems. For recent work on this

class and some of the background for the present work, we refer the reader to [6,

7, 8, 9, 10], and the references therein. The basic idea for this spatially distributed

problem is to perform distributed computations over a network to implicitly solve a

global optimization problem.

A networked system is a collection of dynamic units that interact over an

information exchange network. Such systems are ubiquitous in diverse areas of science

and engineering [13]. There are many important problems that have been cast

in the form of a large-scale finite-dimensional or an infinite-dimensional constraint

optimization problem [14]. Such problems can range from physical, biological to

mechanical and social systems [15, 16, 17, 18]. Distributed control has become a

successful strategy to handle such design issues as coordinated control, formation

control and synchronization of multi-agent systems [20, 21, 22, 23, 24, 25].

Even if the subsystems interact locally, the optimal controller will need global

information to produce the feedback signal. Standard control design techniques are

inadequate since most optimal control techniques cannot handle systems of very high

dimensions and with a large number of inputs and outputs. A preferred alternative is

to have control signals computed using only local communication among neighboring

69



subsystems as motivated in [6] and [7]. Using an approach based on spatial Fourier

transforms and operator theory, Bamieh et al. discussed the optimal control of linear

spatially invariant systems with standard linear quadratic (LQ) criterion in [6]. As

pointed out in [32], the above results are valid when system operator could generate

a semigroup on L2(Rn).

After the recent advances in communication technologies, the design of distributed

controllers for physically interconnected systems has become an attractive and

fruitful research direction [9, 41]. A body of literature has been worked out

for the spatially distributed systems, where all signals are functions of both

spatial and temporal variables. The linear matrix inequality (LMI) conditions for

spatially interconnected systems consisting of homogeneous units are introduced

in [9, 42]. Control synthesis results have employed consensus-based observer to

guarantee leaderless synchronization of multiple identical linear dynamic systems

under switching communication topologies[43]; neighbor-based observer to solve the

synchronization problem for general linear time-invariant systems [44]; and individual-

based observer with low-gain technique to synchronize a group of linear systems

[45]. Synchronization of multiple heterogeneous linear systems has been studied in

[8, 10], where the interconnection topology is represented by an arbitrary graph,

using a conservative analysis-LMI. A similar problem is investigated under both fixed

and switching communication topologies heterogeneous spatially distributed systems

[29, 30].

In this chapter, we focus our investigation on spatially invariant systems. We show

that the spatially invariant systems can be viewed as multiplication operators from a

particular Hilbert function space into itself in the Fourier domain. A key distinctive

feature of this chapter with respect to the existing literature, is that we propose a

new technique to pose the optimal distributed performance as a distance minimization

in a general L∞ space, from a vector function to a subspace with a mixed L∞ and

H∞ space structure via a spatial-temporal Youla parametrization [84].
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We first derive the pre-dual and dual optimizations along the lines of [102] via

tools from functional analysis. The duality structure of the problem is characterized

by computing various dual and pre-dual spaces. The annihilator and pre-annihilator

subspaces are also calculated for the dual and pre-dual problems. The latter is used

to show the existence of optimal distributed controllers and dual extremal functions

under certain conditions. Motivated by these findings, we continue the study of the

Banach space duality structure. In particular, the duality structure of the problem is

characterized in terms of tensor product spaces. This complements the above study

where the dual and pre-dual formulations were in terms of abstract spaces. Here, we

show that these spaces together with the pre-annihilator and annihilator subspaces

can be realized explicitly as specific tensor spaces and subspaces, respectively. The

tensor space formulation leads to a solution in terms of an operator given by a

tensor product. Specifically, the optimal distributed control performance for spatially

invariant systems is equal to the operator induced norm of this operator. The results

obtained bridge the gap between control and the metric theory of tensor product

spaces. In the sequel, we discuss how the dual and pre-dual formulations lead

to finite dimensional convex optimizations which approximate the optimal solution

within desired tolerance. These optimizations can be solved by convex programming

methods. In addition, a numerical solution is given, where the optimal solution is

approximated from both above and below via finite variable convex programming

within arbitrarily close.

This chapter is organized as follows.

In Section 5.2, we explained that the dual and pre-dual formulations lead to finite

dimensional convex optimizations which approximate the optimal solution within

desired tolerance. It is followed by the operator theoretic approach discussed in

Section 5.3. A discussion of a numerical solution is given in Section 5.4 to demonstrate

that the reduced finite dimensional optimization problems can estimate the optimal

solutions within desired accuracy. And a numerical example is given in Section 5.5 to
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show the utility of the method proposed in this chapter. Finally, we close this chapter

with some concluding remarks in Section 5.6.

5.1.1 Problem Formulation

Based on the preliminary knowledge introduced in Sec. 3.3.1, we are concerned with

a standard feedback configuration of Figure 5.1, where The plant G and controller

K are spatially and temporally invariant systems, and the signals w, z, y and u are

defined as follows: w = exogenous disturbances; z = output signals to be regulated;

y = measured plant outputs; and u = control inputs to the plants.

w

Figure 5.1: Standard Feedback Configuration

We assume that G is stable, and let Tzw denote the result closed-loop dynamics

from w to z.

We have

(
z

y

)
=

(
G11 G12

G21 G22

)(
w

u

)
. (5.1)

All stabilizing spatio-temporal invariant controllers [84]

K = −Q(I −G22Q)−1, (5.2)

with Q stable, denote

Q ∈ H∞(L∞(D̄)). (5.3)
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Definition 5.1. The subspace H∞(L∞(D̄)) is defined as follows.

We denote f ∈ H∞(L∞(D̄)) if for each θ ∈ [0, 2π), f(eiθ, ·) ∈ L∞(T), and for each

λ ∈ D̄, f(·, λ) ∈ H∞.

In other words, all functions f ∈ H∞(L∞(D̄)) can be viewed as H∞ functions

which take values in L∞(D̄), i.e., L∞(D̄) valued H∞ functions. This interpretation

is carried out to other subspaces in a similar vein.

With the parametrization (5.2), optimal disturbance rejection can be formulated

as:

p : = infKstabilizing sup‖w‖2≤1 ‖Tzww‖2 (5.4)

= infQ∈H∞(L∞(D̄)) ‖T1 − T2Q‖∞

Using a “spatio-temporal inner-outer factorization” [84], we have:

T2(ejθ, λ) = T2in(ejθ, λ)T2out(e
jθ, λ), (5.5)

where T2in(ejθ, λ) is an isometry and T2out(e
jθ, λ) is (temporally) causally invertible.

Therefore, the optimal performance index (5.4) can be written as:

ψ := inf
Q∈H∞(L∞(D̄))

‖T ∗2inT1 − T2outQ‖∞, (5.6)

where

T ∗2in := T2in(z−1, λ−1), (5.7)

after absorbing T2out in Q and denote the product by Q by abuse of notation.

Then

ψ = inf
Q∈H∞(L∞(D̄))

‖T ∗2inT1 −Q‖∞. (5.8)
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Note that T ∗2inT1 ∈ L∞(T × D̄) such that (5.8) can be viewed as a distance

minimization from the function T ∗2inT1 to the subspace S of L∞(T× D̄) defined by:

S := H∞(L∞(D̄)). (5.9)

In the next section, we will show the existence of optimal controllers using duality

theory.

5.2 Pre-dual and dual Characterizations in ab-

stract spaces

5.2.1 Pre-dual Characterization

Let B be a Banach space with norm ‖ · ‖. Its dual space denoted B∗ is the space of

bounded linear functionals defined on B.

Definition 5.2. Isometric isomorphism between Banach space is denoted by ”'” as

in Definition 3.9. In particular, B∗ is said to be the pre-dual space of B if B∗ ' B.

Definition 5.3. For a subset M of B, the annihilator of M in B∗ is denoted M⊥ and

is defined by [103]:

M⊥ := {Φ ∈ B∗ : Φ(m) = 0, ∀m ∈M} (5.10)

In other words, M⊥ is the set of bounded linear functionals on B which vanish on

M . It is a sort of generation of orthogonal subspace in the Banach space setting.

Definition 5.4. Similarly, if M̃ is a subset of B∗, then the pre-annihilator of M̃ in

B is denoted ⊥M̃ , which is defined by [103]:

⊥M̃ := {b ∈ B : ψ(b) = 0, ψ ∈ M̃} (5.11)
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Remark 5.5. Obviously, the pre-annihilator satisfies (⊥M̃)⊥ 'M .

Theorem 5.6. [103] Following standard result of Banach space duality theory [103],

the existence of a pre-annihilator implies that the following identity holds:

min
m̃∈M̃

‖b− m̃‖ = sup
b̃∈⊥M̃
‖b‖≤1

| < b, b̃ > | (5.12)

where < ·, · > denotes the duality product.

It is readily seen that for problem (5.8):

B = L∞(T× D̄), b = T ∗2inT1 ∈ L∞(T× D̄)

M = S = H∞(L∞(D̄)) (5.13)

To apply the pre-duality result (5.12), we need to compute the pre-dual space of

L∞(T× D̄) and the pre-annihilator of S, ⊥S.

Let us first characterize the pre-dual space of L∞(T×D̄). In order to do so, define

the Banach space L1(T × D̄) of measurable and absolutely integrable functions on

T× D̄ under the L1-norm for f ∈ L1(T× D̄)

‖f‖1 :=

∫
D̄

∫
T

|f(eiθ, λ)|dθdλ (5.14)

To show that L∞(T×D̄) is isometrically isomorphic to the dual space of L1(T×D̄),

let us introduce the concept of tensor product of spaces.

Let X, Y and Z be linear spaces over the same scalar field K(R or C). A function

ϕ : X × Y → Z is bilinear if ϕ(x, ·) : Y → Z is linear for each x ∈ X, and

ϕ(· , y) : X → Z for each y ∈ Y . The set of all bilinear functions from X × Y into Z

is denoted by B(X, Y ;Z). If Z = K, it is denoted simply by B(X, Y ).

For a linear space X, the space of all linear functionals on X is denoted by X ′.

For x ∈ X, y ∈ Y , the elementary tensor denoted x ⊗ y is the element of B(X, Y )
′
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defined by [103]:

(x⊗ y)(ϕ) = ϕ(x, y), ∀ϕ ∈ B(X, Y )′ (5.15)

The tensor product X⊗Y is the linear span of all elementary tensors {x⊗y : x ∈

X, y ∈ Y }.

Therefore, if z ∈ X ⊗ Y , we then have:

z =
n∑
i=1

λi xi ⊗ yi (5.16)

for some certain {λ1, · · · , λn} which are scalars, {x1, · · · , xn} ∈ X, {y1, · · · , yn} ∈ Y

and n ∈ N is arbitrary.

Definition 5.7. For any z ∈ X ⊗ Y , define the tensor norm [81]:

γ(z) = inf{
n∑
i=1

‖xi‖‖yi‖ : xi ∈ X, yi ∈ Y, z =
n∑
i=1

xi ⊗ yi}

In general, the space X ⊗ Y under the norm γ(·) is not complete. We will denote

its completion by X ⊗γ Y .

A result in [101] asserts that if Γ and Γ̃ are σ- finite measure spaces, then

L1(Γ× Γ̃) = L1(Γ)⊗γ L1(Γ̃) (5.17)

In our case, T and D̄ are finite measure spaces and therefore σ-finite measure

spaces. Hence it follows that:

L1(T× D̄) = L1(T)⊗γ L1(D̄)
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And for z ∈ L1(T)⊗ L1(D̄),

γ(z) = inf{
n∑
i=1

‖xi(eiθ)‖1‖yi(λ)‖1 : xi(·) ∈ L1(T),

yi(·) ∈ L1(D̄), z =
n∑
i=1

xi ⊗ yi} (5.18)

where

‖xi(eiθ)‖1 =

∫
[0,2π)

|xi(eiθ)|dθ (5.19)

and

‖yi(λ)‖1 =

∫
D̄
|yi(λ)|dλ (5.20)

Remark 5.8. The dual space of L1(T×D̄), denoted L1(T×D̄)∗, can then be identified

with L∞(T× D̄):

L1(T× D̄)∗ '
(
L1(T)⊗γ L1(D̄)

)∗ ' L∞(T× D̄) (5.21)

by the Steinhaus-Nikodym theorem.

That is for each F ∈ L∞(T× D̄), define ϕF ∈ L1(T× D̄)∗ such that:

ϕF (f, g) =

∫
D̄

∫
[0,2π)

F (eiθ, λ)f(eiθ)g(λ)dθdλ (5.22)

Expression (5.22) characterizes every bounded linear functionals on L1(T× D̄).

Next, the pre-annihilator of S = H∞(L∞(D̄)) in L∞(T × D̄) is computed. First

note that the pre-annihilator of H∞(D̄) in L∞(T) is:

H1
0 (T) := {f ∈ L1(T) : f̂(n) = 0, ∀n ≤ 0}
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where f̂(n) denotes the n-th Fourier coefficients of f .

That is ∀g ∈ H∞(D̄), ∀f ∈ H1
0 (D) we have:

∫
[0,2π)

g(eiθ)f(eiθ) = 0 (5.23)

To compute the pre-annihilator of S = H∞(L∞(D̄)), it suffices to notice that for

each f ∈ H1
0 (L1(T)), i.e. f(z, λ) with z ∈ D, λ ∈ D̄ and for each fixed λ, f(·, λ) ∈ H1

0

and for each fixed z ∈ D, f(z, ·) ∈ L1(D̄).

Hence, for ∀F ∈ H∞(L∞(D̄)) and ∀f ∈ H1
0 (L1(D̄)),

∫
D̄

∫
[0,2π)

F (eiθ, λ)f(eiθ, λ)dθ︸ ︷︷ ︸
=0

dλ = 0 (5.24)

Then the pre-annihilator of S is:

⊥S = H1
0 (L1(D̄)) (5.25)

The existence of a pre-dual space L1(T)⊗γL1(D̄) and a pre-annihilator ⊥S implies

the following theorem which is a standard result in Banach space duality theory

relating the distance from a vector to a subspace and an extremal functional in the

predual (Theorem 2 in [103]).

Theorem 5.9. There exists at least one optimal Q0 ∈ H∞(L∞(D̄)) achieving optimal

performance µ in (5.4). Moreover the following identities hold:

µ = inf
Q∈H∞(L∞(D̄))

‖T ∗2inT1 −Q‖∞ = ‖T ∗2inT1 −Q0‖∞

= sup
F∈H1

0(L1(T))

‖F‖1≤1

∫
D̄

∫
[0,2π)

T ∗2inT1(eiθ, λ)F (eiθ, λ)dθdλ (5.26)
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The optimal controller can then be computed by letting

Q = T−1
2outQ0

and

K = −Q(I −G22Q0)−1

Note that the supremum in the pre-dual characterization is in general not attained.

However, if we assume that T ∗2inT1 is continuous on T×D̄, then it is possible to show

that in fact the supremum is achieved. This is carried out in the next section.

5.2.2 Dual characterization

Let’s first introduce the space of continuous functions on T × D̄, which is denoted

C(T× D̄) under the sup-norm:

sup
θ∈[0,2π)

λ∈D̄

|G(eiθ, λ)| <∞, for G ∈ C(T× D̄) (5.27)

As mentioned before, in this section we make the following assumption.

Assumption 5.10.

T ∗2inT1 ∈ C(T× D̄), (5.28)

that is T ∗2inT1 is continuous on T× D̄.

Since T and D̄ are compact, the dual space of C(T × D̄), henceforth denoted

C(T × D̄)∗, is isometrically isomorphic to the space of Borel measure M(T × D̄) on

T× D̄ under the total variation norm for µ ∈M(T× D̄):

‖µ‖ = |µ|(T× D̄), (5.29)
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where |µ| is the total variation of µ.

The isometric isomorphism is given by:

For µ ∈M(T× D̄) and f ∈ C(T× D̄) letting

Iµ(f) =

∫
[0,2π)×D̄

f(eiθ, λ)dµ(θ, λ). (5.30)

The map µ→ Iµ is the isometric isomorphism from M(T×D̄) to C(T×D̄) [104].

Corollary 5.10.1. Banach duality states that for a Banach space B, and a subspace

M of B, we have

inf
m∈M

‖b−m‖ = max
m̃∈M⊥
‖m̃‖≤1

|m̃(b)| (5.31)

where M⊥ is the annihilator of M in B∗, the dual space of B, defined in (5.31).

Define a subspace of C(T× D̄) as follows:

Sc = S
⋂
C(T× D̄) = H∞(L∞(D̄))

⋂
C(T× D̄) (5.32)

In the following lemma we establish that the distance from T ∗2inT1 ∈ C(T × D̄)

to Sc is the same as to S. Observe that with assumption (A1), functions in S are

continuous in the second variable λ.

Lemma 5.10.1.

µ = ‖T ∗2inT1 −Q0‖∞ = inf
Q̃∈Sc
‖T ∗2in − Q̃‖∞ (5.33)

Proof: The proof can be found in the Appendix A.2.
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Define the space A known as the disc algebra A0 = C(T) ∩ H∞. So Sc can be

written in the following form:

Sc = A0(C(D̄)) (5.34)

To compute the annihilator of Sc, S
⊥
c in M(T × D̄) it suffices to notice that the

annihilator of A0 in M(T) is H1
0 (T), and use a similar argument as (??)

S⊥c = H1
0 (M(D̄)) (5.35)

Using the duality theory result, we deduce the following theorem:

Theorem 5.11.

µ = max
φ∈H1

0(M(D̄))

‖φ‖≤1

|φ(T ∗2inT1)|

= max
φ∈H1

0(M(D̄))

‖φ‖≤1

|
∫

[0,2π)×D̄
T ∗2inT1(eiθ, λ)dφ(eiθ, λ)|

=

∫
[0,2π)×D̄

T ∗2inT1(eiθ, λ)dφ0(eiθ, λ) (5.36)

where φ0(·, ·) is the dual extremal functional, and φ ∈ H1
0 (M(D̄)) means for each

fixed θ ∈ [0, 2π), φ(eiθ, ·) is a bounded Borel measure on D̄ and for each fixed λ ∈ D̄,

dφ(· , λ) = G(eiθ)dθ for some function G(·) ∈ H1
0 .

Moreover, by Lemma 5.10.1 under Assumption 5.10, the search of Q can be

restricted to the subspace Sc. This will play an important role in finding a numerical

solution as discussed in Section 5.4.

5.3 An Operator Theoretic Approach

In the sequel, we shall show that the pre-annihilator of S can be written as a tensor

subspace. This will allow us to separate between θ and λ. We have seen that the
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pre-dual space can be characterized as the following tensor space,

L1(T× D̄) ' L1(T)⊗γ L1(D̄), (5.37)

where L1(T)⊗γ L1(D̄) is the closure in the γ-norm of the linear space L1(T)⊗L1(D̄)

defined by:

L1(T)⊗ L1(D̄) = {F (eiθ, λ) =
n∑
i=1

fi(e
iθ)gi(λ),

fi ∈ L1(T), gi ∈ L1(D̄) and n arbitrary integer.} (5.38)

The dual space of L1(T× D̄) is given by L∞(T× D̄).

The pre-annihilator of S = H∞(L∞(D̄)) in L∞(T× D̄) is characterized as

⊥S = H1
0 (L1(D̄)). (5.39)

We shall write ⊥S as a particular tensor subspace. In order to do this, we define the

following tensor:

H1
0 (T)⊗γ L1(D̄), (5.40)

which is the closure in the γ-norm of the tensor space given below:

H1
0 (T)⊗ L1(D̄) = {F (eiθ, λ) ∈ L1(T× D̄) : F (eiθ, λ)

=
n∑
i=1

fi(e
iθ)gi(λ), (5.41)

for fi ∈ H1
0 (T), gi ∈ L1(D̄) and n arbitrary integer}. And where the γ-norm in this

case is defined as:

γ(
n∑
i=1

fi ⊗ gi) = inf{
n∑
i=1

‖fi‖1‖gi‖1;
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fi ∈ H1
0 (T), gi ∈ L1(D̄)}. (5.42)

In the following Lemma we show that the pre-annihilator ⊥S can be written as

the tensor subspace (5.40).

Lemma 5.11.1. The following isometric isomorphism holds:

⊥S = H1
0 (L1(D̄)) ' H1

0 (T)⊗γ L1(D̄). (5.43)

Proof: The proof can be found in Appendix A.3.

A consequence of Lemma 5.11.1 is that Theorem 5.9 can be formulated as follows:

Theorem 5.12.

µ = inf
Q∈H∞(L∞(D̄))

‖T ∗2inT1 −Q‖∞

= ‖T ∗2inT1 −Q0‖∞

= sup
Ŝ

∫
D̄

∫
[0,2π)

T ∗2inT1(eiθ, λ)F (eiθ, λ)dθdλ

= sup
S−

n∑
i=1

∫
D̄

∫
[0,2π)

T ∗2inT1(eiθ, λ)xi(λ)yi(e
iθ)dθdλ, (5.44)

where the two sets are defined as:

Ŝ := F ∈ H1
0 (T)⊗γ L1(D̄), ‖F‖γ ≤ 1;

S− :=
n∑
i=1

xi ⊗ yi ∈ H1
0 (T)⊗γ L1(D̄), γ(

n∑
i=1

xi ⊗ yi) ≤ 1.
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Identity (5.44) can be used to give a solution in terms of operator theory as

outlined in the following section.

5.3.1 Pre-dual Characterization

Each function yi, i = 1, · · · , n in (5.44) belongs to H1
0 (T).

By F. Riesz Representation Theorem [62], there is a factorization:

yi(e
iθ) = y1

i (e
iθ)y2

i (e
iθ), i = 1, · · · , n. (5.45)

where y1
i and y2

i are in H2(T) and H2
0 (T) respectively.

Recall that H2(T) and H2
0 (T) are the Hardy spaces of analytic and absolutely

integrable functions in the unit disc.

In other words:

H2(T) = f(eiθ) ∈ L2(T) : f̂(m) = 0, ∀m < 0, (5.46)

and

H2
0 (T) = f(eiθ) ∈ L2(T) : f̂(n) = 0, ∀n ≤ 0, (5.47)

where f̂(n) denotes the n-th Fourier coefficient of f .

And |y1
i (e

iθ)|2 = |y2
i (e

iθ)|2 = |yi(eiθ)| almost everywhere (a.e.).

From (5.44) we have

∫
D̄

∫
[0,2π)

T ∗2inT1(eiθ, λ)y1
i (e

iθ)y2
i (e

iθ)xi(λ)dθdλ

=

∫
D̄

∫
[0,2π)

(T1(eiθ, λ)y1
i (e

iθ))(T ∗2in(eiθ, λ)y2
i (e

iθ))xidθdλ
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=: < T1y
1
i xi, T2iny2

i > . (5.48)

Note that y2
i ∈ H2(T)⊥, the orthogonal complement of H2(T) in L2(T). So for

each fixed λ ∈ D̄,

(T2in(·, λ)H2(T))⊥ =

(H2(T)	 T2in(·, λ)H2(T))⊕H2⊥(T) , (5.49)

where “⊕” denotes the direct sum, and (H2(T)	 T2in(·, λ)H2(T)) is the orthogonal

complement of T2in(·, λ)H2(T).

Remark 5.13. Here orthogonality is understood to be with respect to the inner product

of matrices.

Let P denote the orthogonal projection in L2(T) with rangeH2(T)	T2in(·, λ)H2(T).

The function T2in(·, λ)y2
i ∈ (T2in(·, λ)H2(T))⊥, where y denotes the complex conjugate

of y.

Therefore

T2in(·, λ)y2
i − PT2in(·, λ)y2

i ∈ H2⊥(T). (5.50)

It follows then:

< T1y
1
i xi, T2iny2

i >=< T1y
1
i xi, (PT2iny2

i ) > . (5.51)

Furthermore, for each λ ∈ D̄, the function

y1
i − Py1

i ∈ T2in(·, λ)H2(T), (5.52)
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and therefore

T1(·, λ)(y1
i − Py1

i ) ∈ T2in(·, λ)H2(T). (5.53)

Hence,

< T1y
1
i xi, (PT2iny2

i ) > = < T1Py
1
i xi, (PT2iny2

i ) >

= < PT1Py
1
i xi, (T2iny2

i ) >

Reporting in (5.44) yields:

µ = sup
S+

n∑
i=1

< PT1Py
1
i xi, (T2iny2

i ) >, (5.54)

where

S+ := {
n∑
i=1

y1
i y

2
i ⊗ xi ∈ H2H2

0 (T)⊗γ L1(D̄),

inf
n∑
i=1

‖y1
i ‖2‖y2

i ‖2‖xi‖1 ≤ 1}.

Next, we define the following key operator:

Ξ : H2(T)	 T2inH
2(T)→ H2(T)	 T2inH

2(T)

Ξ : = PT1 |H2(T)	T2inH2(T),

and the tensor operator

Ξ⊗ I :

(H2(T)	 T2inH
2(T))⊗γ L1(T) −→

(H2(T)	 T2in(T))⊗γ L1(T).
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where (H2(T)	 T2inH
2(T))⊗γ L1(T) is the completion of (H2(T)	 T2inH

2(T))⊗

L1(T) in the γ-norm given by:

γ(
n∑
i=1

xi ⊗ yi) = inf{
n∑
i=1

‖xi‖2‖yi‖1,

xi ∈ H2(T)	 T2inH
2(T), yi ∈ L1(T)}. (5.55)

Then Ξ⊗ I is a bounded linear operator, and (5.54) is in fact its operator induced

norm. That is:

µ = ‖Ξ⊗ I‖. (5.56)

This fact is summarized in the following theorem.

Theorem 5.14. There exists at least one optimal Q0 ∈ H∞(L∞(D̄)) s.t.

µ = inf
Q∈H∞(L∞(D̄))

‖T ∗2inT1 −Q‖∞

= ‖T1 − T21Q0‖∞

= ‖Ξ⊗ I‖. (5.57)

Theorem 5.14 shows that optimal distributed performance is equal to the operator

induced norm of the operator Ξ⊗I. Ξ plays a central role in finding an explicit solution

to our problem through the above theorem which quantifies the optimal performance.

5.3.2 Dual characterization using tensor spaces

Let us introduce the space of continuous functions on T×D̄, which is denoted C(T×D̄)

under the sup-norm:

‖G‖∞ = sup
θ∈[0,2π)

λ∈D̄

|G(eiθ, λ)|, forG ∈ C(T× D̄). (5.58)
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In Section 5.2.2, we provided the dual characterization based on Assumption 5.10,

i.e.,

T ∗2inT1 ∈ C(T× D̄), that is T ∗2inT1 is continuous on T× D̄.

Here, C(T×D̄) is viewed as a tensor space. This will allow us to separate between

the independent variables θ and λ.

Definition 5.15. Define the tensor space C(T)⊗λC(D̄) as the closure of C(T)⊗C(D̄)

in the λ-norm defined as:

λ(
n∑
i=1

xi ⊗ yi) = sup{‖
n∑
i=1

φ(xi)yi‖∞ : φ ∈ (C(T))∗,

‖φ‖ = 1}, (5.59)

where xi ∈ C(T), yi ∈ C(D̄), and (C(T))∗ is the dual space of C(T).

Remark 5.16. (C(T))∗ can be identified under an isometric isomorphism with the

space of Borel measures M(T) on the unit circle T under (bounded) total variation

norm.

For β ∈M(T), ‖β‖ = |β|(T), where |β| is the total variation of β.

The isometric isomorphism is given by:

For β ∈M(T) and f ∈ C(T)

Iβ(f) =

∫
[0,2π)

f(eiθ)dβ(θ). (5.60)

With this identification, (5.59) can be written more explicitly as:

λ(
n∑
i=1

xi ⊗ yi) = sup
β∈M(T)
|β|=1

‖
n∑
i=1

∫
[0,2π)

xi(e
iθ)dβ(θ)yi‖∞ (5.61)
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It follows by a result in [101] that

C(T× D̄) ' C(T)⊗λ C(D̄). (5.62)

Thus the subspace Sc defined in (5.32) can be rewritten as

Sc = S
⋂
C(T× D̄) = H∞(L∞(D̄))

⋂
C(T× D̄)

= H∞(L∞(D̄))
⋂
C(T)⊗λ C(D̄). (5.63)

Since the dual spaces of C(T) and C(D̄) are given by the spaces of Borel measures

M(T) and M(D̄), with total variation norms, respectively.

Considering C(T× D̄) ' C(T)⊗λ C(D̄), the dual space of C(T× D̄) follows that

(C(T)⊗λ C(D̄))∗ ' C∗(T)⊗γ C∗(D̄)

' M(T)⊗γ M(D̄), (5.64)

where

γ(
n∑
i=1

φi ⊗ ψi) = inf{
n∑
i=1

‖φi‖‖ψi‖ : φi ∈M(T), ψi ∈M(D̄)}.

The isometric isomorphism “'” is given by:

f ∈ C(T)⊗λ C(D̄), f =
n∑
i=1

fi ⊗ gi;

and

µ ∈M(T)⊗γ M(D̄), µ =
n∑
i=1

φi ⊗ ψi; (5.65)
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I(f) =
n∑
i=1

∫
[0,2π)×D̄

fi(e
iθ)gi(λ)φi(dθ)ψi(dλ). (5.66)

The subspace Sc can then be written as:

Sc = H∞(L∞(D̄))
⋂

[C(T)⊗λ C(D̄)]

= A0 ⊗λ C(D̄). (5.67)

The annihilator of Sc, S
⊥
c in M(T)⊗γ M(D̄) can be determined explicitly as:

S⊥c = H1
0 (T)⊗γ M(D̄), (5.68)

since H1
0 (T) is the annihilator of A0 in M(T).

By the Radon-Nikodym Theorem [104], each measure φ ∈ M(D̄) can be written

as:

dφ(λ) = ϕ(λ)dν(λ), (5.69)

where ν is the total variation of φ on D̄, and ϕ ∈ L1(dν).

Then, the γ-norm can be written as: for φ ∈ H1
0 (T)⊗M(D̄),

dφ(eiθ, λ) =
n∑
i=1

ψi(e
iθ)ϕi(λ)dθdνi(λ);

ψi ∈ H1
0 (T), ϕi ∈ L1(dνi),
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γ(φ) = inf{
n∑
i=1

‖ψi‖1

∫
D̄
|ϕi(λ)|dνi(λ),

ψi ∈ H1
0 (T), ϕi ∈ L1(dνi)}. (5.70)

Using duality theory, we deduce the following theorem which formulates the dual

problem in terms of tensor space.

Theorem 5.17.

µ = max
φ∈H1

0(T)⊗γM(D̄)

γ(φ)≤1

∫
[0,2π)×D̄

|T ∗2inT1(eiθ, λ)dφ(eiθ, λ)|

=

∫
[0,2π)×D̄

T ∗2inT1(eiθ, λ)dφ0(eiθ, λ), (5.71)

for some φ0 ∈ H1
0 (T)⊗γ M(D̄), γ(φ0) ≤ 1.

Theorem 5.17 shows that to solve the dual extremal problem, the search for the

maximization can be restricted to tensors of the form (5.65).

The pre-dual and dual formulation lead to numerical solutions based on finite

variable convex programming.

5.4 Discussion of A Numerical Solution

The infimum in (5.33) is termed the primal optimization and corresponds to the

following representation:

µ = inf
Q∈Sc
‖T ∗2inT1 −Q‖∞ (5.72)
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if Q is restricted to the subspace Pmn consisting of polynomial in two variables of the

form:

Pmn(z, λ) :=
m∑

j=−m

n∑
i=0

αijz
iλj; αij ∈ R, (5.73)

for |z| = 1, |λ| ≤ 1

Remark 5.18. Note that these polynomials are analytic in the first variable z for

|z| < 1 since Q is analytic in z for |z| < 1.

Then we get an upper bound for (5.72) that is for

µmn := inf
Q∈Pmn

‖T ∗2inT1 −Q‖∞ (5.74)

That is, µmn ≥ µ since Pmn ⊂ Sc, the infimum being taken over a smaller subspace.

Since the polynomials Pmn are dense in H∞(L∞(D̄)), therefore we have:

µmn ↓ µ as m,n→∞, (5.75)

i.e., µmn converges to the optimal µ from above.

The optimization problem (5.74) is finite dimensional, since reduces to searching

for the coefficients {αij}n,mi=0,j=−m that minimize ‖T ∗2inT1 −Q‖∞.

Now, we turn our attention to the dual problem which is:

µ = sup
F∈H1

0(L1(D̄))

‖F‖1≤1

∫
D̄

∫
[0,2π)

T ∗2inT1(eiθ, λ)F (eiθ, λ)dθdλ (5.76)

By restricting the search to polynomials Pk` of two variables of the form:

Pk`(z, λ) :=
k∑

j=−k

∑̀
i=1

βijz
iλj; βij ∈ R,

for |z| = 1, |λ| ≤ 1 (5.77)
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with norm |Pk`|1 ≤ 1. Note in the sum over i we start from 1 since Pk`(z, λ) ∈

H1
0 (L1(D̄)). We get the finite dimensional optimization:

µk` := sup
Pk`∈P̃k`
‖Pk`‖1≤1

∫
D̄

∫
[0,2π)

T ∗2inT1(eiθ, λ)Pk`(e
iθ, λ)dθdλ (5.78)

since the search in (5.78) is over the coefficients {βij}`,ki=1,j=−k.

Moreover, Pk` is a subspace of H1
0 (L1(D̄)), then µk` ≤ µ, since the supremum is

taken over a smaller set, i.e., we get a lower bound for µ.

Polynomials of the form (5.78) are dense in H1
0 (L1(D̄)), therefore we have:

µk` ↑ µ as k, `→∞ (5.79)

In other words, µk` converges to the optimal µ from below. Combining (5.75) and

(5.79), we then have that:

µk` ↑ µ ↓ µmn as k, `,m, n −→∞ (5.80)

squeezing the optimum within desired accuracy by taking large enough k, `,m and n.

Therefore the finite dimensional optimization (5.74) and (5.77) estimate µ within

desired tolerance and compute the corresponding Q in Pmn, which in turn leads to

the computation of distributed spatially invariant controllers K as close as desired to

the optimal ones through the parametrization (5.2). Solving such problems are then

applications of finite variable convex programming.

5.5 Numerical Examples

This section contains a numerical example that illustrates the utility of the method

proposed in this chapter. As discussed in Section 5.4, the proposed duality theory
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leads to a dual pair of numerical solutions, which approach the optimal µ from

opposite directions.

We take the same discrete time example as given in Voulgaris et al. [84].

Consider the following spatio-temporal system which comes from the finite-difference

discretization of a certain PDE.

y(i, k + 1)− y(i, k) =
T

L2
y(i+ 1, k)− 2y(i, k) + y(i− 1, k)

− εy(i, k) + u(i, k) (5.81)

Taking the appropriate transforms one obtains the transfer function, weighting

function and stabilizing controller parameterization introduced in Section 3.3.

We want to compute a decentralized controller for optimal attenuation of an

additive disturbance on the system output with weighting function

W (z, λ) =
λ

1− (1
8
z−1 + 1

4
+ z

8
)λ .

(5.82)

We assume W (z;λ) to be asymptotically stable and yield the same structure as the

plant itself.

As defined in [84], with K(z, λ) and Q(z, λ) of the prescribed form, the problem

can be stated as

inf
Q
‖(1−GQ)W‖∞ = inf

Q
‖H − UQ‖∞, (5.83)

where

H(z, λ) =
λ

1− r(z)λ
, U(z, λ) =

Tλ2

(1− ρ(z)λ)(1− r(z)λ)
, (5.84)
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and

ρ(z) = z−1/6 + 1/3 + z/6,

r(z) = z−1/8 + 1/4 + z/8. (5.85)

An inner−outer factorization of U(z, λ) yields

Uin(z, λ) = λ2, (5.86)

Uout(z, λ) =
T

(1− ρ(z)λ)(1− r(z)λ) .
(5.87)

The finite variable convex programs can be solved by any standard convex

optimization algorithm [105, 106]. In this example, we used CVX, a free package

for specifying and solving convex programs [107].

Solving their corresponding approximated convex problems (5.74), (5.77), both

the lower and upper bounds can be obtained. Without loss of generality, we pick the

6-th order polynomial Q which holds the following expression

Q(z, λ) =
3∑

j=−3

6∑
i=0

αijz
iλj; αij ∈ R. (5.88)

By observing all the possible combinations of the orders for z and λ, we notice

that it should come with 49 coefficients, i.e. 49 different αij’s corresponding to various

combinations of i, j’s, respectively.

Figure 5.2 shows the upper and lower limits that we seek to calculate. Figure 5.2

compares the optimal disturbance rejections with coefficients being 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, respectively. It is worth mentioning that the x axis represents the

change of the weighting function (i.e. we multiply the weighting function with these

coefficients). The red line represents the upper bound and the blue line represents the

lower bound. The black stars correspond to the difference between upper and lower
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Figure 5.2: Upper and lower bounds

bounds at different coefficients. As expected, we observe the performance deteriorates

as uncertainty increases.

As discussed before, by making the discretization more dense and increasing the

order of the polynomial, we can make the band between lower and upper bounds more

tight. Therefore, we can approximate the optimal solution within desired accuracy.

5.6 Summary

In this chapter, the duality structure of optimal H∞ control of spatially invariant

systems was characterized by computing the pre-dual and dual spaces after formulat-

ing the problem as a distance minimization. The pre-annihilator and annihilator

subspaces were computed explicitly showing that an optimal distributed control

exists. A dual extremal functional is also shown to exist.

Then the duality structure of the problem was characterized in terms of tensor product
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spaces. We showed that pre-dual and dual spaces together with the pre-annihilator

and annihilator subspaces can be realized explicitly as specific tensor spaces and

subspaces, respectively. The tensor space formulation lead to a solution in terms of

a tensor product operator. Specifically, the optimal distributed control performance

for spatially invariant systems was shown to be equal to the operator induced norm

of this operator.

A discussion of a numerical solution is provided. Numerical solutions have also

been given using finite variable convex programming methods based on the proposed

technique.
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Chapter 6

Mixed L2/H∞ control problem

Synthesis for Spatially Invariant

Systems

It is well-known thatH∞ synthesis guarantees robust stability in the face of worst-case

disturbance while H2 synthesis is more adapted to deal with transient performance.

It is therefore natural to consider a mixed design framework that can integrate

optimal transient performance and robustness in a single controller. This is the

main motivation to develop a multi-objective design problem, i.e., the so-called mixed

L2/H∞ synthesis problem for spatially invariant systems. The mixed solution allows

L2/H∞ trade-offs to be made for a wide class of systems. In this chapter, Banach

space duality theory developed in the previous chapters is used for the distributed

mixed L2/H∞ synthesis for spatially invariant systems.

We show how to minimize the nominal H2-norm performance in one channel while

keeping bounds on the H2-norm or H∞-norm performance (implying robust stability)

in other channels.
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6.1 Introduction

In our previous two chapters, we used the fact that spatially invariant systems can

be viewed as multiplication operators from a particular Hilbert function space into

itself in the Fourier domain. We have successfully posed the optimal distributed

performance as a distance minimization in a general L∞ space, from a vector function

to a subspace with a mixed L∞ and H∞ space structure via a spatial-temporal Youla

parametrization [99]. More recently, we have the H2 optimal control problem was

solved via the computation of an orthogonal projection of a tensor Hilbert space

onto a particular subspace [86]. The optimal H2 decentralized control problem was

solved by computing an orthogonal projection on a class of Youla parameters with a

decentralized structure. The latter uses Riesz projections after invoking a particular

L2-basis. This chapter is a continuation of the work undertaken in previous Chapter

4. It combines the above two performance norms for spatially invariant systems.

The L2/H∞ control means that the decision maker may construct a controller

which can attenuate the external disturbance with mixed structure, as impulses

with random input directions [61], i.e., wi(t) = ηiδi(k), where i corresponds to the

disturbance in the i-th subsystem and the disturbance wi is finite energy in time.

In this chapter, we focus on minimizing the mixed L2/H∞ norm of the spatial,

temporal closed loop systems, respectively. Such a mixed norm is induced by the

aforementioned disturbances {wi}, which allows for more flexibility and accuracy of

the desirable closed-loop behavior, in particular:

• The H∞ performance is convenient to enforce robustness to model uncertainty

and to express frequency-domain specifications such as bandwidth, low-

frequency gain, and roll-off.

• The H2 performance is useful to handle stochastic aspects such as measurement

noise and random disturbance which will be defined in Section 6.2.3.
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We solve this problem by utilizing the orthogonal projection technique proposed

in Chapter 4 (i.e. [86]). Once the L2 problem solved, the counterpart involving H∞-

norm could be achieved by following standard techniques in solving model matching

problem.

The rest of the chapter is organized as follows. In Section 6.2, we introduce

mathematical preliminaries for discrete spatio-temporal invariant systems. Section

6.3 provides the main result of the chapter, the optimal decentralized H2 control

problem is solved through orthogonal projection and the H∞ problem is solved

following standard technique. A numerical example is provided in Section 6.4 to

evaluate the proposed approach. Finally, some concluding remarks are drawn in

Section ??.

6.2 Preliminaries

6.2.1 Notation and Operator Theoretic Preliminaries

We use the following standard notation. Denote the closed (open) unit disk of the

complex domain C by D̄ = {z ∈ C, |z| ≤ 1} (D = {z ∈ C, |z| < 1}) and unit circle by

T or ∂D. The closed space outside the unit disk is denoted by D̄+ = {z ∈ C, |z| ≥ 1}.

The set of reals is denoted by R and the set of integers is denoted by Z. The set of non-

negative integers is denoted by Z+. Let the real double sequences f = {fi(t)}i=∞,t=∞i=−∞,t=0

denote the so-called spatiotemporal signals with a two-sided spatial support (−∞ ≤

i ≤ ∞) and a one-sided temporal support (0 ≤ t ≤ ∞). Moreover, let T denote the

unit circle and D̄(D) denote the closed (open) unit disc of the complex domain C.

As is standard, H2 denotes the Hardy space of functions analytic in the unit disk

D, with square-summable power series. In general, for 1 ≤ p < ∞ the Hardy space

Hp is defined as the space of all analytic functions f in the unit disk D for which the
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norm

‖f‖p = sup
r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ)
1
p <∞ (6.1)

The set H⊥2 is the orthogonal complement of H2 in L2.

6.2.2 Discrete Spatio-Temporal Invariant Systems

Consider the standard feedback configuration of Figure 6.1, where w is the external

disturbance, z is the controlled output, y is the measurement signal, and u is the

control for all spatio-temporal sequences. The plant G and controller K are spatially

and temporally invariant systems.

w

Figure 6.1: Standard Feedback Configuration under Mixed Norms

The system G(z, λ) can be viewed as a multiplication operator on L2(T, D̄) where

T is the unit circle and D̄(D) is the closed (open) unit disk of the complex domain

C. If we assume that G(z, λ) is stable, then [84, 81]:

G(z, λ) : L2(T, D̄) −→ L2(T, D̄),

u −→ Gu = G(eiθ, λ)u(eiθ, λ),
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where θ ∈ [0, 2π), |λ| ≤ 1.

6.2.3 Disturbance

Now we introduce the disturbance signal for spatially invariant systems. Let ĝ(κ, i) =

(G?K)(κ, j) denote the Redheffer star product of G and K [61]. Then let ηi represents

some random noise with zero mean and covariance equal to the identity matrix,

y(t, i) =
∞∑

j=−∞

∞∑
κ=−∞

ĝ(κ, j)ũ(t− κ)ηjδ(i− j). (6.2)

As mentioned in the introduction, the disturbance wi = ηjδ(i− j), where EηiηTi = I

and Eηjηi = 0, ∀j 6= i.

Since δ(i− j) is a Dirac function, we get

y(t, i) =
∞∑

κ=−∞

ĝ(κ, i)ũ(t− κ)ηi. (6.3)

6.2.4 Stability

Define the spatial `2-norm induced by the above disturbance can be defined as

‖G‖2 =

(
∞∑

i=−∞

|ĝ(t, i)|2
) 1

2

, (6.4)

and the H2-norm of its transform G(z, λ) is given by

‖G‖L2 =

[( 1

2π

)∫
θ∈[0,2π)

∣∣G(eiθ, eiw)∣∣2dθ] 1
2

. (6.5)

By Parseval’s theorem:

‖G‖2 = ‖G‖L2 . (6.6)
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The system G is said to be stable if its uniform norm

‖G‖∞ = esssup
0≤θ<2π
‖λ‖≤1

|G(eiθ, λ)| <∞. (6.7)

We are looking for stabilizing controllers with the same structure as G22. Thus we

are imposing an implicit spatial-temporal structure on the controller K. In the next

section, the optimal control problem for spatially invariant systems is formulated and

solved.

6.3 Main Results

There exists an alternative solution applying the results from the aforementioned two

sections. On the one hand, the H2-norm problem is considered with respect to the

spatial frequency which could be solved using the result from the technique proposed

in [86]. On the other hand, theH∞ problem is considered with respect to the temporal

frequency which can be solved using standard H∞ control results.

6.3.1 Formulation

We first define the mixed norm used here

ψ = inf
Q∈H∞(L∞(D̄))

‖T ∗2inT1(eiθ, λ)−Q‖2,∞. (6.8)

Recall the H2 norm of G(z, λ) is given by

‖G‖L2 =

[( 1

2π

)∫
θ∈[0,2π)

∣∣G(eiθ, eiw)
∣∣2dθ] 1

2

(6.9)
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And the optimal H∞ performance index can be written as:

ψ := inf
Q∈H∞(D̄)

‖T ∗2inT1(eiθ, λ)−Q‖∞. (6.10)

Therefore, the mixed norm could be defined as:

Jm := ‖T ∗2inT1(eiθ, λ)−Q‖2,∞ =[
1

2π

∫ 2π

0

(
esssup

‖λ‖≤1

∣∣T ∗2inT1(eiθ, λ)−Q
∣∣)2

dθ

] 1
2

. (6.11)

Based on the discussion in [86] and [98], the optimal mixed performance index

can be written as:

ψ := inf
Q∈H∞(L∞(D̄))

‖T ∗2inT1(eiθ, λ)− T2outQ(eiθ, λ)‖2,∞,

and

T ∗2in := T2in(z−1, λ−1), (6.12)

where as previously λ corresponds to the temporal transform variable, and z

corresponds to the spatial two-sided transform.

Moreover, the optimal mixed performance is denoted as:

ψ = inf
Q∈H∞(D̄)

‖T ∗2inT1(eiθ, λ)−Q‖2,∞

= inf
Q∈H∞(D̄)

Jm, (6.13)

where Jm is defined in (6.11)

6.3.2 Solution

Now we are ready to solve this problem by utilizing the orthogonal projection

techniques proposed in Chapter 4. It should be remarked that, we may denote the
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spatial frequency eiθ interchangeably with λ. We first recall some results about theH2

problem [86]. Since {zi}∞i=−∞ is an orthogonal basis of L2(D̄), T ∗2inT1 can be written

as:

T ∗2inT1(z, λ) =
∞∑

i=−∞

τi(λ)zi, (6.14)

where

τi (λ) ∈ L∞(dλ).

Similarly, the outer function T2out admits the following expansions w.r.t. the basis

{zi}∞−∞, such that:

T2out(z, λ) =
∞∑

i=−∞

χi(λ)zi,

with χi(λ) stable, i.e., χi(λ) ∈ H∞.

Recall a result from [84, 108, 86] that, all stabilizing controllers K are given by

K = −Q(I −G22Q)−1, (6.15)

with Q stable given by

Q(z, λ) =
∞∑

i=−∞

qi(λ)zi, (6.16)

where

qi(λ) = λ|i|q̃i(λ), (6.17)

105



where q̃i is stable [84].

Therefore

T2out(z, λ)Q(z, λ) =
∞∑

i=−∞

ξi(λ)zi, (6.18)

with ξi(z) stable, and

ξi(λ) =
∑
j

λ|j|q̃j(λ)χi−j(λ).

Substituting (6.18) and (6.14) into the mixed performance index yields:

ψ2 = inf
ξi(λ)∈H∞

∥∥∥∥∥
∞∑

i=−∞

τi(λ)zi −
∞∑

i=−∞

ξi(λ)zi

∥∥∥∥∥
2

2,∞

= inf
ξi(λ)∈H∞

1

2π

∫ 2π

0

esssup|λ|≤1

∣∣∣ ∞∑
i=−∞

(τi(λ)

− ξi(λ))eiθ
∣∣∣2dθ. (6.19)

Moreover, notice

‖
∞∑

i=−∞

τi(λ)zi −
∞∑

i=−∞

ξi(λ)zi‖2
2,∞

=
1

2π

∫ 2π

0

esssup|λ|≤1 |
∞∑

i=−∞

(τi(λ)− ξi(λ))eiθ|2dθ

=
∞∑

i=−∞

esssup|λ|≤1 |τi(λ)− ξi(λ)|2. (6.20)

Therefore, by definition, we have the mixed performance as:

ψ2 = inf
ξi(λ)∈H∞

∞∑
i=−∞

‖τi(λ)− ξi(λ)‖2
∞. (6.21)
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Remark 6.1. Notice in (6.21), the first term τi(λ) ∈ L∞ and the second term

ξi(λ) ∈ H∞, therefore the optimal performance index ψ reduces to an infinite number

of Nehari problems for local Youla parameters ξi(λ).

Moreover, each of the model matching problem can be solved using Hankel operators

with symbols τi(λ) ∈ L∞(dλ) by utilizing Nehari’s theorem. This theorem establishes

the existence of an optimal solution of an L∞ minimization problem. Once the

existence is established, the construction of the solution is immediate.

6.3.3 Nehari problem

Let ϕ ∈ L∞, the multiplicative operator Lϕ associated to ϕ on L2 is defined as:

(Lϕf)(z) = ϕ(z)f(z). (6.22)

Definition 6.2. [109] An infinite matrix is called a Hankel matrix if it has the form

Γ =



α0 α1 α2 α3 · · ·

α1 α2 α3 α4 · · ·

α2 α3 α4 α5 · · ·

α3 α4 α5 α6 · · ·
...

...
...

...
. . .



where α = {αj}j≥0 is a sequence of complex numbers. It should be noted that

Hankel matrix is skew symmetric whose entries depend only on the sum of the

coordinates.

Definition 6.3. Let Γi be the Hankel operator associated to τi ∈ L∞, then for i =

· · · ,−1, 0, 1, · · · ,

Γi : H2 → H2⊥
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ϕ → Γiϕ := (P−τi)(ϕ), (6.23)

where P− is the negative Riesz projection (orthogonal projection from H2 onto

H2⊥, clearly, P− = I − P+).

Then we define the operator induced norm of Γ as:

‖Γi‖ : = sup
‖ϕ‖2≤1

‖Γϕ‖2

= ‖P−τi‖. (6.24)

Then according to [110], we have the follwoing lemma,

Lemma 6.3.1.

inf
ξi(λ)∈H∞

‖τi(λ)− ξi(λ)‖∞ = ‖P−τi‖. (6.25)

Therefore, the optimal decentralized mixed performance index

ψ2 =
∞∑

i=−∞

‖P−τi‖2. (6.26)

If there exists a maximizing vector ϕ̃i for each Γi, more can be said about the optimal

solution, namely,

Theorem 6.4. If there exists a maximizing vector ϕ̃i ∈ H2, i.e.,

‖Γiϕ̃i‖ = ‖Γi‖‖ϕ̃i‖2, (6.27)

then there exists a unique ξ∗i (λ) ∈ H∞, such that [110]

inf
ξi(λ)∈H∞

‖τi(λ)− ξi(λ)‖∞ = ‖τi(λ)− ξ∗i (λ)‖∞, (6.28)
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and the optimizing Youla parameter is given by:

ξ∗i (λ) = τi(λ)− P−τi(λ)ϕ̃i(λ)

ϕ̃(λ)
, i = · · · ,−1, 0, 1, · · · . (6.29)

Remark 6.5. Recall that by convention, we denoted Q = T2outQ by Q as (??).

Therefore to realize the optimal decentralized control law, we need one additional step

following the result given in Theorem 6.4:

ξ̂∗i = T ∗2outξ
∗
i . (6.30)

Remark 6.6. As discussed in [110], bounded operators may not have maximizing

vectors on a Banach space. However, compact operators on Hilbert spaces do have

maximizing vectors.

Corollary 6.6.1. [110] If Γi, for i = · · · ,−1, 0, 1, · · · , is compact, then a maximizing

vector always exists.

In order to verify the existence and uniqueness of the L∞ approximation problem,

we shall establish the compactness criterion for Hankel operators.

Corollary 6.6.2. Γi is compact if and only if τi(λ) can be decomposed into the

following form:

τi(λ) = τ̂i(λ) + hi(λ), (6.31)

where τ̂i is continuous on the unit circle, i.e., for |λ| = 1, and hi(λ) ∈ H∞.

Now we can obtain the compactness criterion for Hankel operators.

Theorem 6.7. [109] With τi ∈ L∞, the following statements are equivalent:
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1. Γi is compact for i = · · · ,−1, 0, 1, · · · .

2. τi ∈ H∞ + C for i = · · · ,−1, 0, 1, · · · ;

Theorem 6.7 guarantees existence and uniqueness of optimal Youla parameters.

6.3.4 Numerical algorithm

It should be noticed that only temporal frequency variable remains after applying the

negative Riesz projection for each spatial frequency. In other words, we need to solve

all the H∞-norm problems regarding each negative spatial frequency basis.

The overall algorithm for computing the mixed norm is described in Algorithm 1.

And one standard procedure to compute the H∞-norm of Step 3 can be found in [61].

Algorithm 1 Mixed norm computation

1: Step 1:
2: Initialize θ, λ, µ

3: Step 2:

4: Negative projection for the optimal H2-norm to fix the spatial frequency θ.

5: Step 3:
6: for all Basis index i = −∞ to ∞ do

7: Optimal H∞-norm µi with respect to the temporal frequency λ can be solved
following the solution to standard model matching problem.

8: µ = µ+ µi
9: end for

10: Step 4:
11: Finish!

The Hankel operator has a matrix representation Γ as given in Definition 6.2:

Γ =



τ−1 τ−2 τ−3 τ−4 · · ·

τ−2 τ−3 τ−4 τ−5 · · ·

τ−3 τ−4 τ−5 τ−6 · · ·

τ−4 τ−5 τ−6 τ−7 · · ·
...

...
...

...
. . .


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Remark 6.8. In general, it is not trivial to solve the model matching problem,

since the Hankel operators may turn out to be infinite dimensional though the

compactness condition satisfied. For a special class of Hankel operators which are

finite dimensional, we can apply the result for matrix operator using singular value

decomposition (SVD) [61].

Lemma 6.8.1. Suppose matrix Γ has a SVD

Γ = UΣV ∗

Σ = diag{σ1, σ2, · · · }

U = [u1, u2, · · · ] (6.32)

V = [v1, v2, · · · ]

with U∗U = UU∗ = I and V ∗V = V V ∗ = I. Then let σ1 be the largest Hankel

singular value, i.e., ‖Γ‖ = σ1, and

(τi − ξ∗i )U = σ1V. (6.33)

6.4 Numerical Example

In this section, we aim at applying the proposed control strategy in previous sections

for a spatially invariant system given in Voulgaris et al. [84]. As discussed in

Section 6.3, the proposed orthogonal projection and Hankel operator technique lead

to an optimal decentralized control that minimizes the mixed L2/H∞ performance

for spatially invariant systems.

We consider the following spatio-temporal system which comes from the finite-

difference discretization of a certain PDE [84].

y(i, k + 1)− y(i, k) =
T

L2
y(i+ 1, k)− 2y(i, k) + y(i− 1, k)

− εy(i, k) + u(i, k) (6.34)
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Taking the appropriate transforms one obtains the transfer function, weighting

function and stabilizing controller parameterization.

We want to compute a decentralized controller for optimal H2 attenuation of an

additive disturbance on the system output with weighting function

W (z, λ) =
λ

1− (1
8
z−1 + 1

4
+ z

8
)λ .

(6.35)

We assume W (z;λ) to be asymptotically stable and yield the same structure as the

plant itself.

Then the mixed L2/H∞ performance for this specific spatially invariant system

can be stated as:

inf
Q∈H∞

‖(1−GQ)W‖2,∞ = inf
Q∈H∞

‖H − UQ‖2,∞, (6.36)

where

H(z, λ) =
λ

1− r(z)λ
,

U(z, λ) =
Tλ2

(1− ρ(z)λ)(1− r(z)λ)
, (6.37)

and

ρ(z) = z−1/6 + 1/3 + z/6,

r(z) = z−1/8 + 1/4 + z/8. (6.38)

An inner−outer factorization of U(z, λ) yields

Uin(z, λ) = λ2, (6.39)
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Uout(z, λ) =
T

(1− ρ(z)λ)(1− r(z)λ) .
(6.40)

We can plug in the corresponding T ∗2inT1 which comes from simple multiplication

of U∗in(z, λ) and H(z, λ) in this example. Hence this control problem fits in with our

problem setting and our proposed control approach can be applied. We first compute

the negative Riesz projection and then calculate the norm of the Hankel operators

for each fixed spatial frequency as developed in Theorem 6.4.

It should be mentioned that, ideally, we want to have the whole set of

functions {ejnw}∞n=−∞ to be the orthogonal basis for L2. However, we have to

pick a finite number N as the discretization resolution which is chosen to be

200, 400, 600, 800, 1000, 1200 and 1400. The simulation results utilizing the proposed

algorithm are provided in Table 6.1. For each fixed N , σi’s represent different singular

values of the Hankel matrix Γ such that σmax(σmin) denote the maximum (minimum)

Hankel singular values. Finally the mixed performance ψ is computed.

Table 6.1: Hankel norms and optimal mixed performance corresponding to different
N .

N σmax σmin ψ
200 0.6745 0.3125 0.4508
400 0.6708 0.3154 0.4519
600 0.6695 0.3164 0.4523
800 0.6688 0.3169 0.4525
1000 0.6684 0.3171 0.4527
1200 0.6681 0.3173 0.4528
1400 0.6679 0.3175 0.4529

6.5 Summary

This chapter considers the mixed L2/H∞ synthesis problem for spatially invariant

systems. The mixed solution provides optimal solution for minimizing a mixed H2
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and H∞ norm for a wide class of systems. In particular, the optimal decentralized

H2 control problem is solved through orthogonal projection, and the H∞ problem is

solved using an infinite number of Hankel operators.
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Chapter 7

Decentralized Stochastic Control:

A Stochastic Maximum Principle

via Malliavin Calculus Approach

Recently, another theoretical mechanism for decentralized stochastic control was

proposed in [46]. A general model of decentralized stochastic control called partial

history sharing information structure is presented. In this model, at each step the

controller of each individual agent shares part of their observation and control history

with each neighboring agent.

The optimal control problem at the coordinator level is shown to be a partially

observable Markov decision process (POMDP). Instead of the POMDP, we consider a

controlled Itô-Lévy process where the ’Markovian’ property does not hold any more.

It should be noted that this is a more complicated situation than the case where

the standard stochastic maximum principle would fail. Therefore, we may need to

apply a Malliavin calculus approach to derive a maximum principle, where the adjoint

processes are explicitly expressed by the parameters and the states of the system.

When investigating this problem, we obtained two conclusions. First, the

literature pertaining the Malliavin calculus is rather difficult, with proofs containing
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very little detail. Second, the investigations of the applications of the Malliavin

calculus to the stochastic optimal control have been dominated by mathematicians,

and mostly been constrained to the context of the Black-Scholes model. The aim of

this chapter (together with Appendix B) is to apply results in Malliavin calculus

to more realistic control problems including various hot topics in control society

including Markov Decision Process, Team Decision Problems, and so on. Again, the

fundamental motivation for this chapter is to provide an accessible sketch to bridge

the gap between pure mathematic Malliavin calculus and practical stochastic optimal

control, especially the hot topic - stochastic decentralized control problem.

7.1 Introduction

7.1.1 Markov decision process

Markov decision process (MDP) models have proven to be useful in a variety of

sequential planning applications where it is crucial to account for uncertainty in the

process. The partially observable MDP model (POMDP) generalizes the MDP model

to allow for even more forms of uncertainty to be accounted for in the process. A

POMDP is really just an MDP; we have a set of states, a set of actions, transitions

and immediate rewards. The actions’ effects on the state in a POMDP is exactly

the same as in an MDP. The only difference is in whether or not we can observe the

current state of the process. In a POMDP we add a set of observations to the model.

So instead of directly observing the current state, the state gives us an observation

which provides a hint about what state it is in. The observations can be probabilistic;

so we need to also specify an observation function. This observation function simply

tells us the probability of each observation for each state in the model. Fortunately,

it turns out that simply maintaining a probability distribution over all of the states

provides us with the same information as if we maintained the complete history.
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7.1.2 Stochastic Maximum principle

The stochastic maximum principle is another important extension of the Pontryagin

maximum principle for systems subject to randomness. In the stochastic case,

there are basically different approaches based on the assumptions used to derive the

(stochastic) minimum principle. Specifically, [111] uses spike variations and Neustadts

variational principle, [112] uses Girsanovs measure transformation for nondegenerate

controlled diffusion processes, while [113] utilizes the martingale representation to

derive the adjoint equation. An excellent account of the stochastic minimum principle

is found in [114] which also includes an extensive list of references.

In applications of control theory, there are many problems in the physical sciences

and engineering where systems are modeled by stochastic differential equations driven

by controls which are also stochastic processes with a specific information structure,

such as full information or partial information. Mathematically, information

structures are modeled via the minimal sigma algebra generated by the available

information process. And it is this process that the controller uses to generate

control actions. For full information problems in which the information structure

is Markovian, one often employs Bellmans principle of optimality to construct what

is known as the HJB (Hamilton-Jacob-Bellman) equation, a nonlinear PDE defined

on the state space of the system under consideration. This equation describes the

evolution of the value function which is used to construct the state feedback control

law provided this function is at least once differentiable with respect to the state

variable. This however requires solving the HJB equation which may have a viscosity

solution but is not sufficiently smooth [114]. For non-Markovian controlled diffusion

processes with general information structures, the HJB equation does not apply. For

information structures which correspond to full information or partial information,

the stochastic minimum principle is often employed.
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7.1.3 Malliavin Calculus

The Malliavin calculus (also known as stochastic calculus of variation) is a differential

calculus for functions (i.e. random variables) defined on a space with a Gaussian

measure (usually some version of the Wiener space).

The Malliavin calculus is a method originally developed for proving smoothness

of p(t, x, y) in the variable y, where p(t, x, y) is the transition density of a process

associated to an operator with smooth coefficients [115]. It is an infinite-dimensional

differential calculus, whose operators act on functionals of general Gaussian processes

[116]. Initiated by Paul Malliavin [117], the theory is based on an integration by parts

formula in an infinite-dimensional space. As mentioned in [118], it was first applied

to study smoothness of solutions to partial differential operators. Then after that,

many other applications have been developed, for example to stochastic differential

equations and stochastic integrals.

7.2 Problem Formulation

If the control strategy for the future is fixed as a function of future beliefs, then the

current belief is a sufficient statistic for predicting future costs under any choice of

the current action.

Based on the information commonly known to all the controllers, a ”fictious”

coordinator was created in order to reformulate the decentralized problem as an

equivalent centralized problem from the perspective of a coordinator. It should be

remarked that the key technique to bypass the information limitation faced by the

traditional centralized control technique is to involve only partial information that

are shared by connected agents. Hence, an unsolvable large scale centralized problem

is successfully decoupled into solvable local hierarchical coordinators.
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Then, the optimal control problem at the coordinator level is shown to be a

partially observable Markov decision process (POMDP) which can be solved by

existing techniques specialized for POMDP [119, 120].

A review of algorithms to solve POMDPs can be found in [120] and references

therein. The goal of MDP is to derive a mapping from states to actions, which

represents the best actions to take for each state, for a given horizon length.

Specifically, the coordinator first chooses a decision strategy to minimize a total cost

(by solving the POMDP problem) knows the common information; then based on

this supervisory control decision, the coordinator selects prescriptions that map each

controllers local information to its control actions.

This assumes that the next state depends only upon the current state (and action).

There are situations where the effects of an action might depend not only on the

current state, but upon the last few states. The MDP model will not model these

situations directly. The Markov assumption made by the MDP model is that the

next state is solely determined by the current state (and current action).

As mentioned before, the main breakthrough in this mechanism is to apply the

results from POMDP. However, it would be interesting to study if we could relax the

”Markov” assumptions in the problem formulation. So, we could formulate a similar

decentralized control problem as [46] where common information is available for the

coordinator. Instead of the POMDP, we will face a controlled Itô-Lévy process since

the ’Markov’ property does not hold any more.

The newly developed stochastic maximum principle [121] may be recalled to solve

the problem in the coordinator level. Furthermore, it could be treated as a mean-

field type stochastic control problem discussed in [122]. It is promising to apply these

two novel coordination algorithms since in both of the two problems, the dynamics

is governed by a controlled Itô-Lévy process and the information available to the

controller is possibly less than the overall information. All the system coefficients

and the objective performance functional are allowed to be random, possibly non-

Markovian [122].
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It should be noted that this is a more complicated situation than the case where

standard stochastic maximum principle would fail. Therefore, we may need to apply

a Malliavin calculus approach to derive a maximum principle, where the adjoint

processes are explicitly expressed by the parameters and states of the system.

7.2.1 Why Care about Malliavin Calculus?

• By relaxing the Markovian assumption from [46], we can develop a Decentral-

ized Stochastic maximum principle via Malliavin calculus based on a common

information mechanism.

In [46], a general model of decentralized stochastic control called partial history

sharing information structure is presented. In this model, at each step the

controller of each individual agent shares part of their observation and control

history with each neighboring agent. The optimal control problem at the

coordinator level is shown to be a POMDP which can be solved by existing

techniques specialized for POMDP. Instead of the POMDP, we will face a

controlled Itô-Lévy process if no ’Markov’ property is assumed.

• This maximum principle based on Malliavin Calculus is actually much more

powerful than the traditional backward SDE method in the literature, such as

in [114].

• Bass in [115] claim that

There are two main approaches, one using the Girsanov transformation [123]

and the other using the Ornstein-Uhlenbeck operator. Both are interesting and

both are useful.

Provided the above statement is true, all the derivations using Girsanov

transformation (for example, the team games framework by Charalambos

[124, 125, 126]) retain one alternative way to get proved by the Malliavin

Calculus. Furthermore, this will not only proves the same result, but also

relax the critical assumption “convexity” from the whole framework.
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We recall the basic definition and properties of Malliavin Calculus in Appendix

B.

7.3 Decentralized Stochastic Control

Following [46], we know that common information can be exploited to convert the

decentralized optimization problem into a centralized optimization problem involving

a coordinator. In this section, we briefly explain how to convert the decentralized

problem into a centralized stochastic control problem (in particular, a POMDP),

identify the structure of optimal control strategies, and provide a dynamic program

like decomposition for the decentralized problem.

For two random variables (or random vectors) X and Y taking values in X and

Y . Consider a system with two controllers. The system operates in discrete time for

a horizon T . Let Xt ∈ Xt denote the state of system at time t, U i
t ∈ U it denote the

control action of controller i at time t, and Ut denote the vector (U1
t , · · · , Un

t ). The

dynamic system with finite horizon T will evolve according to:

Xt+1 = ft(Xt,Ut,W
0
t ), t = 0, 1, 2, · · · , T, (7.1)

where {W 0
t }Tt=1 is a sequence of independent and identically distributed (i.i.d.)

random variables with probability distribution Q0
W .

Each controller of DM i makes its own local observation Y i
t ∈ Y it

Y i
t = hit(Xt,W

i
t ), (7.2)

where {W i
t , t = 0, 1, · · · , T}, i = 1, 2, · · ·T, represents primitive random variables

with known statistics.

Moreover, each controller stores a subset M i
t of its past local observations and its past
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actions in a local memory

M i
t ⊂ {Y i

0:t−1, U
i
0:t−1}. (7.3)

Notice that, at t = 1, the local memory is empty, i.e., M i
0 = ∅.

In addition to local memory, each controller has access to a shared memory. The

contents Ct of the shared memory at time t are a subset of the past local observations

and control actions of all controllers:

Ct ⊂ {Y1:t−1,U1:t−1}, (7.4)

where Yt and Ut denote the vectors (Y 1
t , · · · , Y n

t ) and (U1
t , · · · , Un

t ), respectively.

Controller i chooses action U i
t as a function of the total data (Y i

t ,M
i
t , Ct) available to

it. Specifically, for every controller i,

U i
t = git(Y

i
t ,M

i
t , Ct), (7.5)

where git is the control law of controller i.

The collection g1:n = (g1, · · · ,gn) is called the control strategy of the system.

At time t, the system incurs a cost `(Xt,Ut). The performance of the control strategy

of the system is measured by the expected total cost

J(g1:n) := Eg1:n

[
T∑
t=1

`(Xt,Ut)

]
. (7.6)

The optimization problem is to find a control strategy g1:n for the system that

minimizes the expected total cost given by (7.6).

For simplicity, assume we have two Decision Makers (DMs), DM1 and DM2.

All the discussions can be easily generalized to cases with n ≥ 2.

Since two DMs may access different information, key difficulties involved are [46]:
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• Since costs depend on system state and DMs actions, any prediction of future

costs must involve:

– a belief on the system state;

– some means of predicting other DMs’ actions.

• Different controllers have different information, hence the beliefs formed by each

DM and their predictions of future costs are not consistent.

• Even with fixed strategies (g1, g2) a DM can not exactly predict the other DMs

action.

Therefore, to address the above challenges we aim to use common knowledge/information.

First, beliefs based on common knowledge are consistent among DMs. Secondly,

though DM1 cannot know U2
t , it knows exactly mapping from Y 2

t ,M
2
t to U2

t using a

given realization ct of common knowledge.

U2
t = g2

t (Y
2
t ,M

2
t , ct)

U2
t = g2

t (·, ·, ct) = γ2
t (·, ·) (7.7)

where γ2
t denotes the partial decision rule for the given realization ct of common

knowledge [46].

7.3.1 Common Knowledge 4-step Scheme

In general, to design decentralized control based on common knowledge can be divided

into the following main steps [46]:

1. Introduce a problem with a fictitious coordinator

• Coordinators beliefs are based on common knowledge

• Coordinator selects partial decision rules (prescriptions) based on com-

mon knowledge

2. Establish equivalence between the original problem and the problem with the

coordinator
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3. Establish structural results/sufficient statistic and a sequential decomposition

for the problem with the coordinator

4. Use the equivalence (Step 2) to conclude a structural result and a sequential

decomposition for the original problem

In the following, we will explain each step one by one.

Step 1 - Fictitious coordinator

Figure 7.1: Fictitious coordinator [2]

Step 2 - Establish equivalence

This is an important step to show that the total expected cost of the coordinated

system is the same as the original strategy without adding the fictious coordinator.

Step 3 - The coordinator’s problem

From the coordinator’s point of view, the original system and the DMs together can

be viewed as the coordinator’s environment. As shown in Figure 7.4, we can consider
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Figure 7.2: Fictitious coordinator with decision signals [2]

Figure 7.3: Equivalence of the two problems [2]

everything inside the red box as a “black box” to the coordinator. Then, at time

t, the outputs of the “black box”, Z1
t , Z

2
t work as observations for the coordinator;

similarly, the decisions from coordinator, Γ1
t ,Γ

2
t work as inputs to the “black box”.
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Let St denote the state of coordinator,

St = (Xt,M
1
t ,M

2
t , Y

1
t , Y

2
t ). (7.8)

Therefore, the system dynamic of the coordinator follows:

St+1 = f̂t(St,Γ
1
t ,Γ

2
t , ωt) (7.9)

Zi
t = ĥit(St,Γ

i
t), i = 1, 2, (7.10)

where f̂t describes state functions, ĥ1
t , ĥ

2
t represent output functions, and ωt corre-

sponds to system noise.

If we assume the Markov property holds here, we have

P(St+1, Z
1
t , Z

2
t |S0:t, Z

1
0:t−1, Z

2
0:t−1,Γ

1
t ,Γ

2
t ) = P(St+1, Z

1
t , Z

2
t |St,Γ1

t ,Γ
2
t ). (7.11)

By equivalence with the original problem, there exist functions ˆ̀
t, t = 0, 1, · · · , T

such that

`t(Xt, U
1
t , U

2
t ) = ˆ̀

t(St,Γ
1
t ,Γ

2
t ), for all t = 0, 1, · · · , T. (7.12)

Hence the coordinator’s problem (PCD) can be rewritten as

min
ψ
JψCD,T := Eψ{

T∑
t=0

ˆ̀
t(St,Γ

1
t ,Γ

2
t )} (7.13)

subject to

St+1 = f̂t(St,Γ
1
t ,Γ

2
t , ωt)

Zi
t = ĥit(St,Γ

i
t), i = 1, 2,

Γit = ψit(Ct,Γ
1
0:t−1,Γ

2
0:t−1), i = 1, 2. (7.14)
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Figure 7.4: The coordinators problem [2]

Step 4 - From coordinator to the original problem

Theorem 7.1. [46] For problem PD there exist optimal policies of the DMs of the

form

U i
t = git(Y

i
t ,M

i
t ,Πt), i = 1, 2, (7.15)

Πt = P (Xt,M
1
t ,M

2
t , Y

1
t , Y

2
t |Ct,Γ1

0:t−1,Γ
2
0:t−1), for t = 0, 1, · · · , T, (7.16)

where Πt is the conditional distribution on Xt, Yt,Mt given Ct.

As defined in [46], we call Πt the common information state.

7.4 Main Results

Based on the scheme presented in Sec. 7.3.1, we can reformulate the decentralized

problem as an equivalent centralized problem from the perspective of a coordinator.
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The coordinator knows the common information and selects prescriptions that map

each controllers local information to its control actions [46]. The optimal control

problem for the coordinated system is further assumed to be POMDP, i.e., the state

process at the coordinator follows a Markov Chain Process, which means the next

state depends only on the current state.

This “Memorylessness” assumption limits the application situations dramatically,

and degrade the performance since the coordinator does not utilize all the available

historical information. Instead of considering the special MDP, we propose to compute

the optimal decision based on a much more general stochastic maximum principle.

Remark 7.2. Actually, we are not the first one to pursue solutions for decentralized

stochastic decision systems. For instance, Charalambos and Ahmed derived team

optimality and person-by person optimality conditions for distributed stochastic

differential systems with different information structures in [124, 125, 126] and several

following papers. In [124], given a fixed probability space
(

Ω,F, {F0,t : t ∈ [0, T ]},P
)
,

each subsystem i has its own state space Rni, action space Ai ⊂ Rdi, an exogenous

noise space Wi , Rmi, and an initial state xi(0) = xi0. A decentralized stochastic

system is formulated as:

dxi(t) =f i(t, xi(t), uit)dt+ σi(t, xi(t), uit)dW
i(t) +

N∑
j=1,j 6=i

f ij(t, xj(t), ujt)dt

+
N∑

j=1,j 6=i

σij(t, xj(t), ujt)dW
j(t), xi(0) = xi0, t ∈ (0, T ], i ∈ ZN . (7.17)

On the product space (X(N),A(N),W(N)), where X(N) , ×Ni=1Rni ,A(N) , ×Ni=1Ai,W(N) ,

×Ni=1Rmi. In contrast to their framework where coupled stochastic differential

equations of Itô type are introduced from the beginning, we only formulate the

coordinator-level control problem as a mean-field type stochastic control problem where

the dynamics is governed by a controlled Itô-Lévy process. Therefore, our proposed

algorithm yields a nice balance between complexity and optimality.
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The coordinator-level optimal decision problem is considered as a partially

observed optimal control for forward stochastic systems which are driven by Brownian

motions and an independent Poisson random measure with a feature that the cost

functional is of mean-field type [122]. The key difference with [46] is that all

the system coefficients and the objective performance functionals are allowed to

be random, possibly non-Markovian. Malliavin calculus is employed to derive a

maximum principle for the optimal control. It should be mentioned that mean-

field type stochastic control problem, whose state equation is related to a kind of

McKeanVlasov equation (refer to, for example, [127, 128]).

Remark 7.3. Though we usually have multiple states in the coordinator-level control

problem, we limit our discussion to the one-dimensional case for simplicity and

readability (especially the notation complexity from multivariate Lévy process). Our

solution can be easily generalized to the higher dimension RN case.

Coordinated Stochastic Systems

Suppose the state process S(t) = S(u)(t, ω); t ≥ 0, ω ∈ Ω is a controlled Itô-Lévy

process in one-dimensional R, the system dynamic of the coordinator (7.9) can be

rewritten as

dS(t) = b(t, S(t), u(t), ω)dt+ σ(t, S(t), u(t), ω)dBt

+

∫
R0

θ(t, S(t−1), u(t−1), z, ω)Ñ(dt, dz); (7.18)

S(0) = s ∈ R (7.19)

where R0 = R \ {0}, B(t) = B(t, ω) and η(t) = η(t, ω), given by

η(t) =

∫ t

0

∫
R0

zÑ(dξ, dz); t ≥ 0, ω ∈ Ω, (7.20)

are a 1D Brownian motion and an independent pure jump Lévy martingale,

respectively, on a given filtered probability space (ω,F , {Ft}t≥0, P ).
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Thus

Ñ(dt, dz) := N(dt, dz)− ν(dz)dt (7.21)

Cost functional

Let A = Aε denote a given family of controls, contained in the set of εt−adapted

càdlàg controls u(·) such that (7.18) has a unique strong solution up to time T .

Consider the system (7.18), given u ∈ Aε, we define the cost functional or performance

criterion by

J(u) = E
[∫ T

0

f(t, S(t),E [f0(S(t))] , u(t), ω)dt+ g (S(T ),E [g0(S(T ))] , ω)

]
(7.22)

where E = Ep denotes expectation with respect to P , f0 : R → R and g : R → R

are given functions such that E [|f0(S(t))|] <∞ for all t and E [|g0(S(T ))|] <∞, and

f : [0, T ]×R×R×U×Ω→ R and g : R×R×Ω→ R are given Ft-adapted processes

with (7.22) finite.

Then the coordinator-level control problem is the following:

Problem 7.4. Find minimum cost function Φε ∈ R and optimal control u∗ ∈ Aε (if

it exists) such that

Φε = inf
u∈Aε

J(u) = J(u∗) (7.23)

Remark 7.5. It should be mentioned that, the integration term inside (7.22) is called

the running cost, while the second term represents the terminal cost. Moreover,

the cost functional (7.22) involves the mean of functions of the state variable. As

mentioned in [122], this extra mean term breaks the nice property - time consistency,

which leads to the failure of dynamic programming approach.

Instead of dynamic programming approach, there are attempts to solve this

problem via maximum principle. For example, [129] developed a maximum principle
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for mean-field SDE’s with the adjoint processes defined by backward SDE’s (BSDE’s).

It is well-known that these BSDE’s are difficult to solve. On the other hand, the

duality involved via Malliavin derivative enables us to derive an explicit form for the

adjoint process.

We follow [122] to investigate the use of Malliavin calculus to derive mean-field

stochastic maximum principle.

7.4.1 Stochastic Maximum Principle

In order to obtain the solution to Problem 7.4, we use the results from [122], which

rely on the following assumptions.

Remark 7.6. We denote the states S(t) in the coordinator level by X(t) in the

following.

Assumption 7.7. The following functions are all continuously differentiable (C1)

with respect to the arguments (if depending on them), where x ∈ R0, x0 ∈ R and

u ∈ U for each t ∈ [0, T ].

• b(t, x, u, ω) : [0, T ]× R× U × Ω→ R

• σ(t, x, u, ω) : [0, T ]× R× U × Ω→ R

• θ(t, x, u, z, ω) : [0, T ]× R× U × R0 × Ω→ R

• f(t, x, x0.u, ω) : [0, T ]× R× R× U × Ω→ R

• g(x, x0, ω) : R× RΩ→ R

• f0(x0) : R→ R

• g0(x0) : R→ R

Assumption 7.8. For all t, r ∈ (0, T ), t ≤ r, and all bounded εt−measurable random

variables α = α(ω) the control

βα(s) = α(ω)χ[t,r](s); s ∈ [0, T ] (7.24)

belongs to Aε.
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Assumption 7.9. For all u, β ∈ Aε with β bounded, there exists δ > 0 such that

u+ yβ ∈ Aε for all y ∈ (−δ, δ). (7.25)

Furthermore, if we define

f̃ (t,X(t),E [f0(X(t))] , u(t)) :=
∂f

∂x
(t,X(t),E [f0(X(t))] , u(t))

+ E
[
∂f

∂x0

(t,X(t),E [f0(X(t))] , u(t))

]
f ′0(X(t)),

(7.26)

g̃ (X(t),E [g0(X(t))]) :=
∂g

∂x
(X(t),E [g0(X(t))])

+ E
[
∂g

∂x0

(X(T ),E [g0(X(T ))])

]
g′0(X(T )),

(7.27)

then, the family

{
f̃
(
t,Xu+yβ(t),E

[
Xu+yβ(t)

]
, u(t) + yβ(t)

) d
dy
Xu+yβ(t)

∂f

∂u

(
t,Xu+yβ(t), u(t) + yβ(t)

)
β(t)

}
y∈(−δ,δ)

(7.28)

is λ× P -uniformly integrable and the family

{
g̃
(
Xu+yβ(T ),E

[
g0

(
Xu+yβ(T )

)]) d
dy
Xu+yβ(T )

}
y∈(−δ,δ)

(7.29)

is P−uniformly integrable.
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Assumption 7.10. For all u, β ∈ Aε with β bounded, the process Y (t) = Y (β)(t) =

d
dy
X(u+yβ)(t)|y=0 exists and satisfies the equation

dY (t) = Y (t−)

[
∂b

∂x
(t,X(t), u(t)) dt+

∂σ

∂x
(t,X(t), u(t)) dB(t)

+

∫
R0

∂θ

∂x

(
t,X(t−), u(t−), z

)
Ñ(dt, dz)

]
+ β(t−)

[
∂b

∂u
(t,X(t), u(t)) dt+

∂σ

∂u
(t,X(t), u(t)) dB(t)

+

∫
R0

∂θ

∂u

(
t,X(t−), u(t−), z

)
Ñ(dt, dz)

]
(7.30)

Assumption 7.11. For all u ∈ Aε, with definitions (7.26) and (7.27), the following

processes all exist for 0 ≤ t ≤ s ≤ T, z ∈ R0:

• K(t) := g̃ (X(T ),E [g0(X(T ))]) +
∫ T
t
f̃ (s,X(s),E [f0(X(s))] , u(s)) ds

• DtK(t) := Dtg̃ (X(T ),E [g0(X(T ))]) +
∫ T
t
Dtf̃ (s,X(s),E [f0(X(s))] , u(s)) ds

• Dt,zK(t) := Dt,zg̃ (g0(X(T ))) +
∫ T
t
Dt,zf̃ (s,X(s),E [f0(X(s))] , u(s)) ds

•

H0(s, x, u) := K(s)b(s, x, u) +DsK(s)σ(s, x, u)

+

∫
R0

Ds,zK(s)θ(s, x, u, z)ν(dz)

•

G(t, s) := exp

(∫ s

t

{
∂b

∂x
(r,X(r), u(r), ω)− 1

2
(
∂σ

∂x
)2(r,X(r), u(r), ω)

}
dr∫ s

t

∂σ

∂x
(r,X(r), u(r), ω)dB(r)

+

∫ s

t

∫
R0

{
ln

(
1 +

∂θ

∂x
(r,X(r−), u(r−), z, ω)

)
− ∂θ

∂x
(r,X(r), u(r), z, ω)

}
ν(dz)dr

+

∫ s

t

∫
R0

ln

(
1 +

∂θ

∂x
(r,X(r−), u(r−), z, ω)

)
Ñ(dr, dz)

)
,
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• p(t) := K(t) +
∫ T
t

∂H0

∂x
(s,X(s), u(s))G(t, s)ds

• q(t) := Dtp(t), and r(t, z) := Dt,zp(t)

To derive the stochastic maximum principle, we first define a general stochastic

Hamiltonian.

Definition 7.12. The general stochastic Hamiltonian is the process

H(t, x, u, ω) : [0, T ]× R× U × Ω→ R (7.31)

defined by

H(t, x, u, ω) = f(t, x,E [f0(X(t))] , u, ω) + p(t)b(t, x, u, ω) + q(t)σ(t, x, u, ω)

+

∫ max

R0

r(t, z)θ(t, x, u, z, ω)ν(dz). (7.32)

Theorem 7.13. [122] u∗ ∈ Aε is a critical point for J(u), in the sense that

d

dy
J(u∗ + yβ)|y=0 = 0 for all bounded β ∈ Aε. (7.33)

if and only if the following equation holds

E

[
∂Ĥ

∂u

(
t, X̂, û

)
|εt

]
= 0 for almost all t, ω, (7.34)

where

X̂(t) = X(û)(t),

Ĥ(t, X̂(t), u) = f(t, X̂,E
[
f0(X̂(t))

]
, u) + p̂(t)b(t, X̂(t), u) + q̂(t)σ(t, X̂(t), u)

+

∫
R0

r̂(t, z)θ(t, X̂(t), u, z)ν(dz), (7.35)
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with

p̂(t) = K̂(t),+

∫ T

t

∂H0

∂x
(s, X̂(s), û(s))Ĝ(t, s)ds,

q̂ := Dtp̂(t), and (7.36)

r̂(t, z) := Dt,zp̂(t), (7.37)

where

Ĝ(t, s) = exp

(∫ s

t

{
∂b

∂x
(r, X̂(r), u(r), ω)− 1

2

(
∂σ

∂x

)2

(r, X̂(r), u(r), ω)

}
dr

+

∫ s

t

∂σ

∂x
(r, X̂(r), u(r), ω)dB(r)

+

∫ s

t

∫
R0

{
ln

(
1 +

∂θ

∂x
(r, X̂(r), u(r), z, ω)

)
− ∂θ

∂x
(r, X̂(r), u(r), z, ω)

}
ν(dz)dr

+

∫ s

t

∫
R0

ln

(
1 +

∂θ

∂x
(r, X̂(r−), u(r−), z, ω)

)
Ñ(dr, dz)

)
(7.38)

and

K̂(t) = K û(t) = g̃(X̂(T ),E
[
f0(X̂(T ))

]
) +

∫ T

t

f̃(s, X̂(s),E
[
f0(X̂(t))

]
, û(s))ds.

Proof. Detailed proof can be found in [122]. ���

It should be mentioned that, the power technique from Malliavin Calculus,

integration by parts (duality formula), were used several times in the proof. To

emphasis this nice property, we recall the formula although we have it in the appendix.

Definition 7.14. Integration by parts

Suppose u(t) is Ft−adapted with E
[∫ T

0
u2(t)dt

]
< ∞ and let F ∈ D1,2 (Appendix

B.5).

Then

E
[
F

∫ T

0

u(t)dB(t)

]
= E

[∫ T

0

u(t)DtFdt

]
(7.39)
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Similarly, a Malliavin derivative in the pure jump martingale case together with

the duality formula for Lévy process are provided in [122].

It’s also worth mentioning that, Girsanov transformation [123] was recalled several

times inside the proof as we can see from the expressions of the last two bullets in

Assumption 7.11 and (7.36)-(7.37).

7.5 Applications of the Generalized Model

As discussed in [46], many decentralized stochastic control problems can be solved

by the proposed common information approach. Depend on information sharing

structure, these problems can be divided into three main categories:

1. Controllers with identical information

2. Coupled subsystems with control sharing information structure

3. Broadcast information structure

Controllers with identical information

Roughly speaking, the first category represents the case when all controllers only

make the common observation (i.e., they share identical information without any local

observation or local memory). This is not an interesting scenario except explaining

traditional centralized control is a special case our general framework.

Broadcast information structure

The third category works by assigning one lead/central node which keeps broadcasting

without any local observations. Mathematically, the detailed information flow is given

in Figure 7.5 (assume node 1 is the central node, and all the other nodes are called

peripheral nodes [46] ).
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State update for central node: X1
t+1 = f1

t (X1
t , U

1
t , N

1
t )

State update for peripheral nodes (i ≥ 2): Xi
t+1 = f it (X

i
t , X

1
t , U

i
t , U

1
t , N

i
t )

Common observation update: Y comt = X1
t

Local observation for peripheral nodes (i ≥ 2): Y it = Xi
t

Central node keeps broadcasting but no local observation!

Shared memory Ct = Y com1:t−1 = X1
1:t−1

Figure 7.5: Information flow for Broadcasting information structure

State of the system at time t is: Xt = (X1
t , X

2
t , · · · , Xn

t , X
∗
t ),

where Xi
t , i = 1, · · · , n corresponds to the

lcoal state of subsystem i, and X∗t is a global state.

State update for global state: X∗t+1 = f∗t (X∗t , Ut, N
0
t );

State update for local state: Xi
t+1 = f it (X

i
t , X

∗
t , Ut, N

i
t ).

N0
t and N i

t are mutually independent i.i.d. noise processes.

Common observation: Y comt = X∗t ;

Local observation: Y it = Xi
t .

Shared memory Ct = {X∗1:t−1, U1:t−1}.

Controller i sends Zit = {X∗t , U it} to the shared memory .

Figure 7.6: Coupled subsystems with control sharing information structure

Coupled subsystems with control sharing information structure

The flow chart of this information sharing structure is given in Figure 7.6, which

relates to a huge number of real applications for distributed control. To name a few,

the distributed control problems for multi-zone buildings/connected and automated

vehicles both fall into this category.
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7.5.1 A toy example in multi-zone buildings

If the Heating, Ventilating, and Air Conditioning (HVAC) unit is not over-designed to

condition the whole building area, there exists a tradeoff between the comfort of the

buildings occupants and the available heating/cooling power at critical load hours.

Figure 7.7: Floor plan of one sample Carrier commercial HVAC system

As we can see from Figure 7.7, it is impossible to reach the required comfort

temperature despite the fact that all the available power is used to cool the rooms.

However, the controller aims at minimizing the variance of the error across the rooms.

Therefore it is desired to dispatch cooling/heating resources among different zones in

a optimal coordinated way.

Using the proposed framework, we consider each zone (marked with different colors

for the temperatures) as a agent. Each zone is assumed to share its temperature and

control actions with its direct neighboring zones by sending the shared information

to a fictious coordinator.
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Then, the main task of the coordinator is to optimally dispatch cooling/heating

resources (summation of control actions from connected agents under this specific

coordinator) to each zone in order to minimize the differences across zones. It should

be mentioned that, the coordinator only send prescription signals Γi to each agent

instead of directly controlling them in this mechanism. In this specific example, Γi

will be interpreted as temperature setting points for each zone. Once the temperature

setting points for each zone is assigned, the local controller would take charge to

decide whether turn on/off the local AC unit. The intuition of this method is pretty

clear since cooling resources are more likely to be dispatched to the hottest zones first

in order to reach a mean-field objective.

7.6 Summary

This chapter proposes to solve the Non-Markovian decentralized stochastic control

problem by stochastic maximum principle via Malliavin Calculus. It is promising

to obtain a complete solution to this problem since neither ’Markovian’ nor

’Convexity’ are required in the framework. Some necessary backgrounds for

Malliavin calculus and Stochastic Maximum Principle are provided either in this

chapter or Appendix B. Basic ideas about Polynomial Chaos are given in Appendix

B.9.
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Chapter 8

Conclusions and Future Directions

8.1 Summary

In this dissertation, we studied the general area of complex networked systems that

consist of interconnected components and usually operate in uncertain environments

and with incomplete information. We first developed unifying stochastic control

approach for improving energy efficiency while meeting probabilistic constraints. We

then proposed optimal distributed control for spatially invariant systems.

In order to address the energy optimization problems in building systems and

virtualized web servers, we have developed the constrained quadratic control of room

temperature on a dynamic building climate model. We introduced a quadratic cost

function in terms of temperature errors and control inputs, which were subject to

several constraints on the room temperature and control input. In particular, we

only considered the case where we assume that the disturbance is Gaussian and the

problem was formulated to minimize the expected cost subject to a linear constraint

on control input and a probabilistic constraint on the state. We have also proposed an

efficient algorithm to reduce the probabilistic constraint to a hard constraint on the

control input exactly [47]. The problems are formulated as semidefinite optimization

problems which may be solved through semidefinite programming (SDP) for the
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optimal solutions efficiently.

Then, we have studied the problem of optimal distributed control of spatially

invariant systems. We have developed an input-output framework for problems

of this class. Spatially invariant systems were viewed as multiplication operators

from a particular Hilbert function space into itself in the Fourier domain. Optimal

performance was posed as a distance minimization in a general L∞ space from a

vector function to a subspace with a mixed L∞ and H∞ space structure. Moreover,

the H2 optimal control problem was solved via the computation of an orthogonal

projection of a tensor Hilbert space onto a particular subspace. The optimal H2

decentralized control problem was also solved by computing an orthogonal projection

on a class of Youla parameters with a decentralized structure. Then we investigated

minimizing the mixed L2/H∞ norm of the spatial, temporal closed loop systems,

respectively. Such a mixed norm was induced by the aforementioned disturbances

{wi}, which allowed for more flexible and accurate specification of the desirable closed-

loop behavior We have obtained solution to this problem by utilizing the orthogonal

projection techniques.

Finally, we turn our attention to a stochastic version of the distributed control

problem. Instead of using the solution from Markov Decision Process, we consider a

controlled Itô-Lévy process where the ’Markovian’ property does not hold any more.

It should be noted that this is a more complicated situation than the case where

standard stochastic maximum principle would fail. Therefore, we need to apply

a Malliavin calculus approach to derive a maximum principle, where the adjoint

processes are explicitly expressed by the parameters and the states of the system.
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8.2 Directions for Future Research

So far, the results of our exploration on simple-structured optimal distributed

controllers are encouraging. These results, however, are only form the tip of the

iceberg in distributed control, and much remains to be done.

The following problems need to be further considered and addressed in the future

research work, which are potentially the building blocks of a systematic approach to

distributed (decentralized) stochastic control.

• A stochastic approach to distributed building climate control

In our previous work, it is assumed that all the probabilistic constraints and

stochastic disturbance are only associated with states which are three different

temperatures in the model. A more practical consideration is towards the

generalization of control scheme to the case of whole buildings, which leads

to increased complexity for both the models and control algorithms. Given

a deployed building with multi-zones, a challenging issue is how to schedule

HVAC controllers so that the total run cost the system can be minimized or

aggregating HVAC load for ancillary services? In case the state space model

cannot provide accurate characteristics for the model when only on/off control

actions are allowed for the HVAC, how to solve the stochastic control problem

using SDE models with regime switching? Mean-variance regime switching

technique has not received much attention in the control society and I would like

to apply this innovative solution to improve many aspects of building operation.

• Extension to distributed H∞ control for spatially invariant systems

The H∞ control problem we solved in Chapter 5 is actually a centralized

performance. It is interesting to investigate how to generalize the solution

to a decentralized structure as for the H2 problem.

• Application to true physical interconnected systems

As discussed in [46] and also in Section 7.5, this common information approach

unifies various ad-hoc approaches taken in the literature, it is possible to
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compare our proposed technique with existing literature. More importantly,

if we can compute the exact building example proposed in Section 7.5.1 using

both our technique or the MDP approach [46], we will be able justify how

“memory” affect the performance at the coordinator level. Furthermore, we

can also investigate the computation cost since solving POMDP is known to be

computationally costly, while our technique provides an explicit solution which

can be computed much easier. This mean-field stochastic maximum principle

for Itô-Lévy process using Malliavin calculus may work as a powerful approach

to solve various stochastic control problems in power systems, especially when

uncertainty and jumps are involved.
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Appendix A

Proofs

A.1 Proof of Proposition 2.3

Proof: The original system can be written in terms of error dynamics, at time

k,

ek = Ãk−1e0 + B̃k−1u + C̃k−1ω + Lk−1

where Lk−1 = Ak−1
d xr−xr and from (2.14), xk, ωk are 3× 1 and uk is a scalar so that

Ãk−1 = Akd

B̃k−1 = [Ak−1
d Bd · · · Bd 03×(N−k)]

C̃k−1 = [Ak−1
d Cd · · · Cd 03×3(N−k)] (A.1)

Then, after some manipulations, the error state term in cost function becomes:

eTkQek = eT0 ÃT
k−1QÃk−1e0 + 2eT0 ÃT

k−1Q(B̃k−1u + C̃k−1ω)

+uT B̃T
k−1QÃk−1u + ωT C̃T

k−1QC̃k−1ω

+2uT B̃T
k−1QC̃k−1ω + 2LTk−1Q(Ãk−1e0

+B̃k−1u + C̃k−1ω) + LTk−1QLk−1 (A.2)
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Thus, we reach the formula of the cost function stated above with

A =
N∑
k=1

ÃT
k−1QÃk−1

B = diag(R, · · · , R) +
N∑
k=1

B̃T
k−1QB̃k−1

C =
N∑
k=1

C̃T
k−1QC̃k−1, D =

N∑
k=1

B̃T
k−1QC̃k−1

c =

(
N∑
k=1

C̃T
k−1QÃk−1

)
e0 +

N∑
k=1

C̃T
k−1QLk−1

a =
N∑
k=1

ÃT
k−1QLk−1, l̂ =

N∑
k=1

LTk−1QLk−1

b =

(
N∑
k=1

B̃T
k−1QÃk−1

)
e0 +

N∑
k=1

B̃T
k−1QLk−1 (A.3)
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A.2 Proof of Lemma 5.10.1

This appendix is devoted to the proof of Lemma 5.10.1.

Proof: First notice that since Sc ⊂ S, then

µ ≤ inf
Q̃∈Sc
‖T ∗2in − Q̃‖∞

since the infimum in the definition of ψ is taken over a larger subspace.

For the reverse inequality, let F := T ∗2inT1 and 0 < r < 1, call:

Fr(e
iθ, λ) := F (reiθ, λ)

Qor(e
iθ, λ) := Qo(re

iθ, λ) (A.4)

Then,

‖F −Qor‖∞ = ‖F − Fr + Fr −Qor‖∞

≤ ‖Fr −Qor‖∞ + ‖F − Fr‖∞ (A.5)

Now, note that (Fr − Qor) is bounded above by ‖F − Qo‖∞, since in the latter

norm the supremum is taken over a larger set, that is, for g(eiθ,λ) ∈ H∞(L∞T), and

‖gr‖∞ is a non-decreasing function of r for r ∈ [0, 1]. Therefore,

‖F −Qor‖∞ ≤ ‖F −Qo‖∞ + ‖F − Fr‖∞ (A.6)

Considering T2inT1 is continuous on T × D̄, and the definition that F := T ∗2inT1,

then F is also continuous. Therefore, ∀ε > 0, there exists 0 < r < 1 such that

‖F − Fr‖∞ < ε (A.7)
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and

‖F −Qor‖D ≤ µ+ ε (A.8)

Qor being in Sc implies:

inf
Q̃∈Sc
‖F − Q̃‖∞ ≤ µ+ ε (A.9)

Since ε is arbitrary, therefore:

inf
Q̃∈Sc
‖F − Q̃‖∞ ≤ µ (A.10)

so the lemma holds, completing the proof.
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A.3 Proof of Lemma 5.11.1

We shall now focus on the proof of Lemma 5.11.1.

Proof: : For

z =
n∑
i=1

xi ⊗ yi ∈ H1
0 (T)⊗γ L1(D̄), (A.11)

where z(eiθ, λ) =
∑n

i=1 xi(λ)yi(e
iθ).

Associate to z(·, ·) the following function:

ψz : D̄ → H1
0 (T),

ψz(λ) =
n∑
i=1

xi(λ)yi(e
iθ).

The function xi(λ) can be approximated in L1(D̄) by simple functions as closely as

desired.

Moreover,

‖ψz‖1 =

∫
D̄
‖ψz(λ)dλ‖ =

∫
‖

n∑
i=1

xi(λ)yi‖ds

≤
∫
D̄

n∑
i=1

|xi(λ)|‖yi‖1dλ

=
n∑
i=1

∫
D̄
|xi(λ)|‖yi‖1dλ

=
n∑
i=1

‖xi‖1‖yi‖1 (A.12)

So ψz ∈ L1(D̄)⊗γ H1
0 (T).
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Now taking the infimum over all representation of z, we get

‖ψz‖1 ≤ γ(z).

The linear map z → ψz has therefore a continuous extension to H1
0 (T)⊗γ L1(D̄).

To show that ‖Fz‖ = γ(z). Assume that Fz is a simple function in z =
∑n

i=1 xi⊗yi.

We can choose xi and yi to be simple functions, such that xi(λ)xj(λ) = 0 for i 6= j

and
∑n

i=1 xi(λ) = 1.

Then

‖Fz‖ =

∫
D̄
‖

n∑
i=1

xi(λ)yi(e
iθ)‖1dλ

=
n∑
i=1

∫
D̄
|xi(λ)|‖yi‖1dλ

=
n∑
i=1

‖xi‖‖yi‖1

≥ γ(z).

Since simple functions are dense in H1
0 (L1(D̄)), and the Lemma holds, completing

the proof.
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Appendix B

The Malliavin Calculus

B.1 First taste of Malliavin Calculus

The two main challenging parts to understand this new calculus are to understand

“what” is Malliavin calculus and “why” we need it? Instead of directly answering

these two questions in an abstract way, we can relate Malliavin calculus to the same

kind of questions when we were first exposed to measure theory (Lebesgue Integral)

and Soblev spaces. The most intuitive ideas that help us understand these concepts

would lead us smoothly to answer the two questions for Malliavin calculus here.

Intuitive answers to the questions:

• What is Lebesgue Integral, why we need it and measure theory?

• What is Soblev space, why we need it?

Definition B.1. [130] The probability measure P∗ on (C[0,∞),B(C[0,∞))), under

which the coordinate mapping process Wt(ω) , ω(t), 0 ≤ t < ∞, is a standard,

one-dimensional Brownian motion, is called Wiener measure.

Remark B.2. [130] A standard, one-dimensional Brownian motion defined on

any probability space can be thought of as a random variable with values in

C[0,∞); regarded this way, Brownian motion includes the Wiener measure on
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(C[0,∞),B(C[0,∞))). For this reason, we call (C[0,∞),B(C[0,∞)), P∗), where P∗

is Wiener measure, the canonical probability space for Brownian motion.

We will first give an one-dimensional toy example for Malliavin Calculus, which

works as the recipe of the whole paper. Then we will follow [131] to define

the Malliavin derivative slightly differently than in Nualart [132], initially using

coordinates of the Brownian motion instead of stochastic integrals with deterministic

integrands. We then extend the operator by the usual closedness argument. Next,

we prove the chain rule and the integration-by-parts formula. We use the generalized

chain rule to show that our definition of the Malliavin derivative coincides with that in

Nualart [132]. Finally, we develop the Hilbert space theory of the Malliavin derivative

and use it to obtain a chain rule for Lipschitz transformations.

B.2 One-dimensional toy example

The aim of this section is to introduce the realm of Malliavin operators, by focusing

on the one-dimensional case only. In particular, we are going to define derivative,

divergence and Ornstein-Uhlenbeck operators acting on random variables of the type

F = f(N), where f is a deterministic function and N ∼ N (0, 1) has a standard

Gaussian distribution. Actually, one-dimensional Malliavin operators coincide with

familiar objects of functional analysis, which are more accessible to us.

Definition B.3. Define S a smooth function which denotes the set of C∞-functions

f : R→ R such that f and all its derivatives have at most polynomial growth.

Remark B.4. All the following operators will be defined on domains that can be

obtained as the closure of S with respect to an appropriate norm.

Proposition B.5. The monomials xn : n = 0, 1, 2, · · · generate a dense subspace of

Lq(γ) for every q ∈ [1,∞).In particular, for any q ∈ [1,∞) the space S is a dense

subset of Lq(γ).
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Proof. Using standard Hahn-Banach theory. ���

Remark B.6. In general, our aim would be to develop a canonical representation for

element of S, develop results to yield flexible representations of elements in S and to

prove that S is an algebra which is dense in Lp(FT ), p ≥ 1.

Fix f ∈ S for every p = 1, 2, · · · , we write f (p) or, equivalently, Dpf to indicate

the pth derivative of f . Note that the mapping f 7→ Dpf is an operator from S into

itself.

Lemma B.6.1. The operator Dp : S ⊂ Lq(γ)→ Lq(γ) is closable for every q ∈ [1,∞)

and every integer p ≥ 1.

Fix q ∈ [1,∞) and an integer p ≥ 1. We set Dp,q to be the closure of S with

respect to the norm

‖f‖Dp,q =

(∫
R
|f(x)|qdγ(x) +

∫
R
|f (1)(x)|qdγ(x) + · · ·+

∫
R
|f (p)(x)|qdγ(x)

) 1
q

. (B.1)

Remark B.7. Equivalently, Dp,q is the Banach space of all functions in Lq(γ) whose

derivatives up to the order p in the sense of distributions also belong to Lq(γ).

Definition B.8. We denote by Domδp the subset of L2(γ) composed of those functions

g such that there exists c > 0 satisfying the property that, for all f ∈ S (or,

equivalently, for all f ∈ Dp,2),

∣∣∣∣∫
R
f (p)(x)g(x)dγ(x)

∣∣∣∣ ≤ c

√∫
R
f 2(x)dγ(x) (B.2)

Fix g ∈ Domδp. Since condition (B.2) holds, the linear operator f 7→∫
r
ef (p)(x)g(x)dγ(x) is continuous from S, equipped with the L2(γ)−norm, into R.

Thus, we can use Riesz representation theorem to extend this operator to a linear

operator from L2(γ)− into R. There exists a unique element δpg in L2(γ), such that

∫
R
f (p)(x)g(x)dγ(x) =

∫
R
f(x)δpg(x)dγ(x) for all f ∈ S. (B.3)
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Then we can get the integrtaion by parts formula:

∫
R
f ′(x)g(x)dγ(x) =

∫
R
xf(x)g(x)dγ(x)−

∫
R
f(x)g′(x)dγ(x). (B.4)

B.3 Malliavin derivative

Define probability space (Ω,F , P ) with a one-dimensional Wiener process W on [0, T ],

where the variables to be differentiated are in some suitable sense related to W . First

consider our probability space C0[0, T ], endowed with Wiener measure P . Notice that

C0[0, T ] is a Banach space under the uniform (sup) norm, where W can be considered

as an identity mapping, W is a Wiener process on [0, T ].

Therefore, we want to identify a differentiability concept for variables of the form

ω 7→ Wt(ω) which can be generalized to the setting of an abstract probability space

with a Wiener process. Then we consider a mapping X from C0[0, T ] to R.

Following Gâteaux directional derivatives: The derivative in direction h ∈ C0[0, T ]

at ω is the element DhX(ω) ∈ R such that limε→0
X(ω+εh)−X(ω)

ε
= DhX(ω).

Then for h ∈ C0[0, T ], the derivative of Wt in direction h is

DhWt(ω) = lim
ε→0

X(ω + εh)−X(ω)

ε
= lim

ε→0

ωt + εht − ωt
ε

= ht (B.5)

Consider ht =
∫ t

0
g(s)ds for some g ∈ L1[0, T ]. Then

DhWt(ω) = ht =

∫ T

0

1[0,t](s)g(s)ds. (B.6)

So the Gâteaux derivative for any ω ∈ C0[0, T ] is actually characterized by the

mapping 1[0,T ] 7→ R. Thus, 1[0,t] can be considered as a kind of derivative of Wt.
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Using the same idea, we can generalize this to general mappings C0[0, T ]→ R as:

f : [0, T ]→ R, for h ∈ C0[0, T ] with h(t) =

∫ t

0

g(s)ds, (B.7)

DhX(ω) =

∫ T

0

f(s)g(s)ds (B.8)

where f is the derivative of X, and we define DFX = f.

Assume chain rule holds for D:

If f is continuously differentiable with sufficient growth conditions, namely polynomial

growth of the mapping itself and its partial derivatives, we would like to have:

Df(Wt1 , · · ·Wtn) =
n∑
k=1

∂f

∂xk
(Wt1 , · · · ,Wtn)DWtk , (B.9)

where DWtk = 1[0,tk]. Hence, to study the derivative of f is sufficient to study the

operator D.

Remark B.9. We wanna specify the immediate domain of D and consider its

properties.

• The derivative given above is a stochastic function from [0, T ] to R.

• With sufficient growth conditions on f , it is an element of Lp([0, T ]×Ω), p ≥ 1.

B.4 The Space S and Lp(Π)

A multi-index of order n is an element α ∈ Nn
0 . The degree of the multi-index is

|α| =
∑n

k=1 αk. A polynomial in n variables of degree k is a map:

p : Rn 7→ R, p(x) =
∑
|α|≤k

aαx
α. (B.10)

the sum in the above runs over all multi-indicies α with |α ≤ k|, with xα = Πn
i=1x

αi .

The space of polynomials of degree k in any number of variables is denoted βk.
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We introduce some smooth notations:

• C1(Rn) are the mappings f : Rn 7→ R which are continuously differentiable.

• C∞(Rn) are the mappings f : Rn 7→ R which are differentiable infinitely often.

• C∞p (Rn) are the elements f ∈ C∞(Rn) such that f and its partial derivatives

are dominated by polynomials

• C∞c (Rn) are the elements of C∞(R) with compact support.

We need to justify a little about the C∞p (Rn), and make a connection with the well-

known Soblev space knowledge.

Lemma B.9.1. Clearly, we know

C∞c (Rn) ⊂ C∞p (Rn) ⊂ C∞(Rn) ⊂ C1(Rn). (B.11)

Moreover, if we consider the standard regularity properties of boundary Ω, we see

C∞p (Rn) is the weakest one among them, i.e.,

The uniform Cm -regularity condition (m ≥ 2).

⇒ the strong local Lipschitz condition

⇒ the uniform cone condition

⇒ the segment condition

⇒ the polynomial condition

Definition B.10. If t ∈ [0, T ]n, we write Wt = (Wt1 , · · · ,Wtn). By S, we denote the

space of variables f(Wt), where f ∈ C∞p (Rn) and t ∈ [0, T ]n.

Then we want be able to extend the coordinates which F depends on, and also to

reorder the coordinates using Lemma B.10.1.

Lemma B.10.1. Let t ∈ [0, T ]n, s ∈ [0, T ]m and F ∈ S with F = f(Wt). Assume

that t1, · · · , tn ⊂ s1, · · · , sm. There exists g ∈ C∞p (Rm) such that F = g(Ws).

Corollary B.10.1. Let F ∈ S. There exists t ∈ [0, T ]n such that 0 < t1 < · · · < tn

and f ∈ C∞p (Rn) such that F = f(Wt).
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This corollary states that any element of S has a representation where we can

assume that all the coordinates of the Wiener process in the element are different,

positive and ordered. This observation will make our lives a good deal easier in

the following. Our next result shows that any element of S can be written as a

transformation of an n-dimensional standard normal variable.

Lemma B.10.2. The space S is an algebra, and S ⊆ Lp(Ω) for all p ≥ 1.

Corollary B.10.2. The space S is an algebra, and S ⊆ Lp(FT ) for any p ≥ 1.

We have defined the Malliavin derivative D on S, we will investigate its basic

properties and extend it to a larger space.

Remark B.11. Even dense sets can be quite slim, and we need to extend the operator

D to a larger space before it can be of any actual use. Then, we would like to show

D is closable. We can then extend it by taking the closure. (Closed Graph Theory)

Theorem B.12. The operator D is closable from S to Lp(Π).

Then for any p ≥ 1, a linear operator D : D1,p → Lp(Π) with the following two

properties:

• For F ∈ S with F = f(Wt), DF =
∑n

k=1
∂f
∂xk

(Wt)1[0,tk].

• When considering D1,p under the norm ‖ · ‖p, D is closed.

B.5 The Malliavin Derivative on D1,2

We will consider the properties of the Malliavin derivative as operator D : D1,2 7→

L2(Π).

Theorem B.13. Let F = (F1, · · · , Fn), where F1, · · · , Fn ∈ D1,2, and let ϕ ∈ C1(Rn).

Assume ϕ(F ) ∈ L2(FT ) and
∑n

k=1
∂ϕ
∂xk

(F )DFk.

Corollary B.13.1. Let F,G ∈ D1,2. If the integrability conditions FG ∈ L2(FT ) and

(DF )G+ F (DG) ∈ L2(Π) hold, FG ∈ D1,2 and D(FG) = (DF )G+G(DG).
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The alternative integration-by-parts formula that’s easy to apply in reality:

Corollary B.13.2. Let F,G ∈ D1,2 with FG ∈ L2(FT ) and F (DG) + G(DF ) ∈

L2(Π). Then

E(G < DF, h >[0,T ]) = E(FG(θh))− EF < DG, h >[0,T ] (B.12)

and another similar formula as

Corollary B.13.3. Let F ∈ D1,2 and G ∈ Sh. Then

E(G < DF, h >[0,T ]) = E(FG(θh))− EF < DG, h >[0,T ] . (B.13)

B.6 Skorohod Integral (Divergence Operator)

The Skorohod integral δ is defined as the adjoint operator of the Malliavin derivative

D. This is a linear operator defined on a dense subspace S1,2 of L2(Π) mapping into

L2(FT ), characterized by the duality relationship

〈F, δu〉FT = 〈DF, u〉Π (B.14)

Basically, as the derivative maps L2(Ω) to L2(Ω;H), its adjoint will be an operator

on L2(Ω;H) taking values in L2(Ω).

Definition B.14. The divergence operator, sometimes also called the Skorohod

integral. The domain D(δ) consists of those u ∈ L2(Ω;H) such that there exists

X ∈ L2(Ω) with

E < DY, u >H= E(Y ·X) (B.15)

for all Y ∈ D1,2. Since D1,2 is dense in L2(Ω), there is at most one such element X.

We write δ(u) := X.
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Remark B.15. Note that an element u of L2(Ω;H) belongs to the domain D(δ) if

and only if there exists a constant c ≥ 0 such that

|E < DY, u > | ≤ c(E|Y |2)
1
2 (B.16)

for all X ∈ D1,2.

Indeed, the map ϕ(Y ) := E < DY, h > is a linear functional on D1,2 which is

bounded with respect to the 2-norm. It thus has a unique bounded extension to all

of L2(Ω). By the Riesz-Fischer theorem, this extension is of the form Y 7→ E(Y X)

for a certain X ∈ L2(Ω).

Example B.16. Let u ∈ L(H), say u =
∑n

j=1 Xjhj. Then X ∈ D(δ) and

δ(u) =
n∑
j=1

XjW (hj)−
n∑
j=1

< DXj, hj > . (B.17)

by

E < DY, u >= EX < DY, h >= EY (XW (h)− < X, h >) (B.18)

for all Y ∈ D1,2.

We can factor out a scalar random variable in divergence.

Proposition B.17.

δ(Xu) = Xδ(u)− < DX, u > . (B.19)

We can also show both the Malliavin derivative and Skorohod integral are local

operators.

Definition B.18. An operator T defined on a space of random variables local is

X = 0 a.e. on a set A ∈ Σ implies that also TX = 0 e.e. on A.
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B.7 The Ornstein-Uhlenbeck Semigroup

Definition B.19. Let Jn denote the projection on L2(Ω) onto the n-th Wiener chaos.

The Ornstein-Uhlenbeck Semigroup is the one-parameter semigroup (T (t))t≥0 defined

by

T (t)X :
∞∑
n=0

e−ntJnX. (B.20)

It turns out that the Ornstein-Uhlenbeck Semigroup is a strongly continuous

semigroup of self-adjoint operators.

Then we finally have the relation between operators L,D and δ.

Theorem B.20. We have L = −δD, i.e. X ∈ D(L) if and only if X ∈ D1,2 and

DX ∈ D(δ); in that case δ(DX) = −LX.

B.8 Itô’s Integral and the Clark-Ocone Formula

We study properties of the Malliavin derivative and the divergence operators in the

white noise setting.

Proposition B.21. Let u ∈ L2
F((0, τ) × Ω) and define X :=

∫ τ
0
u(s)dBs. Then

X ∈ D1,2 if and only if u ∈ L1,2. In that case, t 7→ Dtu(s) belongs to L2
F and for

t ∈ (0, τ) we have

DtX = u(t) +

∫ τ

t

Dtu(s)dBs (B.21)

almost surely.

By Ito

X = EX +

∫ τ

0

u(t)dBt (B.22)
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How to compute the process u given X. For random variables X ∈ D1,2 we have the

following result, called the Clark-Ocone formula.

Theorem B.22. Let T = [0, τ ] and set as usual Bt := W (1(0,t]) and Ft = σ(Bs : s ≤

t). Then for X ∈ D1,2 we have

X = EX +

∫ τ

0

E(DtX|Ft)dBt, (B.23)

which means u(t) = E(DtX|Ft).

B.9 Polynomial Chaos

We first review the basics of orthogonal polynomials, which play a central role in

modern approximation theory. more in-depth discussions can be found in many

standard books such as [133].

A general polynomial of degree n takes the form

Qn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, an 6= 0. (B.24)

where an is the coefficient of the polynomial.

A system of polynomials Qn is an orthogonal system of polynomials with respect to

some real positive measure γ if the following orthogonality relations hold:

∫
S

Qn(x)Qm(x)dγ(x) = ςnδmn (B.25)

where δmn = 0 if m 6= n and δmn = 1 if m = n.

Let A = B(R), and γ(A) =
∫
A
α(t)dt. So assume space L2(R, γ).

Let Hn(x) denote the Hermite polynomial with

H0 = 1, H1 = x,

Hn+1(x)− xHn(x) + nHn−1(x) = 0, (B.26)
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where {Hn(x)}∞n=0 is the orthogonal basis of L2(R, γ).

Moreover, we wanna show it’s actually an orthonormal basis.

∫
R
Hn(x)dγ(x) = 0, forn ≥ 1; (B.27)∫

R
(x2 − 1)dγ(x) =

∫
R
x2dγ(x)− 1 = E(ξ2)− 1. (B.28)

Then

< Hn, Hm >= n!δnm. (B.29)

So hn = { 1√
n!
Hn}∞n=1 is orthonormal basis in L2(R, γ).

Therefore, ∀f(x) ∈ L2(R, γ),

f(x) =
∞∑
n=0

αnhn(x), (B.30)

αn = < f(x), hn(x) >= E [f(ξ)hn(ξ)] . (B.31)

f(ξ) =
∞∑
n=0

αnhn(ξ) (B.32)

⇒ f(t, ξ) =
∞∑
n=0

αn(t)hn(ξ) (B.33)

After defining the derivative operator, we came to a point to ask what more

benefits can we get from the Malliavin Calculus. An interesting connection to

polynomial chaos. Consider functions on the real axis R = (−∞,∞) equipped with

the Gaussian measure

µ(dx) = ρ(x)dx, ρ(x) =
1√
2π
e−

x2

2 , (B.34)
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where dx is the Lebesgue measure.

We denote the space of square integrable functions with the Gaussian measure µ as

L2(R, µ) = {f(x);

∫ +∞

−∞
f(x)2µ(dx) <∞}. (B.35)

Then the expectation

∫
R
f(x)d(µx) := Ef(N) =

1√
2π

∫
R
f(x)e−

x2

2 dx (B.36)

The inner product on this space is defined as

(f, g)µ =

∫ ∞
−∞

f(x)g(x)µ(dx) =

∫ ∞
−∞

f(x)g(x)ρ(x)dx. (B.37)

Suppose ξ is a standard Gaussian random variable with distribution N(0, 1), then

(f, g)µ = E[f(ξ)g(ξ)], (B.38)

where E denotes the expectation operator.

Hermite polynomial {hn}∞n=0 gives a complete orthonormal basis, then

f(x) =
∞∑
n=0

anhn(x). (B.39)

Example B.23. (Fractional Brownian motion) A fractional Brownian motion is a

Gaussian process with covariance function

cH(t, s) =
1

2
(t2H + s2H − |t− s|2H) (B.40)

where H ∈ (0, 1) is the so-called Hurst parameter. The choice H = 1
2

yields c 1
2
(t, s) =

min{t, s} which is the covariance function of Brownian motion.
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Definition B.24. (Isonormal Gaussian processes)

Let H be a real, separable Hilbert space with inner product < ·, · >. An H-Isonormal

Gaussian process is a family W = W (h) : h ∈ H of real-valued random variables,

defined on a common probability space (Ω,Σ,P), such that W (h) is a Gaussian

random variable for all h ∈ H and, for h, g ∈ H, we have E (W (h)W (g)) =< h, g >.

Then we have

< 1(0,t],1(0,s] >H= cH(t, s). (B.41)

Hence, Isonormal Gaussian process W gives rise to a fractional Brownian motion with

Hurst parameter H.

Definition B.25. (Hermite Polynomials)

For n ∈ N0, the n-th Hermite polynomial Hn is defined by H0 ≡ 1, H−1(x) = 0 and

Hn(x) := (−1)ne
x2

2
dn

dxn
(e−

x2

2 ) (B.42)

for n ≥ 1 .

For example, consider the function F (t, x) := exp(tx − t2

2
), then the Hermite

polynomial are the coefficients in the power series expansion of F with respect to t.

Indeed, we have

F (t, x) = exp(
x2

2
− 1

2
(x− t2))

= e
x2

2

∞∑
n=0

tn

n!

dn

dtn
e−

(x−t)2
2 |t=0

=
∞∑
n=0

tn
(−1)n

n!
e
x2

2
dn

dzn
e−

z2

2 |z=x

=
∞∑
n=0

tnHn(x)/n! (B.43)

Some properties of the Hermite polynomials
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Lemma B.25.1. For n ≥ 1, we have:

• H ′n(x) = nHn−1(x)

• Hn+1(x) = xHn(x)− nHn−1(x)

• The n-th Hermite polynomial Hn is a polynomial of degree n.

Lemma B.25.2. It holds that for h, g ∈ L2[0, T ] with ‖h‖2 = ‖g‖2 = 1,

EHn(θh)Hm(θg) =

0 if n 6= m

n! < h, g >n if n = m

(B.44)

Then we use the orthogonal basis Hn to decompose L2(FT ) and L2(Π) given by

L2(FT ) = ⊕∞n=0Hn and L2(Π) = ⊕∞n=0Hn(Π). (B.45)

Then insert Gaussian random variables into polynomials.

Definition B.26. Let W be an H-isonormal Gaussian process. The n-th Wiener

chaos Hn is the closure in L2(Ω,Σ,P) of the linear span of the set {Hn(W (h)) : h ∈

H, ‖h‖ = 1}.
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