329 research outputs found

    Dynamic Coordination Games with Activation Costs

    Get PDF
    Motivated by inventory control problems with set-up costs, we consider a coordination game where each player’s dynamics is an inventory model characterized by a controlled input and an uncontrolled output. An activation cost is shared among active players, namely players who control their dynamics at a given time. At each time, each player decides to be active or not depending on its inventory level. The main contribution of this paper is to show that strategies at a Nash equilibrium have a threshold structure on the number of active players. Furthermore, we provide an explicit expression for the lower and upper threshold is given both in the deterministic case, namely when the exogenous signal is known, and in the single-stage game. The relevance of the above results is discussed in the context of inventory control where Nash equilibrium reordering strategies imply that a single retailer reorders only if jointly with a number of other retailers and will reorder to restore a pre-assigned inventory level

    Decentralized Convergence to Nash Equilibria in Constrained Deterministic Mean Field Control

    Full text link
    This paper considers decentralized control and optimization methodologies for large populations of systems, consisting of several agents with different individual behaviors, constraints and interests, and affected by the aggregate behavior of the overall population. For such large-scale systems, the theory of aggregative and mean field games has been established and successfully applied in various scientific disciplines. While the existing literature addresses the case of unconstrained agents, we formulate deterministic mean field control problems in the presence of heterogeneous convex constraints for the individual agents, for instance arising from agents with linear dynamics subject to convex state and control constraints. We propose several model-free feedback iterations to compute in a decentralized fashion a mean field Nash equilibrium in the limit of infinite population size. We apply our methods to the constrained linear quadratic deterministic mean field control problem and to the constrained mean field charging control problem for large populations of plug-in electric vehicles.Comment: IEEE Trans. on Automatic Control (cond. accepted

    A New Mathematical Model for Evolutionary Games on Finite Networks of Players

    Full text link
    A new mathematical model for evolutionary games on graphs is proposed to extend the classical replicator equation to finite populations of players organized on a network with generic topology. Classical results from game theory, evolutionary game theory and graph theory are used. More specifically, each player is placed in a vertex of the graph and he is seen as an infinite population of replicators which replicate within the vertex. At each time instant, a game is played by two replicators belonging to different connected vertices, and the outcome of the game influences their ability of producing offspring. Then, the behavior of a vertex player is determined by the distribution of strategies used by the internal replicators. Under suitable hypotheses, the proposed model is equivalent to the classical replicator equation. Extended simulations are performed to show the dynamical behavior of the solutions and the potentialities of the developed model.Comment: 26 pages, 7 figures, 1 tabl

    Non-linear protocols for optimal distributed consensus in networks of dynamic agents.

    Get PDF
    We consider stationary consensus protocols for networks of dynamic agents with fixed topologies. At each time instant, each agent knows only its and its neighbors’ state, but must reach consensus on a group decision value that is function of all the agents’ initial state. We show that the agents can reach consensus if the value of such a function is time-invariant when computed over the agents’ state trajectories. We use this basic result to introduce a non-linear protocol design rule allowing consensus on a quite general set of values. Such a set includes, e.g., any generalized mean of order p of the agents’ initial states. As a second contribution we show that our protocol design is the solution of individual optimizations performed by the agents. This notion suggests a game theoretic interpretation of consensus problems as mechanism design problems. Under this perspective a supervisor entails the agents to reach a consensus by imposing individual objectives. We prove that such objectives can be chosen so that rational agents have a unique optimal protocol, and asymptotically reach consensus on a desired group decision value. We use a Lyapunov approach to prove that the asymptotical consensus can be reached when the communication links between nearby agents define a time-invariant undirected network. Finally we perform a simulation study concerning the vertical alignment maneuver of a team of unmanned air vehicles

    Non-cooperative joint replenishment under asymmetric information

    Get PDF
    Cataloged from PDF version of article.We consider jointly replenishing n ex-ante identical firms that operate under an EOQ like setting using a non-cooperative game under asymmetric information. In this game, each firm, upon being privately informed about its demand rate (or inventory cost rate), submits a private contribution to an intermediary that specifies how much it is willing to pay for its replenishment per unit of time and the intermediary determines the maximum feasible frequency for the joint orders that would finance the fixed replenishment cost. We show that a Bayesian Nash equilibrium exists and characterize the equilibrium in this game. We also show that the contributions are monotone increasing in each firm’s type. We finally conduct a numerical study to compare the equilibrium to solutions obtained under independent and cooperative ordering, and under full information. The results show that while information asymmetry eliminates free-riding in the contributions game, the resulting aggregate contributions are not as high as under full information, leading to higher aggregate costs. 2013 Elsevier B.V. All rights reserved

    Game-theoretic learning and allocations in robust dynamic coalitional games

    Get PDF
    The problem of allocation in coalitional games with noisy observations and dynamic4 environments is considered. The evolution of the excess is modelled by a stochastic differential5 inclusion involving both deterministic and stochastic uncertainties. The main contribution is a6 set of linear matrix inequality conditions which guarantee that the distance of any solution of the7 stochastic differential inclusions from a predefined target set is second-moment bounded. As a direct8 consequence of the above result we derive stronger conditions still in the form of linear matrix9 inequalities to hold in the entire state space, which guarantee second-moment boundedness. Another10 consequence of the main result are conditions for convergence almost surely to the target set, when the11 Brownian motion vanishes in proximity of the set. As further result we prove convergence conditions12 to the target set of any solution to the stochastic differential equation if the stochastic disturbance13 has bounded support. We illustrate the results on a simulated intelligent mobility scenario involving14 a transport network
    corecore