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"A method is a trick I use twice"

– G. Pólya



Summary

A Digital Twin for Controlling Thermo-Fluidic Processes

Amritam Das

Digital twin is a computer-aided platform that virtually represents
an industrial asset for emulating its conception, mechanism, usage and life

cycle. As a digital testbed, its functionalities encompass visualizing the operation
of the industrial asset, predicting its life cycle, optimizing its design, verification
of its performance, detection of faults, and synthesis of estimators or controllers
to improve its performance. This thesis presents a generic framework to develop
a digital twin that describes thermo-fluidic processes and synthesizes controllers
for them to achieve desirable performance. The thermo-fluidic processes are
defined by the interaction of solids and fluids under the influence of external
thermal energy. These processes involve physical quantities that dynamically
vary over time, as well as over space. Moreover, due to the lack of sensors and
actuators, these physical quantities are often not measured or cannot be
influenced by external inputs directly.

At the core of a digital twin, there is a mathematical model that represents,
describes and predicts the spatio-temporal dynamics of thermo-fluidic processes.
Such a model is governed by Partial Differential Equations (PDEs) and Ordinary
Differential Equations (ODEs) that are mutually interconnected over the
boundary in a connected graph. The physical model of thermo-fluidic processes
explains the energy exchange among various components as a result of the
heterogeneous interconnection among solids, fluids and their dynamic
interaction. The graph-theoretic structure makes the modeling framework
modular and generic with decisive advantages in terms of flexibility, scalability,
computability and versatility to build the digital twin. From a computational
point of view, the very nature of spatio-temporal dynamics allows developing
any functionality of the thermo-fluidic digital twin by either lumping the PDEs
or numerically approximating the PDEs or else directly utilizing the coupled
PDE-ODE model. This thesis provides these three approaches and introduces
computational tools to establish any functionality on the digital twin involving
optimization, estimation, control, virtual testing, prediction, and maintenance of
the thermo-fluidic processes. The criteria, based on which these approaches are
evaluated, are computational scalability, a guarantee of closed-loop performance
and suitability of respective approaches to control the thermo-fluidic processes.

vii



viii Summary

Among the three approaches, the computational method of lumping neglects the
spatial dependency of the physical quantities by replacing the PDEs with
lumped models that are governed by ODEs. Hence, the well-established theories
of finite-dimensional systems can be used for quantitative analysis, control,
monitoring, and fault diagnosis. This research exploits the graph-theoretic
modeling framework to modularize and upscale this lumping method without
compromising the model accuracy. A model predictive control strategy is
implemented for controlling the thermo-fluidic process that demonstrates the
practical functionality of the digital twin.

On the other hand, the computational method of approximation discretizes the
spatial domain and approximate the PDEs using numerical methods. The
numerical discretization of PDEs leads to a large-scale coupled ODEs that are
subsequently used for developing model-based estimators or controllers. Here,
the main contribution is a computational technique that can modularize the
numerical discretization of thermo-fluidic processes under arbitrary spatial
interconnection.

The third approach directly uses the spatially interconnected coupled PDE-ODE
models for quantitative analysis, control, monitoring, and fault diagnosis. Here,
a computational framework is developed for a class of Partial Integral (PI)
operators that are used to derive a behaviorally equivalent representation of
coupled PDE-ODE models, known as Partial Integral Equations (PIEs). It is
shown that the analysis and designing estimator based optimal controllers of
PIEs amounts to solving a set of Linear Matrix Inequalities (LMIs) without any
need of discretization.

The developed methodologies are applied to build a digital twin for a
commercial inkjet printer. In particular, the process of printing is viewed as a
physical integration of liquid ink and solid medium in two stages: a) jetting
where droplets of liquid are deposited on a solid medium based on the user’s
demand, and b) fixation where printed medium is dried to evaporate excess
liquid. The digital twin serves as a virtual framework to design and test control
strategies on the jetting and fixation stages for delivering the printed products
with a desirable print-quality. To this end, the digital twin synthesizes a
controller that minimizes the spatially varying inconsistency in liquid
temperature during jetting without any additional sensors or actuators. In the
fixation stage, the digital twin synthesizes an algorithm to estimate the spatial
heterogeneity of moisture and temperature content in a printed medium by
solely using a set of point-specific temperature sensors. Owing to the modular
framework, the digital twin of an inkjet printer remains flexible, versatile and
integrable towards the future designs of commercial printers.
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1 CHAPTER

Introduction

Digitization is changing the world in many aspects. The industrial
sector is one of the recipients of the digital revolution that allows the

consumer market to transcend towards a cheaper, faster, more efficient
and environmentally more sustainable future. This thesis explores
how a digital twin can harness the power of digital computers and
contribute to the future product development process in an industrial
enterprise. The digital twin provides a virtual representation of a physical
asset in an industrial process. In many physical assets, such as inkjet
printers, thermo-fluidic processes often limit the asset’s best achievable
performance. This chapter motivates how building a digital twin can
leverage future product development and achieve improved performance
in the presence of thermo-fluidic processes. After a detailed discussion
on digital twins and thermo-fluidic processes, this chapter lays down the
fundamental research objectives and scientific contributions of this thesis.

Outline
1.1 Digitization of Industrial Processes . . . . . . . . . . . . . . . . 4
1.2 Functionalities and Features of a Digital Twin . . . . . . . . . . 5
1.3 Application: Inkjet Printing . . . . . . . . . . . . . . . . . . . . . 7
1.4 Building a Digital Twin for DoD Inkjet Printer . . . . . . . . . . 10
1.5 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Subproblems and Approaches to Solve Them . . . . . . . . . . 13
1.7 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . 19
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4 Introduction

1.1 Digitization of Industrial Processes

In the advent of the 18th century, the first industrial revolution started when
machine tools and mechanized factories were introduced to aid in producing
goods. Three centuries later, through the era of electricity, electronic devices,
computers and automation, industries have now entered the phase of the fourth
revolution (commonly known as industry 4.0). Thanks to the world wide web,
the abundance of data and artificial intelligence, industries are experiencing a
paradigm shift in the way commercial assets are conceptualized, manufactured,
monitored, troubleshot and delivered to end-users. A crucial aspect of industry
4.0 is the usage of digital computers and software as an enabling technology
during the entire life cycle of the asset (see [61]). From the very initial phase of
conceptualization to its sale in the market, the development process is leveraged
by computer-aided tools. This juxtaposition of computer tools and connectivity
is creating a digital transformation on industries to produce goods in a smarter,
safer, cleaner and more efficient manner.

With increasing competition in the consumer market, industries are striving for
better design, improved performance, higher efficiency of a product or a service;
however, at a faster rate and lower retail price. As a result, the time window
between the concept phase to delivery and service for customers is becoming
smaller. In addition to that, for environmental reasons, factories and fabrication
laboratories have to be more sustainable and recyclable with almost zero waste.
The digitization and virtualization of industries have stemmed from this urgency
of reducing costs, time spans and carbon footprint by transferring the entire
development cycle to a computer-aided digital environment.

Digital Twin: Future of Digitized Industries

A digital twin is a virtual platform dedicated to an industrial process or a product
for simulating its design, operation, functionality and life cycle by using a digital
computer and software. The framework of digital twins helps to bring an
industrial process out of the four walls of a laboratory to perform experiments,
modifications, analysis, prediction and diagnostics without requiring its physical
form. As a digital twin has the potential to transform a large part of the product
development completely virtual, a great deal of physical equipment and time for
manual experiments can be avoided for research and development. Moreover, in
case of unexpected problems at any stage of the product cycle, the response time
to resolve the design, optimization or technical problems can significantly be
improved with minimum financial repercussion.

Potential Impact of Digital Twins for the Future Industries

This thesis identifies three key areas where digital twin can be instrumental in
bringing the next revolution in the industrial sector:
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1. Improving performance: The digital twin allows one to explore all potential
scenarios that the industrial process may undergo in its life-cycle and
provide the guarantee of its performance. This is a crucial factor in
obtaining legal certification under mission-critical operations. Moreover,
one can also predict the possible occurrence of failures by utilizing the data
collected over the previous life cycles of the same product and prescribe
measures to avoid them beforehand.

2. Faster productivity: By utilizing the connectivity of the digital twin via the
world wide web, engineers can collaborate and perform different tasks at
the same time on a single digital twin utilizing its different functionalities.
As a result, the probationary phase of conceptualization and development
of the first prototype can be significantly shortened.

3. Mass customization and accessibility: Future production is moving towards a
new era where customers dictate many aspects of the functionality and
design of the product they intend to purchase. The digital twin has the
potential to leverage such personalized customization by means of
allowing end-users to interact with the design process directly.

1.2 Functionalities and Features of a Digital Twin

Computer scientist David Gelernter has claimed that a digital twin can ’put the
universe in a shoebox’ (the interested readers may find it inspiring to read the
visionary monograph by [38]). By merely being a program or software on a desk,
the digital twin has infinite potential and endless scope in every avenue of
technological development. In [45], a detailed and up-to-date survey is provided
about the core functionalities and characteristics of the digital twin in various
sectors of industry. It has been shown that the core architecture of a digital twin
typically includes a multitude of functionalities that are interlinked with each
other and these functionalities can be customizable based on industry-specific
requirements. In [54], the survey on the digital twin’s architecture and
functionalities are restricted to the manufacturing process.

Functionalities a Digital Twin Must Have

Despite the depth and breadth of a digital twin, from a commercial standpoint,
the core functionalities of a digital twin must include the following aspects:

1. Performance analysis and process optimization: Main functionality of the
digital twin is to provide a quantitative measure on how a physical asset or
a specific part of the industrial process perform in a real-world
environment. At the same time, to be ahead of the competition, the virtual
framework of a digital twin can be used to further optimize various aspects
of the asset to obtain better performance. In this way, the asset’s
productivity and performance can reach the target goal.
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2. Prediction and visualization of product’s life cycle: Another functionality of the
digital twin is to predict how a physical asset or a specific part of the
industrial process evolves during the entire life cycle. Understanding and
visualizing the assets evolution enables better product design and effective
management of the supply-chain.

3. Monitoring and diagnosis: During usage of the physical asset by an end-user,
one functionality of the digital twin is to monitor its performance by means
of collecting data from the physical asset. By using this data, diagnostic
tools can be developed that help to identify and resolve faults (even
predicting future occurrences of fault to prevent them from taking place).
Such predictive analysis helps in faster and cheaper troubleshooting the
product.

4. Conceptualizing future design: The digital twin provides a virtual framework
to explore novel designs and operations of the physical asset that may
appear in future. Such virtual conceptualization can be rigorously tested
and validated in the digital twin before it is built in its physical form;
hence, it can significantly reduce the time and money. Moreover, owing to
its virtual presence, the digital twin can allow the customers to be directly
involved in the product development process.

Qualities a Digital Twin Must Have

With wide variations in functionalities and applications, the underlying
framework of a digital twin is multifaceted. Hence, there are four features a
digital twin should facilitate:

1. Flexibility: At any stage, in a digital twin, the virtual representation of the
physical asset or process should be flexible so that a user can make
adjustments on it at any stage of the development cycle.

2. Versatility: As the functionalities of a digital twin are quite diverse, it has to
be versatile accommodating all the functionalities under software tool that
the digital twin represents.

3. Modularity: The digital twin has to be modular so that, in future, when a new
component or service is added to the physical asset or process, the digital
twin is modular to adapt its architecture accordingly.

4. Integrebility: The entire enterprise of a commercial industry consists of
numerous physical assets and processes. A digital twin that is dedicated to
a specific asset or process has to be meaningfully integrable to the
industry’s entire operational pipeline.

The discussion in this section leads to Figure 1.1 that embodies the crucial aspects
concerning the development of a digital twin.
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Figure 1.1: Core functionalities of a digital twin.

1.3 Application: Inkjet Printing

From the Gutenberg Press back in the fifteenth century till today, the technology
associated with printing has preserved the intellectual, social, historical,
economical and cultural contributions of humankind. Perhaps, the printing
industry is one of the few technological sectors that has witnessed the entire
evolution of the industry. From the manual press machines to the recent Drop on
Demand (DoD) digital inkjet technology, the printing industry has always
evolved and adapted to the newer technological paradigms and become faster,
more cost-effective and energy-efficient.

Lately, digital technologies have a profound impact on making the outreach of
printing beyond books and journals on sheets of paper. By harnessing the power
of computers and automation, digital printing has also attracted versatile
applications. By using its non-contact and additive nature, inkjet printing is now
applicable to a wide range of materials including polymers and metals and also
various media like textile, wood, and circuit boards [87]. Moreover, the process
of printing is now completely automated; the user defines a print-job (a set of
to-be-printed images), and the digital printer is responsible for automatically
printing the images on a solid medium in the right sequence, at the right
position, and with the best possible print quality. Thanks to digital printing, we
are now gradually transcending ’from the world of paper printing to printing the
world’.

Two Components of DoD Inkjet Printing

One can consider the process of printing as the physical integration of a solid
medium (e.g. sheets of paper, cardboard, etc.) and liquid material (droplet of ink).
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Such integration between solid material and liquid occurs in two separate stages
in a printer. These two stages are known as a) jetting and b) fixation, as depicted
in Figure 1.2.

Figure 1.2: Two stages of a printing process. (1) Support. (2) Printed product. (3)
Print medium. (4) Droplet of liquid material. (5) Actuators for fixation
unit. (6) Nozzles for jetting. (7) Printhead.

• Jetting unit: During the process of jetting, liquid droplets at a pre-specified
temperature, volume and jetting speed are deposited from a set of nozzles
at the printhead on the solid material (known as a print medium).
Deposition of liquid droplets solely depends on the specifics of the image
that a user decides to print and this is known as the DoD mechanism.
Figure 1.3 shows the simplified description of one printhead. The flow of

Solid 
block

Liquid flow

Nozzle

Figure 1.3: Schematics of one printhead.

liquid is from top to bottom. The lowest level consists of a set of vertical
nozzles. Every nozzle is equipped with a piezoelectric actuator that
produces a pressure wave in the printhead chamber so as to jet a drop of
ink towards the medium. Based on the to-be-printed image, once a voltage
is applied, the piezoelectric actuator ejects a droplet of liquid from the
nozzle and deposits it on the print medium.

• Fixation unit: Once an image is printed on the print medium, the printed
product gets dried (or ’fixed’) in a fixation unit. A set of heater and air
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impingement units are used to extract excess moisture from the individual
freshly printed medium. The fixation unit is depicted in Figure 1.4.

3

1

2

4
5

Figure 1.4: Overview of the fixation unit. (1) Temperature sensors. (2) Support
(solid platform). (3) Printed products. (4) Heating unit. (5) Air
impingement unit.

Four unresolved challenges in DoD inkjet printing

Printer manufactures are facing a critical period ahead. On environmental
grounds, enterprises are moving away from the usage of paper-based printing
(which has always been the primary market for printing). As a result, printer
manufacturers must explore new application domains where printing can
establish a new market. This means that the printer’s architecture, design, and
performance requirements may change and this change must reach customer
imminently. Moreover, customers constantly demand better print quality
(defined by how accurately the printed product resembles the image). Hence,
printing technology must cope with ever-increasing demands for improved print
quality, as well as be flexible to accommodate new designs and functionalities. In
this context, the printing process, as a combination of jetting and fixation,
imposes the following challenges as open problems that will further enhance
print quality as well as make printing technology prepare for future changes in
the market.

1. Both jetting and fixation processes can be affected by unknown inputs in
terms of ambient temperature, movement of the printers, relative humidity
etc. The problem is that:

there does not exist any tool to verify how these disturbances affect the performance
and quality of printing.

2. For optimal drying (fixation), the moisture content of the printed product is
a crucial factor. The intensity of dryness (fixation) depends on the amount
of moisture in the printed medium. Also, depending on the type of medium
and the print job, the moisture level in a printed medium varies over location
and time during the fixation process. However, there is no dedicated sensor
for measuring moisture content for every individual printed product. This
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makes the entire fixation process inherently challenging to control. And, the
question remains open that:

how to estimate the moisture content of every individual printed product without
installing any additional sensors in the fixation unit.

3. The temperature of the liquid ink is not consistent at all times during
jetting. The temperature fluctuation of droplets causes its physiochemical
properties (these properties are viscosity, surface tension, temperature, and
the speed of sound inside the nozzle) deviate from desired values. This
causes deterioration of print quality. Hence, the challenge remains
unresolved:

how to maintain a consistent temperature at every droplet of liquid during jetting
without installing any additional sensors and actuators at the printhead.

4. To cope with the ever-increasing demands on throughput, in the future
design, the number of printed products a printer can print within a given
time span must increase. For instance, in future, design of the printhead
may accommodate an arbitrarily large number of nozzles to ensure more
substantial numbers of jetted droplets to be deposited on the medium at
the same instant. Hence, the challenge is that:

the state of the art for design, simulation, process optimizations and diagnosis are
not readily adaptable if the number of nozzles changes.

1.4 Building a Digital Twin for DoD Inkjet Printer

A digital twin, as the virtual representation of a printer’s functionality and its life
cycle, can have a significant impact on today’s printing industry. From designing
a new printer or new equipment and emulating the dynamic changes of a printer
(or a specific part) over its life cycle to optimizing the print quality and
diagnosing faults, a digital twin can perform all these tasks in a virtual
environment without utilizing a physical laboratory. For example, the challenges
mentioned in the previous section cover a wide variety of domains
encompassing design, estimation, control, performance analysis, diagnosis and
monitoring. If a digital twin is considered, it can offer a flexible, versatile,
modular and integrable tool to tackle every one of these problems and
potentially prescribe solutions under a unique framework. In this way, by
utilizing the digital twin, printer manufacturer can deliver to customers a faster,
cheaper and greener printer with improved performance and print quality.

Thermo-Fluidic Processes in Inkjet Printing

As the applicability of the to-be-built digital twin is quite diverse, the process of
jetting and fixation provides a generic description of the DoD inkjet printing
process without concentrating on any application-specific scenario. Therefore,
the digital twin of an inkjet printer must represent the processes of jetting and
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fixation. In both the processes, a common aspect is the role of interaction among
fluid substances (liquid or gas) and solid substances. As solids and fluids are
distinct states of matter, their physical properties are different, so as the influence
of external thermal energy on them. For example, during jetting, the solid
structure of the printhead and liquid ink interact over their common boundaries.
Moreover, if not all the nozzles are simultaneously used for jetting, a gradient in
liquid temperature takes place among jetting and non-jetting nozzles. During
fixation, by applying heat and air flux, the evaporation of excess moisture takes
out additional heat from the printed medium. As a result, along with the
moisture, the temperature of printed product changes. Such interaction between
solid and fluid substances under the influence of external thermal energy (input
heat flux) is referred as a thermo-fluidic process (see Figure 1.5). And, the
thermo-fluidic process is key to describe DoD inkjet printing and affect the
formation of printed products. Therefore, the digital twin of a DoD inkjet printer
must incorporate thermo-fluidic processes.

Thermal 
Energy

Solid
Liquid 
or Gas

Figure 1.5: General description of thermo-fluidic processes.

Building a digital twin based on thermo-fluidic processes

If one aims to build a digital twin for the assets that are governed by
thermo-fluidic processes, there are a few fundamental physical properties and
characteristics that need to be taken into account. These are

1. Spatially interconnected structure: The physical layout of the printing process
as an example, the printheads and the fixation unit demonstrate a spatially
interconnected structure consisting of thermo-fluidic processes print
materials, support, air, heat and liquid that are distributed over a spatial
configuration and physically interconnected.

2. Spatio-temporal dynamics: As an immediate consequence, systems governed
by thermo-fluidic processes exhibit dynamics that evolve both over space
and time.

3. Lack of sensors and actuators: Because of lack of space, physical limitations on
the printhead’s dimension, and inhibited costs, there is a persistent lack of
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sensor information and actuating power to control thermo-fluidic processes
in the printhead.

Role of models in building a digital twin for thermo-fluidic processes

To virtually represent the thermo-fluidic processes, the digital twin needs to rely
on a model which is a replica of the jetting and fixation as well as which
describes its underlying phenomena and working mechanisms. As a result,
building a model stands out to be the core of a digital twin. These models
typically involve mathematical equations that are either derived from physical
laws (e.g. conservation of mass, momentum and energy) or identified using the
data collected from previous life cycles of the process. The model must also
exhibit the underlying dynamical behavior of the process while being relevant
over time, i.e. be able to capture the thermo-fluidic processe’s evolution over the
entire life cycle.

Role of systems and control in building a digital twin for thermo-fluidic
processes

With the increasing complexity of the design, thermo-fluidic processes often
result from a complex architecture of interconnected components or systems of
systems. The field of systems and control plays a significant role in designing,
optimizing and developing a physical entity that constitutes of interrelated and
interdependent parts. Moreover, the digital twin must facilitate improving all
aspects related to the design, optimization, estimation, control, virtual testing,
prediction, maintenance and fault diagnosis of the inkjet printing process. In fact,
the key difference of a digital twin, in comparison to a simulator, is such diverse
functionalities that are already enabled in the core operation of a digital twin.

Role of computation in building a digital twin for thermo-fluidic processes

The role of computation is ubiquitous in any industrial process. In particular, to
build a digital twin, computation is an enabling factor for its functionalities. The
computation is involved not only in simulating the model that governs the
thermo-fluidic processes or predicting its evolution over space and time in
future, but also in providing quantitative certification to the processe’s
performance and in optimizing the performance to obtain the best achievable
level. As a result, computation is crucial in offering a market valuation of the
printers which a commercial enterprise, such as a printing manufacturing
company, strongly demands.
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1.5 Research Objective

The task of the digital twin is to address all aspects related to design,
optimization, estimation, control, virtual testing, prediction, maintenance of an
industrial asset that is governed by the thermo-fluidic processes. Moreover,
unlike a conventional simulator, the digital twin has well-defined objectives in
terms of analyzing the processe’s performance under unforeseen disturbances,
estimating unmeasured physical parameters (spatially varying) as well as
physical quantities (spatio-temporally varying), enabling the synthesis of
controllers for the thermo-fluidic processes. These functionalities must be
achieved without installing any additional sensors or actuators while ensuring
that the required performance criterion is met. Moreover, the digital twin must
be flexible, versatile, modular and integrable. To this end, this thesis seeks an
answer to the following question:

How to develop a digital twin for an industrial asset that is governed by thermo-fluidic
processes and guarantee that the asset achieves a predefined performance without

adding new sensors or actuators?

• The usage and functionalities of a digital twin are wider than the scope of
inkjet printing. As a result, attention is given towards making the design
procedure of building a digital twin generic such that other applications of
thermo-fluidic processes can also be adopted.

• Addition of new sensors or actuators are restricted. The digital twin can be used
to investigate novel techniques for controlling the thermo-fluidic processes
that do not require new sensors or actuators. This aspect again highlights
the importance of versatility in a digital twin.

• The performance metric is typically predefined. For instance, in DoD inkjet
printing, one may choose print quality as the performance metric and it can
be quantified based on the underlying thermo-fluidic processes. For
example, in jetting, a suitable performance metric would be to keep the
temperature difference among jetting and non-jetting nozzles below a
certain value. In fixation, the performance metric can be the amplification
factor at which an external disturbance (in terms of humidity, or heat flux)
affects the estimation of moisture for every individual printed medium.

1.6 Subproblems and Approaches to Solve Them

In order to achieve the formulated research goal, a set of relevant subproblems is
formulated in this section. Specific theoretical approach and practical
considerations are taken to solve every individual subproblem. The solutions of
all subproblems can then be combined, and collectively, they can satisfy the
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ultimate goal of this research. In the subsequent paragraphs, the relevant
subproblems are formulated, corresponding challenges are found and
approaches are summarized to circumvent the challenges and solve each
subproblem.

A framework for modeling and representing thermo-fluidic processes

The first subproblem is to answer the following question:

How to develop a modeling framework that allows users to describe and represent a
spatially interconnected thermo-fluidic process such that the model is integrable to the
core functionalities of the digital twin?

The answer to this question is given in Chapter 2. Here two aspects of the
thermo-fluidic processes are considered: a) spatial interconnection among
different components with distinct physical properties, b) spatio-temporal
evolution of the thermo-fluidic dynamics. As a result, the governing model has
the following features:

1. The governing dynamics may involve partial differential equations (PDEs)
involving physical quantities that are functions of space as well as time.

2. The governing dynamics may also involve ordinary differential equations
(ODEs) involving physical quantities that are only functions of time.

3. Because of the spatially interconnected structures, there are spatial
interconnections among PDEs or ODEs or among PDEs and ODEs.

4. The disturbances or inputs typically occur at the boundaries of a spatial
configuration.

To ensure that these four properties of the thermo-fluidic processes are preserved
in defining the model of the digital twin, a graph-theoretic modeling framework
is used to describe the spatial interconnection of PDEs and ODEs under arbitrary
topology. The interconnections among various components are modularized,
and specific constraints are formulated that preserves the energy exchange across
the spatial domain between two mutually interacting processes. Exploiting the
graph structure, incorporating or removing new components as a part of the
graph as well as accommodating new features for a specific component are
performed efficiently.

Once the underlying thermo-fluidic model is defined, the core functionalities of
the digital twin are built on the basis of this model. Moreover, every functionality
involves the computation and evaluation of thermo-fluidic processes. For
building any functionality regarding simulation, analysis, prediction, diagnosis,
estimation or control of thermo-fluidic processes, the spatial interconnection
among PDEs and ODEs allow one to use any one the three computational
approaches, depicted in Figure 1.6.
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Part II: Computation with Lumping

This subproblem amounts to answering the following question:

How to utilize a lumping technique to represent, monitor and control spatially
interconnected thermo-fluidic processes without adding new sensors and actuators while
meeting user-specific demand?

The answer to this question is given in Chapter 3. In many cases, the dimensions
and physical properties underlying components allow neglecting the spatial
distribution of physical quantities. This means that one can describe them as
ODEs. As a result, the entire thermo-fluidic process can be described by a
lumped network of systems governed by ODEs. However, the lumping
approach may not always provide sufficiently accurate behavior for all the
components. To this end, in this thesis, the digital twin is made flexible in such a
way that, at any stage of the development, a specific lumped component can be
modified to improve accuracy.

As installing additional sensors or actuators is strictly prohibited, the diagnosis
and monitoring functionalities of the digital twin are enabled by presenting a
soft-sensor. Similar to inkjet printheads, often, liquid components are already
equipped with piezoelectric elements. By using the self-sensing capability of the
piezoelectric elements and the lumped model, a real-time algorithm is developed
that estimates the temperature of the liquid component without adding new
sensors. This estimation mechanism and the underlying lumped model enables
the digital twin to synthesize an optimal controller that predicts the change in the
dynamical behavior of the process and controls it to achieve a predefined
performance criterion.

• This part of the research is based on the following work:

—— A. Das, M. Princen, M. Shokrpour, A. Khalate, S. Weiland (2019). Soft
Sensing Based In Situ Control of Thermo-Fluidic Processes in DoD
Inkjet Printing. Accepted for publication in IEEE Transactions of
Control Systems Technology, 2019. (DOI of the preprint:
10.20944/preprints202003.0355.v2).

Part III: Computation with Approximation

This subproblem amounts to answering the following question:

How to numerically approximate a spatially distributed diffusive thermo-fluidic process
while satisfying the boundary conditions in the presence of boundary inputs and make the
approximated model useful for performing various functionalities of the digital twin?

The answer to this question is found in Chapter 4 and 5. Here, an important
subclass of thermo-fluidic processes is considered that are governed by
diffusion-transport-reaction of coupled mass and temperature. In this thesis,
they are defined as diffusive thermo-fluidic process. The model of a diffusive
thermo-fluidic process is restricted to be a set of spatially interconnected PDEs
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that are mutually interconnecting over boundaries. A computational
approximation technique is presented that explicitly preserves the exchange of
energy across the boundaries, as well as the presence of inputs at the boundaries.
Once the approximation technique reduces the spatially interconnected PDEs to
a set of coupled ODEs, the functionalities developed in Part II
(lumping-then-design) are directly applicable.

In many applications of diffusive thermo-fluidic processes, the physical
parameters of a particular component are often unknown in terms of their values
as well as their spatial profile. A data-driven algorithm is presented to estimate
such spatially varying physical parameters based on the available data from a set
of location-specific sensors. In this way, measured data that are being
accumulated over the previous life cycles of the thermo-fluidic processes allow
the digital twin to perform validation of the underlying mode or improve the
model if necessary.

• This part of the research is based on the following works:

—— A. Das, L. Iapichino, S. Weiland (2018). Model Approximation of
Thermo-Fluidic Diffusion Processes in Spatially Interconnected
Structures. Proc. 2018 European Control Conference (ECC), Limassol,
pp. 2653-2658, DOI: 10.23919/ECC.2018.8550146.

—— A. Das, M. Van Berkel, S. Weiland (2019). Frequency Domain
Estimation of Spatially Varying Parameters in Heat and Mass
Transport. Proc. 2019 IEEE American Control Conference (ACC),
Philadelphia, pp. 600-605, DOI: 10.23919/ACC.2019.8814465,.

—— A. Das, S. Weiland (2020). Modeling and Approximation of
Networked Thermo-Fluidic Processes Under Arbitrary Spatial
Topology. To be submitted for publication in International Journal of
Systems Science.

Part IV: Computation with PIEs

This subproblem amounts to answering the following question:

How to develop a computational framework that allows to analyze and synthesize
estimator based optimal controllers directly on the spatially interconnected thermo-fluidic
processes without depending on lumping or approximation techniques while providing a
quantifiable performance guarantee?

The answer to this question is found in Chapter 6. Here, the goal is to directly
utilize the spatio-temporal dynamics with no prior approximation or lumping.
An alternative representation of spatially interconnected thermo-fluidic
processes is derived by using a class of operators called Partial Integral (PI)
operators. These PI operators share many similarities with matrices. By using the
PI operators, an equivalent representation of thermo-fluidic processes is
determined that are called Partial Integral Equations (PIEs). The PIE representation
enables to develop a computational framework that directly utilizes the original
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thermo-fluidic model for analysis, estimation and control purposes. By using the
proposed representation, stability, input-output properties are tested for the
thermo-fluidic processes. Moreover, an estimator is synthesized or
thermo-fluidic processes that utilize finite-dimensional measured data to provide
an estimate of the unmeasured physical quantities (spatio-temporally varying)
while guaranteeing an optimal performance bound in terms of worst-case
disturbance amplification in the estimation error.

• This part of the research is based on the following works:

—— A. Das, S. Shivakumar, M. Peet, S. Weiland (2020). Robust Analysis
of Uncertain ODE-PDE Systems Using PI Multipliers, PIEs and LPIs.
Accepted for presentation at the 2020 IEEE Conference on Decision and
Control (CDC), Jeju Island.

—— S.Shivakumar, A. Das, M. Peet (2020). PIETOOLS: A Matlab Toolbox
for Manipulation and Optimization of Partial Integral Operators. Proc.
2020 IEEE American Control Conference (ACC), Denver. DOI:
10.23919/ACC45564.2020.9147712

—— A. Das, S. Shivakumar, S. Weiland, M. Peet (2019). H∞ Optimal
Estimation for Linear Coupled PDE Systems. Proc. 2019 IEEE
Conference on Decision and Control (CDC), Nice, 2019, pp. 262-267.
DOI: 10.1109/CDC40024.2019.9029595

—— S. Shivakumar, A. Das, S. Weiland, M. Peet (2019). A Generalized LMI
Formulation for Input-Output Analysis of Linear Systems of ODEs
Coupled with PDEs. Proc. 2019 IEEE Conference on Decision and
Control (CDC), Nice, 2019, pp. 280-285, DOI:
10.1109/CDC40024.2019.9030224

—— M. Peet, S. Shivakumar, A. Das, S. Weiland (2019). Discussion Paper:
A New Mathematical Framework for Representation and Analysis of
Coupled PDEs. Proc. 2019 IFAC Workshop on Control of Systems
Governed by Partial Differential Equations (CPDE), Oaxaca, pp.
132-137. https://doi.org/10.1016/j.ifacol.2019.08.023

—— S. Shivakumar, A. Das, S. Weiland, M. Peet (2020). PIE Representation
of ODEs Coupled with Higher Order PDE Systems. Submitted for
publication in IEEE Transactions on Automatic Control.

—— A. Das, S. Shivakumar, S. Weiland, M. Peet (2020). H∞ Optimal State
Estimation for Coupled ODE-PDE Systems Using LPIs. To be
submitted for publication in Automatica.

Application to industrial benchmarks

This subproblem amounts to answering the following question:

How to apply the developed methodologies in building a digital twin for controlling the
jetting and fixation process in a DoD inkjet printer ?

The answer to this question is in Chapter 7 and Chapter 8.
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1. The functionalities of the digital twin are utilized to develop a self-sensing
based in situ controller that maintains a consistent liquid temperature at
every individual nozzle without additional sensors and actuators.

2. The functionalities of the digital twin are utilized to develop anH∞ optimal
estimator that estimates the average moisture level of a printed product in
fixation process only based on the measurement from a thermocouple below
the solid support.

• This part of the research is based on the following work:

—— A. Das, M. Princen, M. Shokrpour, A. Khalate, S. Weiland (2019). Soft
Sensing Based In Situ Control of Thermo-Fluidic Processes in DoD
Inkjet Printing. Accepted for publication in IEEE Transactions of
Control Systems Technology, 2019. (DOI of the preprint:
10.20944/preprints202003.0355.v2).

1.7 Organization of the thesis

The organization of the thesis is depicted in Figure 1.7.

Chapter 1
Introduction

Chapter 2
Modeling Framework

Chapter 3
Lumping

Chapter 4
Approximation

Chapter 5
Parameter Estimation

Chapter 6
PIEs

Chapter 7
Jetting in DoD Printhead
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Fixation of Printed Medium

Chapter 9
Conclusions 
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Part VI

Figure 1.7: Organization of the thesis. Arrows indicate read-before relations. List
of symbols is provided at the back of this thesis.





2 CHAPTER

Digital Twin’s Framework to Model
Thermo-Fluidic Processes

This chapter introduces a modeling framework that is in the core of
a digital twin to describe and represent thermo-fluidic processes.

To this end, a graph-theoretic framework is formulated as a collection of
nodes and edges under a user-defined topology. Nodes are dynamical
systems governed by either linear coupled partial differential equations
or linear coupled ordinary differential equations. The edges define the
interconnection among adjacent nodes by enforcing algebraic constraints
on the signals that these mutually interconnected nodes share. Apart from
the graph-theoretic definition, the digital twin’s modeling framework also
provides a few alternative representations of the thermo-fluidic models
that are behaviorally equivalent. A user has the freedom to choose any
one of those representations to describe the application-specific thermo-
fluidic process and build a relevant functionality of the digital twin.
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2.1 Introduction

The first part of building a digital twin is to represent the physical asset or the
process virtually. Every engineering system can be viewed as an enhanced and
goal-oriented application of physical laws of nature. Its virtual representation is
typically abstracted by a mathematical model to provide an ’effective and
unambiguous’ description of these fundamental laws (c.f. [80]). In this thesis, the
mathematical model offers a quantitative and qualitative description of the
thermo-fluidic process. By definition, the model that describes thermo-fluidic
processes must include the following aspects:

• Thermo-fluidic processes consist of multiple components that have distinct
physical properties and are spatially interconnected.

• Some components are spatially distributed, and their governing dynamics
evolve over space and time.

• Some components are lumped, and their governing dynamics only vary
over time.

• Flexibility, versatility, modularity and integrability of a digital twin must
reflect in the modeling framework.

Contribution of the Chapter

Incorporating multi-component, multi-physics, interconnected architecture of a
physical asset while preserving the qualities of a digital twin is the primary
objective of modeling thermo-fluidic processes and the main contribution of this
chapter. By exploiting the spatial interconnection among different components, a
graph-theoretic framework is presented to model and upscale the thermo-fluidic
processes. Here, the graph consists of nodes and edges. A node describes the
dynamical behavior of a locally defined thermo-fluidic process in a specific
component. An edge defines the mutual interconnection of two adjacent
components. Based on a specific use case, the user specifies the nodes, the edges,
and topology on how components are interconnected to each other.

2.2 Abstract Definition of Spatially Interconnected
Thermo-Fluidic Processes

Graph theory is widely used to model large-scale distributed and networked
systems. Large-scale systems, known as Spatially Interconnected Systems, are
decomposed and represented in a graph-theoretic framework in [60]. In [32, 58],
a particular attention is given to exploit state space approach in representing
spatially interconnected systems. A similar framework is also applied to the
parameter varying systems interconnected through time-varying, arbitrary and
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directed interaction topology in [41]. In this chapter, the work of [32] is
generalized for a spatially interconnected system that consists of both lumped
models with temporally varying dynamics as well as spatially distributed
models with spatio-temporally varying dynamics.

Definition 2.1 (Spatially interconnected thermo-fluidic process)

The definition of a spatially interconnected thermo-fluidic process consists of
following three objects.

D.1 Graph: A finite graph consists of a set of nodes and edges. It is defined by
the following quadruple

G = (N, E, A,T). (2.1)

• The time axis is denoted by the set T ⊆ R.

• N is a set of all the nodes, and the set’s cardinality is denoted by a scalar
m > 0. Each object Ni in the set N, i ∈ N[1,m], is a node or component
of the thermo-fluidic process with a specific physical property.

• A ∈ Nm×m is an adjacency matrix that has either zero or one as its
elements depending on whether the nodes Ni and Nj are physically
attached or not. Its entries are

Ai,j =

{
1, if Ni is connected to Nj

0, otherwise.

• The set of edges E = {Ei,j | for all (i, j) with Ai,j = 1} describes the
interconnection between a particular node and its neighboring nodes.

D.2 Nodes: Every individual node Ni ∈ N is defined by the following sextuple:

Ni = (Xi,Xbc
i ,Si,Pi,P

bc
i ,Bi). (2.2)

• The geometric configuration of every node Ni is characterized by a
bounded set Xi ⊂ Rd. Its boundary is defined by the limit-points as

Xbc
i = Xi \ X◦i ,

where X◦ denotes the interior of Xi. The dynamics of Ni is confined in
the spatial domain X◦i and is constrained by the boundary conditions
in Xbc

i .

• There are four categories of signals that are associated to a node Ni.
These signals belong to a subspace Si and consist of

(a) The internal state variables which are either multi-variable
functions; xi : Xi × T → Xi or single variable functions
xi : T→Xi, where Xi is the state space.

(b) The control signals which are single-variable functions; ci : T→ Ci,
where Ci is the control signal space.
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(c) The parameter valued signals which are single variable functions
di : T→ Di, where Di is the parameter signal space.

(d) The interconnection signals which are single variable functions li :
T→ Li, where Li is the interconnection signal space.

As a result, Si = X Xi×T
i × C T

i ×DT
i × LT

i .

• The behavior of Ni is captured by a relation among all the signals
(xi,xi, ci, di, li) and defines a subspace Pi ⊂ Si.

• The behavior Pbc
i describes the constraints that need to be imposed on

the behavior Pi when defined on Xbc
i . In particular, Pbc

i ⊂Pi.

• The behavior the parameter valued signals di defines a subspace Bi ⊂
(Di)

T.

D.3 Edges: Every individual edge Ei,j ∈ E is defined by the following triple:

Ei,j = (XIi,j ,L I
i,j ,Mi,j). (2.3)

• Each Ei,j describes the interconnection between two adjacent nodes (Ni

and Nj) on the their common boundary which is defined by XIi,j ⊆
Xi ∩ Xj .
• Wherever Ni is interconnected to Nj , i.e. Ai,j = 1, there are

interconnection signals associated with the edge. Let these signals be
single variable functions (li,j , lj,i) : T → L I

i,j , respectively.
Additionally, li = col(li,k)k∈Ii,j with Ii,j := {j | Ai,j = 1}.
• The relation among interconnection signals li,j and lj,i defines a

subspace Mi,j ⊂ (L I
i,j)

T.

2.3 Building Thermo-Fluidic Model for the Digital
Twin

The digital twin’s model of thermo-fluidic processes is built on the basis of
Definitions (D.1)-(D.3) whose specifications are given in the sequel.

2.3.1 Specifying Physical Asset’s Topology

A finite graph defines a physical asset that consists of spatially interconnected
components with known topology according to (D.1).

1. Each node represents a solid or fluid component. There is m number of
components as a part of the asset’s underlying thermo-fluidic processes.

2. Every individual node Ni represents either a lumped model (involving
thermo-fluidic processes that solely vary over time) or spatially distributed
model (involving thermo-fluidic processes that vary over space and time).
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To distinguish between lumped nodes from spatially distributed ones, a user
may define the spatial domain Xi,Xbc

i to be empty and, in that case, the
specific node is automatically considered to be lumped.

Let P and O be the two sets of indices corresponding the spatially distributed
nodes and lumped nodes respectively. Precisely, P := {i | i ∈ N[1,m] ∧ Xi 6=
∅}, O := {j | j ∈ N[1,m] ∧ Xj = ∅}.

3. The adjacency matrix A ∈ Rm×m is defined based on the physical
architecture of how various components interact with each other in the
asset’s thermo-fluidic process.

There may be multiple identical nodes (in terms of their model and
interaction with rest of the graph), e.g. the liquid nozzles in a printhead, or
identically printed paper sheet on a fixation tray. In such cases, it is
sufficient to specify their total numbers and the graph-theoretic model
automatically replicates them.

4. All the signals are considered to be in either continuous time with T ⊆ [0,∞)
or discrete time with T := {ktd | k ∈ N∪ {0}}, where the sampling period td
is a fixed scalar.

2.3.2 Specifying Spatial Configuration

The spatial configuration in which a spatially distributed component is confined
and the boundaries through which it interacts with its neighbors are defined as
follows.

Spatial Domain

In this thesis, all the thermo-fluidic processes are considered to be in one spatial
dimension. Therefore, the set Xi is either empty or an interval, [ai, bi] for some
bi > ai.

Boundary

In one dimensional domain, the boundaries are the extremum points. Hence,
boundary of a spatially distributed node consists of two points, i.e.,
Xbc
i = {ai, bi}. When Xi is empty, Xbc

i is empty as well.

Interconnection Domain

When Ai,j = 1, interconnections are between either two lumped nodes, or two
spatially distributed nodes, or else one spatially distributed node and one lumped
node. Hence, whenever Ai,j = 1, the interconnection domain XIi,j ⊆ Xi ∩ Xj is of
three kinds:
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1. Interconnection between two lumped nodes: If XIi,j is empty, the interconnection
is between two lumped nodes.

2. Interconnection between two spatially distributed nodes: If both Xi and Xj are
non-empty, then the interconnection is between two spatially distributed
nodes. Such interconnection takes place only via common boundary points
between Ni and Nj , i.e. XIi,j := Xbc

i ∩ Xbc
j . In other words, XIi,j consists of a

single point, either ai = bj or bi = aj .

3. Interconnection between a lumped node and a spatially distributed node: When
either Xi or Xj is empty, the interconnection is between a lumped node and
a spatially distributed node. In that case, interconnection domain is either
on the spatial domain or on the boundary of the spatially distributed node.
In that case XIi,j is left to be defined by the user.

2.3.3 Specifying Signals

The signals are either functions of space and time or functions of time alone
depending on whether they are part of the lumped node or spatially distributed
node. For two mutually interconnected nodes Ni and Nj , the signals are defined
as follows.

States

Depending on whether Xi is empty or not, the states are either spatio-temporal
functions denoted by xi or temporal functions denoted by xi. They are defined as
xi : Xi × T→ Rn

i
p and xi : T→ Rnix . Hence, Xi = Rn

i
p or Xi = Rnix .

Moreover, the state variables xi may have restrictions in terms of differentiability
with respect to the independent variable si (up to second order). Hence, these
states are partitioned as xi := col(x0i,x1i,x2i) with xji : [ai, bi] × R+ → Rn

i
j

(j = 0, 1, 2), where nip = ni0 + ni1 + ni2. Here, x0i are with no restrictions on
differentiability, states x1i with restrictions of first order differentiability with
respect to its independent variable si ∈ Xi and states x2i with restrictions on
second order differentiability with respect to its independent variable si ∈ Xi.

The state variables typically describe the spatio-temporal or temporal evolution
of specific physical quantities in a thermo-fluidic process (e.g. temperature, mass
concentration, the flow of liquid) in the sense that the future behavior of the node’s
thermo-fluidic processes entirely depends on states together with its future inputs
such as actuations or noise (which can be externally manipulated).

Control Signals

For every node Ni, the control signals ci are typically classified into inputs and
outputs. Irrespective of whether Xi is empty or not, there are four types of control
signals and all of them are considered to be functions of time.
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1. The control (to-be-manipulated) inputs are ui : T→ Rniu .

2. The regulated (to-be-controlled) outputs are zi : T→ Rniz .

3. The external disturbance inputs (they affect the node’s dynamics and,
sometimes, they are exogenous) are wi : T→ Rniw .

4. The measured outputs (using available sensors) are yi : T→ Rn
i
y .

As a result, ci = col (ui, zi, wi, yi) and Ci = Rniu ×Rniz ×Rniw ×Rn
i
y . As the control

signals are finite dimensional, in a spatially distributed node, they can be invoked
either inside the spatial domain or at the boundaries.

Parametric Signals

In a lumped node (Xi is empty), there is a provision for defining parameters or
part of a user’s specifications that may vary over time (e.g. the print demand, set
by the user in jetting). The signals associated to such parametric variations in a
lumped node are classified into inputs pi : T → Rn

i
p and outputs qi : ×T → Rn

i
q .

Hence, di = col (pi, qi), and Di = Rn
i
p × Rn

i
q . It is assumed that, the parametric

signals are not present in a spatially distributed node (when Xi is nonempty).

Interconnection Signals

Whenever Ai,j = 1, the interconnection signals between Ni and Nj are
categorized into inputs and outputs. The interconnections signals are assumed to
be functions of time. Based on the three types of interconnections, these signals
are attributed as follows.

1. Interconnection between two lumped nodes: When XIi,j is empty, the
interconnection between two lumped nodes is characterized by inputs
mxx
i,j : T→ Rnijmxx and outputs nxxi,j : T→ Rnijnxx .

2. Interconnection between two spatially distributed nodes: When both Xi and Xj
are non-empty, the interconnection between two spatially distributed nodes
are characterized at a common boundary point by inputs mpp

i,j : T → Rn
ij
mpp

and outputs nppi,j : T→ Rn
ij
npp .

3. Interconnection between a lumped node and a spatially distributed node: When
either Xi or Xj is empty, the interconnection between a spatially distributed
node and a lumped node is characterized by inputs mpx

i,j : T → Rn
ij
mpx and

outputs npxi,j : T→ Rn
ij
npx .

Hence the interconnection signal description differs based on the type of
interconnection. Precisely, li,j := col(mk

i,j , n
k
i,j) and L I

i,j = Rn
ij
mk × Rn

ij
nk ;

k ∈ {pp, px, xx}.
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Collection of All Interconnection Signals for An Individual Node

For a node Ni, all the interconnection signals are collectively defined as
li := col ((mpp

i ,m
px
i ,m

xx
i ), (nppi , n

px
i , n

xx
i )).

1. The inputs arempp
i (t) ∈ Rn

i
mpp and outputs are nppi (t) ∈ Rn

i
npp , wherempp

i :=
col(mpp

i,k)k∈Ippi,j and nppi := col(nppi,k)k∈Ippi,j with Ippi,j := {j | Ai,j = 1; i, j ∈ P}.

2. The inputs are mpx
i (t) ∈ Rn

i
mpx and outputs are npxi (t) ∈ Rn

i
npx , where

mpx
i := col(mpx

i,k)k∈Ipxi,j and npxi := col(npxi,k)k∈Ipxi,j with
Ipxi,j := {j | Ai,j = 1; either i ∈ O or j ∈ O}.

3. The inputs are mxx
i (t) ∈ Rnimxx and outputs are nxxi (t) ∈ Rninxx , where

mxx
i := col(mxx

i,k)k∈Ixxi,j and mxx
i := col(nxxi,k)k∈Ixxi,j with

Ixxi,j := {j | Ai,j = 1; i, j ∈ O}.

Hence, Li := Rn
i
mpp × Rn

i
mpx × Rnimxx × Rn

i
npp × Rn

i
npx × Rninxx .

Figure 2.1 gives an illustration of how the spatial domains and signals are assigned
for two mutually interconnected nodes.

NjNi

Ei,j

(xi, ci, di) (xj , cj)

li,j

Xj = [aj , bj ]Xi = ∅
Xbc

j = bjXI
i,j = aj

Figure 2.1: Illustration of two mutually interconnected nodes. Among them Ni is
lumped and Nj is spatially distributed. The edge Ei,j is defined at the
boundary point aj .

2.3.4 Specifying Edges

The interconnection describes the exchange of energy among adjacent
component’s underlying thermo-fluidic processes. The energy exchange is either
conductive (between two solid components) or convective (between a solid and
liquid component or between two liquid components). Typically, a bidirectional
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exchange of energy occurs between two solid or a solid and a liquid component.
A unidirectional exchange of energy occurs between two adjacent liquid
channels towards the direction of the flow. Hence, a distinction is made between
an edge Ei,j and another edge Ej,i to distinguish between bidirectional and
unidirectional interconnections. Whenever Ai,j = 1, there are three types of
interconnection between adjacent components Ni and Nj . They are specified as
follows.

Interconnection Between Two Lumped Nodes

The interconnection between two lumped nodes occurs when Ai,j = 1 along with
the condition that i, j ∈ O, i.e. both Xi and Xj are empty. Based on the conductive
or convective thermal exchange, point-wise in time, the subspace Mi,j defines
either uni-direction or bi-direction interconnection relations according to

Mi,j :=
{

(li,j , lj,i) | mxx
j,i(t) = Mxx

i,j n
xx
i,j(t), Ai,j = 1, i, j ∈ O ∀t ∈ T

}
. (2.4)

Wherever Ai,j = 1, the user specifies the relation (2.4) by defining a constant
matrix Mxx

i,j of suitable dimension. In this way, interconnection between two
lumped nodes is restricted by an algebraic constraint.

Interconnection Between a Spatially Distributed Node and a Lumped Node

When either Xi or Xj is empty and Ai,j = 1, interconnection occurs between a
spatially distributed node and a lumped node. The subspace Mi,j defines either
uni-direction or bi-direction interconnection relations according to

Mi,j :=
{

(li,j , lj,i) | mpx
j,i(t) = Mpx

i,jn
px
i,j(t), Ai,j = 1, i ∈ O or j ∈ O ∀t ∈ T

}
. (2.5)

Wherever Ai,j = 1, the user specifies the relation (2.5) by defining a constant
matrix Mpx

i,j of suitable dimension. Hence, interconnection between one lumped
node and one spatially distributed node is restricted by an algebraic constraint.

Interconnection Between Two Spatially Distributed Nodes

The interconnection between two spatially distributed nodes occurs when Ai,j =
1 along with the condition that i, j ∈ P, i.e. both Xi and Xj are non-empty. Now
the corresponding interconnection relation is defined according to

Mi,j :=
{

(li,j , lj,i) | mpp
j,i(t) = Mpp

i,jn
pp
i,j(t), Ai,j = 1, i, j ∈ P ∀t ∈ T

}
. (2.6)

The signals (li,j , lj,i) are related to the state variables, xi and xj , when evaluated
at the interconnection boundary. In that case, one may assume the existence of
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constant matrices, Bni,j and Bmj,i of appropriate dimensions such that

nppi,j(t) = Bni,j




x1i(s
I
i,j , t)

x2i(s
I
i,j , t)

∂six2i(s
I
i,j , t)


 , mpp

j,i(t) = Bmj,i




x1j(s
I
i,j , t)

x2j(s
I
i,j , t)

∂sjx2j(s
I
i,j , t)


 , (2.7)

where sIi,j the geometric location at the common boundary of the Ni and Nj , i.e.
sIi,j ∈ XIi,j ⊆ {ai = bj , bi = aj}. Using (2.7) one can rewrite the interconnection
constraint in (2.6) as the following boundary conditions at the point sIi,j ∈ XIi,j .

[
Bmj,i −Mpp

i,jB
n
i,j

]




x1i(s
I
i,j , t)

x2i(s
I
i,j , t)

∂six2i(s
I
i,j , t)

x1j(s
I
i,j , t)

x2j(s
I
i,j , t)

∂sjx2j(s
I
i,j , t)




= 0. (2.8)

2.3.5 Specifying Time-Varying Parametric Relation

To make every lumped node adaptable with time-varying user-defined demand,
they may include time-varying parameters (e.g. volumetric flow of liquid) that
are not directly captured in (2.10). Such parameters are stored in a time-varying
matrix Θ(t) for all lumped nodes. To allocate these parameters for every
individual lumped node, an operator Tj is defined such that Θj(t) = (Tj(Θ))(t),
where Θj(t) is the allocated time-varying parameter for the node Nj .

The function Θj(t) relates the a specific functionality of a lumped node via
parametric inputs (e.g. in terms of convective heat flux) pi(t) and outputs
qi(t) ∈ Rn

i
q (e.g. in terms of thermal energy over unit volume of liquid) according

to the following algebraic relation point-wise in time:

Bi := {(pi, qi) | pi(t) = Θi(t)qi(t) ∀t ∈ T} . (2.9)

2.3.6 Specifying Node Dynamics

Dynamical behavior of a node depicts the temporal or spatio-temporal
relationships among state variables, control signals, parametric signals and
interconnection signals. The governing equations to describe a node’s
thermo-fluidic behavior are derived using balance laws of mass, momentum and
energy. In case of lumped node, the dynamics is governed by coupled ordinary
differential equations (ODEs) and in case of spatially distributed nodes the
dynamics is governed by coupled partial differential equations (PDEs).
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Temporal Node Dynamics

When Xj is empty for a node Nj , its lumped dynamics is governed by coupled
ODEs. In this thesis, the ODEs are considered to be linear. In particular,

Pj :=





col
(
(mpx

j ,m
xx
j , pj , wj , uj), (xj), (n

px
j , n

xx
j , qj , zj , yj)

)
| ∀j ∈ O, t ∈ [0,∞),




npxj (t)

nxxj (t)
qj(t)
zj(t)
yj(t)
ẋj(t)




=




Enm1j Enm2j Enpj Enwj Enuj Gnxj
Fnm1j Fnm2j Fnpj Fnwj Dnuj Hnxj

Dqm1j Dqm2j Dqpj Dqwj Dquj Cqxj
Dzm1j Dzm2j Dzpj Dzwj Dzuj Czxj
Dym1j Dym2j Dypj Dywj Dyuj Cyxj
Bxm1j Bxm2j Bxpj Bxwj Bnuj Axxj







mpx
j (t)

mxx
j (t)
pj(t)
wj(t)
uj(t)
xj(t)








,

(2.10)

where Enm1j , Enm2j , Enpj , Enwj , Enuj , Gnxj , Fnm1j , Fnm2j , Fnpj , Fnwj , Dnuj ,
Hnxj , Dqm1j , Dqm2j , Dqpj , Dqwj , Dquj , Cqxj , Dzm1j , Dzm2j , Dzpj , Dzwj , Dzuj ,
Czxj , Dym1j , Dym2j , Dypj , Dywj , Dyuj , Cyxj , Bxm1j , Bxm2j , Bxpj , Bxwj , Bnuj , and
Axxj are constant matrices of appropriate dimensions. The matrixAxxj is typically
derived using conservation laws of mass, momentum and energy over time. The
other matrices are left to be defined by the user.

Spatio-Temporal Node Dynamics

When Xi = [ai, bi], the node dynamics of Ni is governed by Partial Differential
Equations (PDEs ). In this thesis, the PDEs are considered to be linear and are
defined in one spatial dimension. Hence,

Pi :=





col
(

(mpx
i , wi, ui), (xi), (n

px
i , zi, yi)

)
| ∀i ∈ P, t ∈ [0,∞),

xi is Fréchet differentiable,


npxi (t)
zi(t)
yi(t)
ẋi(t)


 =




Enmi Enwi Enui Enxi
Dzmi Dzwi Dzui Czxi
Dymi Dywi Dyui Cyxi
Bxmi Bxwi Bxui Api







mpx
i (t)
wi(t)
ui(t)
xi(t)








. (2.11)

In (2.11), all the operators are defined as in the following items.

• Adding Inputs to the PDE Dynamics:

For all si ∈ [ai, bi] and xi := col (x0i,x1i,x2i), (Bxmixi)(si) := Bxmi(si)xi(si),
(Bxwixi)(si) := Bxwi(si)xi(si), (Bxuixi)(si) := Bxui(si)xi(si), where Bxmi(si),
Bxwi(si), Bxui(si) are matrix-valued functions of appropriate dimensions.
Furthermore, Enmi, Enwi, Enui, Dzmi, Dzwi, Dzui, Dymi, Dywi, Dyui are constant
matrices of appropriate dimensions. These matrices are left to be defined by the
user.
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• Including Parabolic and Hyperbolic PDEs, and Boundary Values in the Dynamics:

For all si ∈ [ai, bi], Api is defined as

(Apixi)(si) :=A0i(si)




x0i

x1i

x2i


 (si) +A1i(si)∂si

[
x1i

x2i

]
(si) +A2i(si)∂

2
si

[
x2i

]
(si)

+

si∫

ai

A2li(si, θi)




x0i

x1i

x2i

∂six1i

∂six2i

∂2
six2i




(θi)dθi +

bi∫

si

A2ui(si, θi)




x0i

x1i

x2i

∂six1i

∂six2i

∂2
six2i




(θi)dθi

+E2i(si)




x1i(ai)
x1i(bi)
x2i(ai)
x2i(bi)

∂six2i(ai)
∂six2i(bi)



. (2.12)

Here, A0i(si), A1i(si), A2i(si), E2i(si), A2li(si, θi), A2ui(si, θi) are matrix-valued
functions of appropriate dimensions. These functions represent spatially varying
(as functions of si) physical coefficients related to the thermo-fluidic process in a
spatially distributed component. These coefficients often depend on the material
properties, dimensions and the underlying physical process occurred in a
component. The first three terms on the right hand side are related to the
parabolic or hyperbolic PDEs. The next two terms are related to integrals of all
the state variables and the last term is related to including boundary values into
the dynamics.

• Including boundary values in the measured, regulated and interconnection outputs:

For all si ∈ [ai, bi], operators Cyxi, Czxi, Enxi are defined as follows.

(Cyxixi)(si) :=

bi∫

ai

(
Cayxi(si)




x0i

x1i

x2i


 (si) + Cbyxi(si)∂si

[
x1i

x2i

]
(si)

+ Ccyxi(si)∂
2
si

[
x2i

]
(si)

)
dsi + Cy0i




x1i(ai)
x1i(bi)
x2i(ai)
x2i(bi)

∂six2i(ai)
∂six2i(bi)



. (2.13)
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(Czxixi)(si) :=

bi∫

ai

(
Cazxi(si)




x0i

x1i

x2i


 (si) + Cbzxi(si)∂si

[
x1i

x2i

]
(si)

+ Cczxi(si)∂
2
si

[
x2i

]
(si)

)
dsi + Cz0i




x1i(ai)
x1i(bi)
x2i(ai)
x2i(bi)

∂six2i(ai)
∂six2i(bi)



. (2.14)

(Enxixi)(si) :=

bi∫

ai

(
Eanxi(si)

[
x0i

]
(si) + Ebnxi(si)∂si

[
x1i

]
(si)

+ Ecnxi(si)∂
2
si

[
x2i

]
(si)

)
dsi + En0i




x1i(ai)
x1i(bi)
x2i(ai)
x2i(bi)

∂six2i(ai)
∂six2i(bi)



. (2.15)

Here, Cy0i, Cz0i and En0i are constant matrix of appropriate dimensions.
Moreover, Cayxi, Cbyxi, Ccyxi, Cazxi, Cbzxi, Cczxi, Eanxi, Ebnxi, Ecnxi are
matrix-valued functions of appropriate dimensions. Based on a specific
application and physical set-up of the component, these matrices are left to be
defined by the user.

• Interconnection Boundary Conditions:

For a spatially distributed node Ni (when i ∈ P), grouping all its interconnection
relations (2.8) with other spatially distributed nodes, one obtains the following
boundary constraints that restricts the evolution of state variables xi on the points
sIi,k ∈ (∪k∈Ippi,jX

I
i,k) with Ippi,j := {j | Ai,j = 1; i, j ∈ P}.

diag

(
[
Bmj,i −Mpp

i,jB
n
i,j

]
)

k∈Ippi,j︸ ︷︷ ︸
:=BIi

col







x1i(s
I
i,k, t)

x2i(s
I
i,k, t)

∂six2i(s
I
i,k, t)

x1k(sIi,k, t)

x2k(sIi,k, t)

∂skx2k(sIi,k, t)







k∈Ippi,j︸ ︷︷ ︸
:=ΛIsi

(xi(t),xk(t))

= 0, (2.16)

and which can be compactly written as

BIi ΛIsi(xi(t),xk(t)) = 0. (2.17)
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• External Boundary Conditions with Periodic Conditions and Inputs:

The external boundary conditions are defined on the boundary points that are
excluded from the corresponding set of interconnection points. They are allowed
to be perturbed by inputs in the form of disturbances wi, control inputs ui and
interconnection signals from the lumped nodes mpx

i . Moreover, it is possible to
include periodic boundary conditions. These boundary conditions are defined on
every point sbc

i ∈ Xbc
i \ ∪k∈Ippi,jX

I
i,k with Ippi,j := {j | Ai,j = 1; i, j ∈ P} according to

Bbc
i

:=Λbc
si

(xi(t))

︷ ︸︸ ︷

col






x1i(s
bc
i , t)

x2i(s
bc
i , t)

∂six2i(s
bc
i , t)





sbc
i ∈Xbc

i \∪k∈Ipp
i,j

XIi,k

=Bpxim
px
i (t) +Bwiwi(t) +Buiui(t)

+

bi∫

ai

Bxxi(si)




x0i

∂six1i

∂2
six2i


 (si, t)dsi

︸ ︷︷ ︸
:=Bbc

i (xi(t))

,

(2.18)

and which can be compactly written as

[
Bpxi Bwi Bui −Bbc

i

]



mpx
i (t)
wi(t)
ui(t)

Λbc
si (xi(t))


+ Bbc

i (xi(t)) = 0. (2.19)

For a spatially distributed node Ni, the number of points denoted by sbc
i can be

either one or two depending on whether it is interconnected with any other
spatially distributed node or not. If there are ri number of points in the set
(Xbc

i \ ∪k∈Ippi,jX
I
i,k), then Bbc

i ∈ Rvi×ri(n
i
1+2ni2) where vi is the number of external

boundary conditions. The other constant matrices Bpxi, Bwi, Bui are defined
accordingly. Moreover, Bxxi(si) is a matrix valued function of appropriate
dimension. Hence, the entire set of boundary conditions defines a subspace
Pbc
i ⊂Pi follows.

Pbc
i :=





col
(

(mpx
i , wi, ui), (xi), (xk)

)
| ∀i, k ∈ P, t ∈ [0,∞),

BIi ΛIsi(xi(t),xk(t)) = 0,

[
Bpxi Bwi Bui −Bbc

i

]



mpx
i (t)
wi(t)
ui(t)

Λbc
si (xi(t))


+ Bbc

i (xi(t)) = 0





. (2.20)

Remark 2.1 (Restriction on the number of boundary conditions) To avoid
ill-posedness, the number of boundary conditions must be restricted to a fixed
value. In one dimensional spatial interval, there are two boundary points for an
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individual node. Based on the definition of PDEs’ state variables xi, on these two
boundary points, there must be exactly ni boundary conditions related to x1i and
2(ni2) boundary conditions related to x2i. In this graph-theoretic framework, the
boundary points are divided into two mutually exclusive categories; the
boundary points are either interconnected with an another spatially distributed
node or exposed to external conditions (including interconnection with a lumped
node). Therefore, for a spatially distributed node Ni, grouping these two types of
boundary conditions according to (2.16)-(2.18), one must ensure that the matrix[
Bbc
i 0
0 BIi

]
has (ni1 + 2ni2) independent rows.

In summary, building a digital twin for thermo-fluidic processes amounts to
specifying the items of Section 2.3 in terms of

1. Adjacency matrix to specify the topology of a spatially interconnected
thermo-fluidic process. Time axis can be either continuous or discrete.

2. Spatial intervals of all spatially distributed nodes. Interconnection spaces
and the boundary spaces are automatically determined using the adjacency
matrix.

3. Dimensions of all the signal spaces (states, control signals, interconnection
signals, parametric signals).

4. Matrices in the interconnection relations (2.4)-(2.8) as well as the
time-varying matrices in the parametric relations (2.7) .

5. Matrices in (2.10) for every individual lumped node, matrices as well as
matrix-valued functions to define the operators in (2.11) and matrices as
well as matrix-valued functions to define the external boundary conditions
in (2.20).

The graph-theoretic definitions (D.1)-(D.3) makes the modeling framework
modular and generic with decisive advantages in terms of flexibility, scalability,
versatility and integrability to build the digital twin. In particular,
Object-Oriented Programming (OOP) can be utilized to develop software tools
that can upscale the thermo-fluidic model on the basis of user-defined
specifications. For instance, if there exists more than one node that is identical in
terms of dynamics, boundary conditions, and interconnection with rest of the
topologies, simply specifying the number of such identical nodes suffice to
replicate their thermo-fluidic model and integrate with the digital twin’s
architecture. In figure 2.2, an illustration is provided to depict the graph-theoretic
setting for mutual interconnection among two lumped nodes and two spatially
distributed nodes.
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Pj

Pr

Pk

Θr(t)

Θj(t)pj qj

pr qr

(zr, yr) (wr, ur)

(zj , yj) (wj , uj)

(zk, yk)
(wk, uk)

nxx
j,r

npx
j,k mpx

k,j

mxx
r,j

mxx
j,r

nxx
r,j

mpx
r,k

npx
k,r

npx
r,k

mpx
k,r

Pi(zi, yi) (wi, ui)

mpp
k,i

npp
i,k

npp
k,i

mpp
i,k

Figure 2.2: Illustration of four mutually interconnected nodes. denotes

the lumped nodes and denotes the spatially distributed nodes.
Interconnections can be unidirectional or bi-directional. A lumped
node has additional provision to incorporate time-varying parameters
(given by Θi(t),Θj(t)). denotes the parametric signals,
denotes the interconnection signals, denotes the control signals.

2.4 Equivalent Representations of Lumped Nodes

Despite the merits and user-friendly implementation of graph-theoretic model of
thermo-fluidic processes, a compact multi-input and multi-output (MIMO)
representation may appear to be useful for design optimization, prediction,
maintenance or synthesizing an estimator-based controller. To make the digital
twin flexible and ensure its versatile functionalities, the digital twin’s modeling
framework offers various alternative representations of the thermo-fluidic
processes that are equivalent to the graph-theoretic model. In the first part, only
the lumped nodes are considered. By rearranging signals and performing
algebraic operations, there are three ways to equivalently represent the part of a
graph that consists of only lumped nodes.
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By Stacking Node Signals

P̆o :=





col
(

(m̆px, m̆xx, p̆, w̆, ŭ), (x), (n̆px, n̆xx, q̆, z̆, y̆)
)
| ∀t ∈ [0,∞),

m̆xx(t) = M̆xxn̆xx(t),

p̆(t) = Θ̆(t)q̆(t),


n̆px(t)
n̆xx(t)
q̆(t)
z̆(t)
y̆(t)
ẋ(t)




=




Ĕnm1 Ĕnm2 Ĕnp Ĕnw Ĕnu Ğnx
F̆nm1 F̆nm2 F̆np F̆nw D̆nu H̆nx

D̆qm1 D̆qm2 D̆qp D̆qw D̆qu C̆qx
D̆zm1 D̆zm2 D̆zp D̆zw D̆zu C̆zx
D̆ym1 D̆ym2 D̆yp D̆yw D̆yu C̆yx
B̆xm1 B̆xm2 B̆xp B̆xw B̆xu Ăxx







m̆px(t)
m̆xx(t)
p̆(t)
w̆(t)
ŭ(t)
x(t)








.

(2.21)

Here, x(t) ∈ R
∑
j∈O n

j
x , y̆(t) ∈ R

∑
j∈O n

j
y , z̆(t) ∈ R

∑
j∈O n

j
z , w̆(t) ∈ R

∑
j∈O n

j
w ,

ŭ(t) ∈ R
∑
j∈O n

j
u , p̆(t) ∈ R

∑
j∈O n

j
p , q̆(t) ∈ R

∑
j∈O n

j
q , m̆xx(t) ∈ R

∑
j∈O n

j
mxx ,

n̆xx(t) ∈ R
∑
j∈O n

j
nxx , m̆px(t) ∈ R

∑
j∈O n

j
mpx , and n̆px(t) ∈ R

∑
j∈O n

j
npx . Matrix M̆xx

is constructed by stacking mxx
k,j = Mxx

j,kn
xx
j,k, whenever Aj,k = 1; j, k ∈ O.

Moreover, Θ̆(t) = diag(Θj(t))j∈O. All the other constant matrices in (2.21) is
defined by diagonally stacking the respective matrices that are defined for every
individual lumped node.

By Eliminating Interconnection Relations Among Lumped Nodes

P̌o :=





col
(

(m̆px, p̆, w̆, ŭ), (x), (n̆px, q̆, z̆, y̆)
)
| ∀t ∈ [0,∞),

p̆(t) = Θ̆(t)q̆(t),


n̆px(t)
q̆(t)
z̆(t)
y̆(t)
ẋ(t)




=




Ěnm Ěnp Ěnw Ěnu Ǧnx
Ďqm Ďqp Ďqw Ďqu Čqx
Ďzm Ďzp Ďzw Ďzu Čzx
Ďym Ďyp Ďyw Ďyu Čyx
B̌xm B̌xp B̌xw B̌xu Ǎxx







m̆px(t)
p̆(t)
w̆(t)
ŭ(t)
x(t)








. (2.22)

By Eliminating Parametric Relations

P̃o :=





col
(

(m̆px, w̆, ŭ), (x), (n̆px, z̆, y̆)
)
| ∀t ∈ [0,∞),




n̆px(t)
z̆(t)
y̆(t)
ẋ(t)


 =




Ẽnm(t) Ẽnw(t) Ẽnu(t) G̃nx(t)

D̃zm(t) D̃zw(t) D̃zu(t) C̃zx(t)

D̃ym(t) D̃yw(t) D̃yu(t) C̃yx(t)

B̃xm(t) B̃xw(t) B̃xu(t) Ãxx(t)







m̆px(t)
w̆(t)
ŭ(t)
x(t)








. (2.23)

In (2.22)-(2.23), dimensions of all matrices are understood by their respective
domains.
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The above three representations equivalently represent thermo-fluidic processes
that consist of lumped components only. These three representations can be
visually illustrated in figure 2.3.

Θ̆(t)

M̆xx

p̆

(n̆px, z̆, y̆)

q̆

m̆xx n̆xx

(m̆px, w̆, ŭ)

P̆o

(a) Representation in (2.21)

(n̆px, z̆, y̆) (m̆px, w̆, ŭ)

P̌o

Θ̆(t)

p̆ q̆

(b) Representation in (2.22)

(n̆px, z̆, y̆) (m̆px, w̆, ŭ)

P̃o

(c) Representation in (2.23)

Figure 2.3: Three equivalent representations of graph-theoretic thermo-fluidic
model that consists of lumped components only.

One can also view P̌o and P̃o as projections of P̆o onto the subspaces defined
by the signals col

(
(m̆px, w̆, ŭ), (x), (n̆px, z̆, y̆)

)
and col

(
(m̆px, w̆, ŭ), (x), (n̆px, z̆, y̆)

)
,

respectively. To represent such projections using (2.22) and (2.23) requires
elimination of interconnection signals m̆xx(t), n̆xx(t) and parametric signals
p̆(t), q̆(t) from (2.21). Note that deriving (2.21) from (D.1)-(D.3) simply requires
rearrangement of various signals. However, deriving (2.22) and (2.23) are
conditional and Theorem 2.1 provides conditions under which such elimination
of signals is possible.
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Theorem 2.1 (Equivalence of lumped models under signal elimination)
1. If (I − F̆nm2M̆

xx) is invertible, then

P̌o =

{
col
(
(m̆px, p̆, w̆, ŭ), (x), (n̆px, q̆, z̆, y̆)

)
| ∃ col (m̆xx, n̆xx) such that,

col
(
(m̆px, m̆xx, p̆, w̆, ŭ), (x), (n̆px, n̆xx, q̆, z̆, y̆)

)
∈ P̆o

}
.

Moreover,




Ěnm Ěnp Ěnw Ěnu Ǧnx
Ďqm Ďqp Ďqw Ďqu Čqx
Ďzm Ďzp Ďzw Ďzu Čzx
Ďym Ďyp Ďyw Ďyu Čyx
B̌xm B̌xp B̌xw B̌nu Ǎxx




=




Ĕnm1 Ĕnp Ĕnw Ĕnu Ğnx
D̆qm1 D̆qp D̆qw D̆qu C̆qx
D̆zm1 D̆zp D̆zw D̆zu C̆zx
D̆ym1 D̆yp D̆yw D̆yu C̆yx
B̆xm1 B̆xp B̆xw B̆xu Ăxx




+




Ĕnm2

D̆qm2

D̆zm2

D̆ym2

B̆xm2



M̆xx(I − F̆nm2M̆

xx)−1




F̆>nm1

F̆>np
F̆>nw
D̆>nu
H̆>nx




>

. (2.24)

2. If (I − ĎqpΘ̆(t)) is invertible for all t ∈ T, then

P̃o

=

{
col
(
(m̆px, w̆, ŭ), (x), (n̆px, z̆, y̆)

)
| ∃ col (p̆, q̆) such that,

col
(
m̆px, p̆, w̆, ŭ), (x), (n̆px, q̆, z̆, y̆)

)
∈ P̌o

}
.

=

{
col
(
(m̆px, w̆, ŭ), (x), (n̆px, z̆, y̆)

)
| ∃ col ((m̆xx, p̆), (n̆xx, q̆)) such that,

col
(
(m̆px, m̆xx, p̆, w̆, ŭ), (x), (n̆px, n̆xx, q̆, z̆, y̆)

)
∈ P̆o

}

Moreover,



Ẽnm(t) Ẽnw(t) Ẽnu(t) G̃nx(t)

D̃zm(t) D̃zw(t) D̃zu(t) C̃zx(t)

D̃ym(t) D̃yw(t) D̃yu(t) C̃yx(t)

B̃xm(t) B̃xw(t) B̃xu(t) Ãxx(t)


 =




Ěnm Ěnw Ěnu Ǧnx
Ďzm Ďzw Ďzu Čzx
Ďym Ďyw Ďyu Čyx
B̌xm B̌xw B̌xu Ǎxx




+




Ěnp
Ďzp

Ďyp

B̌xp


 Θ̆(t)(I − ĎqpΘ̆(t))−1




Ď>qm
Ď>qw
Ď>qu
Č>qx




>

. (2.25)

Proof: Deriving (2.24) requires algebraic manipulations to uniquely express m̆xx

in terms of (x, w̆, ŭ, p̆) by using mxx(t) = M̆xxnxx(t). The uniqueness of this
expression requires the invertibility of (I − F̆nm2M̆

xx). The same argument holds
for deriving (2.25), where (p̆, q̆) is uniquely expressed in terms of (x, w̆, ŭ). In this
case, one requires the invertibility of (I − ĎqpΘ̆(t)) for all t ∈ T. �
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2.5 Equivalent Representation of Spatially
Distributed Nodes

In a similar fashion, the spatially distributed nodes can also have alternative
representations. Here, one of them is shown.

2.5.1 Normalization of Spatial Domain

In the definition of every spatially distributed node Ni, the spatial domain is Xi =
[ai, bi] and every point si takes value in the interval [ai, bi]. For convenience, each
interval [ai, bi] can also be scaled to a fixed domain [a, b], making every individual
spatially distributed node to be defined in a constant spatial interval [a, b]. In order
to achieve that, the following formulas are used.

1. For si ∈ [ai, bi], define si = mis+ ci, with mi = bi−ai
b−a and ci = aib−bia

b−a . Note
that si → ai, then s→ a, and si → bi, then s→ b.

2. x̃0i(s) = x0i(mis+ ci), x̃1i(s) = x1i(mis+ ci) and x̃2i(s) = x2i(mis+ ci).

3. ∂si
[
x1i(si)

]
= 1

mi
∂s
[
x̃1i(s)

]
, ∂si

[
x2i(si)

]
= 1

mi
∂s
[
x̃2i(s)

]
,

4. ∂2
si

[
x2i(si)

]
= 1

m2
i
∂2
s

[
x̃2i(s)

]
.

Scaling Operators in the Domain [a, b]

In the dynamic model of a spatially distributed node, scaling of spatial domain
also scales the spatially varying coefficients in the definitions of Api, Cyxi, Czxi,
Enxi. Precisely, in (2.12)-(2.15), for all s ∈ [a, b]

(Ãpix̃i)(s) :=(Apixi)(mis+ ci), (C̃yxix̃i)(s) := (Cyxixi)(mis+ ci),

(C̃zxix̃i)(s) :=(Czxixi)(mis+ ci), (Ẽnxix̃i)(s) := (Enxixi)(mis+ ci),

(B̃xmix̃i)(s) :=(Bxmixi)(mis+ ci), (B̃xwix̃i)(s) := (Bxwixi)(mis+ ci),

(B̃xuix̃i)(s) := (Bxuixi)(mis+ ci). (2.26)

Scaling Boundary conditions on {a, b}

Due to spatial scaling, the boundary points of any spatially distributed node
would always be the points {a, b}. Therefore, the interconnection boundary
conditions in (2.16) can be transformed to the following relations on the points
sIi,k ∈ (∪k∈Ippi,jX

I
i,k) with Ippi,j := {j|Ai,j = 1; i, j ∈ P} and XIi,k ⊆ {a, b}.

B̃Ii
[
ΛIis (x̃i(t), x̃k(t))

]
=0. (2.27)
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Here,
[
ΛIis (x̃i(t), x̃k(t))

]
is obtained from ΛIsi(xi(t),xk(t)) after applying the

appropriate scaling on the spatial domain. Moreover, B̃Ii is related to BIi in (2.20)
by incorporating the constant factors due to scaling the operators ∂si(·) into ∂s(·).

On every point sbc
i ∈ [a, b] \ ∪k∈Ippi,jX

I
i,k with

Ippi,j := {j|Ai,j = 1,Xi,Xj are nonempty} and XIi,k ⊆ {a, b}, the external boundary
conditions in (2.18) are redefined as

B̃bc
i

[
Λbc
s (x̃i(t))

]
− B̃bc

i (x̃i(t)) =Bpxim
px
i (t) +Bwiwi(t) +Buiui(t). (2.28)

Here,
[
Λbci
s (x̃i(t))

]
is obtained from Λbc

si (xi(t)) after applying the appropriate
scaling on the spatial domain. Moreover, B̃bc

i is related to Bbc
i in (2.20) by

incorporating the constant factors due to scaling the operators ∂si(·) into ∂s(·).
Also, the operator B̃bc

i is identically constructed from Bbc
i .

Equivalent Representation of Spatially Distributed Nodes on a Scaled Domain

Now, on the constant domain [a, b], an alternative representation can be derived
by grouping all the signals of the entire set of spatially distributed nodes.

Pp :=





col
(
(m̄px, w̄, ū), (x), (n̄px, z̄, ȳ)

)
| ∀t ∈ [0,∞),

x is Fréchet differentiable,


m̄px(t)
w̄(t)
ū(t)
x(t)


 ∈ X

p
dom,




n̄px(t)
z̄(t)
ȳ(t)
ẋ(t)


 =




Ēnm Ēnw Ēnu Ēnx
D̄zm D̄zw D̄zu C̄zx
D̄ym D̄yw D̄zu C̄yx
B̄xm B̄xw B̄xu Āp







m̄px(t)
w̄(t)
ū(t)
x(t)








. (2.29)

with

Xp
dom :=








m̄px(t)
w̄(t)
ū(t)
x(t)


 ∈

∏

i∈P

(
Rn

i
mpx+niw+niu × Ln

i
0

2 [a, b]×Hni1
1 [a, b]×Hni2

2 [a, b]
)
|

[
B̄px B̄w B̄u −B̄

]




m̄px(t)
w̄(t)
ū(t)

x1(a, t)
x1(b, t)
x2(a, t)
x2(b, t)
∂sx2(a, t)
∂sx2(b, t)




+
b∫
a

B̄xx(s)




x0

∂sx1

∂2
sx2


 (s, t)ds = 0





.

(2.30)
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Here, m̄px(t) ∈ R
∑
i∈P n

i
px , w̄(t) ∈ R

∑
i∈P n

i
w , ū(t) ∈ R

∑
i∈P n

i
u . Identical construction

is followed for obtaining the vectors n̄px(t), z̄(t), ȳ(t). In a similar fashion, x0 =
col (x̃0i)i∈P. Similar definitions hold for x1 and x2, and x := col (x0,x1,x2). To
define the operators in (2.29)-(2.30), corresponding constant matrices and matrix-
valued functions are obtained by appropriate diagonal stacking of (2.26)-(2.27)
while using the definitions in (2.12)-(2.15) as well as (2.20) and are understood by
their respective domains.

2.6 Combined Representation of Spatially
Distributed Nodes and Lumped Nodes

In the digital twin’s model, so far, various representations are derived for lumped
nodes and spatially-distributed nodes separately. In this section, the digital twin’s
model is completed by combining the lumped and spatially distributed nodes
together and derive equivalent representations of the entire network of thermo-
fluidic process.

By Stacking MIMO Lumped Dynamics and Spatially Distributed Dynamics

By augmenting the subspaces Pp in (2.29) and P̃o (2.23), an equivalent
representation of the networked thermo-fluidic process is as follows.

˜̄P =



col
(
(m̆px, m̌px, w̆, w̌, ŭ, ǔ), (x,x), (n̆px, ňpx, z̆, ž, y̆, y̌)

)
| ∀t ∈ [0,∞),

x is Fréchet differentiable,


m̄px(t)
w̄(t)
ū(t)
x(t)


 ∈ X

p
dom,

[
m̆px(t)
m̄px(t)

]
= Mpx

[
n̆px(t)
n̄px(t)

]
,




n̆px(t)
ňpx(t)
z̆(t)
z̆(t)
y̆(t)
y̆(t)
ẋ(t)
ẋ(t)



=




Ẽnm(t) 0 Ẽnw(t) 0 Ẽnu(t) 0 G̃nx(t) 0
0 Ēnm 0 Ēnw 0 Ēnu 0 Ēnx

D̃zm(t) 0 D̃zw(t) 0 D̃zu(t) 0 C̃zx(t) 0
0 D̄zm 0 D̄zw 0 D̄zu 0 C̄zx

D̃ym(t) 0 D̃yw(t) 0 D̃yu(t) 0 C̃yx(t) 0
0 D̄ym 0 D̄yw 0 D̄yu 0 C̄yx

B̃xm(t) 0 B̃xw(t) 0 B̃xu(t) 0 Ãxx(t) 0
0 B̄xm 0 B̄xw 0 B̄xu 0 Āxx







m̆px(t)
m̌px(t)
w̆(t)
w̌(t)
ŭ(t)
ǔ(t)
x(t)
x(t)








.

(2.31)

Equivalent PDE-ODE Coupled Representation of Thermo-Fluidic Processes

Combining the ODE dynamics of lumped nodes and PDE dynamics of spatially
distributed nodes one can derive an MIMO representation as a time-varying PDE-
ODE coupled system. Such a time-varying PDE-ODE coupled system belongs to



2.6 Combined Representation of Spatially Distributed Nodes and Lumped Nodes 43

the class of models as defined in the Definition 2.2. Lemma 2.1 states the condition
under which such equivalent conversion is possible.

Definition 2.2 (Behavior of Time-Varying PDE-ODE Coupled Systems) Given
matrix valued functionsA0,, A1, A2, A2l, A2u, E2, Ea,, Eb, Ec, E0, E, B21, B22, Cai,
Cbi, Cci, for i ∈ {1, 2}, as well as C10, C20, E0, A, C1, C2, B11, B12, D11, D12, D21,
D22, of appropriate dimensions, define

(Apx)(s, t) :=A0(s, t)




x0

x1

x2


 (s, t) +A1(s, t)∂s

[
x1

x2

]
(s, t) +A2(s, t)∂2

s

[
x2

]
(s, t)

+

s∫

a

A2l(s, θ, t)




x0

x1

x2

∂sx1

∂sx2

∂2
sx2




(θ, t)dθ +

b∫

s

A2u(s, θ, t)




x0

x1

x2

∂sx1

∂sx2

∂2
sx2




(θ, t)dθ

+ E2(s, t)




x1(a, t)
x1(b, t)
x2(a, t)
x2(b, t)
∂sx2(a, t)
∂sx2(b, t)




(2.32a)

(C1px)(s, t) :=

b∫

a

(
Ca1(s, t)




x0

x1

x2


 (s, t) + Cb1(s, t)∂s

[
x1

x2

]
(s, t)

)
ds

+

b∫

a

Cc1(s, t)∂2
s

[
x2

]
(s, t)ds+ C10




x1(a, t)
x1(b, t)
x2(a, t)
x2(b, t)
∂sx2(a, t)
∂sx2(b, t)



, (2.32b)

(C2px)(s, t) :=

b∫

a

(
Ca2(s, t)




x0

x1

x2


 (s, t) + Cb2(s, t)∂s

[
x1

x2

]
(s, t)

)
ds

+

b∫

a

Cc2(s, t)∂2
s

[
x2

]
(s, t)ds+ C20




x1(a, t)
x1(b, t)
x2(a, t)
x2(b, t)
∂sx2(a, t)
∂sx2(b, t)



, (2.32c)

(Epx)(s, t) :=

b∫

a

(
Ea(s, t)




x0

x1

x2


 (s, t) + Eb(s, t)∂s

[
x1

x2

]
(s, t)

)
ds
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+

b∫

a

Ec(s, t)∂
2
s

[
x2

]
(s, t)ds+ E0




x1(a, t)
x1(b, t)
x2(a, t)
x2(b, t)
∂sx2(a, t)
∂sx2(b, t)



, (2.32d)

(Ex)(s, t) :=E(s, t)x(t), (B21w)(s, t) := B21(s, t)w(t), (B22u)(s, t) := B22(s, t)u(t).
(2.32e)

Then for a full rank B ∈ R(n1+2n2)×2(n1+2n2), the behavior of time-varying PDE-
ODE coupled system is defined by the subspace P̄t

p such that

P̄t
p :=





col
(

(z, y), (x,x), (w, u)
)
| ∀t ∈ [0,∞)

col (z(t), y(t)) ∈ Rnz+ny , x is Fréchet differentiable,


w(t)
u(t)
x(t)
x(t)


 ∈ Xdom,




z(t)
y(t)
ẋ(t)
ẋ(t)


 =




D11 D12 C1 C1p
D21 D22 C2 C2p
B11 B12 A Ep
B21 B22 E Ap


 (t)




w(t)
u(t)
x(t)
x(t)








, (2.33)

with

Xdom :=








w(t)
u(t)
x(t)
x(t)


 ∈ Rnw+nu+nx × Ln0

2 [a, b]×Hn1
1 [a, b]×Hn2

2 [a, b] |

[
Bw(t) Bu(t) Bx0(t) Bc(t)

]



w(t)
u(t)
x(t)
x(t)


 = 0

(Bcx)(s, t) :=
b∫
a

Bxx(s, t)




x0

∂sx1

∂2
sx2


 (s, t)ds−B(t)




x1(a, t)
x1(b, t)
x2(a, t)
x2(b, t)
∂sx2(a, t)
∂sx2(b, t)








. (2.34)

Lemma 2.1 (Equivalence of Time-Varying PDE-ODE coupled system and
thermo-fluidic processes)

If
(
I −

[
Ẽnm(t) 0

0 Ēnm

]
Mpx

)
is invertible for all t ∈ T, then
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{
col
(
(w̆, w̌, ŭ, ǔ), (x,x), (z̆, ž, y̆, y̌)

)
| ∃ col ((m̆px, m̌px), (n̆px, ňpx)) such that,

col
(
(m̆px, m̌px, w̆, w̌, ŭ, ǔ), (x,x), (n̆px, ňpx, z̆, ž, y̆, y̌)

)
∈ ˜̄P∗

}

=

{
P̄t

p |
w = col (w̆, w̌), u = col (ŭ, ǔ), z = col (z̆, ž), y = col (y̆, y̌)

}
.

Moreover, there exist matrix-valued functions A0,, A1, A2, A2l, A2u, E2, Ea,,
Eb, Ec, E0, E, B21, B22, Cai, Cbi, Cci, for i ∈ {1, 2}, as well as C10, C20, E0, A,
C1, C2, B11, B12, D11, D12, D21, D22, for which (2.32) admits




D11 D12 C1 C1p
D21 D22 C2 C2p
B11 B12 A Ep
B21 B22 E Ap


 (t) =




D̃zw(t) 0 D̃zu(t) 0 C̃zx(t) 0
0 D̄zw 0 D̄zu 0 C̄zx

D̃yw(t) 0 D̃yu(t) 0 C̃yx(t) 0
0 D̄yw 0 D̄yu 0 C̄yx

B̃xw(t) 0 B̃xu(t) 0 Ãxx(t) 0
0 B̄xw 0 B̄xu 0 Āxx




+




Ẽnm(t) 0
0 Ēnm

D̃zm(t) 0
0 D̄zm

D̃ym(t) 0
0 D̄ym

B̃xm(t) 0
0 B̄xm




[
W1 W2

W3 W4

]
(t)G(t). (2.35)

Here,
[
W1 W2

W3 W4

]
(t) = Mpx

(
I −

[
Ẽnm(t) 0

0 Ēnm

]
Mpx

)−1

, (2.36)

G(t) =

[
Ẽnm(t) 0 Ẽnw(t) 0 Ẽnu(t) 0 G̃nx(t) 0

0 Ēnm 0 Ēnw 0 Ēnu 0 Ēnx

]
,

and

Bw(t) =B̄w + B̄px
[
0 I

] [W1(t) W2(t)
W3(t) W4(t)

] [
Ẽnw(t) 0

0 Ēnw

]
,

Bu(t) =B̄u + B̄px
[
0 I

] [W1(t) W2(t)
W3(t) W4(t)

] [
Ẽnu(t) 0

0 Ēnu

]
,

[
Bx0(t) Bc(t)

] [x(t)
x(t)

]
=B̄px

[
0 I

] [W1(t) W2(t)
W3(t) W4(t)

] [
G̃nx(t) 0

0 Ēnx

] [
x(t)
x(t)

]

+
[
0 B̄c(t)

] [x(t)
x(t)

]
,
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(B̄cx)(s) =

b∫

a

B̄xx(s)




x0

∂sx1

∂2
sx2


 (s)ds− B̄




x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)



. (2.37)

Proof: The proof is similar to the proof of Theorem 2.1. It requires eliminating
(m̆px(t), m̄px(t)) and (n̆px(t), n̄px(t)) from the definition of ˜̄P in (2.31). �

2.7 Closing Remarks

In this chapter, the graph-theoretic framework is built to model spatially
interconnected thermo-fluidic processes. A graph consists of nodes that describe
the local dynamics and edges that describes the interconnection among adjacent
nodes. Either ODEs or PDEs describes the node dynamics. The interconnection
among adjacent nodes is described by either boundary conditions or algebraic
constraints. Using augmentation of signals, scaling of the spatial domain for a
(spatially distributed) node, and elimination of signals, seven equivalent
representations of thermo-fluidic processes are provided as a part of the digital
twin and they are depicted in Figure 2.4. The user has complete freedom to
choose any one of these equivalent representations to describe the model of
thermo-fluidic digital twin and build model-based functionalities. In this way,
the modeling framework is modular and generic to offer decisive advantages in
terms of the digital twin’s flexibility, scalability, computability and versatility.

G = (N, E, A,T)
(D.1−D.3)

P̌o

P̃o

P̆o

Pp

(2.21)

(2.22)

(2.23)

(2.29)

(2.31) (2.33)

˜̄P P̄t
p

Lumped Nodes

Spatially Distributed 

Nodes

PDE-ODE Coupled 

Models

Figure 2.4: Seven equivalent representations of the thermo-fluidic model along
with the references to their respective expressions.
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3 CHAPTER

Lumping Based Estimation and
Control of Thermo-Fluidic Processes

This chapter discusses an abstraction of thermo-fluidic processes by
neglecting the spatial variation of physical quantities. To this end,

the method of lumping is introduced. Using the lumping technique,
a version of digital twin is developed to describe the thermo-fluidic
processes. The digital twin is based on a graph-theoretic framework
where every individual edge describe the finite dimensional lumped
dynamics of the thermo-fluidic process in a solid or liquid component
and every edge describe the exchange of thermal energy among mutually
interconnected components. A technique is developed for implementing
soft sensor in the digital twin that estimates the liquid temperature solely
using the presence of piezoelectric elements without installing additional
devices. Using the digital twin, an output tracking anticipative feedback
controller is synthesized. The control implementation is made flexible so
that the user can vary the locations of the control inputs and the measured
outputs depending on application specific requirements.
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49



50 Lumping-then-design

3.1 Introduction

In 1873, James Clerk Maxwell introduced the idea of finding mechanical analogy
of electrical circuits. Since then, using an isomorphic notion of energy or power,
physical systems across electrical, mechanical, magnetic, and chemical domains
are often abstracted using an equivalent and interchangeable set of physical
quantities. For example, the voltage and current in electrical domain are
equivalent to force and velocity respectively in mechanical domain, as well as, to
chemical potential and molar rate respectively in chemical domain (c.f. [20]). The
motivation behind lumping stems from simplifying the derivation of physical
model by drawing such analogies among dynamical systems with equivalent
notion of energy or power. Especially in thermo-fluidic processes, the lumping
technique neglects the spatial distribution of the physical quantities in a system
and, therefore, replaces the infinite dimensional partial integro-differential
equations with finite dimensional ordinary differential equations. To this end,
temperature difference and entropy rate in thermal domain, and pressure and
volumetric flow rate in fluid domain respectively analogize the voltage and
current in electrical domain. The lumping technique has been successfully
applied to model and control climate inside a large-scale building in [83] and
[46], for geo-thermal reservoir engineering in [40], and for gas processing plants
in [71].

Concerning thermo-fluidic processes, one must capture the following three
phenomena by the means of lumping

1. Conduction: Heat transfer within solid components or via contact between
solid components.

2. Convection: Heat transfer between the solid component and liquid
component.

3. Advection: Heat transfer via bulk movement of the liquid from one
component to the other.

Similar to the RLC circuits, lumping based derivation of thermo-fluidic processes
involves determining the heat storage and heat dissipation in these three
phenomena and formulate a power balance among them. The governing model
is finite dimensional and, therefore, can be easily implemented in software and
hardware level. In Appendix 3.A, the equivalence between various
thermo-fluidic aspects and electrical domain is summarized.

Remark 3.1 (On the accuracy of lumping) Despite the simplicity of
implementation, lumping based model is still an approximation of the
spatio-temporal physical quantities. To verify the validity of neglecting spatial
distribution, modeling practitioners often use a dimensionless parameter, called
Biot number (Bi). Typically the approximation error due to lumping is
considered to be sufficiently small if the component’s Biot number admits
Bi ≤ 0.1 (c.f [11]). However, it has been demonstrated that the upper bound of
(Bi) for which the lumping is accurate largely depends on the material
properties, dimensions and the physical construct of the component (c.f. [52]).
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Contribution of this Chapter

This chapter contributes in the following aspects:

1. Based on the lumped model a data-drive soft sensor is developed that
utilizes the piezoelectric actuators at liquid channels for estimating liquid
temperature.

2. A reference-tracking model predictive controller is developed that makes
the controlled process to obey a specific performance criterion. While
synthesizing the controller, the user has the flexibility to change the
locations of the control inputs and the measured outputs, leading to a
flexible and user-friendly design tool.

3.2 Specifications of Lumped Model

In Chapter 2, the digital twin of thermo-fluidic processes has been modeled as a
finite graph, according to (D.1)-(D.3) (on page 23-24), that consists of lumped
nodes and spatially distributed nodes that are mutually interconnected in
arbitrary spatial structure. Due to lumping, in this Chapter, a spatially
distributed node also admits a lumped representation (may require experimental
validation for that). Hence, it suffices to consider the entire graph consisting only
lumped nodes. Following the notations and definitions In Chapter 2, this
requires a few relaxations on (D.1)-(D.3):

• All the Nodes Ni, i ∈ N[1,m] are lumped.

• Xi is empty for all i ∈ N[1,m].

• Whenever Ai,j = 1, the interconnection is only among lumped nodes.

• The interconnections between spatially distributed nodes and lumped
nodes are also omitted.

Remark 3.2 (On partitioning lumped nodes for better accuracy) The accuracy of
lumping largely depends on experimental verification on the values of Biot
number. By merely lumping every individual spatially distributed node by a
single lumped node, the accuracy of the model to describe the thermo-fluidic
processes can be seriously compromised. In such cases, the modeling framework
is built to be flexible towards further partitioning individual lumped components
into multiple lumped sub-components. Taking interconnection signals into
account, it can be partitioned into smaller identical nodes until the required
model accuracy is achieved in the graph. Once the required model accuracy is
achieved by partitioning, they are reconnected to the graph using interconnection
relations. The method of partitioning can be extremely useful for lumping longer
(with fast movement of liquid) liquid channels as shown in Figure 3.1.
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lr+3
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ld+lr+4

Tld+lr+4
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lr+4

lr+4
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ld+lr+3

ld+lr+3
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T

lr+5

lr+5

Figure 3.1: Example of partitioning of the liquid channels (given in blue
rectangles). For nodeN3,N4 andN5, there are additional indices (such
as ld, lr) that can be user-defined and the digital twin automatically
creates respective partitioned nodes. As a result of partitioning liquid
channels, the adjacent solid blocks (given in green rectangle) are also
partitioned.

Functionality of Feedback Based Lumped Analysis and Feedback Synthesis

As the underlying model is finite dimensional, there is a great body of
well-established literature available for addressing these problems. For example,
various system properties like well-posedness, and stability of spatially
interconnected linear systems are analyzed in [32, 27, 58], and in[41, 105] similar
analysis are performed for parameter varying systems. On the other hand,
graph-theoretic framework is used for synthesis of distributed robust H∞
controllers in [98], and controller design for identically modeled nodes is
addressed in [65]. Robust controllers for interconnected systems can also be
developed for discrete-time linear systems by following the framework in [32].

In this research, one of the major challenge is that controlling thermo-fluidic
processes must be achieved without introducing additional sensors or additional
actuators. Regardless of whether the aim is to design an estimator or a feedback
controller, it is therefore relevant to determine what can be considered as
measured outputs solely based on available resources. For example, consider the
two applications in inkjet printing. The fixation process already facilitates
temperature sensors that provides point-specific measurement of the
temperature. As a result, in the absence of full state information, these
point-specific temperature measurements can be utilized to design a state
estimator for the thermo-fluidic process and, subsequently, a feedback controller.
However, as seen in the jetting process, there is typically no sensor available to
measure the liquid temperature. Due to the absence of measured output signals,
implementing a feedback scheme to control the liquid temperature is not yet
possible. In the next exposition, this problem is circumvented by introducing a



3.3 Designing a Soft Sensor for Monitoring Thermo-Fluidic Processes 53

soft sensor based feedback scheme that can be applied to control liquid
temperature without the need of installing additional sensors.

3.3 Designing a Soft Sensor for Monitoring Thermo-
Fluidic Processes

For control, monitoring, and fault-diagnosis of the thermo-fluidic processes, it is
necessary to acquire real-time information about the liquid temperature.
However, this must be achieved without incorporating any additional sensors. It
has already been seen that typically piezoelectric elements are placed at liquid
channels for controlling the formation of droplets and their deposition (e.g. see
the jetting process in inkjet printing). It is well-known that piezoelectric elements
have self-sensing capabilities (c.f. [50, 5]). Therefore, a new role is assigned to the
already installed piezoelectric elements to make a soft sensing device from which
liquid temperature can be estimated. In this way, to control temperature of the
jetting liquid in an inkjet printer, every individual nozzle can be equipped with
collocated soft sensor.

Mechanism of Acoustic Sensing in Piezoelectric Element

Within the context of the jetting process, a piezoelectric element works in two
operating modes. For formation and deposition liquid droplets, the piezoelectric
element is in actuation mode where a sequence of trapezoidal voltage pulses
allows droplet formation and ejection [57]. Using the same piezoelectric element,
in sensing mode, one can capture the change in pressure oscillation and the nozzle
acoustics during and after the actuation [97]. The mechanism is also known as
acoustic sensing and the signal measured is called acoustic signal (Volt). The
acoustic signal provides useful information about the dynamics inside a nozzle
(c.f. [100, 49]).

By exploiting this self-sensing-actuation capability, in [100] and [50], two
different approaches are presented to simultaneously operate the piezoelectric
element in both actuation and sensing mode. However, these approaches require
power-consuming and expensive electronic hardware that make it difficult for
online implementation at every individual liquid channel [49](Chapter 3).
Moreover, these measurements are typically used for fault-diagnosis and
monitoring of the channel acoustics. For simpler hardware and its online
application as a temperature sensor, in this research, a time delay (tdelay) is
introduced between the actuation mode and sensing mode of the piezoelectric
element. Once the actuation pulse is applied, after the time delay, an external
trigger switches its operation to sensing mode, and the residual part of the
acoustic signal is captured. Figure 3.2 depicts this sequential actuation-sensing
scheme in an individual liquid channel.

To use the piezoelectric element at a liquid channel as a soft sensor for estimating
liquid temperature, this paper uses the residual acoustic signal. Experiment
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Liquid channel

tdelay
Input

Output

Figure 3.2: Sequential scheme for acoustic sensing.

shows that, at different temperature, there is a difference in the measured
acoustic signals which indicates that that the acoustic sensing signals can be used
for estimating liquid temperature (see figure 3.3).

Figure 3.3: Measured acoustic signal in a particular liquid channel at two different
liquid temperatures T ◦1 C, T ◦2 C, (see [28]).

Reconstructing Acoustic Sensing Signal

In view of figure 3.3, one can assume that the acoustic sensing signal consists of
discrete samples of a damped sinusoidal function:

y(n) = αe−ζnTs sin(ωnTs + φ) + γ; n ∈ N. (3.1)

With a fixed sampling time Ts, here, α > 0 denotes the amplitude (Volt), 0 < ω < π
the frequency (rad/sample), −π < φ ≤ π the phase shift (rad), γ the signal offset
(Volt) and ζ ≥ 0 the damping factor.

Let the finite samples of acoustic sensing signal be given as the set {sn | n ∈
N[1,N ]}, with the length of the data-set as 0 < N < ∞ and sampling period Ts
is fixed. The aim is to estimate the parameters α, ζ, ω, γ and φ such that (3.1)
optimally approximates the measured signal {sn | n ∈ N[1,N ]}. To this end, the
following algorithmic scheme is developed
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Algorithm 1 Estimating α, ζ, ω, γ and φ

1: Data: {sn, n ∈ N[1,N ]}
2: Unknowns: α, ζ, ω, γ, φ
3: Signal Generating model: z+ = Asz +Bsw, y = Csz

Step 1 – Finding poles of the signal generating model

4: Specify: L←
⌊
N
3

⌋

5: Hankel matrix: H ←




s1 . . . sL−1 sL
s2 . . . . sL sL+2

...
. . .

...
...

sN−L . . . . sN−2 sN−1

sN−L+1 . . . sN−1 sN




6: Optimal 2-rank approximation of H (singular value decomposition):

H ≈ UΣV H, Σ := diag(σ1, σ2), σ1, σ2 > 0

7: Define: U1 ← U [1 : N − L, :]
8: Define: U2 ← U [2 : N − L+ 1, :]

9: Determine: Ãs ← Σ−
1
2U1†U2Σ

1
2

10: for k = 1 and 2 do

11: Solve eigen value ρk and right eigen vector vk: (Ãs − ρk)vk = 0
12: return ρk
13: end for

Step 2 – Determine ω and ζ

14: for k = 1 or 2 do

15: ω ← Im(lnρk)
16: ζ ← Re(lnρk)
17: end for
18: return ω, ζ

Step 3 – Determine α, φ, and γ

19: Define: s← col(s1, · · · , sN )
20: for n ∈ N[1,N ] do

21: Γ[n, 1]← (ej(ω+jζ)nTs + e−j(ω−jζ)nTs)
22: Γ[n, 2]← j(ej(ω+jζ)nTs − e−j(ω−jζ)nTs)
23: Γ[n, 3]← 1
24: end for
25: Solve x̂ = arg min

x
||Γx− s||2:

x̂← (ΓHΓ)−1ΓHs

26: α← 2
√

Re(x̂[1] + jx̂[2])2 + Im(x̂[1] + jx̂[2])2

27: φ← Im(ln(x̂[1] + jx̂[2])).
28: γ ← x̂[3]
29: return α, φ, γ
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Proof: Proof of the algorithm is given in Appendix 3.B. �

Remark 3.3 (on the accuracy of Algorithm 3.1) One can compare the developed
algorithm against the conventional fast Fourier Transform (FFT) to judge the
quality of reconstructing y(n). Figure 3.4 shows this comparison.

Figure 3.4: Comparison of FFT and proposed algorithm to reconstruct y(n).

In Table 3.1, the estimated key parameters are compared. In spite of a little larger
computational time, due to increased accuracy, the proposed algorithm is
preferred over FFT.

Table 3.1: Key Parameters from the FFT, and Algorithm 3.1

Method ω α ζ φ γ time
(Mrad/s) (Volt) (-) (rad) (Volt) (s)

FFT 0.1475 166.49 0.0135 -2.8561 -0.8530 0.006
Algorithm 3.1 0.1460 173.26 0.0127 -2.8798 -0.7129 0.008

Reconstruction of (3.1) acts as a digital filter to improve the noise level on the
measured signal. Furthermore, the estimation of α, ζ, ω, γ and φ also offers a
online algorithm to monitor the dynamic behaviour inside liquid channels.

Estimation of Liquid Temperature Using Acoustic Energy-Temperature Curve

Experiments show that the liquid temperature has the closest relation with the
acoustic energy which is defined as the squared 2-norm of the estimated y(n),
||y(n)||22. One expects lower acoustic energy in a lower temperature, and higher
acoustic energy in a higher liquid temperature. To demonstrate that, for a specific
liquid channel, a characteristic relation between acoustic energy and liquid
temperature is established by using simulated data-sets at four operating points
of liquid temperature and executing Algorithm 3.1 to obtain acoustic energy
||y(n)||22. Figure 3.5 shows the corresponding energy-temperature curve.
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Figure 3.5: Example energy-temperature curve estimated with three operating
points of temperature.

Based on the energy-temperature curves, one can determine a parametric linear
model relating the acoustic energy and the liquid temperature. For an individual
liquid channel that is equipped with piezoelectric element, let the
energy-temperature characteristic curve be modeled as:

xi = miφi + ci. (3.2)

Here, for ith channel, xi is the liquid temperature and φi is the acoustic energy.
The unknown parameters mi, ci ∈ R are obtained by fitting the respective
energy-temperature curve. Every time a liquid droplet is jetted from a nozzle,
thereafter, it can be followed by measuring the acoustic signal. The acoustic
signal is modeled as (3.1) and its energy φi is determined using Algorithm 3.1.
Subsequently, the corresponding liquid temperature xi is obtained from (3.2). As
a result, with the help of piezoelectric elements, this procedure allows to measure
liquid temperature without installing additional sensors.

3.4 Synthesizing a Model Predictive Controller for
Thermo-Fluidic Processes

One of the performance limiting aspects of thermo-fluidic processes is the
fluctuation in liquid temperature among adjacent liquid channels ( e.g.
temperature fluctuation among nozzles in a printhead and among adjacent
printheads). The only resources the controller has to use are a) the prior
knowledge about the flow pattern, b) the lumping based digital twin to
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anticipate and predict the evolution of thermo-fluidic process, and c) the soft
sensor as feedback information on the temperature at specific liquid channels.

Model for Control

Here, one can directly consider the following behavior, defined in (2.23) on
page 37.

P̃o :=





col
(

(m̆px, w̆, ŭ), (x), (n̆px, z̆, y̆)
)
| ∀t ∈ [0,∞),




n̆px(t)
z̆(t)
y̆(t)
ẋ(t)


 =




Ẽnm(t) Ẽnw(t) Ẽnu(t) G̃nx(t)

D̃zm(t) D̃zw(t) D̃zu(t) C̃zx(t)

D̃ym(t) D̃yw(t) D̃yu(t) C̃yx(t)

B̃xm(t) B̃xw(t) B̃xu(t) Ãxx(t)







m̆px(t)
w̆(t)
ŭ(t)
x(t)








. (3.3)

Here,

• m̆px and n̆px are set to be empty.

• D̃zw(t), D̃zu(t) are set to zero and C̃zx(t) is set to a constant matrix H .

By performing time discretization of (3.3) on the sampled set T = {ktd|k ∈ N∪{0}}
with a fixed sampling period td > 0, {P̃o | m̆px = ∅, n̆px = ∅, D̃zw(t), D̃zu(t) =

0, C̃zx(t) = H,∀t ∈ T} can re-written as the following discrete-times state space
model

[
Qt(x)(t)
y(t)

]
=

[
Ã(t) B̃(t)

C̃(t) D̃(t)

] [
x(t)
u(t)

]
+

[
G(t) +W (t)d(t)

J(t)

]
. (3.4)

Now, the vector x(t) has to be understood as discrete samples and Qt(x)(t) :=

x(t + td), t ∈ {ktd|k ∈ N ∪ {0}}. In (3.4), Ã(t), B̃(t), C̃(t), D̃(t) are discretized
version of D̃yu(t), C̃yx(t), B̃xu(t), and Ãxx(t).

Moreover, the discretized version of D̃yw(t)w̆(t) is J(t) and the discretized
version of B̃xw(t)w̆(t) is G(t) + W (t)d(t). Purpose of such definitions is required
to make the method applicable for applications related to inkjet printing. For
example, during jetting, d(t) ∈ Rnd are the known disturbances in terms of
thermal power (in Watt) exerted by every individual piezoelectric actuator. Their
values are known or can be experimentally determined.

The digital twin is made flexible such that the user may choose among all the node
on which ones control inputs are applied, which ones’ states are sensed, and on
which ones external disturbances are applied. Therefore, the dimension of control
input signals u(t), measured output signals y(t) and disturbance signals d(t) are
considered to be time-dependent based on the user’s choice that may vary over
application, performance specifications or operational constraints. In particular,
at all times t ∈ T, the digital twin has the flexibility for the user to allocate the
following four time-varying set-valued maps.
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1. Sp(t): The set of nodes on which disturbances are acted on at time t. The
cardinality of the set is np(t).

2. Sh(t): The set of all nodes on which control inputs are applied at time t. The
cardinality of the set is nh(t).

3. Ss(t): The set of all nodes whose outputs are sensed at time t. The cardinality
of the set is ns(t).

4. Su(t): The set of all nodes that are neither in any of the above modes at time
t. The cardinality of the set is nu(t).

To map the total number of states to its allocated modes of operation, binary
matrices Sp(t) ∈ Rnu×np(t), Sh(t) ∈ Rnd×nh(t), and Ss(t) ∈ Rns(t)×ny are
introduced. Their (i, j)-th entries are:

Spi,j(t) =

{
1, i ∈ Sp(t), j ∈ N[1,np(t)]

0, otherwise.
,

Shi,j(t) =

{
1, i ∈ Sh(t), j ∈ N[1,nh(t)]

0, otherwise.
,

Ssi,j(t) =

{
1, i ∈ N[1,ns(t)], j ∈ Ss(t)
0, otherwise.

,

As a result, (3.4) is modified as
[
(Qt(x))(t)
ys(t)

]
=

[
Ã(t) B̃(t)Sh(t)

Ss(t)C̃(t) Ss(t)D̃(t)Sh(t)

] [
x(t)
uh(t)

]

+

[
G(t) +W (t)Sp(t)dp(t)

J(t)

]
. (3.5)

Here, at time t ∈ T, the control inputs uh(t) ∈ Rnh(t) are applied by the set of
heating nodes (in terms of thermal power, Watt). The disturbance dp(t) ∈ Rnp(t)

are applied in terms of thermal power (Watt). The sensed outputs ys(t) ∈ Rns(t)
are sensed liquid temperature by the set of sensing nodes (in terms of temperature,
◦C).

Formulating Operational Constraints

Let umax ∈ Rnu be the maximum admissible thermal power of a control actuator.
Since colling is not allowed in many applications, at every time instant t ∈ T,
control input must satisfy the constraint

0 ≤ Sh(t)uh(t) ≤ umax. (3.6)

No additional constraints on the state variable x(t) has been enforced.
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Specifying Control Criterion

Based on the user-defined performance criterion, let a vector of to-be-controlled
variables be defined as

z(t) = Hx(t), (3.7)

where, H ∈ Rnz×nx is a matrix depending on the choice of to-be-controlled
variables. The objective of the controller is to achieve a steady state reference
value zr ∈ Rnz for the to-be-controlled variable for all time t ∈ T.

At every time instant t = ktd with k ∈ N ∪ {0}, for a finite horizon of future time
instants t ∈ TkN where TkN := {ktd | k ∈ N[k,N+k]} and N > 0, a reference tracking
problem is formulated to minimize the following cost functional:

Jk:=
∑

t∈TkN

||x(t)− xr||2Qk(t) +
∑

t∈TkN−1

||uh(t)− ur(t)||2Rk(t). (3.8)

Here, for t ∈ TkN , the reference trajectories (xr, ur(t)) are pre-determined as the
solution of the following linear equations:

xr =Ã(t)xr + B̃(t)Sh(t)ur(t) +G(t) +W (t)Sp(t)dp(t),

zr =Hxr. (3.9)

Moreover, for all t ∈ TkN , one must pre-define the time-varying weights Qk(t) ∈
Rnx×nx , Rk(t) ∈ Rnh(t)×nh(t) in (3.8) to penalize the deviation of states and inputs
from their respective references.

Formulating Model Predictive Control Scheme

A digital controller is required that minimizes (3.8) by using future prediction on
the states in (3.5) while satisfying the constraints in (3.6). To this end, a reference-
tracking model predictive control (MPC) scheme is presented.

At every time instant t = ktd with k ∈ N ∪ {0}, let any function f(t) be defined
as f0|k := f(ktd). From its initial value f0|k, over a finite horizon of future time
instants t ∈ TkN with N > 0, the value of f(t) at instant k + i is denoted by
fi|k := f((k + i)td). Starting from the time step ktd, the N -horizon MPC scheme
amounts to minimizing the following cost functional (c.f. [63])

J(k, x̄k, ū
h
k) := ||xN |k − xr||2Qk+

N−1∑

i=0

(
||xi|k − xr||2Q + ||uhi|k − uri|k||2Ri|k

)
, (3.10)

subject to the following constraints:

xi+1|k = Ãi|kxi|k + B̃i|kS
h
i|ku

h
i|k + G̃i|k, i ∈ N[0,N−1], (3.11a)
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Ei|ku
h
i|k ≤ b, i ∈ N[0,N−1], (3.11b)

FN |kxN |k ≤ bN |k, (3.11c)
x0|k = x(ktd). (3.11d)

Here, for i ∈ N[0,N−1],

G̃i|k =Gi|k +Wi|kS
p
i|kd

p
i|k,

Ei|k =col(−Shi|k, Shi|k),

b =col(0, umax).

For all t ∈ TkN , the reference trajectories (xr, ur) are determined by solving (3.9).
The weights Q ∈ Rnx×nx , Ri|k ∈ Rnh(t)×nh(t) are user-defined matrices. The
terminal penalty Qk ∈ Rnx×nx in the cost (3.10) and FN |k, bN |k in the terminal
constraint (3.11c) are specifically chosen to ensure stability of the closed-loop
system [68].

The above constrained optimization problem is solved for every k over the
horizon ktd, . . . (k + N)td of N future time samples. The sequence of predicted
states and future inputs are denoted as x̄k := {x1|k, · · · , xN |k} and
ūhk := {uh0|k, · · · , uhN−1|k} respectively. If the minimizer of the optimal control
problem (3.10)-(3.11) is denoted by ūh∗k := {uh∗0|k, · · · , uh∗N−1|k}, then its first entry
uh∗0|k is implemented as control input at time step t = ktd. Subsequently, on a
receding horizon, the optimal control problem is solved again at step (k + 1)td
using x0|k+1 = x((k + 1)td) as its initial state. In a receding horizon fashion, this
procedure is continued iteratively over all time t ∈ {ktd | k ∈ N ∪ {0}} [62].

One may substitute the equality constraint (3.11a) in (3.10) to eliminate the
variables {x0|k, · · · , xN |k} from the optimization problem. This results in the
following dense linearly constrained quadratic programming (LCQP) problem:

Problem Description 3.1 (Dense LCQP)

arg min
Uk

1

2
U>k GkUk + U>k Wk (3.12a)

subject to LkUk ≤ Vk, (3.12b)

where,

Gk = 2(Γ>k ΩkΓk + Ψk),

Wk = (2Γ>k ΩkΦk)x0|k + 2Γ>k ΩkΞk − Λk,

Λk = −2Γ>k ΩkX
r
k − 2ΨkU

r
k ,

Lk = M̄Γk + Ēk,

Vk = b̄− M̄Φkx0|k − M̄Ξk,

x0|k = x(k),
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with

Φk=




Ã0|k
Ã1|kÃ0|k

...
ÃN−1|k · · · Ã0|k


 , M̄=




0 · · · 0
0 · · · 0
...

. . .
...

0 · · · FN |k


 ,

Ēk=




E0|k · · · 0
...

. . .
...

0 · · · EN−1|k
0 · · · 0


 , b̄=




b
b
...

bN |k


 ,

Γk=




B̃0|k 0 · · · 0

Ã1|kB0|k B̃1|k · · · 0
...

...
. . .

...
ÃN−1|k · · · Ã1|kB̃0|k ÃN−2 · · · Ã2|kB̃1|k · · · B̃N−1|k




Ξk=




G̃0|k 0 ··· 0

Ã1|kG̃0|k G̃1|k ··· 0

...
...

. . .
...

ÃN−1|k··Ã1|kG̃0|k ÃN−2|k··Ã2|kG̃1|k ··· G̃N−1|k







1
1
...
1


 .

Here, the decision variables are the to-be-applied control input
Uk = col(uh0|k, · · · , uhN−1|k). Moreover, Xr

k = col(xr, · · · , xr) and
Urk = col(ur0|k, · · · , urN−1|k) are the reference values for states and inputs
respectively. Moreover, Ψk := diag(R0|k, · · · , RN−1|k) and
Ωk := diag(Q, · · · , Q,Qk).

The following result summarizes convergence properties of the resulting
controlled system.

Theorem 3.1 (Stability of MPC) Let the matrices Ri|k ∈ Snh(t)
�0 , Q ∈ Snx�0 are

given for all time t ∈ TkN . Moreover, let Xk ∈ Snx�0 and Yk ∈ Rnh(t)×nx satisfy
the following linear matrix inequality (LMI)




−Xk 0 ÃN |kXk + B̃N |kYk 0
0 −R−1

N |k Yk 0

(ÃN |kXk + B̃N |kYk)> Y >k −Xk Xk

0 0 Xk −Q−1


 4 0. (3.13)

Furthermore, let (3.12) have a unique minimizer U∗k := {uh∗0|k, · · · , uh∗N−1|k}
under the following conditions:

1. The terminal weight matrix Qk admits Qk = X−1
k
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2. The terminal constraint FN |kxN |k ≤ bN |k admits

FN |k = EN |kKk; bN |k = b− urN |k + EN |kKkx
r,

where, Kk = YkX
−1
k , EN |k = col(−ShN |k, ShN |k), and b = col(0, umax).

Then, setting uh(ktd) = uh∗0|k, there exists a δ > 0 for which every initial
condition ||x(0) − xr||2 < δ and every solution to (3.5), k → x(ktd), admits
lim
k→∞

||x(ktd)− xr||2 = 0.

Proof: The proof is included in the Appendix 3.C. �

3.5 Academic Case Study

The methodologies developed in this chapter are demonstrated by developing a
digital twin and applying the soft-sensor based controller on the academic case
study shown in Figure 3.6.

(a) Cross-sectional Schematics (b) Graph Structure

Figure 3.6: Example of a thermo-fluidic process. represents a solid component,
represents a liquid component for inlet. is an edge

describing conductive exchange of thermal energy between two solid
components or a solid and liquid component. is an edge
describing convective thermal energy due to the inflow of liquid along
the inlet channels. is an edge describing convective thermal
energy due to the re-circulation of liquid along the return channels.

Here, the liquid tank L1 has a time-varying inflow of Qin(t) m3/s and outflow
of Qr(t). Every individual nozzle Ln1, Ln2, Ln3 has liquid return flow with a
time-varying inflow rate QNi(t), and return flow rate QOi(t) for i ∈ {1, 2, 3}. For
assigning the job-specific flow parameter, liquid channels are considered as pipes.
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The fluid exhibits in-compressible nature and the continuous flow of the liquid
causes no change of the liquid level inside each channel. Thus the mass balance
equation results in the following algebraic relations.

Qin(t) =Qr(t) +

3∑

i=1

QNi(t),

QNi(t) =QOi(t); i = 1, · · · , 3. (3.14)

3.5.1 Implementing the Digital Twin

Graph

There are six nodes; N := {NS1,NS2,NL1,NLn1,NLn2,NLn3}.

Topology

The adjacent matrix A ∈ R6×6 is defined as follows

A =




0 1 1 0 0 0
1 0 1 1 1 1
1 1 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0




(3.15)

It is evident that the topology of Lni is identical for i = {1, 2, 3}. In other words,
topologically, there is no difference in the interconnection between any of the three
nozzles and the rest of the graph. This is a major advantage for building graph-
theoretic model.

Node dynamics

Using the equivalence between electrical and thermo-fluidic domain in Appendix
3.A, in the following items, the thermo-fluidic processes are derived per node:

NS1: Its temperature TS1 (◦C) is influenced by convection with NL1 and
conduction with NS1 according to the following equation of energy
conservation

CS1
dTS1

dt
=Hd,1(TS2 − TS1) +Hv,1(TL1 − TS1).
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Substituting the expressions of Hd,1, Hv,1, one obtains

mS1cS1
dTS1

dt︸ ︷︷ ︸
Thermal storage

=
1

Rtot︸︷︷︸
Conduction

(TS2 − TS1) +
NuL1 · kL1

DhL1
AS1−L1

︸ ︷︷ ︸
Convection

(TL1 − TS1).

(3.16)

Here, the equivalent thermal resistance is Rtot = lS1

AS1−S2kS1
+

lg
AS1−S2kg

+
lS2

AS1−S2kS2
.

NL1: Its temperature TL1 (◦C) is influenced by advection and convection
according to the following equation of energy conservation

CL1
dTL1

dt
=Hv,1(TS1 − TL1) +Hv,2(TS2 − TL1) +Ha,1(t)(Tin − TL1).

In other words,

mL1cL1
dTL1

dt︸ ︷︷ ︸
Thermal storage

=
NuL1 · kL1

DhL1
AS1−L1

︸ ︷︷ ︸
Convection

(TS1 − TL1) +
NuL1 · kL1

DhL1
AS2−L1

︸ ︷︷ ︸
Convection

(TS2 − TL1)

+ ρincin(Qr(t) +

3∑

i=1

QNi(t)

︸ ︷︷ ︸
Advection

(Tin − TL1)). (3.17)

NLni: For individual liquid nozzle NLni i ∈ {1, 2, 3}, the governing equation is
identical. Hence, as an example, the governing equation of temperature TLni
(◦C) for node NLni is

CLni
dTLni
dt

=Hv,ni(TS2 − TLni) +Ha,ni(t)(TL1 − TLni).

mLnicLni
dTLni
dt︸ ︷︷ ︸

Thermal storage

=
NuLni · kLni

DhLni
AS2−Lni

︸ ︷︷ ︸
Convection

(TS2 − TLni) + ρL1cL1QNi(t)︸ ︷︷ ︸
Advection

(TL1 − TLni).

(3.18)

To obtain the thermo-fluidic model of every individual nozzle, one simply
has to repeat (3.18) by substituting the physical parameters with index i ∈
{1, 2, 3}.

NS2: This node is connected with all of the other nodes. Similar to NS1, it
temperature, TS2 (◦C), is governed by the following equation of energy
conservation:

CS2
dTS2

dt
=Hd,1(TS1 − TS2) +Hv,2(TL1 − TS2) +

3∑

i=1

Hv,ni(TLni − TS2)
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mS2cS2
dTS2

dt︸ ︷︷ ︸
Thermal storage

=
1

Rtot︸︷︷︸
Conduction

(TS1 − TS2) +
NuL1 · kL1

DhL1
AS2−L1

︸ ︷︷ ︸
Convection

(TL1 − TS2)+

3∑

i=1

NuLni · kLni
DhLni

AS2−Lni
︸ ︷︷ ︸

Convection

(TLni − TS2) (3.19)

Remark 3.4 By construction, modularity is a key attribute in the thermo-fluidic
process. As the dynamics and topological interconnection of every individual
nozzle is identical with respect to the entire graph, the digital twin simply requires
repetition of identical models based on the number of nozzles.

State-space representation of a node

For example, for NS1, the temperature evolution can be re-written as




ṪS1

nS1,S2

nS1,L1

qS1


 =




(Hd,1+Hv,1)
CS1

Hd,1
CS1

Hv,1
CS1

1 0

1 0 0 0 0
1 0 0 0 0
0 0 0 0 0







TS1

mS1,S2

mS1,L1

pS1


 ,

[
mS1,S2

mS1,L1

]
=

[
0 0 1 0
0 0 0 1

]



nS1,S2

nS1,L1

nS2,S1

nL1,S1


 ,

pS1 =qS1. (3.20)

Interconnection Structure

The interconnection relation m̆xx = M̆xxn̆xx is given below.



mS1,S2

mS1,L1

mS2,S1

mS2,L1

mS2,Ln1

mL1,S1

mL1,S2

mLni,S2

mLni,L1




︸ ︷︷ ︸
m̆xx

=




0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0




︸ ︷︷ ︸
M̆xx




nS1,S2

nS1,L1

nS2,S1

nS2,L1

nS2,Ln1

nL1,S1

nL1,S2

nL1,Lni

nLni,S2




︸ ︷︷ ︸
n̆xx

(3.21)

For brevity, only one nozzle, NLni, is considered and it can be repeated for i ∈
{1, 2, 3}. This is again a major advantage for building the digital twin. Irrespective
of the number of nozzles, as they have identical dynamics and identical topology,
up-scaling the model is a straightforward task.
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Now, one can easily build the representation by eliminating signals (m̆xx, n̆xx) or
(p̆, q̆).
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3.5.2 Soft Sensing Based Model Predictive Control

The MPC scheme is applied to the digital twin of the system described in figure
3.6. The objective of the controller is to achieve a fixed temperature of 70◦C at at
each of the three nodes {NLn1,NLn2,NLn3}. To this end, the following
specifications are considered:

Control Scenarios

Two scenarios are conceptualized in terms of choosing on which nodes the control
input (in terms of thermal power, Watt) is applied:

• Scenario 1: Individual heating inputs are applied on the solid node NS1.

• Scenario 2: Individual heating inputs are applied on each of the three liquid
nodes {NLn1,NLn2,NLn3}.

Setting Up the Digital Twin of the Model

1. The job-specific flow parameter are given in figure 3.7. The recirculation
flow rate Qr(t) is considered to be zero.
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Figure 3.7: Assigned flow parameters. For NLn1 and NLn2, the flow parameters
are chosen to be identical

2. With known parameter trajectories, the model of every individual node is
considered in discrete time by choosing the T = {ktd | k ∈ N ∪ {0}} with
td = 0.01 seconds. Euler’s approach is used for time discretization due to its
sparse and structure preserving implementation ([92], page 4).

3. For implementing the soft-sensor, for every individual NLni, same energy-
temperature curve as shown in figure 3.5 is parametrized as (3.2). As there is
no real-time data yet available in the simulation, the digital twin simulates
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the thermo-fluidic model over time, and the temperature of every individual
nozzle is subsequently cross-evaluated using the soft-sensor.

4. The sets Sp(t) and Ss(t) is chosen to include every individual NLni . Based
on whether NS1 or every individual NLni is heated for control, Sh(t) is
determined. This determines the matrices Sh(t), Sp(t), Ss(t), Su(t). The
model for control (3.5) is built subsequently. The unmeasured states are
automatically replaced by the corresponding state-updates from the model.

5. The maximum allowable control input is chosen to be umax = 20 Watt in
control scenario 1. In control scenario 2, umax = 1 Watt.

Solving MPC Scheme

Using (3.5), The prediction model is built over the time horizon t ∈ TkN where
TkN := {ktd | k ∈ N[k,N+k]}. Here, N = 10. In (3.10), the weights Q and Ri|k
are chosen as diagonal matrices. Here, the diagonal entries in Ri|k are chosen
significantly higher than that of Q to strictly penalize the deviation of inputs from
its reference values.

The optimization problem in (3.12) is solved by the freely available mpcqpsolver
using the interior point method. Once the optimization yields the optimal control
inputs, they are applied to the heating piezoelectric actuators by means of non-
jetting voltage pulses. The MPC then repeats the same procedure over the entire
bit-map iteratively.

Results

Once the MPC is applied, the closed loop responses are shown in figure 3.8 and
figure 3.9 for control scenario 1 and 2 respectively. It demonstrates that the
performance specifications are met while satisfying the constraints. Comparing
the results of control scenario 1 and 2, it is observed that scenario 2 outperforms
scenario 1 due to the presence of collocated configuration of sensor and actuator
at every individual NLni. This is also evident by comparing the tracking error in
Table 3.2. It has not been yet explored what can be a suitable actuation
mechanism that needs to be employed for heating every individual NLni.
Nevertheless, the conceptualization of control scenario 2 and its better
performance will be crucial for successful application of the developed methods
in inkjet printing.

Table 3.2: Comparison of performance between two control scenarios

Controller Scenario Root Mean Square Error [◦C] Max Absolute Error [◦C]

NLn1 NLn2 NLn3 NLn1 NLn2 NLn3

1 0.767 0.953 0.849 0.89 1.1210 0.9212
2 0.0026 0.0027 0.0072 0.0069 0.0102 0.0158

https://nl.mathworks.com/help/mpc/ref/mpcqpsolver.html
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Figure 3.8: Closed loop simulation results of control scenario 1 with heating
inputs applied to NS1
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Figure 3.9: Closed loop simulation results of control scenario 2 with heating
inputs applied to every individual NLni.
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3.6 Closing Remarks

Lumping based finite dimensional model is used in graph-theoretic framework
to develop a modular, flexible and versatile digital twin of the thermo-fluidic
processes. Owing to modular structure of the graph, upscaling the digital twin in
case of identically modeled nodes is a major advantage of the presented
methodology. Moreover, the digital twin is equipped with four equivalent
representations of the thermo-fluidic model and the user has the complete
freedom to choose any one of these for simulations, fault diagnosis, monitoring
and control.

One major challenge of the thermo-fluidic processes is the restrictions of not
using additional sensors and additional actuators. To realize the possibility of
applying feedback controller in case of no measured outputs, a soft sensing
mechanism is presented that uses the presence of collocated piezoelectric
elements to estimate liquid temperature in a corresponding channel. Using the
developed soft-sensors, a reference tracking model predictive control scheme is
developed for the digital twin. While implementing the controller, user has the
flexibility to change the locations of the control inputs and the measured outputs.
The digital twin is implemented for the academic case study and the controller is
applied. It is observed that collocated sensing and actuation in every individual
liquid channel provides better performance than applying control inputs to the
solid components.



Appendices

3.A Equivalence Between Thermo-Fluidic and
Electrical Domain

Table 3.A1 summarizes the types of thermal power in a thermo-fluidic process
and corresponding equivalence in electrical domain.

Table 3.A1: Equivalence between thermo-fluidic and electrical domain

Type Phenomena Electrical current Electrical component

Dissipation
Conduction ∆Ts

( ls
ksAs

)
Resistance = ls

ksAs

Convection ∆Tsl
(

Dl
NuklAl

)
Resistance = Dl

NuklAl

Advection ∆Tl
( 1
ρlclQl

)
Resistance = 1

ρlclQl

Storage Capacity mscs
dTs
dt or

mlcl
dTl
dt

Capacitance = mscs or
mlcl

Dissipation Valve ∆p
R Resistance = 8µl

πr4

Storage Tank A
ρg

dp
dt Capacitance = A

ρg

Storage Mass ρL
A
dQ
dt Inductance = ρL

A

Here, ∆Ts, ∆Tl, and ∆Tsl represents the difference of temperature between two
solid components, between two liquid components and between a solid and a
liquid component respectively. The temperature of solid component and the
liquid component are Ts and Tl. For a fluid, ∆p denotes the gradient of pressure
p and Q denotes the volumetric flow. The physical parameters for solid and
liquid (s, l) are either known for a specific material or derived experimentally
(e.g. see [72]).
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3.B Proof of Algorithm 3.1

Proof: Consider a class of stable, second-order, single-input-single-output
systems that has the following representation:

z(n+ 1) =Asz(n) +Bsw(n),

y(n) =Csz(n). (3.25)

Here, for n ∈ N ∪ {0}, z(n) ∈ R2 is a vector with two internal states and w(n) ∈ R
is the applied impulsive input. The output signal y(n) ∈ R is modeled as (3.1).

y(n) = αe−ζnTs sin(ωnTs + φ) + γ; n ∈ N.

Step 1: Determining the poles

The first task is to find an estimate of the state matrix As ∈ R2×2. To this end, the
Hankel matrix is constructed using the data {sn, n ∈ N[1,N ]} as follows:

H =




s1 . . . sL−1 sL
s2 . . . . sL sL+2

...
. . .

...
...

sN−L . . . . sN−2 sN−1

sN−L+1 . . . sN−1 sN




= ON−L+1RL,

where, the observability matrix ON−L+1 and the reachability matrix RL are
defined as

RL :=
[
Bs AsBs · · · AL−1

s Bs
]
,ON−L+1 :=




Cs
CsAs

...
CsA

N−L
s


 .

Remark 3.5 (shift property of observability matrix)

O1
N−L+1As = O2

N−L+1,

where, O1
N−L+1 =




Cs
CsAs

...
CsA

N−L−1
s


 and O2

N−L+1 =




CsAs
...

CsA
N−L
s


.

As, we are interested in a second order system, let the optimal 2-rank
approximation of the Hankel H be given by

H ≈ UΣV H, Σ := diag(σ1, σ2), σ1, σ2 > 0.



3.B Proof of Algorithm 3.1 75

In other words,
H ≈ UΣ

1
2︸ ︷︷ ︸

ON−L+1

Σ
1
2V H

︸ ︷︷ ︸
RL

.

Now, using the shift property we obtain:

Ãs = Σ−
1
2U1†U2Σ

1
2 ,

where Ãs = T−1AsT for an unknown matrix T . As the poles of the system does
not change of under similarity transformation, the two poles of As are found by
solving the eigen value ρk and right eigen vector vk, k = 1, 2:

(Ãs − ρk)vk = 0

Determine ω and ζ

Using the system poles, we find the frequency ω and the damping ζ as follows:

• Natural Frequency: ω = Im(lnρk), k = 1 or 2.

• Damping : ζ = Re(lnρk), k = 1 or 2.

Determine α, φ, and γ

The amplitude α, the phase φ and the shift γ are found by reconstructing the signal
sn using computed values of ω, ζ. In particular:

y(n) = αe−ζnTs sin(ωnTs + φ) + γ = (a+ jb)ej(ω+jζ)nTs + (a+ jb)∗e−j(ω−jζ)nTs + γ.

= a

(
ej(ω+jζ)nTs + e−j(ω−jζ)nTs

)
+ jb

(
ej(ω+jζ)nTs − e−j(ω−jζ)nTs

)
+ γ.

(3.26)

Here, a = α
2 sinφ and a = α

2 cosφ are the unknowns coefficients and γ is the
unknown offset. Using the data at samples {0, · · · , N − 1}, the unknowns can be
found by solving the following linear equations:

s = Γx, (3.27)

Here, the unknowns are x := col(a, b, γ), s := col(s1, · · · , sN ) is the data.
Moreover the matrix is defined as

Γ := col
( [

(ej(ω+jζ)nTs + e−j(ω−jζ)nTs) j(ej(ω+jζ)nTs − e−j(ω−jζ)nTs) 1
] )

n∈N[1,N]

that depends on ω and ζ, and . An unbiased minimum variance solution of (3.27),
x̂ := col(â, b̂, γ̂), accepts the following analytic expression:

x̂ = (ΓHΓ)−1ΓHs. (3.28)
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Using computed x̂, the amplitude (α) and phase (φ) of the signal (3.1) are
computed as follows:

• Amplitude: α = 2

√
Re(â+ jb̂)2 + Im(â+ jb̂)2.

• Phase : φ = Im(ln(â+ jb̂)).

• Offset : γ = γ̂.

The computed values of α, ζ, ω, γ and φ parametrize and reconstruct the signal
y(n) in (3.1). �

3.C Proof of Theorem 3.2

Proof: Regarding the presented tracking control problem, asymptotic stability is
understood with respect to the following non-autonomous error system:
(
x((k + 1)td)− xr

)
= Ã(ktd)

(
x(ktd)− xr

)
+ B̃(ktd)

(
uh(ktd)− ur(ktd)

)
.

(3.29)

The asymptotic stability of the (3.29) in closed-loop amounts to verifying whether
there exists δ > 0 such that lim

k→∞
||x(ktd)− xr|| = 0 for all initial condition ||x(0)−

xr|| < δ while uh(ktd) is applied by solving the MPC problem. To this end, using
Lyapunov theory (c.f. [18]), we show that the MPC cost functional J(k, ·, ·) at
instant k, once substituted with unique minimizer x̄∗(k) := col(x∗1|k, · · ·x∗N |k) and
ūh∗k := {uh∗0|k, · · · , uh∗N−1|k}, is a candidate Lyapunov function.

It is now possible to construct an input and state trajectory x̄f(k+1), ūf(k+1) such
that the MPC problem at time k + 1 is feasible (not necessarily optimal) with cost
J f(k + 1, x̄f(k + 1), ūf(k + 1)). Here,

x̄f(k + 1) = col
(
x∗2|k, · · ·x∗N |k, xf

N |k+1

)
,

ūf(k + 1) = col
(
uh∗1|k, · · ·uh∗N−1|k, u

f
N−1|k+1

)
,

where, xf
N |k+1, u

f
N−1|k+1 are future state and input to be determined by MPC at

iteration k + 1. Similar to the dual mode formulation as proposed in [90], we
construct the predicted terminal input at time step k + 1 as a stabilizing state
feedback law for (3.29). In other words,

(xf
N |k+1 − xr) =

(
ÃN |k + B̃N |kKk

)
(x∗N |k − xr).
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uf
N−1|k+1 = Kk(x∗N |k − xr) + urN |k.

Owing to the convexity and positivity of the objective function, for proving
stability, it is sufficient to show that the feasible cost functional is contractive over
time samples. In other words,

J f(k + 1, x̄f(k + 1), ūf(k + 1)) < J(k, x̄∗(k), ūh∗(k))

Substituting the respective expressions, we obtain

J f(k + 1, x̄f(k + 1), ūf(k + 1))− J(k, x̄∗(k), ūh∗(k))

= −||x0|k − xr||2Q − ||uh0|k − ur0|k||2R0|k
− ||x∗N |k − xr||2Pk

+ ||x∗N |k − xr||2Q + ||Kk(x∗N |k − xr)||2RN|k + ||(AN |k +BN |kKk)(x∗N |k − xr)||2Pk .
(3.30)

Since the first two terms in the RHS of (3.30) is negative, we require to satisfy the
following inequality for the contraction of the cost functional:

(ÃN |k + B̃N |kKk)>Pk(ÃN |k + B̃N |kKk)− Pk 4 −Q−K>k RN |kKk, Pk � 0

Using changes of variables Xk = P−1
k , Yk = KkP

−1
k and using the rule of Schur

complement we obtain the following LMI:




−Xk 0 ÃN |kXk + B̃N |kYk 0
0 −R−1

N |k Yk 0

(ÃN |kXk + B̃N |kYk)> Y >k −Xk Xk

0 0 Xk −Q−1


 4 0, Xk � 0.

The corresponding control input uf
N−1|k+1 = Kk(x∗N |k − xr) + urN |k should also

be an admissible control action. In other words, uf
N−1|k+1 should satisfy the

following constraint:

EN |k(Kk(x∗N |k − xr) + urN |k) < b

This amounts to the following terminal constraint on xN |k:

EN |kKkxN |k < b− urN |k + EN |kKkx
r

�
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4 CHAPTER

Approximating Diffusive
Thermo-Fluidic Processes

This work presents a novel and generic framework to describe, model
and solve a network of thermo-fluidic processes over an arbitrary

interconnection in space. Here, a graph-theoretic framework to model
thermo-fluidic diffusion processes are viewed as a network of distributed
parameter systems. A three-step procedure has been proposed to reduce
such a network to a finite dimensional system while preserving the
boundary conditions. The first step in this method is to separate the effect
of external boundary inputs and in-domain inputs in the solution. In the
second stage, multivariable solutions are decomposed and approximated
as spectral expansions of spatially and temporally varying functions. The
third step involves deriving reduced order solutions using approximation
techniques. We specifically exploit the orthogonality of the basis functions
to obtain an optimal reduced order model. The viability of the developed
procedure is illustrated through simulation results under physically
realistic scenario.
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4.1 Introduction

The model that describes thermo-fluidic processes is often derived using
conservation laws of mass and energy. However, by definition, these processes
involve coupled behavior of solid and fluid substances (see [66]). Due to the
difference in their physical structure, the energy exchange between a solid body
and fluid is significant when their physical interaction is allowed. In this chapter,
the focus is on a specific class of such thermo-fluidic processes where the mutual
interaction among various solids and fluids is dominantly diffusive. The
diffusive process is typically defined by a phenomenon in which matter is
transported from one part of the matter (higher concentration) to another part
(lower concentration) as a result of random motions of the molecules (see [56]).
The diffusive thermo-fluidic processes are observed in numerous engineering
applications. For example, in the commercial printing and packaging industries,
the drying of paper or cardboard typically involves heat and moisture diffusion
through composite materials [9]. In food processing technology, the drying of
food items consists of the diffusion of liquid ingredients under the influence of
external heat sources. In semiconductor industries, the doping of impurities in
an intrinsic semiconductor involves diffusion of n or p-type species in the
different layer of semiconducting materials [75]. In these applications in mind,
there are three salient features of the underlying processes.

• The processes are dominantly diffusive in nature.

• There exist interactive spatio-temporal phenomena among multiple
physical quantities that are possibly coupled.

• There exists simultaneous interaction of various materials (solids and fluids)
in a spatially distributed structure.

The models that describe the diffusive thermo-fluidic processes are governed by
a set of coupled linear partial differential equations (PDEs), well-known as
diffusion-transport-reaction equations (see [66]). A detailed derivation of such
PDEs using conservation laws of mass and energy can be found in [16]. In
practice, these PDEs are commonly approximated using numerical schemes that
result in a finite-dimensional model that approximates the infinite-dimensional
behavior of the underlying process. Moreover, due to the parabolicity of these
models, approximation techniques are typically consistent and convergent,
resulting in a well-posed finite-dimensional model [82]. As a result, once these
models are approximated into finite-dimensional systems, engineers have
numerous well-developed methods at their disposal to choose from and build
the digital twin’s functionalities on the basis of an approximated model of
diffusive thermo-fluidic processes.

Despite the well-established theories on the analysis and approximation of
diffusion-transport-reaction type PDEs, little research has been carried out that
explicitly takes the spatial interconnection and corresponding energy exchange
into account during approximation. For example, in [43], [10], the model for
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chemical processes is modeled as a diffusion equation. But the coupled effect is
neglected. In [21], [79], the coupled heat and moisture diffusion is considered.
Still, this model has not been extended to the diffusion processes in spatially
interconnected networks. In [7] and the references therein, a detailed account is
provided of various numerical approximation and reduction techniques.
However, most of these techniques are focused on methods that are only
applicable to the decoupled, single variable models and the models without
spatial interconnection.

Contribution of this Chapter

This chapter proposes a computational procedure to approximate diffusive
thermo-fluidic processes in an arbitrary geometrical configuration. When the
physical parameters of the thermo-fluidic processes are known, a three-step
procedure is developed to derive an approximated model that preserves the
interaction among connected thermo-fluidic processes. Specifically, developed
numerical scheme is consistent with respect to the boundary conditions that
describes the mutual interactions among different thermo-fluidic processes.
Once the approximated model is developed, it can be used for building
functionalities of the digital twin for the assets that are governed by diffusive
thermo-fluidic processes.

4.2 Specifications for Diffusive Thermo-Fluidic
Processes

In Chapter 2, the digital twin’s model describing thermo-fluidic processes is
formulated as a finite graph, according to (D.1)-(D.3) (on page 23-24). The graph
consists of lumped nodes and spatially distributed nodes that are mutually
interconnected in arbitrary spatial structure. In this Chapter, the graph is
considered to have only spatially distributed components and every individual
of them is governed by coupled diffusion-transport-reaction equations.
Following the notations and definitions In Chapter 2, the following relaxations
are imposed on (D.1)-(D.3):

• All the Nodes Ni, i ∈ N[1,m] are spatially distributed nodes.

• Xi is non empty and Xbc
i = {ai, bi} for all i ∈ N[1,m].

• Whenever Ai,j = 1, the interconnection domain XIi,j ⊆ Xi ∩Xj is defined on
the common boundary points. Hence, XIi,j ⊆ {ai = bj , bi = aj}.

• For every individual node Ni according to (D.2), state-variables only consist
of functions that maximally twice differentiable with respect to the spatial
variable. Hence, all the governing PDEs are parabolic.

• The effect of boundary conditions in the dynamics are excluded.
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• Output operators (both measured and regulated) only include bounded
integral operators, excluding the boundary values.

• From the boundary conditions, periodic boundary conditions are excluded.

• There is no interconnection between lumped and spatially distributed
nodes.

• Between Ni,Nj , only bidirectional interconnection takes place in terms of
interconnection boundary conditions (see (2.8) on page 30).

Following the scaling of spatial domain and grouping all the node and edge
signals as per Chapter 2, the coupled representation of thermo-fluidic processes
are given on a uniform domain [a, b] by {Pp | m̄px, n̄px,x1,x0 = ∅}, where Pp is
defined in (2.29) on page 41.

Definition 4.1 (Behavior of diffusive thermo-fluidic processes)

Given matrix valued functions Ā0, Ā1, Ā2, B̄xw, B̄xw, C̄ai, C̄bi, C̄ci for i ∈ {zx, yx},
and constant matrices D̄zw, D̄zu, D̄yw, D̄zu, define

(Āpx2)(s) := Ā0(s)
[
x2

]
(s) + Ā1(s)∂s

[
x2

]
(s) + Ā2(s)∂2

s

[
x2

]
(s)

(C̄zxx2)(s) :=

b∫

a

(
C̄azx(s)

[
x2

]
(s) + C̄bzx(s)∂s

[
x2

]
(s) + C̄czx(s)∂2

s

[
x2

]
(s)

)
ds

(C̄yxx2)(s) :=

b∫

a

(
C̄ayx(s)

[
x2

]
(s) + C̄byx(s)∂s

[
x2

]
(s) + C̄cyx(s)∂2

s

[
x2

]
(s)

)
ds

(B̄xww̄)(s) :=B̄xw(s)w̄, (B̄xuū)(s) := B̄xu(s)ū. (4.1)

Then, the behavior of diffusive thermo-fluidic processes are defined by the
subspace Pd such that

Pd=





col
(

(w̄, ū), (x2), (z̄, ȳ)
)
| ∀t ∈ [0,∞),

col (z̄, ȳ) ∈ R
∑m
i=1 n

i
z × R

∑m
i=1 n

i
y , x is Fréchet differentiable,


w̄(t)
ū(t)
x2(t)


 ∈ Xd

dom,



z̄(t)
ȳ(t)
ẋ2(t)


 =



D̄zw D̄zu C̄zx
D̄yw D̄zu C̄yx
B̄xw B̄xu Āp





w̄(t)
ū(t)
x2(t)








, (4.2)
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and

Xd
dom=







w̄(t)
ū(t)
x2(t)


 ∈

m∏

i=1

(
Rniw+niu ×Hni2

2 [a, b]

)
,

[
B̄w B̄u −B̄

]




w̄(t)
ū(t)

x2(a, t)
x2(b, t)
∂sx2(a, t)
∂sx2(b, t)




= 0





. (4.3)

where, the rank of B is
m∑
i

2ni2.

4.3 Finite-Dimensional Approximation of Diffusive
Thermo-Fluidic Processes

The purpose of describing the physical model and input-state-output
representation as in (4.2) is to utilize the model and systematically build
functionalities for diffusive thermo-fluidic processes. To this end, this chapter
focuses explicitly on determining a finite-dimensional approximation of behavior
(4.2) such that standard results from systems and control theory of
finite-dimensional system can be directly used.

Here, the main challenge is that the boundary conditions on the external
boundary points as well as the interface points have to be satisfied in the
finite-dimensional behavior. Moreover, the external boundary conditions are
perturbed by external inputs w(t), u(t) that adds additional difficulties. If one
refers to the state of the art finite element methods, few approaches tackle these
issues. For example, to handle mixed boundary conditions and inputs at the
boundaries a common practice is to use lifting functions to approximate
(non-homogeneous) boundary conditions (see [82], Chapter 3). To handle
spatially interconnected PDEs, recently domain decomposition approach has
been widely used (see [42], Chapter 3 for an overview). However, the boundary
conditions at the interface are not explicitly invoked in the finite element method;
instead, they are approximated by using a locally dense mesh around the
interface boundary.

In approximation methods, the fundamental idea is to project the
infinite-dimensional PDE model onto a finite-dimensional subspace. This
requires a) projection of infinite-dimensional signals (in this case, functions x2)
on to a subspace denoted by V , with V ⊂ Xd

dom, b) projection of PDE dynamics
(4.1) on to another subspace denoted by V , with W ⊂ Xd

dom. Definition of V and
W requires a specific choice on basis functions that span the respective
subspaces. As Xd

dom restricts the evolution of functions by enforcing boundary
conditions (4.3) as explicit constraints, a meaningful approximation (projection)
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can only be guaranteed when the basis spanning the subspace V and W also
satisfies (4.3). Moreover, the boundary conditions are perturbed by inputs that
are user-defined, making the boundary conditions even more crucial while
developing approximation methods for PDEs. In the remainder of this section, a
three step procedure is developed that can be followed to select specific basis
functions that span Xd

dom satisfying the boundary conditions, to find a finite
dimensional subspace on which the signals as well the PDEs can be projected.

4.3.1 Step 1: Separation of Solution and Homogenization

The main difficulty arises from the fact that external inputs are present at the
boundary conditions (4.3). In the first step, the task would be to rewrite the
spatio-temporal functions x2 in (4.1) by means of direct sum of two separate
functions: one of them is explicitly governed by the boundary inputs and the
other one is governed by the PDE model (4.1) when no input is present at the
boundary.

Theorem 4.1 (Separation of Solution)

Let w̄ ∈ C1(T,R
∑m
i=1 n

i
w), ū ∈ C1(T,R

∑m
i=1 n

i
u).

Then, col
(

(w̄, ū), (x2), (z̄, ȳ)
)
∈ Pd if x2(s, t) admits the following

decomposition

x2(s, t) = z(s, t) + f(s, t) (4.4)

if the following two statements hold true:

(i). There exists a linear map col (w̄, ū) 7→ f such that

f(s, t) = F (s)

[
w̄(t)
ū(t)

]
, (4.5)

where, F : [a, b] → R(
∑m
i=1 n

i
2)×(

∑m
i=1 n

i
w+
∑m
i=1 n

i
w) is defined as linear

functions in s, i.e. F (s) = F1s + F2. Here, F1, F2 are full-rank constant
matrices that satisfies the following matrix equalities

B̄




F1a+ F2

F1b+ F2

F1

F1


 =

[
B̄w B̄u

]
. (4.6)

(ii). There exists function z : [0,∞) →
m∏

i=1

H
ni2
2 [a, b] that satisfies the
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following differential equations

ż(s, t) =(Apz)(s, t) +B1(s)

[
w̄(t)
ū(t)

]
+B2(s)

[
˙̄w(t)
˙̄u(t)

]
(4.7)

where Āp is defined according to (4.1), B1(s) = Ā1(s)F1 + Ā0(s)F1s +
Ā0(s)F2 +

[
B̄xw(s) B̄xu(s)

]
and B2(s) = F1s+ F2.

Moreover, (4.7) is subject to the following constraints

B̄




z(a, t)
z(b, t)
∂sz(a, t)
∂sz(b, t)


 = 0. (4.8)

Proof: The proof is obtained by substituting x2(t) = z(t) + f(t) into (4.2)-(4.3). �

Theorem 4.1 suggests an explicit splitting of the solution trajectories f(t) and z(t)
while each of their evaluation is completely independent from each other with
neither of them having any boundary constraint affected by inputs. Precisely,
z(s, t) must satisfy (4.7) which is also a variant of coupled
diffusion-transport-reaction equations, however, perturbed by external inputs
w̄(t), ū(t) as well as their time derivatives ˙̄w(t), ˙̄u(t) while constrained by the
boundary conditions(4.8) (independent of boundary inputs). On the other hand,
f(t) is considered to be linear functions that can be obtained by finding F1 and F2

using set of linear matrix equalities (4.6) (which are independent of inputs).

4.3.2 Step 2: Spectral Decomposition of z(s, t)

The analytical expression of f(s, t) can be explicitly found by solving the linear
matrix equalities (4.6). Now, in this subsection, the focus is on determining the
functions z(s, t).

To this end, first, the spectral properties of (4.7) is investigated

Lemma 4.1 For s ∈ [a, b], t ∈ [0,∞), let z : [0,∞)→ dom(Āp) satisfy

(Āpz)(s, t) = Ā0(s)
[
z
]

(s, t) + Ā1(s, t)∂s
[
z
]

(s, t) + Ā2(s)∂2
s

[
z
]

(s, t), (4.9)
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where Ap is a self-adjoint operator with

dom(Āp):=





z(t) ∈
m∏

i=1

H
ni2
2 [a, b],

B̄




z(a, t)
z(b, t)
∂sz(a, t)
∂sz(b, t)


 = 0,

B̄ ∈ R2
∑m
i=1 n

i
2×4

∑m
i=1 n

i
2 has full rank





. (4.10)

Then there exists ωn ∈ C and functions 0 6= Φn ∈ dom(Āp) such that the
following equality holds true for every n ∈ N

ĀpΦn = ωnΦn. (4.11)

Moreover,
Re(ω1) ≥ Re(ω2) ≥ · · · ≥ · · · ≥ Re(ω∞).

Proof: The proof can be found in [36]. Also see [23], Chapter 4. �

Remark 4.1 Note that, for general class of PDEs as described in Chapter 2 to
define spatially distributed nodes do not facilitate the outcome of Proposition 4.1.
Even, when a diffusion-transport reaction equation is defined on semi-infinite
domain, the spectrum of operator Āp is not separable anymore ([23], Chapter 4).

Proposition 4.1 has two crucial implications on finding a solution of z(s, t).

1. Every single eigenvalue ωn and eigenfunctions Φn satisfy (4.8) and can be
treated independently form other n ∈ N.

2. Eigenfunctions {Φn | n = 1, · · · ,∞} defines basis for the space dom(Āp).

Now, the functions z(s, t) are rewritten as an infinite sum where each component
of the sum is a product of spatial basis functions (which is chosen to be the eigen
function) and a time-varying coefficient as follows

z(s, t) =

∞∑

n=1

Θn(t)Φn(ωn, s). (4.12)

As span{Φn | n = 1, · · · ,∞} = dom(Āp), every individual term in the solution
decomposition (4.12) explicitly satisfies the boundary conditions (4.8). In
principle, for every n ∈ N, Φn(ωn, s) is determined by solving the eigenvalue
problem (4.11) subject to the constraints (4.10). However, for general definition of
(4.9), finding actual values for ωn and an analytical expression of Φn(s) is not
always possible.
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Parametrization of Basis Functions Φn

Instead of directly solving the eigenvalue problem (4.11) subject to the constraints
(4.10), a specific structure is enforced on Φn(s) that allows one to express them
using any user-defined analytic functions while still satisfying (4.10).

For every n ∈ N, Φn and Θn are defined as

Φn(ωn, s) := col

(
φni(ωn, s)

)

i∈N
[1,
∑m
i=1

ni2]

, Θn(t) := diag

(
θni(t)

)

i∈N
[1,
∑m
i=1

ni2]

.

(4.13)

Here, every scalar function φni is defined according to

φni(ωn, s) = αnifni(ωn, s) + βnigni(ωn, s). (4.14)

Remark 4.2 In the definition of φni, fni and gni are twice differentiable and
anlaytic functions and are left to be chosen by the user. On the other hand, (4.10)
imposes 2(

∑m
i=1 n

i
2) boundary conditions on (

∑m
i=1 n

i
2) number of φni(ωn, s)

leaving two boundary conditions for every individual φni(ωn, s). As a result, in
(4.14), {ani, bni} are kept as free scalar parameters (can also be viewed as two
independent degrees of freedom) that can be solved to enforce the boundary
conditions in (4.10).

Based on the paraemtrization of Φn(s) and Θn(t), z(s, t) =
∞∑
n=1

Θn(t)Φn(ωn, s)

consists of the following items for every n ∈ N

• The user-defined or preselected basis functions fni(ωn, s) and gni(ωn, s).

• The unknwon scalar ωn.

• The unknown coefficients αni, βni. For every n ∈ N, there are 2(
∑m
i=1 n

i
2)

coefficients that are unknown.

• The unknwon temporal functions θni(t). For every n ∈ N, there are
∑m
i=1 n

i
2

temporal functions that are unknown.

Solving for ωn

The boundary conditions (4.8) are restrictions on the spatial distribution on the

solution z(s, t) =
∞∑
n=1

Θn(t)Φn(ωn, s) that must hold for all t ∈ [0,∞). Hence,
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using superposition principle, for every n ∈ N, one obtains:

B




Θn(t)Φn(ωn, a)
Θn(t)Φn(ωn, b)

Θn(t)∂sΦn(ωn, a)
Θn(t)∂sΦn(ωn, b)


 = 0 (4.15)

The collection of all the algebraic relations (4.15) ensures that there are in total∑m
i=1 2ni2 number of equations. Rearranging all of these

∑m
i=1 2ni2 equations

together, one gets
Γn(ωn)Ξn(t) = 0. (4.16)

Here Γn(ωn) is a square matrix nonlinearly parametrized by ωn. The time
dependent vector and Ξn(t) := col

(
θni(t)αni, θni(t)βni

)
i∈N

[1,
∑m
i=1

ni2]

. Therefore,

all the unknwon ωn are found in the matrix Γn and all the unknwon
θni(t)αni, θni(t)βni are found inside the vector Ξn. Let Ξn(t) be uniquely defined
for every n ∈ N. Then, Ξn(t) must be the non-trivial one dimensional nullspace of
Γ(ωn). This essentially suggests that the determinant of Γn(ωn) is zero. Therefore,
for every n ∈ N, finding ωn amounts to the following minimization problem:

min
ωn∈C

|det
(

Γn(ωn)
)
| (4.17)

In spectral analysis, the equation det(Γn(ωn)) = 0 is often referred to as the
transcendental equation. And ωn, n ∈ N is one of its roots (there are infinitely
many of them).

In numerical analysis, finding roots of det(Γn(ωn)) = 0 is typically solved by
standard root finding routines (see [104] for a detailed overview about solving
transcendental equations). An iterative bisection search is used in this chapter
on a coarse grid over the complex plane. This allows to search for points that
approximately equates det(Γn(ωn)) to zero.

Solving for αni, βni

Once individual ωn is determined, the unknwon vector Ξn(t) is uniquely defined
according to (4.16). However, finding every αni, βni from Ξn(t) depends on the
choice of structuring Ξn(t) := col

(
θni(t)αni, θni(t)βni

)
i∈N

[1,
∑m
i=1

ni2]

. In fact, the

choice of parametrization for Φn and Θn is important for a feasible and unique
set of αni, βni for all t ∈ T. What is shown next is that arbitrary choice of
parametrization for Φn and Θn does not necessarily provide unique αni, βni by
solving (4.16). To verify that the feasibility of uniquely determining αni, βni is
tested for three distinct parametrizations of Φn and Θn.

• Case 1

A possible structure of (4.12) would be to consider identical basis functions for
every element in Φn(s). In other words, φni(ωn, s) = φnk(ωn, s) = φn(ωn, s) for
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any i, k and for all s ∈ [a, b]. In other words,

z(s, t) =

∞∑

n=1

Θn(t)φn(ωn, s). (4.18)

• Case 2

Another choice of parametrization is to keep the same structure as (4.13), i.e.
different basis functions and different temporal coefficients for all the elements in
z. Precisely,

z(s, t) =

∞∑

n=1

Θn(t)Φn(ωn, s). (4.19)

• Case 3

The third choice would be to consider identical temporal functions θn(t) for each
element in Θn(t) and keep different basis functions in Φn(ωn, s). In other words,
θni(t) = θnk(t) = θn(t) for any i, k. As a result z takes the following form

z(s, t) =

∞∑

n=1

θn(t)Φn(ωn, s). (4.20)

To assess feasbility of solving unique αni, βni from (4.16), let the following
definitions be introduced.

Definition 4.2 (Feasible parametrization)

If there exists a unique and constant Ξn(t independent) that satisfies (4.16) for
all t ∈ [0,∞), then the unique αni, βni defines a feasible parametrization of basis
Φn(ωn, s) according to (4.13)-(4.14).

Lemma 4.2 Among various cases, the solution decomposition in (4.20) leads
to a feasible parametrization ∀t ∈ [0,∞)

Proof: In Case 1, φn(s) = αnf(ωn, s) + βng(ωn, s). Hence,

Ξn(t) := col
(
θni(t)αn, θni(t)βn

)
i∈N

[1,
∑m
i=1

ni2]

. Evidently, it is not feasible to

uniquely solve for constant two parameters αn, βn.

In Case 2, Ξn(t) := col
(
θni(t)αni, θni(t)βni

)
i∈N

[1,
∑m
i=1

ni2]

. It is only possible to solve

for unique and constant αni, βni if and only if all θni(t) are known. Hence, the
decomposition (4.19) leads an over parametrization and, hence, not feasible.
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In Case 3, as θn(t) is a scalar, Ξn(t) := col
(
αni, βni

)
i∈N

[1,
∑m
i=1

ni2]

for all t ∈ [0,∞).

Now, one has
∑m
i=1 2ni2 unknwons and they can be found uniquely by solving

(4.16) for every n ∈ N. �

As a result, the expansion in (4.20), where all temporal functions are identical, is a
suitable choice for finding unique basis functions {Φn|n ∈ N}. This completes the
determination of all basis functions {Φn|n ∈ N} and only remaining unknowns
are θn(t).

4.3.3 Step 3: Approximation of Solution and Finding θn(t)

So far, a suitable method has been found to determine and parametrize the
solution z(t) according to

z(s, t) =

∞∑

n=1

θn(t)Φn(s). (4.21)

The basis functions Φn(s) are defined according to (4.13) and, at this stage, they
are known. However, the scalar function θn(t) are still unknown and there are
infinitely many of them. Here, such infinite-dimensional solution expansion is
projected onto a finite-dimensional basis using Galerkin projection (see [8]).

To this end, define a residual operator R according to

R(z, w̄, ū, ẇ, u̇) :=
∂z

∂t
− (Āpz)(t)−B1

[
w̄(t)
ū(t)

]
−B2

[
˙̄w(t)
˙̄u(t)

]
= 0. (4.22)

A finite-dimensional model is obtained by projecting both z in (4.21) and R in

(4.22) on a finite dimensional subspace ZH of
m∏

i=1

H
ni2
2 [a, b]. To this end, let the

inner product on
m∏

i=1

H
ni2
2 [a, b] is defined as

〈F,G〉L2
:=

b∫

a

J>(s)G(s)ds

for all functions J(s), G(s) ∈
m∏

i=1

H
ni2
2 [a, b].

Let, ZH be a H dimensional subspace spanned by the first H basis functions, i.e.
{Φn(s) | n = 1, · · · , H}. Hence, the finite-dimensional approximation of (4.22) is
given by solution ẑ(s, t)

ẑ(s, t) =

H∑

n=1

θn(t)Φn(s). (4.23)
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that satisfies
〈

Φm,R(ẑ, w̄, ū, ẇ, u̇)

〉

L2

= 0; ∀m ∈ {1, · · · , H}. (4.24)

Here, the equation (4.24) represents a H-dimensional state space model of (4.22).
Equation (4.24) can be rewritten as a finite dimensional system that has the
following representation

ẋ(t) = Āx(t) + B̄1

[
w(t)
u(t)

]
+ B̄2

[
ẇ(t)
u̇(t)

]
, (4.25)

where, x(t) := col (θn(t))n∈{1,··· ,H}, and Ā :=

〈
Φm, Āpẑ

〉

L2

∀m ∈ {1, · · · , H}.

Similar definition goes for B̄1 and B̄2. One can now solve for
x(t) := col (θn(t))n∈{1,··· ,H} from (4.25) using any stable time-marching method.
Once, ẑ is found, the approximation of original solution x2 for which
col
(

(w̄, ū), (x2), (z̄, ȳ)
)
∈Pd is x̂(s, t) such that

x̂(s, t) =

H∑

n=1

θn(t)Φn(s) + F1(s) + F2. (4.26)

Note that the output equations in the definition of Pd can also be performed in a
similar fashion.

Once a finite dimensional approximated mode is found, the entire set of tools
presented in Chapter 3 is directly applicable.

4.4 Academic Case Study: Heat Diffusion in
Composite

To demonstrate the discussed methodologies, approximation of one dimensional
heat diffusion model in a composite material is considered. The composite
material is a non-homogeneous substance which is constructed by
interconnecting layers of different materials [9]. The simulation of heat diffusion
in such a structure allows to analyze the thermal effects of different materials
when they are perturbed by external thermal disturbances.

Figure 1 illustrates a three-layered composite material in a spatially
interconnected structure.
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a1 = 0 m

b1 = a2 = 2 m

b2 = a3 = 4 m

b3 = 6 m

N1

N2

N3

Figure 1: Graph structure to study diffusion problem in a three-layered composite
material.

Topology

A finite and connected graph is defined as

G = (N, E, A,T).

Here, T = [0,∞), with N = {N1,N2,N3} and E = {E1,2,E2,1,E2,3,E3,2}. The
adjacency matrix A ∈ R4×4 is symmetric and defined as following:

A =




0 1 0
1 0 1
0 1 0


 .

Spatially Distributed Nodes

Every individual node Ni ∈ N, i ∈ N[1,3] is specified in following items

• X1 = [0, 2] (in m), X2 = [2, 4] (in m), X1 = [4, 6] (in m).

• Xbc
1 = {0} (in m), Xbc

2 = ∅, Xbc
3 = 6(in m).

Node Dynamics

The mathematical model of this heat conduction problem is given by the following
partial differential equation for each of the 3 layers for si ≤ s ≤ si+1 with i = 1, 2, 3
and t ≥ 0 as below:

∂2Ti(s, t)

∂s2
+

1

Ki
Qi(s, t) =

1

D2
i

∂Ti(s, t)

∂t
. (4.27)
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Here,

Ti(s, t) is the temperature in ith section.

D2
i = Ki

ρiCp,i
is the thermal diffusivity in the ith section.

Ki is the thermal conductivity of the ith section.

ρi is the density in the ith section.

Cp,i is the specific heat in the ith section.

Boundary Conditions

The corresponding boundary conditions on Xbc
1 and Xbc

3 are

K1
∂T1(0, t)

∂s
= h1[T1(0, t)− T0], (4.28)

K3
∂T3(6, t)

∂s
= −h1[T3(6, t)− Tout]. (4.29)

At the internal boundaries i = 1, 2, the media are subjected to following boundary
conditions:

−Ki
∂Ti(si+1, t)

∂s
= hi+1[Ti(si+1, t)− Ti+1(si+1, t)], (4.30)

Ki
∂Ti(si+1, t)

∂s
= Ki+1

∂Ti+1(si+1, t)

∂s
. (4.31)

Physical Parameters and Input Specifications

Table 1: Parameter values

Parameters i = 1 i = 2 i = 3
ρi(g/m

3) 11.08 2.71 7.4
Cp,i(cal/g

◦C) 0.031 0.181 0.054
Ki(cal/m

◦C) 297.64 1741.18 565.51
hi(cal/m

2◦C) 300 24000 15000

The external force is a distributed function Qi(s, t) = l(s)qi(t) where l(s) is an
indicator function representing how the heat is distributed over each layer. For
simplicity, we take uniform distribution of heat flow over each layer. That is

l(s) = 1; s ∈ {[s1, s2] ∪ [s3, s4]},
= 0; elsewhere.

(4.32)

Equation (4.32) indicates that we allow uniform heat flux over first and last layer,
where in middle layer no heat flux is provided.
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Finding the Eigen Functions

The basis functions φni(ωn, s) in (4.14) are solved by the following differential
equations

D2
i

d2φni(s)

ds2
+ ω2

nφni(s) = 0. (4.33)

One can prove that prove that φni(ωn, s) is an orthogonal function that admits the
following expression.

φni(ωn, s) = αni cos
(ωn
Di
s
)

+ βni sin
(ωn
Di
s
)
. (4.34)

Simulation

To simulate the spatio-temporal evolution of the temperature, presented
three-step method is compared with respect to the solution produced by PDE
toolbox in MATLAB that utilizes finite difference method (cf. [101]) on a
discretized domain. The comparison between these two simulation results is
given in Figure 2. Additionally, Figure 3 shows the temperature difference
between the three-step method and the finite difference method.

Figure 2: Temperature distribution of three-step method with dimension 20 (red
line) compared to the finite difference approach of dimension 50 (blue
dotted line) at four time instances. N1 is heated up with +50 watt/m2

and N3 is cooled down with -50 watt/m2.
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Figure 3: The temperature difference between the proposed method with finite
difference method.

Based on the Figure 2 and 3, the difference in temperature between two methods
is below ±0.2◦C. At the same time, with the proposed method, we are able to
achieve significant reduction in the dimension (20 compared to 50). The proposed
method also captures the mutual effect of simultaneously heating and cooling the
different layers.

4.5 Closing Remarks

A three step procedure is presented to approximate the infinite dimensional
behavior of diffusive thermo-fluidic processes in the presence of external inputs
that act on boundaries. The approximated finite dimensional model satisfies all
the boundary conditions by having two degrees of freedom on every basis
functions. As a result of this computational method of approximation, one can
apply analysis and control tools for finite dimensional systems on the
approximated version of diffusive thermo-fluidic processes.





5 CHAPTER

Estimation of Unknown Physical
Parameters in Diffusive

Thermo-Fluidic Processes

This chapter presents a frequency domain approach to estimate
spatially varying physical parameters of a one dimensional

diffusion-transport-reaction equation. A non-linear least squares
optimization of a frequency relevant criterion is proposed on the basis of
measurements from a limited number of sensors. Analytic expressions
of the Jacobian of the criterion function are exploited in an efficient
numerical scheme. The proposed method exploits the sparsity of the
underlying discretized model for a fast computation of the system
parameters. The performance of the proposed procedure is illustrated
by a number of simulation results. We demonstrate that the proposed
method is able to estimate a spatially varying profile of unknown physical
parameters in a realistic scenario.
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5.1 Introduction

Modeling and approximation of the diffusive thermo-fluidic processes requires
the knowledge of the spatially varying transport coefficients that are typically
unknown. As emphasized before, for instance, the printing process is localized in
space and time, which implies that diffusion, transport and reaction properties
are non-homogeneous over the material and vary with space. An experiment
based data driven approach is one way to determine the spatial distribution of
the unknown parameters using input-output data. To this end, in this chapter,
we propose a frequency domain approach to estimate the spatially varying
profile of diffusion-transport-reaction coefficients as well as the spatial
distribution of the input using measurements from a limited number of sensors.
The proposed method does not necessarily require the boundary conditions and
initial conditions to be known in advance. Moreover, the proposed method
provides a fast computation of the estimated physical parameters using algebraic
computation of the matrices. We utilize a) the signals in frequency domain, b) the
sparsity of a specific discretization of the model and c) the analytic expressions of
the Jacobian of the cost functional.

The application of diffusion-transport-reaction phenomena can be found in a
wide range of applications. For example, thermo-fluidic transport in composite
materials. In inkjet printing, the transport of ink through the printing media
involves diffusion phenomena with convective action [66]. In hydrology, the
study of the groundwater-surfacewater system involves the study of
diffusion-transport of water fluxes across the stream-bed (c.f. [86], [6]). In all
these applications, the diffusion-transport-reaction phenomena possess few
salient attributes. Namely, a) the physical parameters, e.g. diffusion coefficient,
transport coefficient and reaction coefficient, vary over the spatial configuration
and are typically unknown, b) the boundary conditions and the initial conditions
are often difficult to measure, and c) the spatial distribution of the external inputs
is unknown. The later problem is also known as source localization problems [4].

Many methods have led to the estimation of parameter profiles of PDEs. An
overview of these estimation methods is discussed in [13], [14] and the references
therein, and mainly focus on methods to identify constant and uniform system
parameters in time domain. Using the methodology introduced in [24], it is
possible to transfer these estimation problems into the frequency domain. This
method converts a PDE to a parameterized set of ordinary differential equations
(ODEs) which can be subsequently approximated or, in some cases, be solved
analytically. However, the unknown parameters are often non-linearly related to
these equations leading to a mathematically challenging problem. A new
methodology was developed in [96] to identify parameter profiles by
implementing sample maximum likelihood estimations. This method takes the
noise of both the input and the output into account but only considers the
estimation of constant parameter values.
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Contribution of this Chapter

This chapter contributes on the following aspects:

1. We consider the estimation of the spatially varying parameters in a single
one dimensional PDE describing diffusion, transport and reaction
phenomena.. The proposed method estimates spatially varying profiles of
the parameters using measurements from a limited number of sensors. The
method is versatile to simultaneously estimate the diffusion, transport and
reaction coefficients as well as the spatial distribution of the in-domain
input.

2. A frequency domain criterion is used which is optimized for the estimation
of all spatially distributed coefficients of the discretized PDE. The
computation is numerically efficient and completely algebraic involving
operations on sparse matrices. An analytic expression is derived for the
Jacobian of the cost criterion. This avoids the numerical calculation of
descent directions and significantly reduces computation time. In addition,
the use of the Jacobian increases the numerical stability of the estimation
procedure as well.

3. In frequency domain, the transient response due to the initial conditions can
be either compensated or we can wait till the transient response diminishes.
As a result, unknown prior knowledge about the boundary conditions and
the initial conditions does not affect the estimation algorithm. This makes
the proposed method realistic and easily applicable for experimental set-
ups.

5.2 Setting Up the Parameter Estimation Problem

Model

We consider diffusion-transport-reaction phenomena in a one dimensional (1D)
configuration space. The spatial domain is a bounded X := [a, b] ⊂ R and the time
axis is a subset of non-negative real numbers T := [0, ∞) ⊆ R≥0. For any given
pair (s, t) ∈ (X × T), the variable x2(s, t) is the governing physical quantity (e.g.,
temperature, mass concentration etc.) that evolves over space and time according
to a generalized version of the 1D diffusion-transport-reaction equation defined
by the following linear parabolic PDE

∂x2(s, t)

∂t
= Ā2(s)

∂2x2(s, t)

∂s2
+ Ā1(s)

∂x2(s, t)

∂s
+ Ā0(s)x2(s, t) + B̄xw(s)w̄(t). (5.1)

The physical parameters Ā2(s), Ā1(s) and Ā0(s) are sufficiently regular. Precisely,
Ā2(s) is the diffusion coefficient, Ā1(s) is the transport coefficient and Ā0(s) is the
reaction coefficient. Similarly, the input profile B̄xw(s) indicates the spatial
distribution of the in-domain actuators and w̄(t) is the corresponding variation of
inputs in time.
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Boundary conditions

The corresponding boundary conditions at s = a, s = b are considered to be
unknown.

Initial Conditions

The initial condition x2(s, 0) is also considered to be unknown. It is assumed that
the initial condition of the problem is compatible with the model and its
boundaries (c.f.[26]).

Measurements

The system is equipped with M sensors that measure x2 at specific locations
XM ⊂ X. In particular, a specific measured output is
ym(t) ∈ {x2(s1, t), · · · ,x2(sM , t)} where sm ∈ XM is the location of a sensor with
m ∈ {1, · · · ,M}. In case of unknown initial conditions, the transient response
can be removed from the forced response using advanced frequency domain
techniques such as the local polynomial method (e.g. see [39], or local rational
method [33].

Problem Definition

In this chapter, the problem amounts to estimating

γ(s) := col(Ā2(s), Ā1(s), Ā0(s), B̄xw(s))

as a function of s ∈ X from the input-output data {(w̄(t), ym(t)) | t ∈ T,m ∈
N[1,M ]} using the model (5.1). One may assume that γ : X → R4 belongs to a
function space Γ. For estimation purposes, we assume that Γ is parametrized by a
surjective mapping Π : Θ→ Γ defined on a real-valued parameter space Θ so that

γ(s) :=
[
Π(θ)

]
(s) (5.2)

belongs to Γ for any θ ∈ Θ. Therefore, the problem to determine the functions in
γ(s) amounts to estimating θ ∈ Θ in (5.2) using the measured output ym(t), and
the model that is governed by (5.1). The problem set-up is visualized in Figure 1.

5.3 Grey-Box Identification in Frequency Domain

In this section, the methodology to estimate θ ∈ Θ is described. In [13], the above
problem is solved in the time domain while the unknown parameters are
considered to be constant (uniformly distributed) over X. In this chapter, we
solve the equivalent problem using a frequency domain optimization criterion to
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•• • • •

w̄(t)s = a

•

s = b

s

ym(t)

Figure 1: Schematic of the problem set-up. • indicates the location of the sensors.

estimate non-uniform (spatially varying) distributions of the physical
parameters. Here, a frequency domain approach offers important advantages
over time domain approaches, especially for periodic inputs. Indeed,

• The periodicity of the measured output is implied by the periodicity of the
input due to the linear and time invariant nature of (5.1). Moreover, as a
direct consequence of the linearity in (5.1), the frequencies appeared in the
outputs retain the exact frequencies that are present in the excitation input.

• In the frequency domain, the signals are averaged over their periods
leading to a significant improvement on the signal to noise ratio. Moreover,
incorporating colored noise is easier in the frequency domain (but is not
considered in this chapter and kept as a future work).

Based on these observations, we formulate an optimal estimation problem in the
frequency domain. For the actuators, we select a finite number of frequency
points ω`, ` ∈ {1 · · · , H} to design the excitation signal w̄(t). As the governed
PDE in (5.1) is linear, the same frequency points appear in the measurements ym

as well. However, directly computing of the non-rational transfer functions and
estimating γ ∈ Γ will be computationally challenging as the unknown
parameters typically shows non-linear dependencies on the transfer function (for
an example see pp. 148 [95]). In this chapter, we propose to cast the estimation
problem into a finite dimensional discretized model of the PDE. The estimation
problem comprises four relevant aspects which are discussed in the following
subsections.

5.3.1 Parametrization of the unknown functions

In this section, we provide an explicit parametrization of γ(s). To this end, the
mapping Π in (5.2) is defined as an infinite sum of basis functions spanning Γ.



104 Parameter Estimation

Precisely,

γ(s) :=
[
Π(θ)

]
(s) =

∞∑

r=1

Br(s)θr, (5.3)

where θr ∈ Θ with Θ ⊂ R4. Then Π defines Γ by uniquely parametrizing
individual functions Ā2(s), Ā1(s), Ā0(s), and B̄xw(s). In particular,
Br(x) := diag(BDr (s), BUr (s), BKr (s), BPr (s)) are assumed to be given for all
r ∈ Z+ and θr := col(θDr , θUr , θKr , θPr ) ∈ Θ for all r ∈ Z+. Since this amounts to
estimating infinite sequences of θr, (5.3) is approximated by considering the first
R terms

γ(s) ≈
R∑

r=1

Br(s)θr. (5.4)

This means that the parameter set {θr ∈ Θ | 1, · · · , R} has become finite
dimensional. As a result, the parameters we need to estimate are
θ̄ := col(θ1, · · · , θR) ∈ Θ̄ ⊂ R4R.

5.3.2 Discretization procedure

A spatial discretization of (5.1) is presented to obtain an approximate finite
dimensional model. To this end, our goal is to achieve a sparse structure in the
finite dimensional model with a simpler parametric dependency so as to
numerically enhance the computation of the estimation problem. It is important
to note that the discretization grid can be increased to arbitrary precision. Instead
of to other methods, we show that the finite difference method (see [82]) leads to
a sparse state space model with linear-affine dependency of the unknown
parameters.

In a finite difference method, the spatial domain is discretized in N equidistant
points with a (homogeneous) grid sample ∆s > 0. In principle, this discretization
grid can be increased to arbitrary precision. Now, consider the sequence of
discrete points si with i ∈ {1, · · · , N} belonging to the sample set XD ⊂ X.
Additionally, we assume that XD contains XM , i.e., XD ∩ XM = XM .
Furthermore, since the boundary conditions are considered to be unknown, we
select we select them as additional inputs applied on the boundary of X. This
results in N − 2 first order ordinary differential equations when using a central
finite difference [82]. This leads to a finite dimensional state space model to
discretize (5.1) in the following form

ż = A(θ̄)z +B(θ̄)q,
ym = Cmz,

(5.5)

Where the state vector z := col(z2, · · · , zN−1) = col(x2(s2, t), · · · ,x2(sN−1, t))
represents x2(·, t) evaluated at each grid-point si for i = 2, · · · , N − 1. The
extended input vector is q(t) = col(w̄(t),x2(s1, t),x2(sM , t)). The matrix Cm has
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dimension 1× (N − 2) and measures x(·, t) at the mth sensor location. Precisely,

A(θ̄) =

R∑

r=1

[
θDr L

D
r + θUr L

U
r + θKr L

K
r

]
, (5.6)

B(θ̄)q(t) =

R∑

r=1

[
θDr g

D
r + θUr g

U
r

]
x2(s1, t)

+

R∑

r=1

[
θDr h

D
r + θUr h

U
r

]
x(sM , t) +

R∑

r=1

[
θPr f

P
r

]
w̄(t). (5.7)

Furthermore,

LDr =
1

(∆s)2
B̃Dr




−2 1 0 · · · · · ·
1 −2 1 · · · · · ·
...

...
... · · · · · ·

...
...

... · · · · · ·
· · · · · · · · · 1 −2



, (5.8)

LUr =
1

2∆s
B̃Ur




0 1 0 · · · · · ·
−1 0 1 · · · · · ·

...
...

... · · · · · ·
...

...
... · · · · · ·

· · · · · · · · · −1 0



, (5.9)

LKr = B̃Kr . (5.10)

Here, B̃Dr , B̃Ur and B̃Kr are diagonal matrices of dimension (N − 2)× (N − 2) with
the diagonal entries BDr (si), BUr (si), BKr (si) evaluated at each grid point si for
i = 2, · · · , N − 1.

fPr =col
(
BPr (s2), · · · , BPr (sN−1)

)
,

gDr =col
(BDr (s2)

(∆s)2
, 0, · · · , 0

)
,

gUr =col
(
− BUr (s2)

2∆s
, 0, · · · , 0

)
,

hDr =col
(

0, · · · , 0, B
D
r (sN−1)

(∆s)2

)
,

hUr =col
(

0, · · · , 0, B
U
r (sN−1)

2∆s

)
. (5.11)

The approximated Multi-input-single-output (MISO) rational transfer function
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mapping q to ym can be derived according to

Gm
(
ω`, θ̄

)
= Cm

(
jω`I −A(θ̄)

)−1
B(θ̄). (5.12)

As a result, the combination of a frequency domain approach and a suitable
approximation scheme facilitate such affine and sparse structure that can be fully
exploited while performing the optimization.

5.3.3 Specification of the cost functional

For each frequency point ω`, ` ∈ {1, · · · , H}, we have {(q(ωl), ym(ωl)) | m ∈
N[1,M ]} as available information from the experiments. On the other hand, we can
model the outputs of (5.1) using (5.12). The cost functional can be formulated in
terms of θ̄ to minimize a weighted sum of squared absolute errors between the
measured output and the modeled output. In other words,

Ṽ (θ̄) :=

H∑

`=1

M−1∑

m=2

| ym(ω`)−Gm(ω`, θ̄) q(ω`) |2
wmw`

. (5.13)

With some abuse of notation, ym(ω) denotes the Fourier transformation of scalar
signal ym(t). We have also incorporated user-defined weights wm > 0 and w` > 0
to penalize the relative error due to a specific sensor and a specific frequency point.
In the case of faulty or missing measurements, these weights can be adjusted to
incorporate prior information.

5.3.4 Optimization Procedure

In order to find an optimal θ̄ that minimizes (5.13), numerical solvers can be
employed that iteratively evaluate (5.13) starting from an initial guess of θ̄ and
finding the minimizer of (5.13) in a specific descent direction. Any gradient
based algorithm requires the Jacobian of (5.13) to be calculated iteratively for
finding the descent directions (see [74]). However, the Jacobian of (5.13) is
typically computed using numerical approximations. Here, we determine an
analytic expression of the Jacobian. Together with the sparsity of the matrices in
(5.5), this considerably enhances the numerical efficiency of gradient-based
methods to minimize (5.13).

Analytic expression of Jacobian

The cost functional in (5.13) can be rewritten as

Ṽ (θ̄) =

H∑

`=1

M−1∑

m=2

1

wmw`
(em` )

∗
(em` ), (5.14)
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where per frequency ω`, the point-wise error is

em` := ym(ω`)− Cm(jω`I −A(θ̄))−1B(θ̄) q(ω`), (5.15)

and (em` )
∗ is its adjoint. The Jacobian of Ṽ (θ̄) is defined as

J(θ̄) :=
∂Ṽ (θ̄)

∂θ̄
=
[
J1(θ̄) · · · Jr(θ̄) · · · JR(θ̄)

]
,

Jr(θ̄) :=
[
∂Ṽ
∂θDr

∂Ṽ
∂θUr

∂Ṽ
∂θKr

∂Ṽ
∂θPr

]
. (5.16)

Lemma 5.1 For given indices r ∈ {1, · · · , R}, 1 < R ∈ N and
k ∈ {D,U,K, P}, the Jacobian of Ṽ with respect to θkr can be expressed as

∂Ṽ

∂θkr
=

H∑

`=1

M−1∑

m=2

1

wmw`

[
Gkr
∗

+ Gkr
]
, (5.17)

with

GDr = −(em` )
∗
CmF (θ̄)LDr F (θ̄)B(θ̄)q

− (em` )
∗
CmF (θ̄)

[
0(N−2)×1 gDr hDr

]
q,

(5.18)

GUr = −(em` )
∗
CmF (θ̄)LUr F (θ̄)B(θ̄)q

− (em` )
∗
CmF (θ̄)

[
0(N−2)×1 gUr hUr

]
q,

GKr = −(em` )
∗
CmF (θ̄)LKr F (θ̄)B(θ̄)q,

GPr = −(em` )
∗
CmF (θ̄)

[
fPr 0(N−2)×1 0(N−2)×1

]
q. (5.19)

Here, F (θ̄) := [jω`I −A(θ̄)]−1 and Gkr
∗ represents the adjoint of Gkr . �

Proof: The proof is included in the Appendix 5.A. �

Another important aspect in calculating the Jacobian is the inverse in the
definition of F (θ̄). Here, the tri-diagonal structure of A(θ̄) can be exploited to
calculate a computationally efficient inverse using LU-factorization techniques
[31].

Algorithmic Aspects

To minimize the cost functional (5.13), we employ the Levenberg-Marquardt
algorithm (see [17], [64]). This algorithm is a combination of the gradient descent
method and the Gauss-Newton method to improve its robustness [17]. At a
particular iteration i, the descent direction hlm,i is formulated based on the
evaluated Jacobian and satisfies

(J∗J + λiI)hlm,i = J∗Ṽ (θ̄i). (5.20)
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The non-negative scalars λi can be adjusted over each iteration to adaptively
switch between a gradient descent method and the Gauss-Newton method [17].
A detailed analysis about this algorithm, its computational aspects and local
convergence is provided in [17]. Here, the analytic computation of the Jacobian
plays an important role. By exploiting the sparsity of the state space matrices, the
analytic expression of the Jacobian can produce a fast computation of descent
direction and accelerate the optimization.

5.4 Academic Case Study

This section describes the implementation of the proposed estimation algorithm,
presents simulation results, and briefly discusses the design choices. The
estimation algorithm is implemented in Matlab R©, which is computationally
optimized for solving sparse linear matrices [67]. The algorithm has been
implemented with two variations: a) with unknown but static boundary
conditions (without boundary inputs) and b) using the measurements from the
outer two sensors as approximated boundary inputs. Owing to the affine
parametrization of the basis functions in the state space model, the implemented
algorithm facilitates a modular structure such that any user-defined basis
functions can be easily implemented and tested.

5.4.1 Data Generation for the Case Study

In order to test the developed algorithm, we consider a simulation study that
mimics a real experiment for generating the input-output data. Here, we are
interested in estimating the thermal properties of a heterogeneous solid object. In
particular, for all x ∈ [0, 1], we are interested in determining the spatial profiles of
the diffusion coefficient D(x), the transport coefficient V (x), the reaction
coefficient K(x) and the locations of two adjacent heat sources P (x) on the basis
of the following PDE.

∂z

∂t
= D(x)

∂2z

∂x2
+ U(x)

∂z

∂x
+K(x)z + P (x)p(t). (5.21)

with boundary conditions ∂z
∂x (0, t) = 0 and z (1, t) = 0. The in-domain input p (t)

is a block-wave excitation signal (symmetric pulse train). We use the first four
Fourier modes of the block-wave.

In practice, the thermal source is often represented by a Gaussian function and
the thermal transport coefficients are represented by polynomial functions while
considering slab geometry (c.f. [34]). For the data generation using (5.21), we
consider the following profiles for {D,U,K},

Dsim (x) := 5x3 − 0.005x+ 5, (5.22)

U sim (x) := 15x2 − 0.005, (5.23)
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Ksim (x) := −3x. (5.24)

Additionally, we consider two heat sources located around x = 0.35 and x = 0.6
and defined by setting

P sim (x) := 0.2 +
7√
π

e
−(x−0.35)2

(0.1)2 +
5.6√
π

e
−(x−0.6)2

(0.1)2 . (5.25)

The problem set-up is equipped with M = 8 sensors inside the spatial domain
with the extremum two senors placed at x = 0.1967 and x = 0.8967, respectively.
These two extremum sensors are also considered as additional two inputs. The
input-output data can be generated by simulating the model (5.21) along with
(5.22)-(5.25) on a discretized spatial domain Xd and evaluating it on the
measurement set XM . Specifically, the discretization grid Xd is chosen such that
the measurement set XM is a subset of Xd. As the estimation procedure considers
the initial conditions to be unknown, the measurement data is collected after the
transient is settled.

5.4.2 Estimation Results

For estimating the real-valued functions D,U,K, P defined on X = [0, 1], we use
the simulated input-output data that is generated in the previous subsection. The
estimation procedure has no knowledge about the initial and boundary
conditions of the data generating system. In principle, the implementation of the
estimation algorithm is generic such that any user-defined basis can be
incorporated as a shape function for the unknown parameters. Here, we directly
include the prior knowledge about the shape of the unknown functions in the
estimation of {D,U,K, P}. This prior knowledge about the shape of the physical
coefficients is a reasonable consideration as far as practical applications are
concerned. In practice such an estimation procedure is preceded by various
physical experiments that provide useful information about the profile of the
unknown parameters. Therefore, using only the prior knowledge about the
shape of the unknown parameters, we choose polynomial basis functions to
parameterize {D,U,K}. To parametrize P , we use b-spline functions where the
basis functions Bsr (x) are designed using de Boor’s recursion formula [30] with
13 control points. Precisely,

D(x) =

8∑

r=1

xr−1θDr , U(x) =

6∑

r=1

xr−1θUr ,K(x) =

3∑

r=1

xr−1θKr , P (x) =

13∑

r=1

Bsr (x) θPr .

As the shape of the basis functions are known a-priori, the unknowns are given
in a vector θ̄ ∈ R30 that has to be estimated by minimizing (5.13). The state space
model in (5.5) is derived by spatial discretization on 211 discrete points. The
boundary conditions and the initial conditions are unknown to the estimation
problems. Figure 2-5 compares the simultaneously estimated {D,U,K, P} with
respect to space starting from an initial guess. Based on the simulation results in
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Figure 2-5, the estimated profile of {D,U,K, P} closely matches with the original
functions except small errors near the extremum measurements.
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Figure 2: EstimatedD (x) over XM and the relative error εrel betweenDsim(x) and
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0 0.2 0.4 0.6 0.8 1
0

5

10

15

U
(x

)

Simulated U (x)
Initial guess U (x)
Estimated U (x)
Sensor locations

0 0.2 0.4 0.6 0.8 1

x

-10
-5
0

" r
el

#10!3

Figure 3: Estimated U (x) over XM and the relative error εrel between U sim(x) and
estimated U(x).
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Figure 4: Estimated K (x) over XM and the relative error εrel between Ksim(x)
and estimated K(x).
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5.5 Closing Remarks

A frequency domain approach has been proposed to estimate the spatial profile
of the physical parameters of a diffusion-transport-reaction model described by a
PDE with distributed coefficients and using measurements from a limited
number of sensors. The method uses a finite difference technique to discretize the
model and non-linear least square technique in combination with a-priori choices
of basis functions to estimate the unknown parameters. The spatial discretization
of the model preserves the linear affine relation of the state space matrices with
respect to the unknown parameters. The sparsity structure of the state space
matrices is another distinctive feature of the discretized model that has been
exploited throughout to offer computational benefit. For the optimization, the
required Jacobian is analytically derived for fast computation exploiting its
sparse structure. The simulation results show that the method optimally
estimates diffusion, transport, reaction and input distributions simultaneously.

The discrepancy between the basis functions used in simulation and the
parameter estimator can cause serious estimation error, especially at the
boundaries. This issue has to be dealt with in future. Moreover, robustness with
respect to the measurement uncertainty, i.e., the noise has currently not been
investigated. However, weighting factors for taking colored output measurement
noise into account have already been implemented (not considered in this
chapter).



Appendices

5.A Proof of Lemma 5.1

Proof: Here, we derive the analytic expression of (5.17). The term Gkr can be
expanded by substituting the expression of em` and Gm(ω`, θ̄). Precisely,

Gkr = −(em` )
∗
[∂Gm(ω`, θ̄)

∂θkr

]
q. (5.26)

The general expression of ∂Gm

∂θkr
with k ∈ E can be computed using chain rule.

Precisely, substituting the expression of Gm we obtain

∂Gm

∂θkr
= Cm

∂

∂θkr

[
jω`I −A(θ̄)

]−1

B(θ̄) (5.27)

+ Cm
[
jω`I −A(θ̄)

]−1 ∂B(θ̄)

∂θkr
. (5.28)

At this stage we use the identity ∂M−1

∂θkr
≡ −M−1 ∂M

∂θkr
M−1. Subsequently, using

the expression of A(θ̄) and B(θ̄) for k ∈ {D,U,K}, we write

∂Gm

∂θkr
= Cm

[
jω`I −A(θ̄)

]−1

Lkr

[
jω`I −A(θ̄)

]−1

B(θ̄)

+ Cm
[
jω`I −A(θ̄)

]−1 ∂B(θ̄)

∂θkr
. (5.29)

Moreover, ∂B(θ̄)
∂θkr

can be computed for k ∈ {D,U,K}.

∂B(θ̄)

∂θDr
=
[
0(N−2)×1 gDr hDr

]
, (5.30)

∂B(θ̄)

∂θVr
=
[
0(N−2)×1 gUr hUr

]
, (5.31)

∂B(θ̄)

∂θKr
= 0(N−2)×3. (5.32)
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For θPr , the Jacobian can be computed as

∂Gm

∂θPr
= Cm

[
jω`I −A(θ̄)

]−1 ∂B(θ̄)

∂θPr
, (5.33)

with

∂B(θ̄)

∂θPr
=
[
fPr 0(N−2)×1 0(N−2)×1

]
. (5.34)

The above derivations can be used to find the analytic expression of Gkr for every
r ∈ {1, · · · , R} and k ∈ {D,U,K, P}. In a similar fashion,

Gkr
∗

= −q∗ ∂

∂θkr

[
Gm(ω`, θ̄)

]∗
em`

∂(Gm)∗

∂θkr
=
∂B>(θ̄)

∂θkr

[
− jω`I −A>(θ̄)

]−1

Cm>

+B>(θ̄)
∂

∂θkr

[
− jω`I −A>(θ̄)

]−1

Cm>.

We can follow the derivation of Hml to derive a similar analytic expression of Gml .
�
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6 CHAPTER

Building Digital Twin with PIEs

The main computational bottleneck in building model-based
functionalities on the digital twin is the presence of spatially

distributed nodes in a thermo-fluidic process. A spatially distributed
node’s dynamics is governed by PDEs. So far, it has been shown that
one must use a lumping or numerical approximation technique to
first approximate the PDE models and only then is the model-based
simulation, analysis, prediction, diagnosis, estimation or control possible.
Despite tremendous strides in the field of computation, directly utilizing
infinite-dimensional systems (such as PDEs) for simulation, analysis,
prediction, diagnosis, estimation or control is an open problem. In
this chapter, this problem is circumvented by utilizing a class of linear
bounded operators, known as Partial Integral (PI) operators and linear
equations known as Partial Integral Equations (PIEs). It is shown that
model of thermo-fluidic processes can be equivalently represented
using PIEs. Moreover, analysis of stability, input-output properties, and
synthesis of optimal state estimators can be formulated as Linear PI
equalities (LPIs) that can be solved using Linear Matrix equalities (LMIs),
a mature computational method.
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6.1 Introduction

In Part II and III, the digital twins are a finite-dimensional approximation of
spatio-temporal thermo-fluidic processes. Once the model is approximated,
standard control theory has a plethora of methods and computational tools that
can be used for analysis and control. However, finite-dimensional
approximations of systems, that are originally infinite-dimensional in nature do
not necessarily represent the exact behavior to a quantified level of accuracy [69].
As a result, serious errors may appear in analyzing stability, input-output
properties or synthesizing estimator based controller by solely using
approximated models. For example, by spectral decomposition of
spatio-temporal systems in Part II, it is inevitable to ignore high-frequent modes.
In case of an unforeseen perturbation of the neglected modes, the controlled
system often suffers from instability, commonly known as the spillover effect
[12]. Another key disadvantage of approximating an infinite-dimensional system
with a finite-dimensional model is the fact that such approximations are prone to
numerical instabilities and curse of dimensionality. In fact, increased demands
on accuracy may require the dimension of the approximated system to be so
large (in the range of few million state variables) that solving analysis and
synthesis problems become computationally intractable (c.f. [109]).

To circumvent the problems with finite-dimensional approximations, infinite
dimensional PDEs can be directly utilized for analysis and control. Semigroup
theory (see [25]) offers a theoretical framework to represent,and analyze systems
on Banach space. Although semigroup theory lays the foundation for
understanding the properties of dynamical systems beyond finite dimension,
there is no computational framework that can aid in translating semigroup
theory to computable tests that one can implement in a digital environment.

Another widely used computational method for analysis and control is the
Backstepping approach (see [55], [1] for PDEs and [89] for PDE-ODE coupled
systems). The backstepping technique does not require any approximation of the
infinite-dimensional model; however, it may not provide a quantitative
guarantee on the system’s optimal performance. As a result, for finding induced
L2 gain or designing optimal estimator based controller (e.g. in H∞ sense),
backstepping method is not typically used (the only exception, according to the
best of our knowledge, is the work on stability analysis by [84]). At the same
time, various methods are well-established that use analytical solutions of an
application-specific distributed parameter systems (for more details, see the
works of [48], [59], [15]. For port-Hamiltonian systems see [99]). Spectral analysis
was used for designing optimal estimators for specific PDEs in [81, 108].
However, the state of the art involves either prior approximation of infinite
dimensional systems (which suffers from the curse of dimensionality and
numerical instability), norm-bounding methods (e.g., Poincare inequality,
Cauchy-Schwartz inequality, Wirtinger’s inequality, etc.) or integration-by-parts
(application-specific). The major disadvantage of all these methods is that they
are problem-specific and their workings very much depend on the type of PDEs
describing the model. For example, treatment of a wave equation and a coupled
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heat-wave equations are completely different. Hence, for every new PDE model,
one has to take a different approach to solve the same analysis or control related
problem. As a result, translating currently available methods into a scalable
algorithm with either minimal or no user intervention is not yet possible.

Recently, using the extension of Lyapunov theory to the infinite-dimensional
space by [29], many attempts were made to use Sum-of-Squares (SOS)
optimization methods for constructing Lyapunov functions for PDE-ODE
coupled systems. Some of the notable works include but not limited to [76], [35],
[94] and [3]. Furthermore, numerous problems related to the analysis of stability
and robustness and controller-estimator synthesis are addressed in [70], [37] etc.
Standard SOS techniques provide a computational tool for analyzing systems’
performance in terms of LMI tests. However, these works are still limited to
specific types of PDEs, not always applicable to the general class of
thermo-fluidic processes considered in this thesis. In particular, different
boundary conditions (e.g. Dirichlet and Neumann) require distinct treatment to
construct an associated Lyapunov functions. Moreover, cases where boundary
inputs perturb the PDEs, are considered to be an open problem.

Contribution of this Chapter

In this chapter, the goal is to develop a scalable framework that allows the use of
LMIs for analyzing stability and input-output properties or synthesizing
estimator based controller for infinite-dimensional thermo-fluidic processes
without any approximation. This computational framework relies on an
equivalent representation of thermo-fluidic process using Partial Integral
Equations (PIEs). PIEs are linear differential equations involving a class of
bounded linear operators known as Partial Integral (PI) operators. Motivated by
matrices, PI operators are closed under the algebraic operations of addition,
concatenation, composition and adjoint, and their construction inherits the
structure of matrices. As a result, analogous to the usage of LMIs in a
finite-dimensional control system, there are Linear PI inequalities (LPIs) for
analysis and control of PIEs. Furthermore, LPIs can be solved using LMIs by
exploiting the inherent matrix structure of PI operators. The main contribution of
this chapter can be divided into three aspects:

• Conversion from PDE-ODE coupled systems to PIEs:

1. The equivalent PDE-ODE coupled representation of a thermo-fluidic
process in this thesis admits an equivalent representation in terms of
PIEs.

• Analysis and Control of PIEs Using LPIs:

1. Analysis of exponential stability, input-to state stability, and the worst
case disturbance amplification of thermo-fluidic processes can be
formulated using LPIs
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2. H∞ optimal state estimator synthesis can also be formulated in terms
of LPIs.

• PIEs and LPIs are solved using PIETOOLS:

1. PIETOOLS is developed as a scalable computational tool for
manipulation and optimization of PI operators and PIEs 1.

2. Converting PDE-ODE coupled systems to PIEs, formulating LPIs and
solving them for analysis and control of PIEs is performed using
PIETOOLS.

6.2 PI Operators, PIEs and PIETOOLS

Any operator that maps from a finite dimensional space to another finite
dimensional space is bounded and can be written as a matrix. On infinite
dimensional inner product spaces, such as Hilbert spaces, such a generalization
does not exist. However, there exists a class of bounded operators, called Partial
integral (PI) operators, that do facilitate such properties similar to matrices.

6.2.1 Introduction to PI Operators and PIETOOLS

A PI operator is a map from Rm×Ln2 [a, b] to Rp×Lq2[a, b] and is defined as follows.

Definition 6.1 (PI Operator) A PI operator is a bounded linear operator that maps
from Rm × Ln2 [a, b] to Rp × Lq2[a, b] and is parametrized as

P
[
P, Q1

Q2, {{R0, R1, R2}}

] [x
y

]
(s) =

[
Px+

∫ b
a
Q1(s)y(s)ds

Q2(s)x+ P{{R0,R1,R2}}y(s)

]
(6.1)

where P ∈ Rp×m is a matrix, Q1 : [a, b] → Rp×n, Q2 : [a, b] → Rq×m, R0 : [a, b] →
Rq×n, and R1, R2 : [a, b] × [a, b] → Rq×n are bounded integrable functions and
P{R0,R1,R2} : Ln2 [a, b]→ Lq2[a, b] is another PI operator of the form

(
P{R0,R1,R2}x

)
(s) := R0(s)x(s) +

∫ s

a

R1(s, θ)x(θ)dθ +

∫ b

s

R2(s, θ)x(θ)dθ.

Declaring PI Operators in PIETOOLS

PIETOOLS is built as a MATLAB toolbox along with semidefinite programming
(SDP) solvers e.g. SeDumi, MOSEK, SDPT3 etc. In PIETOOLS, the PI operator
class is declared used the command opvar

1PIETOOLS is co-developed by the author in collaboration with Sachin Shivakumar and Dr.
Matthew Peet at the Arizona State University. For learning how to use PIETOOLS and its
functionalities visit http://control.asu.edu/pietools/

http://control.asu.edu/pietools/
http://control.asu.edu/pietools/
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Table 1: List of properties in opvar class and their descriptions in PIETOOLS

Property Description
pvar s, theta Declare the independent variables s, θ

P A matrix P with dimensions p×m
Q1 A matrix-valued polynomial Q1(s) object

with dimensions p× n
Q2 A matrix-valued polynomial Q2(s) object

with dimensions q ×m
R.R0 A matrix-valued polynomial R0(s) object

with dimensions q × n
R.R1, R.R2 Matrix-valued polynomial

R1(s, θ), R2(s, θ) objects with dimensions
q × n

I The spatial interval defined as [a,b]
dim A matrix storing the dimensions of

mapped spaces [p,m;q,n]

6.2.2 Partial Integral Equations

Partial Integral Equations (PIEs) are set of linear differential equations that are
parametrized by PI operators. The general form of a PIE is

T v̇(t) + TBwẇ(t) + TBuu̇(t) = Av(t) + B1w(t) + B2u(t),

z(t) = C1v(t) +D11w(t) +D12u(t),

y(t) = C2v(t) +D21w(t) +D22u(t),

v(0) = v0 ∈ Rm × Ln2 [a, b], (6.2)

where T ,A : Rm × Ln2 [a, b] → Rm × Ln2 [a, b], TBw : Rp → Rm × Ln2 [a, b], TBu :
Rq → Rm × Ln2 [a, b], B1 : Rp → Rm × Ln2 [a, b], B2 : Rq → Rm × Ln2 [a, b], C1 :
Rm ×Ln2 [a, b]→ Rk, C2 : Rm ×Ln2 [a, b]→ Rl, D11 ∈ Rk×p, D12 ∈ Rk×q , D21 ∈ Rl×p
and D22 ∈ Rl×q are PI operators.

6.2.3 Properties of Partial Integral Operators

PI operators have the following properties:

• Addition of two PI operators is also a PI operator

Suppose A,L ∈ Rm×p and B1,M1 : [a, b]→ Rm×q , B2,M2 : [a, b]→ Rn×p, C0, N0 :
[a, b] → Rn×q , Ci, Ni : [a, b] × [a, b] → Rn×q , for i ∈ {1, 2}, are matrix valued
polynomials. If

P
[
P, Q1

Q2, {{R0, R1, R2}}

]
= P

[
A, B1

B2, {{C0, C1, C2}}

]
+ P

[
L, M1

M2, {{N0, N1, N2}}

]
,
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then P
[
P, Q1

Q2, {{R0, R1, R2}}

]
is parametrized by matrix valued polynomials.

• Composition of two PI operators is also a PI operator

Suppose P
[
A, B1

B2, {{C0, C1, C2}}

]
: Rl × Lk2 [a, b] → Rm × Ln2 [a, b] and

P
[
P, Q1

Q2, {{R0, R1, R2}}

]
: Rp × Lq2[a, b] → Rl × Lk2 [a, b] are PI operators parametrized

by matrix valued polynomials. Then P
[
P̂ , Q̂1

Q̂2,
{
{R̂0, R̂1, R̂2}

}] is a PI operator

parametrized by matrix valued polynomials where

P
[
P̂ , Q̂1

Q̂2,
{
{R̂0, R̂1, R̂2}

}] = P
[
A, B1

B2, {{C0, C1, C2}}

]
P
[
P, Q1

Q2, {{R0, R1, R2}}

]
.

• Adjoint of a PI operator is also a PI operator

Suppose P ∈ Rm×p and Q1 : [a, b]→ Rm×q , Q2 : [a, b]→ Rn×p, R0 : [a, b]→ Rn×q ,
R1, R2 : [a, b]2 → Rn×q are bounded functions. Then for any x ∈ Rm×Ln2 [a, b], y ∈
Rp × Lq2[a, b],

〈
P
[
P̂ , Q̂1

Q̂2,
{
{R̂0, R̂1, R̂2}

}]x, y〉
R×L2

=
〈
x,P

[
P, Q1

Q2, {{R0, R1, R2}}

]
y
〉
R×L2

. (6.3)

With these properties, PI operators form a ∗-subalgebra with binary operations of
addition and composition.

Operations on PI Operators in PIETOOLS

Operations on PI operators in PIETOOLS are executed in a similar manner to
matrices

Table 2: List of operations on PI operators in PIETOOLS

Property Description
+ Summation of two PI operators
* Composition of two PI operators
’ Adjoint of a PI operator

[A B] Horizontal concatenation of two PI
operators

[A;B] Vertical concatenation of two PI operators

6.2.4 Positivity of PI Operators

The main advantage of using a PI operator is that the positivity of a PI operator
can be verified using LMIs.
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Theorem 6.1 (Positivity of PI Operators) For any integrable functions Z1 :
[a, b]→ Rd1×n, Z2 : [a, b]× [a, b]→ Rd2×n, if g(s) ≥ 0 for all s ∈ [a, b] and

P = T11

∫ b

a

g(s)ds,

Q(η) = g(η)T12Z1(η) +

∫ b

η

g(s)T13Z2(s, η)ds+

∫ η

a

g(s)T14Z2(s, η)ds,

R1(s, η) = g(s)Z1(s)>T23Z2(s, η) + g(η)Z2(η, s)>T42Z1(η)

+

∫ b

s

g(θ)Z2(θ, s)>T33Z2(θ, η)dθ

+

∫ s

η

g(θ)Z2(θ, s)>T43Z2(θ, η)dθ +

∫ η

a

g(θ)Z2(θ, s)>T44Z2(θ, η)dθ,

R2(s, η) = g(s)Z1(s)>T32Z2(s, η) + g(η)Z2(η, s)>T24Z1(η)

+

∫ b

η

g(θ)Z2(θ, s)>T33Z2(θ, η)dθ

+

∫ η

s

g(θ)Z2(θ, s)>T34Z2(θ, η)dθ +

∫ s

a

g(θ)Z2(θ, s)>T44Z2(θ, η)dθ,

R0(s) = g(s)Z1(s)>T22Z1(s). (6.4)

where



T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44


 < 0,

then

〈
x,P

[
P, Q1

Q2, {{R0, R1, R2}}

]
x

〉

R×L2

≥ 0 for all x ∈ Rm × Ln2 [a, b].

Proof: The proof is included in Appendix 6.A. �

Remark 6.1 Using Theorem 6.1, the positivity of P
[
P, Q1

Q2, {{R0, R1, R2}}

]
becomes a

feasibility test defined by LMIs. If Q,R0, R1, R2 are matrix-valued polynomials,
typical choices for Z1, Z2 are matrices whose rows are monomial basis of degree
d1, d2 respectively. Moreover, to constrain P

[
P, Q1

Q2, {{R0, R1, R2}}

]
to be positive on

the domain [a, b], g(s) is chosen to be the combination of g(s) = 1 and g(s) =
(s− a)(b− s).

To search for a feasible P
[
P, Q1

Q2, {{R0, R1, R2}}

]
< 0 using Theorem 6.1, define the cone

of positive PI operators with polynomial multipliers and kernels.

Definition 6.2 Let P ∈ Rm×m be a constant real-valued matrix and
Q : [a, b] → Rm×n, S : [a, b] → Rn×n, and R1, R2 : [a, b] × [a, b] → Rn×n be
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matrix-valued polynomials. Then, the cone of the positive operators
P
[
P, Q

Q>, {{R0, R1, R2}}

]
is defined by

Ξd2d1 :=


P
[
P, Q

Q>, {{R0, R1, R2}}

]
+ P

[
M, N

N>, {{S0, S1, S2}}

]
(P,Q,Q>, R0, R1, R2) and (M,N,N>, S0, S1, S2) satisfies Theorem 6.1 with,

Z1 : [a, b]→ Rd1×n, Z2 : [a, b]× [a, b]→ Rd2×n
g(s) = 1 and g(s) = (b− s)(s− a)

 .

(6.5)

With this definition, the constraint P
[
A, B

B>, {{C0, C1, C2}}

]
∈ Ξd2d1 is understood to be

an LMI constraint on the coefficients of the polynomial functions
(A,B,B>, C0, C1, C2) and guarantees P

[
A, B

B>, {{C0, C1, C2}}

]
< 0.

Declaring Positive PI Operator in PIETOOLS

For declaring a positive PI operator, the corresponding commands are given in
Table 3. Consult the PIETOOLS website for more details.

Table 3: Commands to declare positive PI operators

Command Description
p=sosprogram([s,t])

1. Initialize a LPI program named p

2. s and t are declared as pvar objects

[p,T] = poslpivar(p,n,I,d)

1. p: an sosprogram that stores all decision
variables and constraints

2. n: 2 × 1 vector specifying the dimensions
of T

3. I: 2× 1 vector specifying the interval of T

4. d (optional): specifies the degrees of PI
operator. d is cell structure of the form
{a, [b0, b1, b2]} where a is the degree of s
in Z1(s), b0 is degree of s in Z2(s, θ), b1
degree of θ in Z2(s, η) and b2 is degree of s
and η combined in Z2(s, η). (see Theorem
6.1)

6.2.5 Linear PI Inequalities (LPIs)

Using the algebra of PI operators, one can set up linear operator inequalities
(LOIs), now, involving PI operators. These inequalities when defined by PI

http://control.asu.edu/pietools/
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operators are called Linear PI Inequalities or LPIs.

Definition 6.3 For given PI operators {Ei,j ,Fi,j ,Gi} and convex linear functional
L(·), a linear PI inequality is a convex optimization of the following form

min
Pi,Q1i,Q2i,R0i,R1i,R2i

L({Pi, Q1i, Q2i, R0i, R1i, R2i})
K∑

j=1

E∗ijP
[
Pi, Q1i

Q2i, {{R0i, R1i, R2i}}

]
Fij + Gi < 0 (6.6)

Declaring and Solving LPIs in PIETOOLS

For declaring and solving LPIs in PIETOOLS following commands are useful. For
more details, consult the PIETOOLS website.

Table 4: Commands to declare and solve LPIs

Command Description
[p,T] = lpivar(p,n,I,d) declares an unknown indefinite PI

operator
p = lpi_eq(p,T) Declares T = 0
p = lpi_ineq(p,T) declares T < 0

p=sosdecvar(p, gamma) declares gamma as a decision variable
p=sossetobj(p, gamma) cost function to minimize gamma

p=sossolve(p) solves the optimization problem

6.3 Thermo-Fluidic Processes and PDE-ODE Systems

In Part II, those thermo-fluidic processes are considered whose spatial
distributions are negligible. In Part III, those thermo-fluidic models are
considered whose nodes are solely governed by diffusion-transport-reaction type
of PDEs. In contrast, this chapter takes into account the entire class of
thermo-fluidic processes as defined in (D.1)-(D.3) (on page 23-24). In this chapter,
the representation of time-varying PDE-ODE coupled systems in (2.2) on page 43
under the following specification.

• For every lumped node Nj , it is assumed that the parameters are, i.e. Θj =
Θ,∀t ∈ T.

As a result, in (2.21) on page 37, Θ̆(t) = Θ̆,∀t ∈ T. As a result, all the operators in
(2.33) on page 44 are time-invariant and can be defined by the subspace P̄p such

http://control.asu.edu/pietools/
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that

P̄p :=





col
(

(z, y), (x,x), (w, u)
)
| ∀t ∈ [0,∞)

col (z(t), y(t)) ∈ Rnz+ny , x is Fréchet differentiable,


w(t)
u(t)
x(t)
x(t)


 ∈ Xdom,




z(t)
y(t)
ẋ(t)
ẋ(t)


 =




D11 D12 C1 C1p
D21 D22 C2 C2p
B11 B12 A Ep
B21 B22 E Ap







w(t)
u(t)
x(t)
x(t)








, (6.7)

with

Xdom :=








w(t)
u(t)
x(t)
x(t)


 ∈ Rnw+nu+nx × Ln0

2 [a, b]×Hn1
1 [a, b]×Hn2

2 [a, b] |

[
Bw Bu Bx0 Bc

]



w(t)
u(t)
x(t)
x(t)


 = 0

(Bcx)(s) :=
b∫
a

Bxx(s)




x0

∂sx1

∂2
sx2


 (s)ds−B




x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)








. (6.8)

Here, matrix valued functions A0,, A1, A2, A2l, A2u, E2, Ea,, Eb, Ec, E0, E, B21,
B22, Cai, Cbi, Cci, for i ∈ {1, 2}, and constant matrices C10, C20, E0, A, C1, C2,
B11, B12, D11, D12, D21, D22, of appropriate dimensions are given. Moreover,
B ∈ R(n1+2n2)×2(n1+2n2) has full rank. Furthermore,

(Apx)(s) :=A0(s)




x0

x1

x2


 (s) +A1(s)∂s

[
x1

x2

]
(s) +A2(s)∂2

s

[
x2

]
(s)

+

s∫

a

A2l(s, θ)




x0

x1

x2

∂sx1

∂sx2

∂2
sx2




(θ)dθ +

b∫

s

A2u(s, θ)




x0

x1

x2

∂sx1

∂sx2

∂2
sx2




(θ)dθ

+ E2(s)




x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)



, (6.9)
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(C1px)(s) :=

b∫

a

(
Ca1(s)




x0

x1

x2


 (s) + Cb1(s)∂s

[
x1

x2

]
(s) + Cc1(s)∂2

s

[
x2

]
(s)

)
ds

+ C10




x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)



, (6.10)

(C2px)(s) :=

b∫

a

(
Ca2(s)




x0

x1

x2


 (s) + Cb2(s)∂s

[
x1

x2

]
(s) + Cc2(s)∂2

s

[
x2

]
(s)

)
ds

+ C20




x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)



, (6.11)

(Epx)(s) :=

b∫

a

(
Ea(s)




x0

x1

x2


 (s) + Eb(s)∂s

[
x1x2

]
(s) + Ec(s)∂

2
s

[
x2

]
(s)

)
ds

+ E0




x1(a)
x1(b)
x2(a)
x2(b)
∂sx2(a)
∂sx2(b)



, (6.12)

(Ex)(s) :=E(s)x, (B21w)(s) := B21(s)w, (B22u)(s) := B22(s)u. (6.13)

6.4 Representation of Thermo-Fluidic Processes
Using PIEs

The primary motivation behind searching for a new representation of the
thermo-fluidic processes, in contrast to (6.7), is to circumvent the technical
difficulties regarding the presence inhomogeneous boundary conditions and
unbounded operators. In Chapter 4, it has been already pointed out that, even
for approximating diffusion-transport-reaction systems, these two difficulties are
the major hurdle in analysis and control. The objective of this section is to utilize
PI operators to formulate an equivalent PIE representation of (6.7) which may
potentially resolve the aforementioned difficulties. To this end, remainder of this
section follows two steps

1. Find a unitary PI operator that maps between the functions space Xdom in
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(6.8) and the space of square integrable functions; Rnw+nu+nx × Lnp2 [a, b].

2. Determine an equivalent PIE representation of (6.7).

6.4.1 Finding the Unitary State Transformation

The space Xdom in (6.8) is constrained by the boundary conditions as well as
order of differentiability a function must admit. On the other hand, the space
Rnw+nu+nx × L

np
2 [a, b], is independent of such constraints. A transformation

between these spaces can be found using the fundamental theorem of calculus
which is stated in Lemma 6.1.

Lemma 6.1 Let x0 ∈ Ln0
2 [a, b], x1 ∈ Hn1

1 [a, b], x2 ∈ Hn2
2 [a, b]. Then, for all

s ∈ [a, b], the following identities hold true:



x0(s)
x1(s)
x2(s)


 =




x0(s)
x1(a) +

∫ s
a
∂sx1(θ)dθ

x2(a) + (s− a)∂sx2(a) +
∫ s
a

(s− a)∂2
sx2(θ)dθ


 (6.14)

Proof: The proof is given in [78], page 9. �

Lemma 6.1 shows that, in an interval, the value of a function at any arbitrary
point s ∈ [a, b] is linearly related to the boundary values of the functions and the
functions’ higher order derivatives. Using this idea, Theorem 6.2 determines a
unitary map from Rnw+nu+nx × Lnp2 [a, b] to Xdom.

Theorem 6.2 (State Transformation) Suppose, in (6.8),
B ∈ R(n1+2n2)×2(n1+2n2) and

B




I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I
0 0 I




is invertible.

Then, for any col (w, u, x,x) ∈ Xdom, the following identity holds

[
x
x

]
=
[
TBw TBu T

]




w
u

x
xf



. (6.15)
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where, xf :=




x0

∂sx1

∂2
sx2


,

[
TBw TBu T

]
= P

[[
0 0 I

]
, 0[

Q2f

]
, {{R0f ,R1f ,R2f}}

]
, (6.16)

and,

Q2f (s) = K(s)(BT )−1
[
Bw Bu Bxo

]
, (6.17)

R2f (s, θ) = K(s)(BT )−1(Bxx(θ)−BQ(θ)),

R1f (s, θ) = L1(s, θ) +K(s)(BT )−1(Bxx(θ)−BQ(θ)),R0f (s) =



I 0 0
0 0 0
0 0 0


 ,

L1(s, θ) =




0 0 0
0 I 0
0 0 (s− θ)


 ,K(s) =




0 0 0
I 0 0
0 I (s− a)I


 ,

T =




I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I
0 0 I



, Q(s) =




0 0 0
0 I 0
0 0 0
0 I (b− s)I
0 0 0
0 0 I



. (6.18)

Proof: For a detailed proof, see Appendix 6.B. �

The state transformation map is unitary

Corollary 6.1 Suppose, in (6.8), B ∈ R(n1+2n2)×2(n1+2n2) has and

B




I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I
0 0 I




is invertible.

Then,




I 0 0
0 I 0
TBw TBw T


 : Rnw+nu+nx × L

np
2 [a, b] → Xdom is unitary where

TBw, TBw, T are defined in Theorem 6.2.
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Proof: Define T̄ :=




I 0 0
0 I 0
TBw TBw T


, and ∂̄s :=




I 0
I

I
0 ∂s

∂2
s




.

The inner product 〈, 〉Xdom is defined as 〈x,y〉Xdom := 〈∂̄sx, ∂̄sy〉R×L2
for all x,y ∈

Xdom. Then:

(i). Using Theorem 6.2, one gets
〈
∂̄sT̄ zf , ∂̄sT̄ zf

〉

R×L2

=

〈
zf , zf

〉

R×L2

,

(ii). Theorem 6.2 also shows that, for any x ∈ Xdom, there exists a
xf ∈ Rnw+nu+nx × L

np
2 [a, b] such that x = T̄ xf , i.e. T̄ is surjective.

Furthermore, it has been now proven that for any
xf ,yf ∈ Rnw+nu+nx × Lnp2 [a, b], 〈T̄ xf , T̄ yf 〉Xdom

= 〈xf ,yf 〉R×L2
. Hence, T̄

is unitary.

�

Remark 6.2 (Xdom is a Hilbert space) Since Rnw+nu+nx×Lnp2 [a, b] is a Hilbert space

and




I 0 0
0 I 0
TBw TBw T


 is unitary, Xdom is a Hilbert space.

6.4.2 PIEs are Equivalent to PDE-ODE Coupled Systems

In the previous section, a state transformation is found that allows one to
equivalently represent any function that belongs to Xdomusing a newly defined
set of functions that belong to Rnw+nu+nx × L

np
2 [a, b]. Moreover, the

corresponding map is a unitary PI operator. In this section, the objective is to
leverage this map and the algebra of PI operators to determine an equivalent PIE
representation of (6.7).

Recalling (6.2), one can define the behavior of a PIE as follows:

Definition 6.4 (Behavior of PIEs) The behavior of a Partial Integral Equation
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(PIE), is defined as the following subspace Pf .

Pf :=





col ((w, u), (x,xf )(y, z)) | ∀t ∈ [0,∞),
col (z(t), y(t)) ∈ Rnz+ny ,

xf is Fréchet differentiable,


w(t)
u(t)
x(t)
xf (t)


 ∈ Rnw+nu+nx × Lnp2 [a, b],



I 0 0 0 0
0 I 0 0 0
0 0 TBw TBu T







z(t)
y(t)
ẇ(t)
u̇(t)

ẋ(t)
ẋf (t)




=



D11 D12 C1
D21 D22 C2
B1 B2 A







w(t)
u(t)

x(t)
xf (t)








,

(6.19)

where, D11,D12, C1,D21,D22, C2,B1,B2,A, T , TBw, TBu are PI operators.

Theorem 6.3 (Equivalence between PDE-ODE and PIEs) Suppose, in (6.8),
B ∈ R(n1+2n2)×2(n1+2n2) and

B




I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I
0 0 I




is invertible.

Moreover, suppose col (x,x, w, u, y, z) ∈ Pp as defined in (6.7). Then
col (x,xf , w, u, y, z) ∈ Pf according to (6.4) if the PI operators
D11,D12, C1,D21,D22, C2,B1,B2,A, T , TBw, TBu in (6.4) are defined as
follows.



I 0 0 0 0
0 I 0 0 0
0 0 TBw TBu T


 =P



I 0 0 0 0

0 I 0 0 0
0 0 0 0 I

 , 0[
0 0 Q2f

]
, {{R0f ,R1f ,R2f}}


, (6.20)



D11 D12 C1
D21 D22 C2
B1 B2 A


 =P

[
P, Q1

Q2, {{R0,R1,R2}}

]
P
[

P̂f , Q̂1f (s)

Q̂2f ,
{
{R̂0f , R̂1f , R̂2f}

}],
(6.21)
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where

P =



D11 D12 C1 C10

D21 D22 C2 C20

B11 B12 A E0


 , Q1(s) =



Ca1(s) Cb1(s) Cc1(s)
Ca2(s) Cb2(s) Cc2(s)
Ea(s) Eb(s) Ec(s)


 ,

Q2(s) =
[
B21(s) B22(s) E(s) E2(s)

]
,

R0(s) =
[
A0(s) A1(s) A2(s)

]
, R1(s, θ) = A2l(s, θ), R2(s, θ) = A2u(s, θ),

K(s) =




0 0 0
I 0 0
0 I (s− a)I


 , L0 =



I 0 0
0 0 0
0 0 0


 , L1(s, θ) =




0 0 0
0 I 0
0 0 (s− θ)


 ,

R0f (s) = L0, R1f (s, θ) = L1(s, θ) + R2f (s, θ),

R2f (s, θ) = K(s)(BT )−1(Bxx(θ)−BQ(θ)),

Q2f = K(s)(BT )−1
[
Bw Bu Bxo

]
, Q̂2f =

(
I1 + I2∂s + I3∂

2
s

)
Q2f ,

R̂1f =
(
I1 + I2∂s + I3∂

2
s

)
R1f , R̂2f =

(
I1 + I2∂s + I3∂

2
s

)
R2f ,

R̂0f = I1



I 0 0
0 0 0
0 0 0


+ I2




0 0 0
0 I 0
0 0 0


+ I3




0 0 0
0 0 0
0 0 I


 , (6.22)

and

I1 =




I 0 0
0 I 0
0 0 I
0 0 0
0 0 0
0 0 0



, I2 =




0 0 0
0 0 0
0 0 0
0 I 0
0 0 I
0 0 0



, I3 =




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 I



,

P̂f =




I 0 0
0 I 0
0 0 I

T (BT )−1Bw T (BT )−1Bu T (BT )−1Bxo


 , T =




I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I
0 0 I



,

Q̂1f =




0
0
0

Q(s) + T (BT )−1(Bxx(s)−BQ(s))


 , Q(s) =




0 0 0
0 I 0
0 0 0
0 0 (b− s)
0 0 0
0 0 I



.

(6.23)

Proof: For a detailed proof, see Appendix 6.C. �
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Converting PDE-ODE coupled system to PIEs in PIETOOLS

As the formulae given in Theorem 6.3 are defined by algebraic operations on PI
operator, one can convert the entire PDE-ODE coupled systems in (6.7) to a PIE.

In PIETOOLS, the command is simply a one-line script:

convert_PIETOOLS_PDE;

6.5 Analysis and Control of Thermo-Fluidic Processes
Using PIEs

It has been shown that PDE-ODE representation of thermo-fluidic processes in
(6.7) are behaviorally equivalent to PIEs in (6.19). The PIEs have the following
advantages.

1. PIEs are defined by PI operators. Similar to matrices, the algebra of PI
operators is closed under concatenation, composition, adjoint and addition.

2. The evolution of a PIE is not constrained by boundary conditions.

3. Solving convex optimization problems defined by Linear PI Inequalities
(LPIs) can be performed using Linear Matrix Inequalities (LMIs).

In the remainder of this chapter, the advantages of the PIE representation and the
algebra of PI operators are utilized to solve three analysis and synthesis related
problems for the thermo-fluidic processes.

1. Application of LPIs for analysis of stability and input-output properties

• Find a computational test for verifying exponential stability’ of thermo-
fluidic processes.

• Find a computational test for verifying input-to-state stability of thermo-
fluidic processes.

• Find a computational test for determining worst-case disturbance
amplification for the behavior of thermo-fluidic processes.

2. Application of LPIs for synthesizing state estimators

• Find a computational algorithm to synthesize and implement an H∞
optimal state estimator for thermo-fluidic processes.
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6.5.1 Verifying Exponential Stability of Thermo-Fluidic
Processes

In [25], exponential stability of an autonomous infinite dimensional system is
defined by the exponential decay of the corresponding semigroup, i.e. when all
the unforced solutions of the system converge to the origin exponentially fast
over time. For {P̄p | w(t) ≡ 0, u(t) ≡ 0}where P̄p is defined in (6.7), exponential
stability is defined as follows

Definition 6.5 (Exponential stability (ES); convergence of autonomous behavior)
The behavior {P̄p | w(t) ≡ 0, u(t) ≡ 0} is defined to be exponentially stable
if there exist constants M , α > 0 such that any col ((w, u), (x,x), (y, z)) ∈ {P̄p |
w(t) ≡ 0, u(t) ≡ 0} satisfies the following inequality for all t ∈ [0,∞)

∥∥∥∥
[
x(t)
x(t)

]∥∥∥∥
R×L2

≤Me−αt
∥∥∥∥
[
x(0)
x(0)

]∥∥∥∥
R×L2

.

Formulating LPIs for Exponential Stability of PIEs

Now, PIE representation {Pf | w(t) ≡ 0, u(t) ≡ 0}, with Pf defined in (6.19) is
used to determine an LPI to test exponential stability.

Theorem 6.4 Suppose there exist ε, δ > 0, a constant real-valued matrix P ∈
Rnx×nx and matrix-valued polynomials Q : [a, b] → Rnx×np , R0 : [a, b] →
Rnp×np , and R1, R2 : [a, b]× [a, b]→ Rnp×np , such that

• P := P
[
P, Q

Q>, {{R0, R1, R2}}

]
, P = P∗ < εI

• and

A∗PT + T ∗PA 4 −δT ∗T . (6.24)

.

Then, {P̄p | w(t) ≡ 0, u(t) ≡ 0} exponentially stable.

Proof: The proof is included in the Appendix 6.D. �

Degree-bounded Tests For Exponential Stability

Searching for a feasible P � 0 such that LPI (6.24) is satisfied requires testing
positivity of PI operators that is formulated as LMIs. The following feasibility
problem enforces the LMI conditions according to the Definition 6.5.
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Lemma 6.2 Suppose there exist ε, δ > 0, d1, d2 > 0, P ∈ Rnx×nx , Q : [a, b]→
Rnx×np , R0 : [a, b]→ Rnp×np , and R1, R2 : [a, b]× [a, b]→ Rnp×np that satisfy

P := P
[
P, Q

Q>, {{R0 − εI, R1, R2}}

]
∈ Ξd2d1 , (6.25)

−A∗PT − T ∗PA− δT ∗T ∈ Ξd2d1 , (6.26)

where T ,A are defined according to Theorem 6.3. Then,
{Pp | w(t) ≡ 0, u(t) ≡ 0} is exponentially stable.

Academic Illustrations: Exponential Stability of Thermo-Fluidic Processes

Example 6.1 (Stability of a PDE coupled with ODEs) First, we study the
boundary controlled thermo-mechanical process where a lumped mechanical
system is driven by converting thermal energy to mechanical work. In [91], such
a system is modeled as a finite dimensional ODE with actuator dynamics that are
governed by the diffusion equation. A closed loop representation of such a
controlled PDE-ODE coupled system is given in [91] as

Ẋ(t) = −3X(t) + w(0, t),

wt(x, t) = wxx(x, t),

wx(0, t) = 0,

w(1, t) = 0. (6.27)

PIETOOLS proves the exponential stability of this system which has also been
verified analytically in [91].

6.5.2 Determining the Worst Case Disturbance Amplification

In the previous subsection, the exponential stability of P̄p in (6.7) is discussed
when the system is autonomous; without any inputs and outputs. The focus is
now to understanding the effects of inputs w(t), u(t) on the outputs z(t), y(t). In
particular, the question is: if the inputs are square integrable (having finite
energy), what is the level of amplification or attenuation of such inputs in the
outputs? In Definition 6.6, this question is formulated as input-output stability
notion; the boundedness of square-integrable outputs in the presence of
square-integrable (bounded) inputs.

Definition 6.6 (Input-Output Stability (IOS): disturbance amplification)

Let w ∈ Lnw2 [0,∞), u ∈ Lnu2 [0,∞), y ∈ Lny2 [0,∞), and z ∈∈ Lnz2 [0,∞). Then, the
behavior Pp according to (6.7) is defined to be input-to-output stable, if there
exists a constant ρ > 0 such that for zero initial condition, col (x(0),x(0)) = 0,
any col ((w, u, )(x,x), (y, z)) ∈ {P̄p | col (x(0),x(0)) = 0} satisfies the following
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inequality
∥∥∥∥
[
z
y

]∥∥∥∥
L2[0,∞)

≤ ρ
∥∥∥∥
[
w
u

]∥∥∥∥
L2[0,∞)

.

Moreover, ρ is defined as the disturbance amplification factor.

Note that the disturbance amplification factor ρ also indicates the induced L2

norm of the mapping between the inputs and the outputs. One can also define
the smallest value of ρ, ρmin, as follows.

ρmin := sup
w,u 6=0∈L2

∥∥∥∥
[
z
y

]∥∥∥∥
L2[0,∞)∥∥∥∥

[
w
u

]∥∥∥∥
L2[0,∞)

. (6.28)

Understanding the behavior of a system in the presence of inputs and outputs
is related to dissipation theory of open system; (see [103]). Dissipation theory
shows that the amount of energy an open system with inputs and outputs can
supply to its environment can not exceed the amount of energy supplied to it.
Another striking outcome of dissipation theory is that dissipation properties of
linear finite dimensional systems amounts to verifying a feasible sets of Linear
Matrix Inequalities (LMIs) (see [85], chapter 2).

In case of P̄p in (6.7), its equivalent PIE representation Pf in (6.19) will used to
formulate corresponding LPIs.

Formulating LPIs for Input-Output Stability

Theorem 6.5 Suppose there exists ρ > 0, a constant real-valued matrix P ∈
Rnx×nx and matrix-valued polynomials Q : [a, b] → Rnx×np , R0 : [a, b] →
Rnp×np , R1, R2 : [a, b]× [a, b]→ Rnp×np , such that

• P := P
[
P, Q

Q>, {{R0, R1, R2}}

]
< 0,

• and,


B∗1
B∗2
A∗


P

[
TBw TBu T

]
+



T ∗Bw
T ∗Bu
T ∗


P

[
B1 B2 A

]

4 Z −
[
D11 D12 C1
D21 D22 C2

]∗ [D11 D12 C1
D21 D22 C2

]
.

(6.29)

with, P = P∗, Z := P
[[
ρI 0
0 0

]
, 0

0, {0}

]
,
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Z : Rnw+nu+nx × L
np
2 [a, b] → Rnw+nu+nx × L

np
2 [a, b]. Then

{P̄p | col (x(0),x(0)) = 0} satisfies the following inequality for any
w ∈ Lnw2 [0,∞), u ∈ Lnu2 [0,∞), z ∈ Lnz2 [0,∞), and y ∈ Lny2 [0,∞)

∥∥∥∥
[
z
y

]∥∥∥∥
L2[0,∞)

≤ √ρ
∥∥∥∥
[
w
u

]∥∥∥∥
LL2[0,∞)

. (6.30)

Proof: Proof is given in the Appendix 6.E. �

Degree-bounded test to determine a bound on the worst-case disturbance
amplification

Solving the LPI: P < 0 such that (6.29) holds true can be formulated as LMIs
based on the Definition 6.5. One can also determine a bound on the disturbance
amplification by minimizing over all possible ρ > 0 that satisfies (6.30). To this
end, Lemma 6.3 formulates the corresponding LMI test.

Lemma 6.3 Suppose there exist, d1, d2 > 0, P ∈ Rnx×nx , Q : [a, b]→ Rnx×np ,
R0 : [a, b]→ Rnp×np , R1, R2 : [a, b]× [a, b]→ Rnp×np that satisfy

ρ̂ = arg min ρ, (6.31)

such that

P := P
[
P, Q

Q>, {{R0, R1, R2}}

]
∈ Ξd2d1 ,

(6.32)

−



B∗1
B∗2
A∗


P

[
TBw TBu T

]
−



T ∗Bw
T ∗Bu
T ∗


P

[
B1 B2 A

]

−
[
D11 D12 C1
D21 D22 C2

]∗ [D11 D12 C1
D21 D22 C2

]
+ P

[[
ρ̂I 0
0 0

]
, 0

0, {0}

]
∈ Ξd2d1

(6.33)

where T ,A,B1,B2, TBw, TBu, C1, C2,D11,D12,D21,D22 are defined according
to Theorem 6.3. Then {P̄p | col (x(0),x(0)) = 0} satisfies the following
inequality for any w ∈ Lnw2 [0,∞), u ∈ Lnu2 [0,∞), z ∈ Lnz2 [0,∞), and y ∈
L
ny
2 [0,∞)

∥∥∥∥
[
z
y

]∥∥∥∥
L2[0,∞)

≤
√
ρ̂

∥∥∥∥
[
w
u

]∥∥∥∥
L2[0,∞)

.
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Worst case disturbance amplification: academic example

Example 6.2 (Stabilizing Boundary Control of PDEs) Consider the example of a
PDE stabilized by a backstepping controller at the boundary. The resulting closed-
loop system is as follows.

ẋ(t) = −3x+ w(0, t) + d(t),

ẇ(s, t) = wss(s, t) + d(t), ws(0, t) = 0, w(L, t) = 0,

y(t) =

∫ L

0

w(s, t)ds

A bound on L2 gain of this closed-loop system in the presence of disturbance
d(t), using PIETOOLS, was found to be 0.4269 for a relatively low order
monomial basis (d1=2, d2 = 2). On the other hand, the norm bound obtained
through a finite difference method (approximately 100 discrete elements) had
significant error with a value of 0.5941.

6.5.3 Verifying Input-to-State Stability of Thermo-Fluidic
Processes

In the definition of input-output stability, the class of inputs are restricted to be
square integrable. In practice, thermo-fluidic disturbances may not always be
square integrable. For example, ambient conditions may be constant, sinusoidal
disturbances, or square-wave disturbances. These inputs are not square
integrable, but are bounded and they are often called persistent disturbances.

To understand a system’s behavior under persistence disturbances, the concept of
input-to-state stability (ISS) is considered. The ISS is defined as follows

Definition 6.7 (Input-to-State Stability (ISS); stability to persistent disturbances)

Let w ∈ Lnw∞ [0, t), and u ∈ Lnu∞ [0, t). Then, the behavior P̄p according to (6.7) is
defined to be input-to-state stable, if there exist comparison functions σ ∈ KL,
µ ∈ K, such that for any col (w(0), u(0), x(0),x(0)) ∈ Xdom, any
col ((w, u), (x,x), (y, z)) ∈Pp satisfies the following inequality for all t ∈ [0,∞)

∥∥∥∥
[
x(t)
x(t)

]∥∥∥∥
R×L2

≤ σ
(∥∥∥∥
[
x(0)
x(0)

]∥∥∥∥
R×L2

, t

)
+ µ

(∥∥∥∥
[
w
u

]∥∥∥∥
L∞([0,t);R)

)
.

The theory of ISS for finite dimensional systems is presented in [88]. ISS theory is
also used to understand the stability of shear flows under constant perturbation
in [2]. Recently, a detailed study is performed for defining and analyzing ISS
different classes of PDEs in [48]. Here, based on the type of PDEs, specific
treatment is required to show ISS. What follows is that one can analyze a wider
class of thermo-fluidic processes in a systematic way using PIE representation
and LPIs.
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Analysis of ISS for a finite dimensional systems are typically performed by using
Lyapunov’s theory. Here, one requires to search for a storage functional (also
known as ISS Lyapunov functional) and if existence of such ISS storage functional
is feasible the system is considered to be input-to-state stable (see [88]). The class
of ISS storage functionals is defined as follows

Definition 6.8 (ISS storage functional)

Let M,N be normed linear spaces with M ⊆ N . A function V : M → R+ is
defined as ISS storage functional if the following conditions are satisfied

(i). There exists functions e1, e2 ∈ K, such that the following inequality holds
for all z ∈M ,

e1 (‖z‖N ) ≤ V (z) ≤ e1 (‖z‖N )

(ii). The mapping [0,∞) 3 t 7→ V (z(t)) is absolutely continuous for every z(t) ∈
M .

(iii). There exists a functional V̇ : M × D → R+ such that
d
dtV (z(t), d(t)) = V̇ (z(t), d(t)) holds for almost all t ∈ [0,∞), for every
z(t) ∈M and some d(t) ∈ D.

(iv). There exists a semi-norm H of D and positive function γ ∈ C0(R+;R+)
for which the inequality H(d) ≤ γ(‖d‖D) holds for all d ∈ D, a positive
function ρ ∈ C0(R+;R+) and a function µ ∈ K such that the inequality
V̇ (z, d) ≤ −ρ(V (z)) if (z, d) ∈M ×D satisfies V (z) ≥ µ(H(d)).

Existence of such storage functional is typically used to prove ISS. In fact, existence
of V shows that there exists an upper-bound on the ‖·‖N -norm of solutions z in the
presence of locally bounded mapping d : [0,∞)→ D with the following estimate
for all t ≥ 0 (see [47], chapter 2)

‖z(t)‖N ≤ max

(
σ(‖z(0)‖N , t), sup

τ∈[0,t)

e−1
1

(
µ
(
γ(‖d(τ)‖D)

))
)
, (6.34)

for certain σ ∈ KL, where z(t) ∈ M are the trajectories with initial condition z(0)
that corresponds to the locally bounded mapping d : [0,∞)→ D.

Formulating LPIs for Input-To-State Stability

Theorem 6.6 For a constant real-valued matrix H ∈ Rnw+nu×nw+nu , define

H := P
[[
H 0
0 0

]
, 0

0, {0}

]
. Suppose there exist ε̃1, ε̃2, δ > 0, a constant real-valued

matrix P ∈ Rnx×nx and matrix-valued polynomials Q : [a, b] → Rnx×np ,
R0 : [a, b]→ Rnp×np , R1, R2 : [a, b]× [a, b]→ Rnp×np , such that

• ε̃2I < P
[
P, Q

Q>, {{R0, R1, R2}}

]
< ε̃1I
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• H � 0

• and,


B∗1
B∗2
A∗


P

[
TBw TBu T

]
+



T ∗Bw
T ∗Bu
T ∗


P

[
B1 B2 A

]
−H

4 −δ



T ∗Bw
T ∗Bu
T ∗


 [TBw TBu T

]
. (6.35)

Then, there exists an ISS storage functional according to the Definition 6.8
and the behavior P̄p is input-to-sate stable.

Proof: Proof is given in the Appendix 6.F. �

Degree-bounded test for input-to-state stability

One can formulate an LMI to test Lemma (6.4).

Lemma 6.4 Suppose there exist ε̃1, ψ, δ > 0, d1, d2 > 0, P ∈ Rnx×nx , Q :
[a, b] → Rnx×np , R0 : [a, b] → Rnp×np , and R1, R2 : [a, b] × [a, b] → Rnp×np
that satisfy

P := P
[
P, Q

Q>, {{R0 − ε̃1I, R1, R2}}

]
∈ Ξd2d1 , (6.36)

P
[
H − ψI, ∅

∅, {∅}

]
∈ Ξd2d1 , (6.37)

−



B∗1
B∗2
A∗


P

[
TBw TBu T

]
−



T ∗Bw
T ∗Bu
T ∗


P

[
B1 B2 A

]

−δ



T ∗Bw
T ∗Bu
T ∗


 [TBw TBu T

]
+ P

[[
H 0
0 0

]
, 0

0, {0}

]
∈ Ξd2d1 (6.38)

where T ,A,B1,B2, TBw, TBu are defined in Theorem 6.3. Then, the behavior
of Pp is input-to-state stable for all t ∈ [0,∞), and any w ∈ Lnw∞ [0, t), and
u ∈ Lnu∞ [0, t).

Verifying Input-to-state stability: academic example

Example 6.3 Consider a one dimensional string of length L attached at one end
and controlled via damping at the other end. Based on [22, 29], the following
hyperbolic PDE model is given in terms of the wave displacement u(s, t) over the
domain [0, L]
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∂2u(s, t)

∂t2
=
∂2u(s, t)

∂s2
+B1(s)w(t). (6.39)

The boundary conditions are

u(0, t) = 0,
∂u(s, t)

∂s
|s=L= −∂u(s, t)

∂t
|s=L . (6.40)

From the boundary conditions, we choose the states to be
x1(s, t) := col

(
∂u(s,t)
∂s , ∂u(s,t)

∂t

)
. Based on the PIE framework, we obtain

ẋ1(s, t) =

[
0 1
1 0

]

︸ ︷︷ ︸
:=A1

∂

∂s
[x1(s, t)] +B1(s)w(t).

Here, A0 = 0, A2 is void. The boundary conditions are

[
0 1 0 0
0 0 1 1

]

︸ ︷︷ ︸
:=B

[
x1(0, t)
x1(L, t)

]

︸ ︷︷ ︸
xb(t)

= 0.

PIETOOLS proves the ISS of this system which has also been verified analytically
in [48].

6.6 Synthesis ofH∞ Optimal State Estimator

In practice, assets exhibiting thermo-fluidic processes are usually equipped with
a finite number of sensors. Therefore, it is a key problem to estimate
non-observed or non-measured quantities of these processes on the basis of
(noise-corrupted) measurements from the sensors. This section addresses the
problem of synthesizing an estimator for systems whose behavior is described by
P̄p in (6.7). The estimator causally maps sensor information to estimates of the
non-observed output (in many applications the non-observed outputs coincide
with the state of the system) and achieves an optimal performance such that the
effect of disturbances to the estimation error is bounded inH∞ sense.

The conventional approach to synthesize a state estimator would be to first find
an approximated finite dimensional model using the method developed in
Chapter 4. The synthesis of an H∞ optimal estimator is then carried out on the
basis of the finite dimensional model. Specifically, if the finite dimensional model
is represented as ẋ = Ax + Bw, y = Cx + Dw, z = Ex, with, x as the finite
dimensional states, y as the measurements, z as the regulated outputs and w as
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the exogenous disturbances. Then the Luenberger estimator has the form
˙̂x = Ax̂ + L(ŷ − y), ŷ = Cx̂, ẑ = Ex̂. Here, L = P−1Z with P � 0 and Z
satisfy the following Linear Matrix Inequalities (LMIs) for a performance gain γ



PA+ ZC + (PA+ ZC)> −PB − ZD E>

−(PB + ZD)> −γI 0
E 0 −γI


 4 0. (6.41)

In this case, ||ẑ − z|| ≤ γ||w|| is achieved.

In the remainder of this section, the objective is to create an analogous LPI
formulation for synthesizing H∞ optimal state estimator for the behavior P̄p in
(6.7) using its equivalent PIE representation.

6.6.1 Designing Luenberger-Type State Estimator

State estimation for PDE-ODE coupled systems

A Luenberger state estimator for PDE-ODE coupled systems (6.7) is graphically
depicted in Figure 1.

[
ẋ(t)
ẋ(t)

]
=

[
A Ep
E Ap

] [
x(t)
x(t)

]
+

[
B11

B21

]
w(t)

y(t) =
[
C2 C2p

] [x(t)
x(t)

]
+D21w(t)

z(t) =
[
C1 C1p

] [x(t)
x(t)

]
+D11w(t)

[
˙̂x(t)
˙̂x(t)

]
=

[
A Ep
E Ap

] [
x̂(t)
x̂(t)

]
+ L(ŷ(t)− y(t))

ŷ(t) =
[
C2 C2p

] [x̂(t)
x̂(t)

]
ẑ(t) =

[
C1 C1p

] [x̂(t)
x̂(t)

]

−

w(t)

y(t)

ẑ(t)

z(t)ze(t)

PDE-ODE Models

PDE-ODE Estimator

[
Bw Bx0 Bc

]


w(t)
x(t)
x(t)


 = 0

[
Bx0 Bc

] [x̂(t)
x̂(t)

]
= 0

Figure 1: Synthesis of state estimator amounts to finding the operator L and a
minimum value of γ such that || ze ||L2[0,∞)≤ γ || w ||L2[0,∞)
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Finding the estimator gain L : Rny → Rnx × Ln0
2 [a, b] ×Hn1

1 [a, b] ×Hn2
2 [a, b] and

the minimum value of γ such that || ze ||L2[0,∞)≤ γ || w ||L2[0,∞) can be done by
determining the worst case disturbance amplification at the estimation error ze(t)
in the following PDE-ODE error system:

Perr
p :=





col (w, e, ze) |
e(0) = 0,

∀t ∈ [0,∞),



w(t)
ze(t)
e(t)


 ∈ Rnw+nz+nx × Ln0

2 [a, b]×Hn1
1 [a, b]×Hn2

2 [a, b],

ze(t) =
[
C1 C1p

]
e(t)−D11w(t)

ė(t) =

([
A Ep
E Ap

]
− L

[
C2 C2p

]
)

e(t)−
([

B11

B21

]
+ LD21

)
w(t)

[
−Bw Bx0 Bc

] [w(t)
e(t)

]
= 0.





.

(6.42)

Here, e(t) :=

[
x̂(t)
x̂(t)

]
−
[
x(t)
x(t)

]
and ze(t) = ẑ(t)− z(t).

State estimation for PIEs

A Luenberger state estimator for PIEs (6.19) is graphically depicted in Figure 2.

T ẋf (t) + TBwẇ(t) = Axf (t) + B1w(t)

y(t) = C2xf (t) +D21w(t)

z(t) = C1xf (t) +D11w(t)

T ˙̂xf (t) = Ax̂f (t) + L(ŷ(t)− y(t))

ŷ(t) = C2x̂f (t)

ẑ(t) = C1x̂f (t)

−
w(t)

y(t)ẑ(t)

z(t)ze(t)

PIEs

PIE Estimator

Figure 2: Synthesis of state estimator amounts to finding the operator L and a
minimum value of γ such that || ze ||L2[0,∞)≤ γ || w ||L2[0,∞)

Finding an estimator gain L : R → Rm × Lnp2 [a, b] and the minimum value of γ
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such that || ze ||L2[0,∞)≤ γ || w ||L2[0,∞) can be done by determining the worst case
disturbance amplification at the estimation error ze(t) in the following PIE error
system:

Perr
f :=





col (w, ef , ze) |
[
−TBw T

] [w(0)
ef (0)

]
= 0,

∀t ∈ [0,∞),



w(t)
ze(t)
ef (t)


 ∈ Rnw+nz+nx × Lnp2 [a, b],

[
I 0 0
0 −TBw T

]



ze(t)
ẇ(t)

ėf (t)


 =

[
−D11 C1

−B1 − LD21 A+ LC2

]

w(t)

ef (t)








,

(6.43)

Here, e(t) := x̂f (t)− xf (t).

Analogous to the treatment of Theorem 6.3, the following Lemma shows the
equivalence between of (6.42) and (6.43).

Lemma 6.5 In (6.8), let B ∈ R(n1+2n2)×2(n1+2n2) and

B




I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I
0 0 I




is invertible.

Suppose, col (w, e, ze) ∈ Perr
p as defined in (6.42). Then col (w, ef , ze) ∈

Perr
f as defined in (6.43) if the PI operators D11, C1,D21, C2,B1,A, T , TBw are

defined according to the Theorem 6.3.

Proof: The proof follows identical to the proof of Theorem 6.3. The only exception
is that for col (w, e, ze) ∈ Perr

p and col (w, ef , ze) ∈ Perr
f , the following identity

holds

e(t) =
[
−TBw T

] [w(t)
ef (t)

]
.

�

LPI forH∞ Optimal State Estimator Using PIE Representation
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Theorem 6.7 Suppose there exist scalars ε, γ > 0, constant real-valued
matrices P ∈ Rnx×nx , Z1 ∈ Rnx×ny and matrix-valued polynomials
Q : [a, b] → Rnx×np , R0 : [a, b] → Rnp×np , Z2 : [a, b] → Rnp×ny ,
R1, R2 : [a, b]× [a, b]→ Rnp×np , such that

• P
[
P, Q

Q>, {{R0, R1, R2}}

]
< εI ,

• and



T ∗Bw(PB1 + ZD21) + (·)∗ 0 (·)∗

0 0 0
−(PA+ ZC2)∗TBw 0 0


+



−γI −D>11 −(PB1 + ZD21)∗T
(·)∗ −γI C1
(·)∗ (·)∗ (PA+ ZC2)∗T + (·)∗




4 0, (6.44)

with P := P
[
P, Q

Q>, {{R0, R1, R2}}

]
and Z := P

[
Z1, ∅
Z2, {∅}

]
.

Then P−1 exists and is a bounded linear operator. Moreover, with
L := P−1Z , any w ∈ Lnw2 [0,∞) and ze ∈ Lnz2 [0,∞), the following inequality
is satisfied for all col (w, ef , ze) ∈Perr

f as well as for all col (w, e, ze) ∈Perr
p

|| ze ||L2[0,∞)≤ γ || w ||L2[0,∞) .

Proof: The proof can be found in the Appendix 6.G. �

Degree-bounded synthesis ofH∞ optimal estimator

One can formulate the following LMI tests according to the definition 6.5.

Lemma 6.6 Suppose there exist ε > 0, d1, d2 > 0, P ∈ Rnx×nx , Z1 ∈ Rnx×ny ,
Z2 : [a, b] → Rnp×ny , Q : [a, b] → Rnx×np , R0 : [a, b] → Rnp×np , and R1, R2 :
[a, b]× [a, b]→ Rnp×np which satisfy

γ̂ = arg min γ, (6.45)

such that

P
[
P, Q

Q>, {{R0 − εI, R1, R2}}

]
∈ Ξd2d1 ,

−

T ∗Bw(PB1 + ZD21) + (·)∗ 0 (·)∗
0 0 0

−(PA+ ZC2)∗TBw 0 0

−
−γ̂I −D>11 −(PB1 + ZD21)∗T

(·)∗ −γ̂I C1
(·)∗ (·)∗ (PA+ ZC2)∗T + (·)∗


∈ Ξd2d1 , (6.46)
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with Z := P
[
Z1, ∅
Z2, {∅}

]
, P := P

[
P, Q

Q>, {{R0 − εI, R1, R2}}

]
and

T ,A,B1, TBw, C1, C2,D11,D21 are defined in Theorem 6.3.

Then, forL := P
[
P, Q

Q>, {{R0 − εI, R1, R2}}

]−1

P
[
Z1, ∅
Z2, {∅}

]
, γ̂ is the minimum value,

such that for any w ∈ Lnw2 [0,∞) and ze ∈ Lnz2 [0,∞), the behavior of Perr
f

and Perr
p satisfy the following inequality

‖ze‖L2[0,∞) ≤ γ̂ ‖w‖L2[0,∞) .

6.6.2 Implementation of PIE State Estimator

PIE state estimator is implemented using the following steps:

Step 1: Inversion of PI operator and computing estimator gain

There is no known closed form solution for the inverse in case of a general PI
operator. Even in the case of sign definite PI operators, the inverse has not been
found analytically. However, if R1 = R2 in P

[
P, Q

Q>, {{R0, R1, R2}}

]
, its inverse is also

a PI operator and admits a closed form expression. In such cases, the formula of
inversion in given in the following Lemma.

Lemma 6.7 (c.f. [77]) Suppose that Q(s) = HZ(s) and
R1(s, θ) = Z(s)>ΓZ(θ) and P := P

[
P, Q

Q>, {{R0, R,R}}

]
is a coercive and

self-adjoint operator where P : X → X . If P−1 := P
[
P̂ , Q̂

Q̂>,
{
{R̂0, R̂, R̂}

}]with

P̂ =
(
I − ĤKH>

)
P−1, Q̂(s) = ĤZ(s)R0(s)−1

R̂0(s) = R0(s)−1, R̂(s, θ) = R̂>0 (s)Z(s)>Γ̂Z(θ)R̂0(θ),

and

K =

∫ 0

−1

Z(s)R0(s)−1Z(s)>ds

Ĥ = P−1H
(
KH>P−1H − I −KΓ

)−1

Γ̂ = −(Ĥ>H + Γ)(I +KΓ)−1,

then P−1 is self-adjoint with P−1 : X → X , and P−1Px = PP−1x = x for
all x ∈ X .

As a result, the estimator gain is computed such a way that,

L := P
[
P, Q

Q>, {{R0 − εI, R,R}}

]−1

P
[
Z1, ∅
Z2, {∅}

]
.
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Notice that, L is an another PI operator and admits the structure L := P
[

Φ1, ∅
Φ2, {∅}

]

for some Φ1 ∈ Rnx×ny and Φ2 : [a, b]→ Rnp×ny .

Step 2: Simulate the estimator by discretization of PIEs

To implement, the PIE estimator is connected with the original PDE-ODE model
as depicted

[
ẋ(t)
ẋ(t)

]
=

[
A Ep
E Ap

] [
x(t)
x(t)

]
+

[
B11

B21

]
w(t)

y(t) =
[
C2 C2p

] [x(t)
x(t)

]
+D21w(t)

z(t) =
[
C1 C1p

] [x(t)
x(t)

]
+D11w(t)

−

w(t)

y(t)

ẑ(t)

z(t)ze(t)

PDE-ODE Model

PIE Estimator

[
Bw Bx0 Bc

]


w(t)
x(t)
x(t)


 = 0

T ˙̂xf (t) = Ax̂f (t) + L(ŷ(t)− y(t))

ẑ(t) = C1x̂f (t)

ŷ(t) = C2x̂f (t)

Figure 3: Interconnection of PIE estimator with PDE-ODE model

Here, the PDE-ODE coupled model’s measurement y(t) can be obtained from
any standard numerical simulator that is able to simulate the specific PDE-ODE
coupled model. Considering the y(t) as an external signal, to simulate a
estimator, one has to implement a finite dimensional version of the estimator:

T̄ ˙̂xfd =
(
Ād + Φ̄dC̄2d

)
x̂fd − Φ̄d yd,

ẑd = C̄1dx̂fd. (6.47)

Here, the functions xf (s) is evaluated at the sequence of points (si) ∈ Sd ⊂ [a, b]×
[a, b], i ∈ {1, · · · , N + 1}, j ∈ {1, · · · , N + 1}. yd is obtained from PDE-ODE
simulator (if they are governed by diffusion-transport-reaction equations, one can
also use the approximation method in Chapter 4).
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All the matrices in (6.47) are obtained by discretization of respective PIE operators
at the sequence of points (si, θj) ∈ Sd × Sd ⊂ [a, b] × [a, b], i ∈ {1, · · · , N + 1},
j ∈ {1, · · · , N + 1} using trapezoidal Reimann sum as follows:

b∫

a

F (s)ds ≈ ∆s

2

N∑

i=1

(F (si) + F (si+1)). (6.48)

Note that solving (6.47) may require stiff solvers such as ode15s.

Academic Illustration: Estimator Design

Example 6.4 Consider the same mode in the Example 6.3. The regulated output is

chosen as z(t) =
b∫
a

∂u(s,t)
∂t ds. The measured output is chosen as y(t) = ∂u(s,t)

∂t |s=L.

In other words,

z(t) =

b∫

a

[
0 1

]
︸ ︷︷ ︸
:=Ca1

x2(s, t)ds+D1w(t),

y(t) =
[
0 0 0 1

]
︸ ︷︷ ︸

:=C20

xb(t),xb(t) :=

[
x1(0, t)
x1(L, t)

]

Using PIETOOLS, we obtain the minimum γ-value as 0.2064. After
implementing the discretized estimator on 50 grid points, Figure 4 shows the
disturbance suppression on the evolution of the discretized ze(t) := ẑ(t) − z(t)
over time.

Figure 4: Time evolution of ze(t) and w(t) where w(t) is the sinc function.
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6.7 Closing Remarks

This chapter shows that the general class of thermo-fluidic processes admit an
equivalent representation in terms of Partial Integral Equations (PIEs) and the
systems parameters are Partial Integral (PI) operators. Using the properties of PI
operators, the chapter develops Linear PI Inequalities (LPIs) for stability analysis,
computing input-ouput properties and designing H∞ optimal state estimator for
the thermo-fluidic processes. As testing LPIs can be formulated as LMIs, the
problems related to analysis and control of thermo-fluidic processes are solved
using LMIs that computationally implementable.
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Appendices

6.A Proof of Theorem 6.1

Observe the following:

• P
[
P, Q

Q>, {{R0, R1, R2}}

]
is self-adjoint.

• By the definitions in (6.4),

P
[
P, Q

Q>, {{R0, R1, R2}}

]
= P

[
I, 0
0, {{z0, z1, z2}}

]∗
P
[
P11, P12

P21, {{P22, 0, 0}}

]
P
[
I, 0
0, {{z0, z1, z2}}

]

with

z0(s) =



√
g(s)Z1(s)

0
0


 , z1(s, η) =




0√
g(s)Z2(s, η)

0


 , z2(s, η) =




0
0√

g(s)Z2(s, η)


 and

P11 = T11, P12 =
[
T12 T13 T14

]
,

P21 = P>12, P22 =



T22 T23 T24

T32 T33 T34

T42 T43 T44


 .

Since,
[
P11 P12

P21 P22

]
:=




T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44


 < 0, for all z1 ∈ Rm, z2 ∈ Rd1+2d2

〈[
z1

z2

]
,

[
P11 P12

P21 P22

] [
z1

z2

]〉

R

≥ 0

⇐⇒
〈[

z1

z2

]
,

[
P11 P12

P21 0

] [
z1

z2

]〉

R

+

〈
z2, P22z2

〉

R

≥ 0

151
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=⇒
〈[

z1

z2

]
,

[
P11 P12

P21 0

] [
z1

z2

]〉

R

≥ 0 and

〈
z2, P22z2

〉

R

≥ 0

=⇒
〈


y1
b∫
a

y2(s)ds


 ,
[
P11 P12

P21 0

]


y1
b∫
a

y2(s)ds



〉

R

≥ 0

and

〈
y2, P22y2

〉

L2

≥ 0∀y1 ∈ Rm,y2 ∈ Ld1+2d2
2 [a, b]

=⇒
〈


y1
b∫
a

y2(s)ds


 ,
[
P11 P12

P21 0

]


y1
b∫
a

y2(s)ds



〉

R

+

〈
y2, P22y2

〉

L2

≥ 0

=⇒ y>1 P11y1 + y>1 P12

b∫

a

y2(s)ds+

b∫

a

y>2 (s)P21y1ds+

b∫

a

y>2 (s)P22y2(s)ds ≥ 0

⇐⇒
〈[

y1

y2

]
,P
[
P11, P12

P21, {{P22, 0, 0}}

] [y1

y2

]〉

R×L2

≥ 0

Define
[
y1

y2

]
:= Zx, with Z := P

[
I, 0
0, {{z0, z1, z2}}

]
, ∀x ∈ Rm × Ln2 [a, b]

=⇒
〈
Zx,P

[
P11, P12

P21, {{P22, 0, 0}}

]
Zx
〉

R×L2

≥ 0

⇐⇒
〈
x,Z∗P

[
P11, P12

P21, {{P22, 0, 0}}

]
Zx
〉

R×L2

≥ 0

⇐⇒
〈
x,P

[
P, Q

Q>, {{R0, R1, R2}}

]
x

〉

R×L2

≥ 0 ∀x ∈ Rm × Ln2 [a, b]

6.B Proof of Theorem 6.3

For convenience, the following notations are introduced to perform specific
operations on the function x := col (x0,x1,x2).

• xf (s) :=




I 0
I

0 ∂s
∂2
s







x0

x1

x2


 (s).

• ∆cx := x(c) for any function x(s), s ∈ [a, b] when evaluated at a fixed point
c ∈ [a, b].
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• Λ1x =




0 ∆a 0
0 ∆b 0
0 0 ∆a

0 0 ∆b

0 0 ∆a∂s
0 0 ∆b∂s




x

Now, using fundamental theorem of calculus and the definition of PI operator,
one obtains




x0(s)
x1(s)
x2(s)


 =




x0(s)
x1(a) +

∫ s
a
∂sx1(θ)dθ

x2(a) + (s− a)∂sx2(a) +
∫ s
a

(s− a)∂2
sx2(θ)dθ




= P
[∅, ∅

∅,

{
I 0 0

0 0 0
0 0 0

 ,
0 0 0

0 I 0
0 0 (s− θ)

 , 0}

]
xf (s)

+ P
[ ∅, ∅0 0 0

I 0 0
0 I (s− a)I

 , {∅}
]


0 ∆a 0
0 0 ∆a

0 0 ∆a∂s


x(s).

Hence,



x0(s)
x1(s)
x2(s)


 =P

[ ∅, ∅0 0 0
I 0 0
0 I (s− a)I

 ,
{
I 0 0

0 0 0
0 0 0

 ,
0 0 0

0 I 0
0 0 (s− θ)

 , 0}

]







0 ∆a 0
0 0 ∆a

0 0 ∆a∂s


x(s)

xf (s)




Now

Λ1P
[ ∅, ∅0 0 0

I 0 0
0 I (s− a)I

 ,
{
I 0 0

0 0 0
0 0 0

 ,
0 0 0

0 I 0
0 0 (s− θ)

 , 0}

]

=




0 ∆a 0
0 ∆b 0
0 0 ∆a

0 0 ∆b

0 0 ∆a∂s
0 0 ∆b∂s



P
[ ∅, ∅0 0 0

I 0 0
0 I (s− a)I

 ,
{
I 0 0

0 0 0
0 0 0

 ,
0 0 0

0 I 0
0 0 (s− θ)

 , 0}

]

= P




T︷ ︸︸ ︷
I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I
0 0 I

,

Q(s)︷ ︸︸ ︷
0 0 0
0 I 0
0 0 0
0 0 (b− s)
0 0 0
0 0 I


∅, {∅}




= P
[
T, Q(s)
∅, {∅}

]



154 Thermo-Fluidic Processes and PIEs

where the following identities are used:

∂sP
[

∅, ∅
g(s), {{0, R1(s, θ), 0}}

]
= P

[
∅, ∅

∂sg(s), {{R1(s, s), ∂sR1(s, θ), 0}}

]

and
∆bP

[
∅, ∅

Q2(s), {{0, R1(s, θ), 0}}

]
= P

[
Q2(b), R1(b, s)
∅, {∅}

]

and
∆aP

[
∅, ∅

Q2(s), {{0, R1(s, θ), 0}}

]
= P

[
Q2(a), 0

∅, {∅}

]

Note that, the boundary conditions (6.8) can be written as

BΛ1x = P
[[
Bw Bu Bxo

]
, Bxx

∅, {∅}

]



w
u
x
xf




As a result, one obtains

BΛ1x(t, s) = P
[
BT,BQ(s)
∅, {∅}

]






0 ∆a 0
0 0 ∆a

0 0 ∆a∂s


x(s)

xf (s)


 = P

[[
Bw Bu Bxo

]
, Bxx

∅, {∅}

]



w
u
x

xf (s)




In other words,

P
[
BT, ∅
∅, {∅}

]





0 ∆a 0
0 0 ∆a

0 0 ∆a∂s


x(s)


 = P

[[
Bw Bu Bxo

]
, Bxx − BQ(s)

∅, {∅}

]



w
u
x

xf (s)




or






0 ∆a 0
0 0 ∆a

0 0 ∆a∂s


x(s)


 = P

[
(BT )−1

[
Bw Bu Bxo

]
, (BT )−1(Bxx(s)− BQ(s))

∅, {∅}

]



w
u
x

xf (s)




In conclusion,

x(s) =P




∅, ∅

∅,


{

I 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

R0f=L0

,

0 0 0
0 I 0
0 0 (s− θ)


︸ ︷︷ ︸

L1(s,θ)

, 0}






xf (s)

+ P




∅, ∅0 0 0
I 0 0
0 I (s− a)I


︸ ︷︷ ︸

K(s)

, {∅}







0 ∆a 0
0 0 ∆a

0 0 ∆a∂s


x(s)
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In other words

x(s) =P
[
∅, ∅
∅, {{L0, L1(s, θ), 0}}

]
xf (s)

+ P
[

∅, ∅
K(s), {∅}

]
P
[

(BT )−1
[
Bw Bu Bxo

]
, (BT )−1(Bxx(s)− BQ(s))

∅, {∅}

]



w
u
x

xf (s)




Finally,

x(s) = P
[

∅, ∅
Q2f , {{R0f ,R1f ,R2f}}

]



w
u
x

xf (s)


 ,

or
[
TBw TBu T

]
= P

[[
0 0 I

]
, 0[

Q2f

]
, {{R0f ,R1f ,R2f}}

]
, (6.49)

where

Q2f (s) = K(s)(BT )−1
[
Bw Bu Bxo

]
,R2f (s, θ) = K(s)(BT )−1(Bxx(θ)−BQ(θ)),

R1f (s, θ) = L1(s, θ) +K(s)(BT )−1(Bxx(θ)−BQ(θ)),R0f (s) =



I 0 0
0 0 0
0 0 0


 ,

L1(s, θ) =




0 0 0
0 I 0
0 0 (s− θ)


 ,K(s) =




0 0 0
I 0 0
0 I (s− a)I


 ,

T =




I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I
0 0 I



, Q(s) =




0 0 0
0 I 0
0 0 0
0 I (b− s)I
0 0 0
0 0 I



.

6.C Proof of Theorem 6.3

Notations and derivations related to the previous proof are recalled here.
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Reformulation of PDE-ODE Coupled Systems

The original PDE-ODE coupled system is represented as



z
y
ẋ

ẋ(s)


 =




D11 D12 C1 C1p
D21 D22 C2 C2p
B11 B12 A Ep
B21(s) B22(s) E(s) Ap







w
u
x

x(s)


 (6.50)

or




z
y
ẋ

ẋ(s)


 = P

[
P, Q1

Q2, {{R0,R1,R2}}

]




w
u
x

Λ1x
Λ2x(s)




(6.51)

where

Λ1x =




0 ∆a 0
0 ∆b 0
0 0 ∆a

0 0 ∆b

0 0 ∆a∂s
0 0 ∆b∂s




x, Λ2x(s) =




I 0 0
0 I 0
0 0 I
0 ∂s 0
0 0 ∂s
0 0 ∂ss




x(s)

The following definition are obtained from the operators’ definitions in (6.50).

P =



D11 D12 C1 C10

D21 D22 C2 C20

B11 B12 A E0


 , Q1(s) =



Ca1(s) Cb1(s) Cc1(s)
Ca2(s) Cb2(s) Cc2(s)
Ea(s) Eb(s) Ec(s)


 ,

Q2(s) =
[
B21(s) B22(s) E(s) E2(s)

]
,

R0(s) =
[
A0(s) A1(s) A2(s)

]
, R1(s, θ) = A2l(s, θ), R2(s, θ) = A2u(s, θ).

From Theorem 6.15,




z
y
ẋ

ẋ(s)


 = P



I 0 0 0 0

0 I 0 0 0
0 0 0 0 I

 , 0[
0 0 Q2f

]
, {{R0f ,R1f ,R2f}}







z
y
ẇ
u̇
ẋ

ẋf (s)




Determining Λ1x

Now recall






0 ∆a 0
0 0 ∆a

0 0 ∆a∂s


x(s)


 = P

[
(BT )−1

[
Bw Bu Bxo

]
, (BT )−1(Bxx(s)− BQ(s))

∅, {∅}

]



w
u
x

xf (s)
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and

Λ1P
[ ∅, ∅0 0 0

I 0 0
0 I (s− a)I

 ,
{
I 0 0

0 0 0
0 0 0

 ,
0 0 0

0 I 0
0 0 (s− θ)

 , 0}

]

= P
[
T, Q(s)
∅, {∅}

]

Λ1x(s) = Λ1P

 ∅, ∅0 0 0
I 0 0
0 I (s− a)I

 ,
{
I 0 0

0 0 0
0 0 0

 ,
0 0 0

0 I 0
0 0 (s− θ)

 , 0}




0 ∆a 0

0 0 ∆a

0 0 ∆a∂s

x(s)

xf (s)



= P
[
T, Q(s)
∅, {∅}

]
0 ∆a 0

0 0 ∆a

0 0 ∆a∂s

x(s)

xf (s)



= P
[
T, Q(s)
∅, {∅}

]
P
[
(BT )−1

[
Bw Bu Bxo

]
, (BT )−1(Bxx(s)− BQ(s))

0, {{I, 0, 0}}

]
w
u
x

xf (s)



= P
[
T, Q(s)
∅, {∅}

]
0 ∆a 0

0 0 ∆a

0 0 ∆a∂s

x(s)

xf (s)



= P
[
T (BT )−1

[
Bw Bu Bxo

]
, Q(s) + T (BT )−1(Bxx(s)− BQ(s))

∅, {∅}

]
w
u
x

xf (s)



Determining Λ2x

Firstly,

Λ2x = Λ2P
[

∅, ∅
Q2f , {{R0f ,R1f ,R2f}}

]



w
u
x
xf




and

Λ2P
[

∅, ∅
Q2f , {{R0f ,R1f ,R2f}}

]
=




I 0 0
0 I 0
0 0 I
0 ∂s 0
0 0 ∂s
0 0 ∂ss



P
[

∅, ∅
Q2f , {{R0f ,R1f ,R2f}}

]
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=







I 0 0
0 I 0
0 0 I
0 0 0
0 0 0
0 0 0




︸ ︷︷ ︸
I1

+




0 0 0
0 0 0
0 0 0
0 I 0
0 0 I
0 0 0




︸ ︷︷ ︸
I2

∂s + ∂s∂s




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 I




︸ ︷︷ ︸
I3




P
[

∅, ∅
Q2f , {{R0f ,R1f ,R2f}}

]

= P
[

∅, ∅
I1Q2f , {{I1R0f , I1R1f , I1R2f}}

]
+ ∂sP

[
∅, ∅

I2Q2f , {{I2R0f , I2R1f , I2R2f}}

]

+ ∂s∂sP
[

∅, ∅
I3Q2f , {{I3R0f , I3R1f , I3R2f}}

]

= P
[

∅, ∅
I1Q2f , {{I1L0, I1R1f , I1R2f}}

]
+ ∂sP

[
∅, ∅

I2Q2f , {{0, I2R1f , I2R2f}}

]

+ ∂s∂sP
[

∅, ∅
I3Q2f , {{0, I3R1f , I3R2f}}

]

= P
[

∅, ∅
(I1 + I2∂s)Q2f , {{I1L0 + I2L1(s, s), (I1 + I2∂s)R1f , (I1 + I2∂s)R2f}}

]

+ ∂sP
[

∅, ∅
∂sI3Q2f , {{0, ∂sI3R1f , ∂sI3R2f}}

]

Where

R1f (s, s)−R2f (s, s) = L1(s, s) =




0 0 0
0 I 0
0 0 0




and hence
I3(R1f (s, s)−R2f (s, s)) = I3L1(s, s) = 0

Finally,

Λ2P
[

∅, ∅
Q2f , {{R0f ,R1f ,R2f}}

]

= P
[

∅, ∅
(I1 + I2∂s)Q2f , {{I1L0 + I2L1(s, s), (I1 + I2∂s)R1f , (I1 + I2∂s)R2f}}

]

+ ∂sP
[

∅, ∅
∂sI3Q2f , {{0, ∂sI3R1f , ∂sI3R2f}}

]

= P
[

∅, ∅
Q̂2f ,

{
{R̂0f , R̂1f , R̂2f}

}].
Here,

Q̂2f =
(
I1 + I2∂s + I3∂

2
s

)
Q2f

R̂0f = I1



I 0 0
0 0 0
0 0 0


+ I2




0 0 0
0 I 0
0 0 0


+ I3




0 0 0
0 0 0
0 0 I




R̂1f =
(
I1 + I2∂s + I3∂

2
s

)
R1f

R̂2f =
(
I1 + I2∂s + I3∂

2
s

)
R2f
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where, the following identity is used

∂sI3R1f (s, θ)− ∂sI3R2f (s, θ) = ∂sI3L1(s, θ) = I3




0 0 0
0 0 0
0 0 I




Collecting All the relevant terms

So far,

Λ1x(s) = P
[
T (BT )−1

[
Bw Bu Bxo

]
, Q(s) + T (BT )−1(Bxx(s)− BQ(s))

∅, {∅}

]



w
u
x

xf (s)




and

Λ2x = Λ2P
[

∅, ∅
Q2f , {{R0f ,R1f ,R2f}}

]



w
u
x
xf


 = P

[
∅, ∅

Q̂2f ,
{
{R̂0f , R̂1f , R̂2f}

}]



w
u
x
xf




Hence,
w
u
x

Λ1x
Λ2x(s)



=P



P̂f︷ ︸︸ ︷
I 0 0
0 I 0
0 0 I

T (BT )−1Bw T (BT )−1Bu T (BT )−1Bxo

,
Q̂1f (s)︷ ︸︸ ︷

0
0
0

Q(s) + T (BT )−1(Bxx(s)− BQ(s))


Q̂2f ,

{
{R̂0f , R̂1f , R̂2f}

}




w
u
x

xf (s)



= P
[
P̂f , Q̂1f (s)

Q̂2f ,
{
{R̂0f , R̂1f , R̂2f}

}]


w
u
x

xf (s)



Combining with




z(t)
y(t)
ẋ(t)
ẋ(t)


 = P



I 0 0 0 0

0 I 0 0 0
0 0 0 0 I

 , 0[
0 0 Q2f

]
, {{R0f ,R1f ,R2f}}







z(t)
y(t)
ẇ(t)
u̇(t)
ẋ(t)
ẋf (t)
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we have

P



I 0 0 0 0

0 I 0 0 0
0 0 0 0 I

 , 0[
0 0 Q2f

]
, {{R0f ,R1f ,R2f}}







z(t)
y(t)
ẇ(t)
u̇(t)
ẋ(t)
ẋf (t)




= P
[
P, Q1

Q2, {Ri}

]
P
[

P̂f , Q̂1f (s)

Q̂2f ,
{
{R̂0f , R̂1f , R̂2f}

}]



w(t)
u(t)
x(t)
xf (t)




6.D Proof of Theorem 6.4

Consider the following candidate storage functional:

V (x(t),xf (t)) =

〈[
x(t)
xf (t)

]
, T ∗PT

[
x(t)
xf (t)

]〉

R×L2

≥ ε
∥∥∥∥T
[
x(t)
xf (t)

]∥∥∥∥
2

R×L2

Taking time derivative of V along the trajectory (x(t),xf (t)),

V̇ (x(t),xf (t)) =

〈
T
[
ẋ(t)
ẋf (t)

]
,PT

[
x(t)
xf (t)

]〉

R×L2

+

〈
T
[
x(t)
xf (t)

]
,PT

[
ẋ(t)
ẋf (t)

]〉

R×L2

=

〈
A
[
x(t)
xf (t)

]
,PT

[
x(t)
xf (t)

]〉

R×L2

+

〈
T
[
x(t)
xf (t)

]
,PA

[
x(t)
xf (t)

]〉

R×L2

=

〈[
x(t)
xf (t)

]
,A∗PT + T ∗PA

[
x(t)
xf (t)

]〉

R×L2

≤ −δ
∥∥∥∥T
[
x(t)
xf (t)

]∥∥∥∥
2

R×L2

Using Grönwall-Bellman inequality, for any initial condition col (x(0),xf (0)), one
obtains ∥∥∥∥T

[
x(t)
xf (t)

]∥∥∥∥
2

R×L2

≤ ζ

ε

∥∥∥∥T
[
x(0)
xf (0)

]∥∥∥∥
2

R×L2

e
−δ
ζ t,

where, ζ := ‖P‖L(R×L2).

Now, using Theorem 6.3, one can show that for any
(x,x, w, u, y, z) ∈ {Pp | w(t) ≡ 0, u(t) ≡ 0} and col (0, 0, x(0),x(0)) ∈ Xdom, there

exists (x,xf , w, u, y, z) ∈ {Pf | w(t) ≡ 0, u(t) ≡ 0}where
[
x(t)
x(t)

]
= T

[
x(t)
xf (t)

]
.

Hence, ∥∥∥∥
[
x(t)
x(t)

]∥∥∥∥
R×L2

≤
√
ζ

ε

∥∥∥∥
[
x(0)
x(0)

]∥∥∥∥
R×L2

e
−δ
2ζ t.
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Therefore, based on the definition 6.5, {Pp | w(t) ≡ 0, u(t) ≡ 0} is exponentially

stable with M =
√

ζ
ε , α = δ

2ζ .

6.E Proof of Theorem 6.5

Consider the following candidate ISS-storage functional:

V (w(t), u(t), x(t),xf (t)) =

〈
w(t)
u(t)
x(t)
xf (t)

 , [TBw TBu T
]∗ P [TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)


〉

R×L2

≥ 0.

Taking time derivative of V along the trajectory (w(t), u(t), x(t),xf (t)),

V̇ (w(t), u(t), x(t),xf (t)) =

〈[
TBw TBu T

] 
ẇ(t)
u̇(t)
ẋ(t)
ẋf (t)

 ,P [TBw TBu T
] 

w(t)
u(t)
x(t)
xf (t)


〉

R×L2

+

〈[
TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)

 ,P [TBw TBu T
] 

ẇ(t)
u̇(t)
ẋ(t)
ẋf (t)


〉

R×L2

=

〈[
B1 B2 A

] 
w(t)
u(t)
x(t)
xf (t)

 ,P [TBw TBu T
] 

w(t)
u(t)
x(t)
xf (t)


〉

R×L2

+

〈[
TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)

 ,P [B1 B2 A
] 

w(t)
u(t)
x(t)
xf (t)


〉

R×L2

.

The LPI suggests that

V̇ (w(t), u(t), x(t),xf (t)) ≤ ρ
∥∥∥∥[w(t)
u(t)

]∥∥∥∥2
R
−
∥∥∥∥[z(t)y(t)

]∥∥∥∥2
R
.

Integrating both sides of the above inequality with respect to time t from 0 to∞, one obtains

V (w(∞), u(∞), x(∞),xf (∞))− V (w(0), u(0), x(0),xf (0))

≤ ρ
∞∫
0

∥∥∥∥[w(t)
u(t)

]∥∥∥∥2
R

dt−
∞∫
0

∥∥∥∥[z(t)y(t)

]∥∥∥∥2
R

dt.
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Now, using Theorem 6.3, one can show that for any (x,x, w, u, y, z) ∈Pp and Xdom 3 0 =
col (w(0), u(0), x(0),x(0)), there exists (x,xf , w, u, y, z) ∈Pf where

[
x(0)
x(0)

]
=
[
TBw TBu T

] 
w(0)
u(0)
x(0)
xf (0)

 .
Hence, −V (w(0), u(0), x(0),xf (0)) = 0. Moreover, V (w(∞), u(∞), x(∞),xf (∞)) ≥ 0.

Hence, one obtains: √√√√√ ∞∫
0

∥∥∥∥[z(t)y(t)

]∥∥∥∥2
R

dt ≤ √ρ

√√√√√ ∞∫
0

∥∥∥∥[w(t)
u(t)

]∥∥∥∥2
R

dt

=⇒
∥∥∥∥[z(t)y(t)

]∥∥∥∥
L2[0,∞)

≤ √ρ
∥∥∥∥[w(t)
u(t)

]∥∥∥∥
L2[0,∞)

.

6.F Proof Of Theorem 6.6

Consider the following candidate ISS-storage functional:

V (w(t), u(t), x(t),xf (t)) =

〈
w(t)
u(t)
x(t)
xf (t)

 , [TBw TBu T
]∗ P [TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)


〉

R×L2

.

Moreover, for some ε̃1, ε̃2 > 0, let

ε̃1

∥∥∥∥∥∥∥∥
[
TBw TBw T

] 
w(t)
u(t)
x(t)
xf (t)


∥∥∥∥∥∥∥∥
2

R×L2

≤ V (w(t), u(t), x(t),xf (t)) ≤ ε̃2

∥∥∥∥∥∥∥∥
[
TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)


∥∥∥∥∥∥∥∥
2

R×L2

Taking time derivative of V along the trajectory (w(t), u(t), x(t),xf (t)),

V̇ (w(t), u(t), x(t),xf (t)) =

〈[
TBw TBu T

] 
ẇ(t)
u̇(t)
ẋ(t)
ẋf (t)

 ,P [TBw TBu T
] 

w(t)
u(t)
x(t)
xf (t)


〉

R×L2

+

〈[
TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)

 ,P [TBw TBu T
] 

ẇ(t)
u̇(t)
ẋ(t)
ẋf (t)


〉

R×L2
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=

〈[
B1 B2 A

] 
w(t)
u(t)
x(t)
xf (t)

 ,P [TBw TBu T
] 

w(t)
u(t)
x(t)
xf (t)


〉

R×L2

+

〈[
TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)

 ,P [B1 B2 A
] 

w(t)
u(t)
x(t)
xf (t)


〉

R×L2

.

The LPI suggests that

V̇ (w(t), u(t), x(t),xf (t)) ≤ −δ̃

∥∥∥∥∥∥∥∥
[
TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)


∥∥∥∥∥∥∥∥
2

R×L2

+H

(∥∥∥∥[w(t)
u(t)

]∥∥∥∥
R

)

≤ − δ̃

ε̃2
V (w(t), u(t), x(t),xf (t)) +H

(∥∥∥∥[w(t)
u(t)

]∥∥∥∥
R

)
,

Where, H

(∥∥∥∥[w(t)
u(t)

]∥∥∥∥
R

)
:=

[
w(t)
u(t)

]>
H

[
w(t)
u(t)

]
. Pre-multiplying both side of the last

inequality with e
δ̃
ε̃2
t, one obtains

d

dt

(
e
δ̃
ε̃2
t
V (w(t), u(t), x(t),xf (t))

)
≤ e

δ̃
ε̃2
t
H

(∥∥∥∥[w(t)
u(t)

]∥∥∥∥
R

)
. (6.52)

Integrating both side of the last inequality for the interval [0, t), one obtains

e
δ̃
ε̃2
t
V (w(t), u(t), x(t),xf (t))− V (w(0), u(0), x(0),xf (0)) ≤

t∫
0

e
δ̃
ε̃2
τ

(
H
(∥∥∥∥[w(τ)

u(τ)

]∥∥∥∥
R

))
dτ

≤

( t∫
0

e
δ̃
ε̃2
τdτ

)
sup
τ∈[0,t)

(
H
(∥∥∥∥[w(τ)

u(τ)

]∥∥∥∥
R

))
.

In the last inequality, Hölder’s inequality is used. Now,

e
δ̃
ε̃2
t
V (w(t), u(t), x(t),xf (t))− V (w(0), u(0), x(0),xf (0))

≤ e
δ̃
ε̃2
t − 1
δ̃
ε̃2

sup
τ∈[0,t)

(
H
(∥∥∥∥[w(τ)

u(τ)

]∥∥∥∥
R

))
.

≤ e
δ̃
ε̃2
t

δ̃
ε̃2

sup
τ∈[0,t)

(
H
(∥∥∥∥[w(τ)

u(τ)

]∥∥∥∥
R

))
.

Multiplying all the terms by e−
δ̃
ε̃2
t and after rearrangements of the terms, one obtain

V (w(t), u(t), x(t),xf (t)) ≤ e−
δ̃
ε̃2
t
V (w(0), u(0), x(0),xf (0)) +

ε̃2

δ̃
sup
τ∈[0,t)

(
H
(∥∥∥∥[w(τ)

u(τ)

]∥∥∥∥
R

))
.
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Using the bounds on V (w(t), u(t), x(t),xf (t))

ε̃1

∥∥∥∥∥∥∥∥
[
TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)


∥∥∥∥∥∥∥∥
2

R×L2

≤ e−
δ̃
ε̃2
t
ε̃2

∥∥∥∥∥∥∥∥
[
TBw TBu T

] 
w(0)
u(0)
x(0)
xf (0)


∥∥∥∥∥∥∥∥
2

R×L2

+
ε̃2

δ̃
sup
τ∈[0,t)

(
H
(∥∥∥∥[w(τ)

u(τ)

]∥∥∥∥
R

))
.

Since H � 0,

ε̃1

∥∥∥∥∥∥∥∥
[
TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)


∥∥∥∥∥∥∥∥
2

R×L2

≤ e−
δ̃
ε̃2
t
ε̃2

∥∥∥∥∥∥∥∥
[
TBw TBu T

] 
w(0)
u(0)
x(0)
xf (0)


∥∥∥∥∥∥∥∥
2

R×L2

+
ε̃2

δ̃
H

(
sup
τ∈[0,t)

∥∥∥∥[w(τ)
u(τ)

]∥∥∥∥
R

)

≤ e−
δ̃
ε̃2
t
ε̃2

∥∥∥∥∥∥∥∥
[
TBw TBu T

] 
w(0)
u(0)
x(0)
xf (0)


∥∥∥∥∥∥∥∥
2

R×L2

+
ε̃2

δ̃
H

(∥∥∥∥[w(τ)
u(τ)

]∥∥∥∥
L∞[0,t)

)

Now, using Theorem 6.3, one has

[
x(t)
x(t)

]
=
[
TBw TBu T

] 
w(t)
u(t)
x(t)
xf (t)

 .
Hence, we obtain∥∥∥∥[x(t)

x(t)

]∥∥∥∥2
R×L2

≤ ε̃2
ε̃1
e
− δ̃
ε̃2
t

∥∥∥∥[x(0)
x(0)

]∥∥∥∥2
R×L2

+
ε̃2

δ̃ε̃1
H

(∥∥∥∥[w(τ)
u(τ)

]∥∥∥∥
L∞[0,t)

)
(6.53)

This can be modified to∥∥∥∥[x(t)
x(t)

]∥∥∥∥
R×L2

≤
√

2ε̃2
ε̃1
e
− δ̃

2ε̃2
t

∥∥∥∥[x(0)
x(0)

]∥∥∥∥
R×L2︸ ︷︷ ︸

∈KL

+

√√√√2ε̃2

δ̃ε̃1
H

(∥∥∥∥[w(τ)
u(τ)

]∥∥∥∥
L∞[0,t)

)
︸ ︷︷ ︸

∈K

(6.54)

This completes the proof.
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6.G Proof of Theorem 6.7

Define the storage functional

V (ef (t), w(t)) = 〈T ef (t)− TBww(t),P(T ef (t)− TBww(t))〉R×L2 .

Since, V (ef (t), w(t)) ≥ ε ‖T ef (t)− TBww(t)‖2R×L2
holds for some ε > 0, P is bounded,

self-adjoint, coercive. Hence, P−1 exists and is a bounded linear operator. Then, using
L = P−1Z

V̇ (ef (t), w(t))− γ‖w(t)‖2 − γ‖υe(t)‖2 + 2〈υe(t), ze(t)〉R×L2

= 〈T ef (t)− TBww(t), (PA+ ZC2)ef (t)〉R×L2 + 〈(PA+ ZC2)ef (t), T ef (t)− TBww(t)〉R×L2

− 〈T ef (t)− TBww(t), (PB1 + ZD21)w(t)〉R×L2 − 〈T e(t)− TBww(t), (PB1 + ZD21)w(t)〉R×L2

− 〈(PB1 + ZD21)w(t), T e(t)− TBww(t)〉R×L2 − γ‖ω(t)‖2 − γ‖υe(t)‖2 + 〈υe(t), C1ef (t)〉R
+ 〈C1ef (t), υe(t)〉R − 〈υe(t),D11w(t)〉R − 〈D11w(t), υe(t)〉R

=

〈w(t)
ve(t)
ef (t)

 ,( ¯̄P

)w(t)
ve(t)
ef (t)

〉
R×L2

,

with

¯̄P =

T ∗Bw(PB1 + ZD21) + (·)∗ 0 (·)∗
0 0 0

−(PA+ ZC2)∗TBw 0 0

+

−γI −D>11 −(PB1 + ZD21)∗T
(·)∗ −γI C1
(·)∗ (·)∗ (PA+ ZC2)∗T + (·)∗

 .
Now, set υe(t) = 1

γ
ze(t). If (6.44) is satisfied, then

V̇ (ef (t), w(t))− γ‖ω(t)‖2 +
1

γ
‖ze(t)‖2 ≤ 0.

Integration of this inequality with respect to t yields

V (ef (t), w(t))− (ef (0), w(0))− γ
∫ t

0

‖w(τ)‖2 dτ +
1

γ

∫ t

0

‖ze(τ)‖2 dτ ≤ 0.

V (ef (0), w(0)) = 0 and V (ef (t), w(t)) ≥ 0 for any t ≥ 0. Then as t → ∞, one gets
|| ze ||L2[0,∞)≤ γ || w ||L2[0,∞).
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7 CHAPTER

Industrial Application of Lumped
Digital Twin: DoD Inkjet Printhead

This chapter introduces a closed-loop control strategy for maintaining
consistency of liquid temperature in commercial Drop on Demand

(DoD) inkjet printing. No additional sensors or additional actuators
are installed in the printhead while achieving the consistency in liquid
temperature. To this end, this chapter presents a novel in situ sensing-
actuation policy at every individual liquid-nozzle, where the jetting
mechanism has three distinct roles. It is used for jetting liquid droplet
onto the print media based on the print-job. It is used as a soft sensor to
estimate the real-time liquid temperature of the jetting nozzle. While not
jetting liquid, it is used as a heating actuator to minimize the gradient
of liquid temperature among nozzles. The soft sensing based in situ
controller is implemented in an experimentally validated digital twin that
models the thermo-fluidic processes of the printhead. The digital twin is
scalable and flexible to incorporate an arbitrary number of liquid-nozzles,
making the control strategy applicable for future designs of the printhead.
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7.1 Introduction

In the printing industry, model-based control of thermo-fluidic aspects is an
unexplored field of research. Most of the literature is on physical modeling and
experimental methods of drop formation and relevant fluid dynamics in inkjet
printing (c.f. [100, 19, 102]). The applications of control techniques are largely
restricted to designing the DoD voltage pulses for generating droplets and
compensating problems related to nozzle acoustics (c.f. [51, 53, 49]). In general, a
system-theoretic outlook to model and control thermo-fluidic aspects in DoD
inkjet printing is still mostly missing.

Contribution of this Chapter

This chapter introduces, for the first time, a synthesis procedure to design a
model-based feedback controller for the DoD inkjet printhead that uses no
additional sensors and no additional actuators to compensate for the fluctuation
of liquid temperature among nozzles. The applicability of the control system is
demonstrated with the help of three novel contributing aspects:

1. The modeling framework presents a digital twin of the printhead, which is
modular towards an arbitrary number of nozzles. Changes in the number
of nozzles do not require redevelopment of the digital twin from the outset.

2. The piezoelectric elements that are already installed in every individual
nozzle are used as collocated soft sensors. The self-sensing capability of a
piezoelectric element is exploited to develop a data-driven algorithm and
estimate the liquid temperature at every individual nozzle.

3. A concept of in situ actuation is introduced to control the fluctuation of
liquid temperature. Here, a sensing-actuation policy is developed such that
the controller uses the bit-map to anticipate the change in temperature at
every nozzle and utilizes only the non-jetting nozzles to compensate for the
temperature fluctuation.

7.2 Building a Digital Twin of Inkjet Printhead

Which Method Is Suitable for Inkjet Printhead?

In Chapter 3-5, three distinct methods are presented to develop a digital-twin
that is able to describe the thermo-fluidic processes using graph-theoretic
framework. The underlying behavior of the thermo-fluidic processes is reflected
by these three distinct abstractions with varying complexity and varying
accuracy. In order to utilize the digital twin and its functionalities for a
commercial peripheral such as inkjet printhead, one needs to make a suitable
trade-off between the model’s accuracy to capture the thermo-fluidic phenomena



7.2 Building a Digital Twin of Inkjet Printhead 171

and model’s complexity to enable tractable and cheaper implementation.
Concerning inkjet printhead, there are two decisive factors to make a choice
among three methods:

1. The digital twin may be equipped with an arbitrarily large number of liquid
nozzles along with corresponding flow parameter for every individual one
of them. This essentially suggests that number of parameter-varying liquid
nodes in the digital twin can be significantly large. And it is the requirement
to maintain consistent liquid temperature at every individual nozzle.

2. Based on the physical dimensions and constitutive materials, the Biot
number of many components in the inkjet printhead justifies to provide
sufficient accuracy if their thermo-fluidic processes are modeled based on
lumping. However, it is important to point out that not all the component
has sufficiently low Biot number. In those cases, further portioning a node
may be required.

Based on these two arguments, the method of lumping-then-design is selected
for addressing the problem concerning the inkjet printhead. At the same time,
flexibility is provided in building the digital twin such at any stage of the design
cycle, any individual node can be partitioned into a set of equi-partitioned nodes
until required accuracy is met.

Setting Up the Digital Twin for Commercial Printhead

A Drop on Demand (DoD) inkjet printhead jets droplets of liquid based on the
specific image that the user demands to print. A typical architecture of a
commercial DoD printhead is shown in figure 7.1(a)-7.1(b) (for instance, see
XAAR printhead [106]).

L2

L3

NP

1

2

3

7 9

108

L1

2 3

4

Ink inlet Ink return

5 6

(a) Cross-sectional view of a
printhead.

NP

NPleft NPright

(b) Bottom-view of an NP with
nozzles.

Figure 1: The printhead consists of solid components (green), and channels for
liquid (inlet in purple and return in blue).

Here, the bottom stage of the printhead is called the nozzle-platform (NP), which
is divided into two mutually insulated parts NPleft and NPright. Each part of NP
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consists of an array (divided into rows and columns) of nozzles. An example of
the nozzles’ placement with respect to an NP is shown in figure 7.1(b). The NP
can be removed from the printhead and replaced with a new design. This feature
allows for accommodating arbitrary numbers of nozzles without re-designing the
entire printhead. In order to build the digital-twin based on lumping, the method
presented in Section 3.2.2 is followed. For the printhead shown in figure 7.1(a),
individual nodes (components) and the interconnection topology, is depicted in
figure 2.
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Figure 2: Topology of the printhead with 4M nozzles (denoted by n1, · · · , nM ).
represents a solid component, represents a liquid component for

inlet, and represents a liquid component for re-circulation.
is an edge describing conductive exchange of thermal energy between
two solid components or a solid and liquid component. is an
edge describing convective thermal energy due to the inflow of liquid
along the inlet channels. is an edge describing convective thermal
energy due to the re-circulation of liquid along the return channels.

In particular,

1. The adjacency matrixA is defined based on the architecture of the printhead.
Except for the adjustable NPs, the remaining architecture of the printhead is
typically kept identical. Then, specifying the arrays of nozzles is sufficient
for defining the entire topology of a newly designed printhead.

2. The job related signals always depend on the user-defined image that is
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captured in a bit-map. Given a specific bit-map, the job signals are related
according to pi(t) = Θi(t)qi(t), where Θi(t) stores the flow parameters in an
individual node.

3. Based on the length of individual liquid channel, there is a provision of
divide them into a set of equi-partitioned nodes to improve accuracy of the
model. Depending on the specific configuration, large volumes of liquid
and material properties, the liquid channel L1 and L2 do not always satisfy
the Biot number criterion. In such cases, partitioning nodes is essential to
achieve desired accuracy.

7.3 Calibration of Soft Sensor

In Chapter 3, Section 3.3.1, a novel method is proposed that allows to use every
individual nozzle’s piezoelectric element as a soft sensor of liquid temperature.
The basic principle behind the soft-sensing is to measure the data samples of the
acoustic signal and establish an empirical acoustic energy-temperature relation. In
the inkjet printhead, the characteristic relation between acoustic energy and liquid
temperature for an individual nozzle is established by performing the following
three experiments consecutively.

Experiment 1

In the first experiment, three operating points are chosen for the liquid
temperature. At a fixed operating point of temperature, the liquid droplets are
jetted using the actuation mode of the piezoelectric element. After that, it is
switched to sensing mode 20 times consecutively, and each time the acoustic
sensing signal is measured. Every individual signal contains 100 samples of
measured data. Using the measured data, the acoustic sensing signal is
reconstructed using Algorithm IV.1, and its energy is computed. Based on this
experiment, the energy-temperature curve is shown in figure 3. Despite the
expected trend in change of acoustic energy with temperature, the variation of
energy estimate is significantly large. Therefore, estimating liquid temperature
using energy-temperature curve is still unreliable.

Experiment 2

The evaporation of liquid changes its viscosity and temperature [72], and
therefore also its acoustic energy. In order to present the consequence of
evaporation, an experiment, similar to Experiment 1, is performed where four
operating points of temperature are chosen. Liquid droplets are jetted at these
operating temperature by using 2000 consecutive jetting pulses. The last jetting
pulse is, thereafter, followed by switching the piezoelectric element in sensing
mode and measuring a sequence of acoustic sensing signals. Here, the aim is to
investigate the evolution of acoustic energy over time. In figure 4, the estimated
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Figure 3: Mean and variance of the energy-temperature curve at three operating
points of liquid temperatures in Experiment 1.

Figure 4: Effect of evaporation on the estimated acoustic energy over time in
Experiment 2.

acoustic energy of the acoustic signal is shown over one second. Over time, the
effect of evaporation results in an initial decay of energy and the decay rate is
higher if the temperature of the liquid droplet is higher. This experiment implies
that, due to evaporation, estimating the relation between temperature and
acoustic energy depends on the timed sequence between jetting and sensing. In
other words, the larger the difference between the time of jetting pulses and the
time of measurements, the lower the acoustic energy. As a result, the estimation
method based on this experiment has a poor signal-to-noise ratio.

Experiment 3

To circumvent the effect of evaporation from the energy-temperature relation,
only those acoustic sensing signals should be considered that are measured
immediately after the jetting pulse. To this end, another experiment is performed
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where the liquid temperature is varied over four operating points. In contrast to
the previous experiments where a series of acoustic signals are measured one
after another, this time, jetting of the liquid droplet is directly followed by the
sensing of the acoustic signal. This sequence of consecutive jetting and sensing is
repeated 20 times. Using the measured data, the acoustic energy is estimated.
figure 5 shows that the adapted approach of consecutive jetting-sensing
significantly improves the variance in the estimate of energy-temperature
relation.

Figure 5: Relation between the liquid temperature of a nozzle and estimated
acoustic energy in Experiment 3.

In figure 6-7, the designs of Experiment 1 and Experiment 3 are compared,
respectively. The key difference between them is the sequence in which jetting
actuation and acoustic sensing are performed. Based on the sequential
jetting-sensing mechanism devised in Experiment 3, the energy-temperature
characteristic curves are estimated and calibrated for every individual nozzle. In
figure 8, energy-temperature curves are shown for four different nozzles in the
printhead.

Actuation

Sensing

tdelay

Figure 6: Actuation-sensing sequence in Experiment 1.



176 Inkjet Printhead
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tdelay
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Figure 7: Actuation-sensing sequence in Experiment 3.

Figure 8: Estimation of energy-temperature curve for four nozzles.

Estimation of Liquid Temperature Using Energy-Temperature Curve

Based on the energy-temperature curves, one can determine a parametric linear
model relating the acoustic energy and the liquid temperature. For an individual
nozzle, let the energy-temperature characteristic curve be modeled as:

xi = miφi + ci. (7.1)

Here, for ith nozzle, xi is the liquid temperature and φi is the acoustic energy.
The unknown parameters mi, ci ∈ R are obtained by fitting the respective energy-
temperature curve. Every time a liquid droplet is jetted from a nozzle, thereafter, it
can be followed by measuring the acoustic signal. The acoustic signal is modeled
as (3.1) and its energy φi is determined using Algorithm IV.1. Subsequently, the
corresponding liquid temperature xi is obtained from (7.1).

Estimation of Liquid Viscosity

One can also use the temperature estimate to infer the change in viscosity of the
liquid. Specifically, using the viscosity-temperature curve for a particular ink
material, variation of viscosity can be estimated with respect to the acoustic
energy. In figure 9, energy-viscosity curves are estimated for four nozzles.
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Figure 9: Estimation of energy-viscosity curve for four nozzles.

7.4 Experimental Validation

7.4.1 Experimental Setup

To validate the digital twin as well as the soft sensor, an experimental set-up is
built, as shown in figure 10. The set-up consists of two liquid vessels that are
connected with a printhead that has 160 nozzles. By keeping two vessels at a
fixed level, a constant re-circulation flow through the printhead is established.
To raise the temperature of the liquid inlet in the printhead, the upper vessel is
equipped with a heater. For each side of the NP, two locations are selected to

Upper 
Vessel

Lower 
Vessel

Heater

Pump

Figure 10: Experimental Setup.

place thermo-couples (in figure 11 they are called Tl,1, Tl,2 forNPleft and Tr,1, Tr,2
for NPright) to receive real-time information of its temperature. These thermo-
couples are used solely for validation purpose and are not allowed in the final
product. Moreover, at each side of NP, one nozzle is selected whose temperature
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NP

NPleft NPright

Tl,1 NrNl Tl,2 Tr,2Tr,1

Figure 11: Bottom configuration of NP with thermo-couples (?).

is monitored using the developed soft sensor (in figure 11 they are called Nl for
NPleft and Nr for NPright). In this way, temperature evolution of both solid and
liquid are measured on the both side of the printhead.

7.4.2 Experiment Design

The printhead is operated to print 3500 A-4 sheets of chapter. Only the nozzles
in NPleft are actuated for jetting while keeping the nozzles in NPright idle. The
bit-map is designed such that

1. For 100 seconds, first 500 pages are left unprinted.

2. In the next 100 seconds, another 500 pages are entirely printed by using all
the nozzles in NPleft.

3. In the next 100 seconds, another 500 pages are left unprinted.

4. In the next 100 seconds, another 500 pages are entirely printed by using half
of the nozzles that are located on the left side of NPleft.

5. In the next 100 seconds, 500 pages are left unprinted.

6. In the next 100 seconds, another 500 pages are entirely printed by using half
of the nozzles that are located on the right side of NPleft.

7. In the next 100 seconds, the last 500 pages are left unprinted.

7.4.3 Setting Up the Digital Twin for Simulation

Based on the bit-map, corresponding flow parameters are assigned with the print-
job signals. A graph theoretical digital twin of the printhead is built by following
the nodal structure that is depicted in figure 2. Every individual node is associated
with its temperature (in ◦C) as its internal state. Based on the topology of the
printhead, the interconnection signals and their relations are built. The print-job
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also assigns the flow parameters to every individual node through the print-job
signals and their relations. Once the model is built using the definitions (D.1)-
(D.3), any one of the representations P̆o, P̌o and P̃o can be used for simulating
the digital twin.

7.4.4 Results

In figure 12, at location Tl,1, Tl,2 and Tr,1, Tr,2, temperature data measured by the
thermo-couples are compared against the temperatures of the corresponding
nodes simulated by the digital twin. Using the developed soft sensor, in figure
13, the estimated liquid temperature at Nl and Nr are compared against the
temperatures of the corresponding nodes simulated by the digital twin. The

Figure 12: Comparisons among the temperature measurements from the thermo-
couple and the digital twin. The legends are as follows:
temperature at Tl,1; temperature at the corresponding node
in the digital twin; temperature at Tl,2; temperature
at the corresponding node in the digital twin; temperature at
Tr,1; temperature at the corresponding node in the digital twin;

temperature at Tr,2; temperature at the corresponding
node in the digital twin.

developed model captures the thermo-fluidic behaviour of the printhead by
indicating the offset in temperature among jetting and non-jetting nozzles. For
example, as the nozzles in NPright are idle during the entire print-job, its
temperature variation is significantly smaller. Nevertheless, there is still a small
temperature variation for nozzles in NPright due to thermo-fluidic cross-talk
among nozzles. Using only the left half of the nozzles or the right-half of the
nozzles in NPleft, among nozzles, there is a significant temperature difference
over time (around 2◦C difference between Tl,1 and Tl,2 during 300 − 400
seconds). The role of the liquid re-circulation is also evident as the temperatures
of the NP always go to a steady-state value while being idle.

Similarly, in figure 13, the soft sensor’s estimation of the liquid temperature
follows the same trend that of the digital twin. The sudden oscillations that
appear in the soft sensor’s estimation are due to sporadic bubble entrapment or
drying of liquid inside the nozzle during jetting, which may fluctuate the liquid



180 Inkjet Printhead

Figure 13: Comparisons of nozzle temperature among the estimates of the
developed soft sensor and the digital twin. The legends are as
follows: estimated temperature of Nl by soft sensor;
temperature at the corresponding node in the digital twin;
estimated temperature of Nr by soft sensor; temperature at the
corresponding node in the digital twin.

temperature. Such erratic phenomena are not captured in the digital twin. On the
other hand, the non-jetting nozzles’ temperature estimation is almost identical to
the model.

7.5 In Situ Controller: A Proof of Principle

The performance limiting aspects of thermo-fluidic processes is the fluctuation in
liquid temperature among adjacent nozzles in a printhead and among adjacent
printheads. To maintain temperature consistency, a controller is synthesized that
does not require incorporating any additional sensor or actuator. The only
resources the controller uses are a) the bit-map as prior knowledge about the
flow pattern and jetting sequence of nozzles in the printhead, b) the model
derived in Section III to anticipate and predict the evolution of thermo-fluidic
behaviour in the printhead, and c) the soft sensor as feedback information on
temperature and viscosity at every nozzle.

7.5.1 Concept of In Situ Sensing-Actuation

Every individual nozzle is equipped with a piezoelectric element for jetting
droplets of liquid. By applying a voltage, its resistive property allows the
piezoelectric element to dissipate heat. In this controller design problem, the
resistive property of a jetting actuator is used as a source of heating. Thus, the
piezoelectric element makes every individual nozzle equipped with a local,
independent, in situ self-sensing heating actuator.

However, the piezoelectric elements can only be used as heaters for control input
when there is no need for jetting liquid. To implement the in situ sensing-actuation
scheme, at all time t ∈ T, every individual nozzle is in either jetting, heating,
sensing or idle mode. To allocate the nozzles in these four modes of operations,
following time-varying set-valued maps are defined:
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1. Sp(t): The set of all nozzles that are used for jetting liquid droplets at time t.
The cardinality of the set is np(t).

2. Sh(t): The set of all nozzles that are non-jetting and are used as heaters at
time t. The cardinality of the set is nh(t).

3. Ss(t): The set of all nozzles whose temperatures are sensed at time t. The
cardinality of the set is ns(t).

4. Su(t): The set of all nozzles that are neither in any of the above modes at
time t. The cardinality of the set is nu(t).

The cardinality of each set (as a function of time) depends on a specific bit-map.
Intersections of Sp(t) and Sh(t) must be empty for all time t ∈ T. This
requirement on functional exclusion is a serious engineering challenge as a
piezoelectric element in heating mode is not supposed to jet. As described in
Section IV, there is always a delay between applying the jetting pulse and sensing
the temperature using a soft sensor. Therefore, the jetting nozzles are chosen not
to be used for sensing (i.e. the intersection between Sp(t) and Ss(t) is chosen to be
empty).

7.5.2 Performance Specifications

The controller must satisfy the following performance specifications:

1. Irrespective of the bit-map, the differences in temperature among adjacent
nozzles must be below ±0.3◦C.

2. The usage of thermal actuation must be limited to sustain operational
lifetime of piezoelectric elements.

3. Cooling of the liquid is not possible using the thermal actuation.

4. Thermal actuation of piezoelectric material should be non-jetting, i.e. it
should not form new droplets of liquid.

Intuitively, using the in situ sensing-actuation scheme, the controller is expected
to actuate only on a few heating nozzles (from the set Sh(t)) adjacent to the
jetting ones to limit the temperature difference among nozzles while satisfying
the performance specifications. At the same time, the nozzles’ temperature can
be monitored using the implemented soft sensor at the sensing nozzles (from the
set Ss(t)).

7.5.3 Generating Voltage Pulse for Heating Actuators

To apply the required amount of thermal power as control inputs, one needs to
design voltage pulses that are to be applied on the piezoelectric elements in
heating mode. Such voltage pulse must not cause ejection of droplets while
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satisfying the power requirement. The principle behind generating a non-jetting
and heating voltage pulse is to modulate the amplitude and frequency of the
trapezoidal pulses (c.f. [93]). Recently, in [73], a mechanism is developed so as to
generate specific thermal energy while not interfering with the bandwidth that
defines the jetting mode. Using band-pass modulation, the width and the height
of the trapezoidal voltage pulses are tuned. Further details on these signal
implementations are omitted for brevity.

7.5.4 Implementation and Illustration of MPC Scheme

As proof of principle, the presented MPC scheme is implemented to minimize
the difference in liquid temperature among nozzles. To this end, the following
specifications are considered:

Printhead Configuration

The printhead chosen for implementing MPC has the architecture shown in figure
7.1(a). There are 48 nozzles that are equally divided over two-sides of the NP, and
at each side, 24 nozzles are equally distributed over two rows.

Bit-map Specification

For generating a test bit-map, the following scenarios are considered:

• Scenario 1: All 24 nozzles that located in NPleft are used as a jetting nozzle.

• Scenario 2: 12 nozzles in NPright that are located closest to the NPleft are
used as jetting nozzle.

• Scenario 3: 12 nozzles in NPright that are located farthest from the NPleft
are used as jetting nozzle.

Setting Up the Digital Twin of the Model

Based on the above scenarios, the flow parameters are assigned to every
individual node. At the same time, the thermal power dissipated by the
individual jetting nozzle is used as known disturbances.

The model of every individual node is considered in discrete time by choosing
the T = {ktd | k ∈ N ∪ {0}} with td = 0.01 seconds. Euler’s approach is used
for time discretization due to its sparse and structure preserving implementation
([92], page 4).

The thermo-fluidic model is defined as a graph following the definitions (D.1)-
(D.3). The equivalent representations P̌o and P̃o are determined by eliminating
the interconnection and print-job signals.
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The in situ sensing-actuation scheme, as discussed in Section VI.A is
implemented by allocating the nozzles based on their four modes operations.
The set Sp(t) determines the set of all jetting nozzles. The rest of nozzles, except
the three nozzles that are located at the furthest distance from the jetting nozzles,
are used for heating. This determines Sh(t). All the nozzles that do not belong to
Sp(t) are used as soft sensors to estimate the change in liquid temperature. With
the allocated nozzles, the matrices Sh(t), Sp(t), Ss(t), Su(t) are built. The model
for control (3.5) is built subsequently. The unmeasured states are automatically
replaced by the corresponding state-updates from the model.

Specifying Control Criterion

The purpose of the controller is to control the temperature difference among
nozzles. They are defined by a vector of to-be-controlled variables

z(t) = Hx(t), (7.2)

where, z denotes the vector of all temperature differences among individual
adjacent nozzles. In particular, H ∈ Rnx×nx is a sparse matrix with Hi,i = 1 and
Hi,j = −1 whenever the ith nozzle is adjacent to the jth nozzle. At every time
instant t = ktd with k ∈ N ∪ {0}, the requirement is to control the liquid
temperature gradient among nozzles over a finite horizon of future time instants
t ∈ TkN where TkN := {ktd | k ∈ N[k,N+k]} for N > 0. To this end, the reference
tracking problem is formulated where the reference trajectories (xr, ur(t)) are
pre-determined from a steady state model that equates the temperature
difference of nozzles to zero. In other words, for t ∈ TkN , (xr, ur(t)) is the solution
of the following linear equations:

xr =Ã(t)xr + B̃(t)Sh(t)ur(t) +G(t) +W (t)Sp(t)dp(t),

0 =Hxr. (7.3)

Solving MPC Scheme

Using (3.5), The prediction model is built over the time horizon t ∈ TkN where
TkN := {ktd | k ∈ N[k,N+k]}. Here, N = 8. In (3.10), the weights Q and Ri|k
are chosen as diagonal matrices. Here, the diagonal entries in Ri|k are chosen
significantly higher than that of Q to strictly penalize the deviation of inputs from
its reference values. Moreover, entries of Ri|k are chosen such that the heating
nozzles adjacent to the jetting nozzles have more input power.

The optimization problem in (3.12) is solved by the freely available mpcqpsolver
using the interior point method. Once the optimization yields the optimal control
inputs, they are applied to the heating piezoelectric actuators by means of non-
jetting voltage pulses. The MPC then repeats the same procedure over the entire
bit-map iteratively.

https://nl.mathworks.com/help/mpc/ref/mpcqpsolver.html
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Results

Once the MPC is applied, the liquid temperatures of all 48 nozzles are shown
in figure 14. It demonstrates that the performance specifications are met while
satisfying the constraints. Moreover, only the adjacent heating nozzles are used
to compensate for the temperature inconsistencies among jetting and non-jetting
nozzles.

Due to the modularity of the digital twin, up-scaling (or changing) the number of
nozzles does not require rebuilding the entire model. The digital twin and the
control software are automated to build an up-scaled model with a user-defined
number of nozzles, implement in situ sensing-actuation scheme using the
bit-map and visualize results of the closed-loop system once the MPC is applied.
To demonstrate that, the same printhead, shown in figure 7.1(a), is equipped
with 160 nozzles that are equally divided over NPleft and NPright. In each side,
there are 80 nozzles that are equally distributed over four rows. In figure 15, the
result of MPC applied configuration is shown when half the nozzles in NPleft
are used for jetting.

(a) Controlled Scenario 1: NPleft is fully used for jetting. Maximum absolute
difference of temperature between two adjacent nozzles is 0.1988◦C.

(b) Uncontrolled Scenario 1: NPleft is fully used for jetting. Maximum absolute
difference of temperature between two adjacent nozzles is 2.2551◦C.
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(c) Controlled Scenario 2: Left half of NPright is used for jetting. Maximum
absolute difference of temperature between two adjacent nozzles is 0.2◦C.

(d) Uncontrolled Scenario 2: Left half of NPright is used for jetting. Maximum
absolute difference of temperature between two adjacent nozzles is 2.1726◦C.

(e) Controlled Scenario 3: Right half of NPright is used for jetting. Maximum
absolute difference of temperature between two adjacent nozzles is 0.2◦C.

(f) Uncontrolled Scenario 3: Right half of NPright is used for jetting. Maximum
absolute difference of temperature between two adjacent nozzles is 0.9368◦C.

Figure 14: Liquid temperature of 48 nozzles for three scenarios in controlled and
uncontrolled case. denotes nozzles that are jetting. denotes the
adjacent nozzles that are used as thermal actuators. denotes the
nozzles that are not used for heating.
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(a) Controlled Scenario: NPleft is fully used for jetting. Maximum absolute difference
of temperature between two adjacent nozzles is 0.1988◦C.

(b) Uncontrolled Scenario: NPleft is fully used for jetting. Maximum absolute
difference of temperature between two adjacent nozzles is 1.2292◦C.

Figure 15: Up-scaled controller for 160 nozzles. denotes nozzles that are
jetting. denotes the adjacent nozzles that are used as thermal
actuators. denotes the nozzles that are not used for heating.

Remark 7.1 (On computational complexity, c.f. [107]) With an increasing number
of the nozzles, evidently, the computational complexity of solving MPC
increases. At a specific iteration of k, the number of decision variables is related
to the number of states, the number of control inputs and the number of
horizons. Let these numbers be nx , nkh and N respectively. In contrast to solving
(3.10)-(3.11) that has a complexity of O(N3(nx + nkh)3), the dense LCQP (3.12)
has a lower complexity O(N3nkh

3
) [62]. This is achieved by eliminating the states

from the decision variables with substitution of equality constraints. However, in
this more condensed formulation, the sparsity of matrices is partially lost [44].
Yet the dense LCQP (3.12) is to be preferred from a computational point of view
as the dimension of decision variables involves only the number of non-jetting
heating actuators. This is typically small in number.
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7.6 Closing Remarks

In this chapter, a modular and flexible digital twin is presented for modeling and
control of thermo-fluidic processes in a DoD inkjet printhead. In particular, no
additional sensors or actuators are incorporated by developing an in situ
sensing-actuation based control strategy that minimizes the liquid temperature
fluctuations among individual nozzle. To this end, an experimentally validated
graph-theoretic modeling framework is developed that is modular up to an
arbitrary number of nozzles. It is demonstrated that this model is flexible,
scalable and versatile and that a number of equivalent input-state-output
representations can be derived in a straightforward and explicit manner from the
model, depending on the intended application.

A control strategy is implemented without using additional sensors and without
using additional actuators. Specifically, to circumvent this limitation, the
piezoelectric elements at every individual nozzle serves three roles: a) it is a
jetting actuator for depositing liquid, b) it is a soft sensor for estimating liquid
temperature, and c) it is a control actuator to diminish gradient in liquid
temperature among nozzles. Once a voltage pulse is applied to a piezoelectric
material, the soft sensor uses its self-sensing mechanism to measure the acoustic
signal. An algorithm is presented that uses the energy of this acoustic signal to
estimate the liquid temperature at every individual nozzle. An MPC controller is
developed to maintain the fluctuation of liquid temperature among nozzles well
below a range of ±0.3◦C while using only non-jetting piezoelectric elements as
thermal actuators.
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Estimation of Moisture in Composite
Materials in Fixation Process

This chapter discusses a proof of concept on how to solve practically
inspired thermo-fluidic process related problem by using the

computational tool of approximation and the computational method of
PIEs. To this end, this chapter demonstrates how to estimate the moisture
content of a newly printed composite material during the fixation process
by only using the temperature measurements of the solid support.
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8.1 Introduction

After the jetting process, freshly printed products are passed on to the fixation
unit where an individual printed product is dried. There is a set of heaters and
air impingement units that provide heat and dry air to evaporate excess moisture
content from the individual printed product. To achieve an optimal dryness of a
printed product, heating and air actuators must obtain the real-time information
about the temperature and moisture content of every individual printed product
during the fixation process. Currently, the fixation unit is equipped with
thermocouple to measure the temperature of the solid support, which is placed
underneath the printed product.

Contribution of this Chapter

The main contributions of this chapter are on the following aspects:

1. Modeling and simulation of coupled heat and moisture diffusion through
the thickness of a printed product using the modeling framework presented
in Chapter 2 and the approximation method presented in Chapter 4.

2. H∞ optimal estimation of average temperature and moisture content of
printed composite material in the presence of L2-bounded disturbance
when only the temperature of solid support is available as measured
output.

8.2 Overview of the Fixation Process

For drying a single printed product, the fixation process is depicted in Figure 1.

Air impingement 

unit

Heater

Support

Printed product

Thermocouple

Figure 1: Simplified front view of the fixation process.
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Regarding, the fixation setup, the following specifications are taken into account:

• The printed product is considered to be a three-layered composite material
over its thickness. At every layer of composite material, the diffusive
thermo-fluidic process takes place by means of coupled heat and mass
transfer.

• The support is considered to be a lumped solid block that conducts heat.

• External inputs are mass-flux from the air impingement unit and heat flux
from the heater. The measured output is the temperature of solid support,
measured by the thermocouple placed at the bottom of the support.

8.3 Problem 1: Modeling and Simulation of Diffusive
Thermo-Fluidic Processes in Composite Material

In this section, the printed product is modeled as a multi-layered composite
material and the thermo-fluidic process is governed by coupled heat and mass
diffusion process.

8.3.1 Graph Theoretic Modeling of Fixation Process

The graph theoretic model of the fixation process is depicted in Figure 2

a1 = 0 mm

b1 = a2 = 2 mm

b2 = a3 = 4 mm

b3 = 6 mm

N1

N2

N3

N4N4

y

z

w

Figure 2: Graph theoretic definition of fixation process.
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Following the definitions (D.1)-(D.3) (on page 23-24), the graph consists of four
nodes and three edges that are defined below:

Topology

The fixation process is finite and connected graph defined as

G = (N, E, A,T).

Here, T = [0,∞), with N = {N1,N2,N3,N4} and
E = {E1,2,E2,1,E2,3,E3,2,E3,4,E4,3}. The adjacency matrix A ∈ R4×4 is
symmetric and defined as following:

A =




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


 .

Spatially Distributed Nodes

Every individual node Ni ∈ N, i ∈ N[1,4] is specified in following items

• X1 = [0, 2] (in mm), X2 = [2, 4] (in mm), X1 = [4, 6] (in mm), X4 = ∅.

• Xbc
1 = {0} (in mm), Xbc

2 = ∅, Xbc
3 = ∅, Xbc

4 = ∅.

• Every individual spatially distributed node (i.e. N1,N2,N3) is governed by
coupled diffusion equations as given below:

[
ẋ1

2i(si, t)
ẋ2

2i(si, t)

]
= Di

[
∂2
six

1
2i(si, t)

∂2
six

2
2i(si, t)

]
. (8.1)

Here, for si ∈ Xi, Di ∈ R2×2 is the diffusion coefficient for the node Ni,
when i ∈ N[1,3]. Moreover, x1

2i is the spatio-temporal temperature (◦C) and
x2

2i is the spatio-temporal moisture (g/m3) for every individual node Ni,
i ∈ N[1,3].

• The boundary condition at Xbc
1 = {0} is given by:

−D1

[
∂s1x

1
21(0, t)

∂s1x
2
21(0, t)

]
+

[
x1

21(0, t)
x2

21(0, t)

]
=

[
1 0
0 1

] [
w1(t)
w2(t)

]
. (8.2)

Here, w1 and w2 are external input related to the heat flux from heater and
mass flux from air impingement unit respectively.
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Interconnections Among Spatially Distributed Nodes

Every edge, Ei,j ∈ E, when both Xi and Xj are nonempty, is specified in the
following items

• XI1,2 = {2} (in mm), XI2,3 = {4} (in mm), XI3,4 = {6} (in mm)

• Among All the edges E1,2-E2,1, and E2,3-E3,3 are mutual interconnection
between two adjacent spatially distributed node. On the other hand,
E3,4-E4,3 is the interconnection between the support (lumped node) and the
N3 (spatially distributed node).

• At XI1,2 = {2} and XI2,3 = {4}, the interconnection boundary conditions are
[
x1

21(2, t)
x2

21(2, t)

]
=

[
x1

22(2, t)
x2

22(2, t)

]
,

D1

[
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1
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2
21(2, t)

]
=D2
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2
21(2, t)

]
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x2
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]
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x2
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2
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=D3
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∂s3x

1
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∂s3x
2
23(4, t)

]
. (8.3)

Interconnections between Spatially Distributed Node and Lumped Node

• At XI3,4 = {6} (in mm), the interconnection between N3 and N4 is given by

D3

[
∂s3x

1
23(6, t)

∂s3x
2
23(6, t)

]
+

[
x1

23(6, t)
x2

23(6, t)

]
=

[
1 0
0 0

]
x(t). (8.4)

where x(t) is the temperature of the solid support (◦C).

Dynamics of the Lumped Node

The dynamics of lumped node is a linear ODE of the following form:

ẋ(t) = −x(t) + x1
23(6, t), (8.5)

where, the boundary value of N3 node’s temperature acts as an interconnection
input to the lumped model.
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8.4 Scaling of Spatial Domain for Individual
Spatially Distributed Node

Now, the three nodes N1,N2,N3 are scaled by shifting their individual spatial
domain Xi within the interval [0, 1] (in mm). To this end, for every si ∈ Xi, i ∈
N[1,3], there exists s ∈ [0, 1] such that si = mis+ ci. Precisely

s1 := 2s, s2 := 2s+ 2, s3 := 2s+ 4. (8.6)

As a result, the complete dynamics of N1,N2,N3 can be coupled together on the
same domain [0, 1] and the PDE model takes the following form:

ẋ2(s, t) = D
[
∂2
sx2(s, t)

]
, (8.7)

Here, x2 := col (x̃1
2i, x̃

2
2i)i∈N[1,3]

, where x̃j21(s, t) = xj21(2s, t), x̃j22(s, t) = xj22(2s +

2, t), x̃j23(s, t) = xj23(2s+ 4, t) with j ∈ 1, 2. Moreover, D = 0.25diag(D1, D2, D3).

The boundary conditions are
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Rearranging the states in (8.8), one can obtain,

B




x2(0, t)
x2(1, t)
∂sx2(0, t)
∂sx2(1, t)


 = Bw

[
w1(t)
w2(t)

]
+Bxx(t), (8.9)

for suitably defined constant matrices B,Bw and Bx.

As a result of such spatial scaling, the lumped model of the support has the
following form:

ẋ(t) = −x(t) + x̃1
23(1, t). (8.10)
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8.5 Simulation of Heat and Moisture Diffusion in a
Composite Material

The first task is to simulate the composite diffusive process based on the
approximation method developed in Chapter 4. To this end, (8.7) with the
boundary conditions (8.8) are considered with setting x(t) = 0. To implement the
three stage approximation technique, first, x2(s, t) decomposed as a direct sum of
two functions z(s, t) and f(s, t). And z(s, t) and f(s, t) can be solved separately.

Solving for f(s, t)

• f(s, t) := (F1s+ F2)

[
w1(t)
w2(t)

]
for some unknown constant matrix F1, F2.

• F1, F2 ∈ R6×2 solved by substituting x2 = f in (8.9) that leads to the
following matrix equations:

F2




F2

F1 + F2

F1

F1


 = Bw,

which can be solved uniquely.

Solving for z(s, t)

• z(s, t) :=
∞∑
n=1

θn(t)Φn(ωn, s), where θn(t) ∈ R, Φn(ωn, s) ∈ R6.

• Φn(s) = PΨn(ωn, s),

where Ψn(s) = col (ψni(ωn, s))i∈N[1,6]
. P ∈ R6×6 is obtained by

diagonalizing composite diffusion coefficient D in (8.7), i.e. D = PΛP−1,
where Λ = diag(λi)i∈N[1,6]

with λi being one of the positive eigen values of
D.

• ψni(ωn, s) := ani sin( ωn√
λi
s) + bni cos( ωn√

λi
s), where ωn, ani, bni ∈ R are

unknown constants. Note that, ψni(ωn, s) are orthogonal functions on the
space L2[0, 1].

• For i ∈ N[1,6], ani, bni as well as ωn for n ∈ N can be obtained by solving for
ani and bni from the following set of equations

B




Φn(ωn, 0)
Φn(ωn, 1)
∂sΦn(ωn, 0)
∂sΦn(ωn, 1)


 = 0,
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that can be rewritten as Γ(ωn)Ξn = 0 as defined in (4.16) on page 90. For
every individual n ∈ N, ωn is obtained by solving det(Γ(ωn)) = 0, and for
a value of ωn, finding Ξn amounts to a set of linear equations. There are 12
unknowns in the vector Ξn, Ξn := col (ani, bni)i∈N[1,6]

, which can be solved
uniquely by 12 equations resulting from Γ(ωn)Ξn = 0.

Finding Finite-Dimensional Approximation Model

By choosing the finite number of basis, i.e. {Φn(s) | n = 1, · · · , H}, the finite
dimensional approximation of z(s, t) is given by solution ẑ(s, t)

ẑ(s, t) =

H∑

n=1

θn(t)Φn(s). (8.11)

that satisfies
〈

Φm, ˙̂z(s)−D
[
∂2
s ẑ
]

(s)− (F1s+F2)

[
ẇ1

ẇ2

]〉

L6
2[0,1]

= 0; ∀m ∈ {1, · · · , H}. (8.12)

This can be rewritten as a linearH-dimensional state space model of the following
form:

θ̇(t) = Eθ(t) +G

[
ẇ1(t)
ẇ2(t)

]
,

where θ := col (θn)n∈N[1,H]
. Moreover, E ∈ RH×H , and G ∈ RH×2 can be found by

substituting the expansion of ẑ in the left hand side of (8.12).

8.5.1 Simulation of Coupled Heat and Moisture Transport in
Three-Layered Composite

Now, one can recover the solution to original PDEs of the spatially interconnected
nodes N1,N2,N3 by rescale the spatial domain back to its original values, i.e.
substituting s = si−ci

mi
where mi, ci are obtained from (8.6).

For presenting the simulation results, the following specifications are taken into
account:

• w1(t) = Q∗t sin(10t) + Q∗t , w2(t) = 0, where Q∗t = 50 watt, Q∗m = 0 are
constant values.

• Initial conditions for every node’s temperature is kept constant; x1
2i(si, 0) =

25◦C, for all i ∈ N[1,3].

• Initial conditions for every node’s moisture is kept constant; x2
2i(si, 0) =

4.5× 10−2g/m3, for all i ∈ N[1,3].

• In (8.11), the number of basis functions are chosen to be 50, H = 50.

• The values of D1, D2 and D3 is given below:
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Table 1: Values of D1, D2, D3

Parameters Values

D1

[
10 −0.5

−0.5× 10−2 7

]

D2

[
5 −0.25

−0.25× 10−2 3

]

D3

[
7 −0.25

−0.25× 10−2 4

]

Simulation Results

Using H = 50, i.e. 50 basis functions, the simulation is run with above
specifications for 100 seconds. The results are shown in

Figure 3: Comparisons of time evolution of moisture and temperature at s = 0mm
and s = 6mm. The legends are as follows: moisture at s =
0mm; moisture at s = 6mm; temperature at s = 0mm;

temperature at s = 6mm. As expected, the temperature of the
composite material increases while the moisture level decreases over
time as fixation process progresses.

8.6 Application of PIEs and PIETOOLS for
Estimating Moisture Content

Recall that the fixation process is modeled as a PDE-ODE coupled system with
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• PDE Model:

ẋ2(s, t) = D
[
∂2
sx2(s, t)

]

• ODE Model:
ẋ(t) = −x(t) + x̃1

23(1, t).

• Boundary Condition:

B




x2(0, t)
x2(1, t)
∂sx2(0, t)
∂sx2(1, t)


 = Bw

[
w1(t)
w2(t)

]
+Bxx(t).

• Measured Output:

y(t) = x(t) +
[
1 0

] [w1(t)
w2(t)

]

• Regulated Output:

z(t) =

b∫

a

Ca1x2(s)ds

H∞ State Estimator Design

To apply PIE framework, this model can be rewritten in the form of (6.7) on
page 126. Using the results from PIE framework, the H∞ estimator amounts to
taking the following step:

• Step 1: Determine th equivalent PIE representation:

In PIETOOLS, this is performed by simply an one-line function

convert_PIETOOLS_PDE;

• Step 2: Set up the LPIs

Finding estimator gain requires, determining P and Z by solving the following
optimization problem

γ̂ = arg min γ, (8.13)

such that
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P := P
[
P, Q

Q>, {{R0 − εI, R,R}}

]
∈ Ξd2d1 ,

−

T ∗Bw(PB1 + ZD21) + (·)∗ 0 (·)∗
0 0 0

−(PA+ ZC2)∗TBw 0 0

−
−γ̂I −D>11 −(PB1 + ZD21)∗T

(·)∗ −γ̂I C1
(·)∗ (·)∗ (PA+ ZC2)∗T + (·)∗

 ∈ Ξd2d1

(8.14)

Here, in the definition of P R1, R2 are set to be equal. In this way, P can be
invertible.

• Step 3: Solving in PIETOOLS and implementation

For solving the above problem in PETOOLS, one has to

1. declare P as unknown positive PI operator (using poslpivar).

2. declare Z to be a indefinite PI operator (using lpivar).

3. set the inequality constraint can be declared by using the command
lpi_ineq.

4. set the objective function using sosdecvar.

5. set the objective function using sossetobj.

6. solve the optimization problem using sosssolve.

The implementation of estimator is kept identical t0 the discussion in subsection
6.6.2 (from page 146 onwards).

Simulation Results

The purpose of simulating theH∞ estimator for fixation of one composite material
is to verify whether it is possible to estimate its moisture content in the presence of
boundary inputs from heaters and air impingement units. There are many ways
to define what would be physically meaningful regulated variable (given by z(t))
from the estimator such that, the framework serves the towards optimum dryness
of the printed product. In Table 2, three choices of regulated output are chosen
and three differentH∞ optimal estimator is synthesized. The corresponding level
of the worst-case amplification of disturbance to the estimator error is given as
γ-value.



200 Introduction

Table 2: Values of γ for different regulated outputs

γ-value Regulated output operator

0.6557 Ca1 =
[
0 1 0 0 0 0

]

0.8 Ca1 =
[
0 1 0 1 0 1

]

0.9275 Ca1 =




0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1




1. In the first row, only the average moisture of the first layer of the composite
is set to be regulated outputs.

2. In the second row, the entire paper’s average moisture is set to be regulated
output.

3. In the third row, every individual layer’s average moisture are taken as
regulated output.

It can be concluded that in the presence of square integrable disturbances, if one wishes
to estimate the average moisture of the composite’s top layer, the quality of estimation is
better than the average moisture content of all layers individually.

For simulating the estimator, the applied disturbance is chosen to be same for
w1(t), w2(t) as damped sinusoidal functions. Moreover, in this simulation, only
the average moisture of the first layer is considered to be the regulated output, i.e.

z(t) =

b∫

a

[
0 1 0 0 0 0

]
︸ ︷︷ ︸

:=Ca1

x2(s)ds.

Figure 4 and 5 show the estimation error with respect to the applied disturbance
and the estimated level of average moisture content on the first node.
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Figure 4: Comparisons of time evolution of applied disturbance and the
estimation error. The legends are as follows: estimation error;

disturbance at the top of N1 for both heat flux and mass flux.

Figure 5: Estimated average moisture along the thickness of N1.

8.7 Closing Remarks

In this chapter, a proof of concept is present on how to estimate the moisture
content in a composite material despite the presence of square integrable
disturbances. To this end, computational framework of PIEs and PIETOOLS are
used. It has been shown that estimation of average moisture in the composite’s
top layer is better than the case when all the layer’s combined moisture is
inferred from the estimator.
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9 CHAPTER

Conclusions and Future Outlook

To aid in the digitization of the industrial sector, this thesis develops
a digital twin for the assets that are governed by thermo-fluidic

processes. A finite graph builds the model of the digital twin, and three
distinct computational methods enable its functionalities. The developed
tools are applied to construct a digital twin that represents the jetting and
fixation processes in a DoD inkjet printer. The digital twin is used to
synthesize controllers that guarantee a desired performance from the DoD
inkjet printer and improve print quality without adding new sensors and
actuators.
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9.1 Viewpoint of the Thesis

The viewpoint of this thesis is to develop a generic framework for building a
flexible, versatile, modular and integrable digital twin that represents industrial
assets governed by thermo-fluidic processes and synthesizes controllers to
achieve desirable performance. There are two criteria that the digital twin must
facilitate:

1. The digital twin has to demonstrate how to control thermo-fluidic process
without adding new sensors and actuators.

2. The digital twin must guarantee that the controlled thermo-fluidic process
satisfies a predefined performance that is quantifiable.

To this end, a graph-theoretic modeling framework is presented that allows users
to represent the thermo-fluidic processes by specifying a vast class of coupled
PDEs and ODEs that are mutually interconnected in an arbitrary spatial
topology. Based on the presented model, the digital twin is built to serve various
functionalities, including

• The analysis of stability, input-output properties of thermo-fluidic processes,

• Synthesis of a soft sensor allowing real-time updates on thermo-fluidic
processes,

• Development of an optimal estimator to determine unmeasured physical
quantities in a thermo-fluidic process,

• Predictive control and maintenance of thermo-fluidic processes that are
customized towards user-specific demands.

The remainder of this chapter is dedicated to discussing how various aspects of
building a digital twin are addressed in this thesis and what are the future
recommendations for its further progress.

9.2 Part I: A Framework to Build Thermo-Fluidic
Models for the Digital Twin

A mathematical model that represents the thermo-fluidic processes is the core of a
digital twin. The model that describes thermo-fluidic processes has the following
properties.

• There are more than one physical components that are topologically
interconnected among each other.

• The dynamics of some physical components can vary spatio-temporally
while other component’s dynamics have negligible variation over space.
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Subquestion

To address these specifications while deriving the digital twin’s model, Chapter 2
finds an answer to the following question:

How to develop a modeling framework that allows users to describe and represent a
spatially interconnected thermo-fluidic process such that the model is integrable to the
core functionalities of the digital twin?

Answer

Answer to this question is a graph-theoretic framework to represent spatially
interconnected components in a thermo-fluidic process. Every individual node in
the graph represents a specific component’s thermo-fluidic process, and every
individual edge describes the physical interconnection between two adjacent
components. In particular, every node is either spatially distributed, modeled by
linear coupled PDEs or lumped, modeled by linear coupled ODEs. The spatially
distributed nodes are represented such a way that both parabolic (e.g.
diffusion-transport reaction models of heat and mass transfer) and hyperbolic
PDEs (e.g. wave equations, transport equations) can be included in the model.
Every lumped node, on the other hand, is equipped with parametric functions
that may vary over time based on the user’s demand. Every node is equipped
with control signals, disturbance signals and sensing signals, as well as the
possibilities to add inputs and outputs at the boundary of spatially distributed
nodes. By using a suitable algebraic manipulation and scaling of every
individual spatial domain, the digital twin’s model facilitates various alternative
representations of the thermo-fluidic model that are behaviorally equivalent.

Implication

Due to the graph structure, the modeling framework is modular towards any
design changes; a thermo-fluidic process may face during its entire life cycle. As
far as the implementation is concerned, the modeling framework allows to add
or remove a specific component from the graph without causing any significant
change in the entire graph. Moreover, arbitrarily many identical components (in
terms of node dynamics and edge relations) can be included in the
implementation of the model by simply specifying their number. Moreover, the
facility of alternative representations allows the model to be utilized for diverse
functionalities of the digital twin, including design, estimation, control,
performance analysis, diagnosis and monitoring.

Future Outlook

In the current modeling framework, spatially distributed nodes are restricted to
be defined in one spatial dimension. Although the mathematical background
does not impose any restriction on the spatial dimension, in the future, the model
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needs to be extended for spatially distributed nodes that are defined in higher
spatial dimensions. Moreover, the spatio-temporal quantities are restricted to
admit maximally twice differentiability with respect to the spatial variable. The
extension to the PDEs that include more than two spatial differentiations is kept
as future work. Additionally, in the future, the PDE models may need a further
generalization towards models from the area of fluid dynamics (e.g. Navier
Stokes equation).

9.3 Part II: Computation with Lumping for
Controlling Thermo-Fluidic Process

Due to the presence of PDEs, there are three computational methods that allow
one to perform design, prediction, design of estimator based controller,
performance analysis, diagnosis and monitoring of the thermo-fluidic processes
using the digital twin.

Subquestion

In Chapter 3, the computational method of lumping is discussed, and an answer
is found to the following question:

How to utilize a lumping technique to represent, monitor and control spatially
interconnected thermo-fluidic processes without adding new sensors and actuators while
meeting user-specific demand?

Answer

Based on the dimensions and physical properties (criterion is based on Biot
number, often known or experimentally determined), the method of lumping
allows to neglect the spatial distribution of a physical quantity. As a result, the
spatially distributed nodes are replaced by lumped models that are typically
derived by using lumped (electrical) analogies to thermo-fluidic process and are
governed by ODEs. Hence, the PDE models are replaced by newly derived
lumped ODE models. However, if the condition on the Biot number is not met,
the lumping technique may lead to a thermo-fluidic model with poor accuracy.
In order to circumvent this issue, an individual lumped node is allowed to be
partitioned in an arbitrary number of mutually interconnected (localized)
lumped nodes. The method of node partitioning is kept entirely flexible so that
the user can arbitrarily increase the number of partitions until the desired model
accuracy is achieved. The utility of a lumped model for building functionalities
on the digital twin is addressed with two specific problems In a thermo-fluidic
process, often, piezoelectric elements are used to drive a specific volume of liquid
flow. Once the piezoelectric elements are activated to drive a liquid droplet, it
produces electrical charges that can be measured as output (in Volt). By using the
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measured voltage, a data-driven algorithm is presented in this thesis that can
provide real-time information about the temperature of the liquid. This
algorithm puts the piezoelectric element in (self-)sensing mode and produces a
model-based temperature estimate of liquid. In this way, without adding new
sensors, the temperature of the liquid can be monitored where the flow-driving
piezoelectric elements act as soft-sensor.

Using the model and the soft sensor, a reference-tracking model predictive
controller is developed that makes the controlled process to obey a specific
performance criterion. Here, the possibility of adding parametric variation on
every individual node allows the controller to predict the future evolution of
thermo-fluidic process and compensate for any change in the user’s demand
over time. On the other hand, the developed soft-sensor offers real-time
information about liquid temperature. While synthesizing the controller, the user
has the flexibility to change the locations of the control inputs and the measured
outputs, leading to a flexible and user-friendly design tool.

Implication

The flexible lumping technique set a computational basis for the digital twin
without severely compromising the model accuracy. Moreover, a plethora of
existing control theories and practices are directly applicable for simulation,
design, estimation, control, performance analysis, diagnosis and monitoring of
the thermo-fluidic processes. The soft sensor provides a data-driven update on
the model, and the controller guarantees a predefined performance from the
controlled thermo-fluidic process.

Future Outlook

As the viability of the control strategy is tested in the digital twin, minimizing
computational complexity is not the primary focus of this thesis. Especially, the
trade-off studies related to different control architectures, e.g. decentralized or
distributed architectures for reducing signal overload and faster computation of
the controller are not addressed in this thesis. In the case of model mismatch or
parametric uncertainty, the robust performance of the controller is also not
addressed in this thesis.

9.4 Part III: Computation with Approximation for
Controlling Diffusive Thermo-Fluidic Process

In contrast to finding an equivalent lumped model, the second computational
method focuses on working with a class of PDE models that describe diffusive
thermo-fluidic processes. However, this method numerically approximates them
into finite-dimensional ODEs.
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Subquestion

In Chapter 4 and 5, the computational method of approximation is discussed and
an answer is found to the following question:

How to numerically approximate a spatially distributed diffusive thermo-fluidic process
while satisfying the boundary conditions in the presence of boundary inputs and make the
approximated model useful for performing various functionalities of the digital twin?

Answer

Diffusive thermo-fluidic processes involve a set of spatially distributed nodes that
are governed by coupled diffusion-transport-reaction type PDEs. The developed
method of approximating such models is presented in two parts.

• Chapter 4 is dedicated to developing a technique that approximates
diffusive thermo-fluidic processes into a finite-dimensional model. To this
end, a three-stage procedure is presented where the effect of boundary
inputs is first separated from the spatio-temporal solution to the PDEs.
Next, the solution to the PDEs is represented as a spectral expansion of
basis functions where every element of the sum is written as a product of
space-dependent basis functions and time-dependent coefficient functions.
At the third stage, only a finite number of space-dependent basis functions
are chosen to project the infinite-dimensional solution on to a
finite-dimensional subspace. The boundary conditions are treated as
explicit constraints in parameterizing the basis functions, making the
approximated solutions explicitly consistent with the boundary conditions.

• The developed approximation technique assumes that the physical
parameters of the diffusive thermo-fluidic processes are known. In case
they are not known, in Chapter 5, a grey-box identification technique is
presented to estimate spatially varying physical parameters of
diffusion-transport-reaction type PDEs using measurements from a finite
number of point locations. The identification technique is performed in the
frequency domain using a sparse numerical technique without requiring
the boundary conditions to be known in advance. A key feature of the
technique is that it allows to simultaneously identify the spatial
distribution of diffusive, advective, reactive and input-dependent functions
in the underlying PDE, based on measured data.

Implication

The approximation method that is developed for diffusion-transport-reaction
type of PDE models defines a second computational method for the digital twin.
In this method, the model accuracy directly depends on the number of basis
functions chosen for projecting the PDE model on a finite-dimensional subspace.
Once the model is approximated into a finite-dimensional ODE model, it can be
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interconnected to the remaining lumped model and existing control theories and
practices are directly applicable for simulation, design, estimation, control,
performance analysis, diagnosis and monitoring of such approximated models.
However, the performance of a controlled system on the basis of approximation
is not valid for the original spatially distributed diffusive thermo-fluidic
processes.

Future outlook

The discussion of Chapter 4 and 5 is restricted to the class of diffusive class of
thermo-fluidic processes for avoiding numerical instability and inaccuracy in the
approximation method. In the future, the approximation method can be
generalized to address the entire class of PDEs presented in the modeling
framework of thermo-fluidic processes, including models of higher spatial
dimension. The research domain of finite element techniques for numerically
approximating the PDEs is extremely wide and vast. In the future, the presented
approximation technique needs to be compared to the state of the art finite
element methods. Furthermore, the presented approximation technique typically
yields a model which is very large in dimension. Standard model order
reduction techniques are applicable to the numerical model, however, not
discussed in this thesis.

9.5 Part IV: Computation with PIEs for Controlling
Thermo-Fluidic Process

In lumping and in approximation method of PDEs, the central conservatism is
that the general class of PDE-ODE coupled models is not directly used for
design, estimation, control, performance analysis, diagnosis and monitoring. By
lumping, the PDE models are lumped, and their spatial dynamical features are
ignored. On the other hand, by approximation, the PDEs are projected onto a
finite-dimensional subspace, and typically many of their physical properties are
lost. In contrast, Chapter 6 directly utilizes the general class of PDE-ODE
coupled model of thermo-fluidic processes for design, estimation, control,
performance analysis, diagnosis and monitoring.

Subquestion

The question for which Chapter 6 seeks an answer is

How to develop a computational framework that allows to analyze and synthesize
estimator based optimal controllers directly on the spatially interconnected thermo-fluidic
processes without depending on lumping or approximation techniques while providing a
quantifiable performance guarantee?



212 Conclusions

Answer

There are two critical issues in developing a computational method for analysis
and control of thermo-fluidic processes that directly uses the class of PDE-ODE
coupled systems. The first key issue is including boundary conditions (that may
involve external inputs) as explicit constraints in the evolution of PDEs’ state
variables. The second key issue is the lack of an algebraic structure on the
unbounded differential operators. Chapter 6 resolves these two issues by using
Partial Integral (PI) operators to equivalently represent PDE-ODE coupled
systems as Partial Integral Equations (PIEs). A class of PI operators forms a
∗-subalgebra and boundary conditions (including boundary inputs) are directly
invoked in the dynamics of PIEs. It is shown that the positivity of PI operators
can be tested using Linear Matrix Inequalities (LMIs) that are based on
computationally effective algorithms to test feasibility (based on the theory of
convex functions). It is proved that for the class of thermo-fluidic processes,
analysis of exponential stability, input-to-state stability, and determining
worst-case disturbance amplification among inputs-output operators as well as
synthesizing optimal state estimators amount to verifying the feasibility of Linear
PI inequalities (LPIs) that can be tested using LMIs. A software tool, PIETOOLS,
accompanies the PIE framework that allows converting PDE-ODE models to
PIEs, declare LPIs and solves them using LMIs and provides quantified
guarantee of performance. These results have a profound impact on setting up a
novel computational paradigm for wide classes of infinite-dimensional systems.

Implication

Introduction of PI operators and PIEs offer a new computational basis for the
digital twin that does not explicitly depend on approximating or lumping the
thermo-fluidic model. Moreover, LMI-based computational methods have been
the cornerstone in developing modern control theory for finite-dimensional
systems. Now, the PIE framework and PIETOOLS offer a unified and systematic
foundation in bringing LMI-based computation towards design, estimation,
control, performance analysis, diagnosis and monitoring of infinite-dimensional
thermo-fluidic processes with no apparent conservatism.

Future Outlook

Extension of the PIE framework in higher spatial dimension is kept as future
work. Extending the PIE framework for nonlinear PDE-ODE coupled models
such as models from the area of fluid dynamics (e.g. Navier Stokes equations) are
also kept as future work. Moreover, H2 optimal estimation and control
framework is not addressed in this thesis. PIETOOLS is still a Matlab R© based
software package. In future, PIETOOLS will be made available for open source
language platform such as Python or C.
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9.6 Part V: Applications to Industrial Benchmarks

Subquestion

How to apply the developed methodologies in building a digital twin for the jetting and
fixation processes in a DoD inkjet printer such that the print quality can be improved
without adding new sensors and actuators?

Answer

In Chapter 6 and 8, the developed methodologies are applied to building a digital
twin of a DoD inkjet printer that describes the jetting and the fixation processes.

• Chapter 6 discusses a digital twin that synthesizes a control strategy to
maintain a consistent liquid temperature at every individual jetting nozzle
in a DoD inkjet printhead without adding new sensors and actuators while
coping with varying print-demands from the user. To this end, the method
of lumping is used to build a graph-theoretic model describing the
thermo-fluidic process in a printhead during jetting. It is demonstrated that
this model remains modular when the number of nozzles is increased
arbitrarily. The model is validated with an experimental set-up equipped
with a commercial printhead. The control strategy is implemented without
adding sensors and actuators. Specifically, to circumvent this limitation, the
piezoelectric elements at every individual nozzle serves three roles: a) it is a
jetting actuator for depositing liquid, b) it is a soft sensor for estimating
liquid temperature (as developed in Chapter 3), and c) it is a control
actuator to diminish gradients in liquid temperature among nozzles. Once
a voltage pulse is applied to a piezoelectric material, the soft sensor uses its
self-sensing mechanism to estimate the liquid temperature at every
individual nozzle. Then a controller anticipates the future change in print
demand and is compensate the fluctuation of liquid temperature among
nozzles by keeping it well below a range of ±0.3◦C while using only
non-jetting piezoelectric elements as thermal actuators.

• Chapter 8 discusses a proof of concept on how to estimate the average
moisture content of a newly printed composite material during the fixation
process by only using the temperature measurements of the solid support.
A three-layered composite material is considered where coupled heat, and
moisture diffusion takes place. The solid support is considered to be a
lumped node. As a result, the fixation of composite material is modeled as
PDE-ODE coupled thermo-fluidic process. By using PIE framework, a state
estimator is designed that uses the support’s temperature (state of the
lumped model) as measured outputs. The synthesized state estimator is
H∞ optimal. It can be concluded that in the presence of square-integrable
disturbances if one wishes to estimate the average moisture of the
composite’s top layer, the quality of estimation is better than the average
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moisture content of all layers individually. Furthermore, with the case
studies, it has been found that the worst-case disturbances are attenuated at
the estimation error by a factor 0.6557.

Implication

Using the digital twin, in both the applications, it has been shown that
controlling thermo-fluidic process leads to improved performance of the inkjet
printer without the expense of adding new sensors and actuators. By using the
modeling framework and three computational methods, the merit of the digital
twin is evident in building a systematic and control-oriented approach that
remains modular, flexible and versatile towards the future design of printers.
Moreover, the combination of model, optimal control and careful utilization of
the available resources show a great promise for improving print quality in a
DoD inkjet printer.

Future Outlook

The multi-purpose usage of the piezoelectric materials in the printhead paves a
path to more extensive functionality, including active fault detection and fault
isolation of specific printheads. Some initial research in this direction has already
been performed. Moreover, in both the applications, controllers and estimators
are not implemented in a real-time environment. Addressing implementation
related aspects are kept as future work. Moreover, to control the liquid
temperature using non-jetting piezoelectric actuators, designing and scheduling
non-jetting voltage pulses that are required to apply control input without
forming droplets of liquid are not discussed in this thesis.

9.7 Answer to the Research Question

Question

How to develop a digital twin for an industrial asset that is governed by thermo-fluidic
processes and guarantee that the asset achieves a predefined performance without adding

new sensors or actuators?

Answer

To build a digital twin on the basis of thermo-fluidic processes, the answer to the
main research question is the following top-to-bottom design procedure, depicted
in Figure 1.
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The given flow-chart results in a modular, flexible, versatile and integrable
digital twin that describes any industrial asset that are governed by
thermo-fluidic processes and guarantees the asset’s performance by synthesizing
control strategies that do not require new sensors or actuators.
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