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GAME-THEORETIC LEARNING AND ALLOCATIONS IN ROBUST1

DYNAMIC COALITIONAL GAMES∗2

M. SMYRNAKIS † , D. BAUSO ‡ , AND H. TEMBINE §3

Abstract. The problem of allocation in coalitional games with noisy observations and dynamic4
environments is considered. The evolution of the excess is modelled by a stochastic differential5
inclusion involving both deterministic and stochastic uncertainties. The main contribution is a6
set of linear matrix inequality conditions which guarantee that the distance of any solution of the7
stochastic differential inclusions from a predefined target set is second-moment bounded. As a direct8
consequence of the above result we derive stronger conditions still in the form of linear matrix9
inequalities to hold in the entire state space, which guarantee second-moment boundedness. Another10
consequence of the main result are conditions for convergence almost surely to the target set, when the11
Brownian motion vanishes in proximity of the set. As further result we prove convergence conditions12
to the target set of any solution to the stochastic differential equation if the stochastic disturbance13
has bounded support. We illustrate the results on a simulated intelligent mobility scenario involving14
a transport network.15

Key words. Coalitional Games, Transferable Utility (TU), Second-moment boundedness, In-16
telligent mobility network, Robust control.17

AMS subject classifications. 68Q25, 68R10, 68U0518

1. Introduction. The theory of coalitional games with transferable utility stud-19

ies stable allocations for groups of agents who decide to cooperate (Osborne, 2004;20

Shapley, 1953; Aumann et al., 1960; Schmeidler, 1969; Aumann, 1961; Luce and Raiffa,21

1957; Maschelr et al., 1979). Cooperation materializes in different forms such as shar-22

ing facilities, sharing costs, placing joint bids. Coalitional games arise in many areas23

such as: communication networks (Saad et al., 2009), smart grids (Saad et al., 2012),24

reconfigurable robotics (Ramaekers et al., 2011), swarm robotics (Cheng et al., 2008),25

multi-robot task allocation (Bayram et al., 2016).26

A research area where coalitional games are an active topic is robust control27

(Bauso and Timmer, 2012; Wada and Fujisaki , 2017; Fele et al. , 2017). A widely used28

approach to solve robust control problems, (Bauso , 2017; Garud , 2005; Bauso et al.29

, 2015), is approachabilitty theorem (Blackwell , 1956). In Lehrer (2003), Blackwell’s30

approachability theorem was used in order to analyse an allocation process based31

on coalitional games. Another technique which has been used in order to analyse32

game-theoretic learning algorithms is stochastic approximation. In his seminal pepar33

Benaim et al. (2005) showed that stochastic approximation methods can be seen as34

a continuous asymptotic version of approachability theorem. Based on this result in35

this article stochastic approximation methods are used in order to analyse coallitional36

games.37

The results we provide collocate within the learning, control and optimisation38

research areas. This research direction finds applications in various problems such as39

wind energy (Opathella and Venkatesh , 2013; Bayens et al. , 2013), and the inventory40

control problem Bauso et al. (2008); Bauso et al. (2010).41

In accordance with the classification provided in (Saad et al., 2009), this paper42
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2 M. SMYRNAKIS, D. BAUSO AND H. TEMBINE

answers most of the questions arising in canonical coalitional games with transferable43

utility (TU) within the framework of robust stabilizability. The underlying idea is44

that the cooperative agents, now viewed as players, form a coalition which includes all45

players, namely the grand coalition and need to reach agreement on how to redistribute46

the reward deriving from forming such a grand coalition in a way that makes the grand47

coalition stable. Stability is generally linked to the possibility of allocating to each48

sub-coalition a quantity greater than the reward itself that the sub-coalition could49

guarantee for itself without coalizing with the rest of the players (players outside50

that sub-coalition). When this occurs, we say that no players or subsets of players51

gain from quitting the grand coalition. This corresponds to saying that the excess,52

namely the difference between the allocated rewards and the value of the coalition53

is non-negative. In the broad context of coalitional games, consider the possibility54

that the reward of a coalition is divided among the players of the coalitions. By value55

of the coalition we mean the reward produced by that coalition. The procedure to56

allocate the reward which needs to be agreed by the players, constitutes the so-called57

allocation rule. Under the assumption that the values of the coalitions are time-58

varying and uncertain, and the allocation process occurs continuously in time, the59

resulting game is called robust coalitional game. Such a game was first formulated by60

(Bauso and Timmer, 2009, 2012). The evolution of the excesses is also captured by a61

fluid flow system of the type discussed in (Bauso et al., 2010).62

The contribution of this paper is three-fold. We first formulate the problem of63

allocation in TU games with noisy observations and dynamic environments. In the64

considered scenario the evolution of the excess is subjected to both deterministic65

and stochastic uncertainty. The resulting dynamics can be expressed in the form66

of a stochastic differential inclusion, involving also a Brownian motion. For this67

game, as main result we provide conditions which guarantee that the distance of68

any solution of the stochastic differential inclusion from a predefined target set is69

second-moment bounded. We show that these conditions can take the form of a70

linear matrix inequality to be verified in different regions of the state space (Boyd et71

al., 1994, Chapter 6). As direct consequence of the above result we derive stronger72

conditions still in the form of linear matrix inequalities to hold in the entire state73

space, which guarantee second-moment boundedness. Further to the above main74

result we provide conditions for convergence almost surely to the target set, when the75

influence of the Brownian motion vanishes with decreasing distance from the set. The76

resulting dynamics mimics a geometric Brownian motion. As further result we prove77

convergence conditions to the target set of any solution to the stochastic differential78

equation if the stochastic disturbance has bounded support.79

The rest of the paper is organised as follows. Section 2 introduces preliminaries80

on coalitional games. Section 4 discusses the model and states the problem. Section 581

links the model to saturated control and population game dynamics. Section 6 in-82

cludes the main results of the paper. Section 7 specializes the model to an intelligent83

mobility scenario. Section 8 contains numerical examples. Finally, Section 9 provides84

conclusions and future works.85

2. Preliminaries on TU games. This section overviews coalitional games with86

transferable utility (TU). Let a set N = {1, . . . , n} of players be given and a function87

η : S 7→ R defined for each non-empty coalition S ∈ S, where S is the set of all88

possible non-empty coalitions, with cardinality |S| = 2n − 1. We denote by < N, η >89

the TU game with players set N and characteristic function η, which quantifies the90

gain of coalition S.91

This manuscript is for review purposes only.
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Let us introduce some arbitrary mapping of S into M := {1, . . . , q} where q =92

2n− 1, is the number of non-empty coalitions, namely, the cardinality of S. Denote a93

generic element of M by j. In other words, we can see j standing for the labelling of94

the jth element of S, say Sj , according to some arbitrary but fixed ordering. Let the95

grand coalition be denoted by N . Furthermore, let ηj be the value of the characteristic96

function η associated with a non-empty coalition Sj ∈ S.97

Given a TU game, we wish first to investigate if the grand coalition is stable, i.e.98

if it is possible for the players to get better rewards by choosing a smaller coalition.99

A partial answer to the above question lies in the concept of imputation set. The100

imputation set I(η) is the set of allocations that are101

• efficient, that is, the sum of the components of the allocation vector is equal102

to the value of the grand coalition, and103

• individually rational, namely there is no individual which is benefited, increase104

his reward, by splitting from the grand coalition and playing alone.105

More formally, the imputation set is a convex polyhedron defined as:

Iη = {ũ ∈ Rn|

Efficiency︷ ︸︸ ︷∑
i∈N

ũi = ηN , ũi ≥ ηSi
, ∀ni ∈ S ′︸ ︷︷ ︸

individual rationality

},

where ũi is the reward allocated to player i, N here represents the grand coalition106

where all the players participate, S ′ is the set of all coalitions which consist of a single107

player and ηSj
is the gain of coalition Sj .108

A stronger solution concept than the imputation set is the core. Given any al-109

location in the core, the players do not benefit from not only quitting the grand110

coalition and playing alone, but also from creating any sub-coalition. In this sense111

the core strengthens the conditions valid for the imputation set. Thus the core is still112

a polyhedral set which is included in the imputation set.113

Definition 2.1. The core of a game 〈N, u〉 is the set of allocations that satisfy
i) efficiency, ii) individual rationality, and iii) super-additivity, i.e. stability with
respect to sub-coalitions:

Cη = {ũ ∈ I(η)|
∑
i∈Sj

ũi ≥ ηSj
,∀Sj ∈ S︸ ︷︷ ︸

stability w.r.t. subcoalitons

}.

Even though the core is a fundamental concept in coalitional games, it is not114

necessary that the core will be a non-empty set. Two broad categories of coalitional115

games with non-empty core are: convex (Shapley, 1971) and balanced games (Bon-116

dareva, 1963; Shapley, 1967).117

Definition 2.2. A coalitional game < N, η > is convex if the following inequality
is satisfied.

ηSi
+ ηSj

≤ ηSi∩Sj
+ ηSi∪Sj

,∀Si, Sj ⊂ N.

Definition 2.3. A coalitional game < N, η > is balanced if for any balanced map
α we have: ∑

j∈S
αSj

ηSj
≤ ηN .

This manuscript is for review purposes only.
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In order to overcome the problem of an empty core in (Shapley and Shubik, 1966)118

the notion of ε-core was introduced119

Definition 2.4. For a real number ε the ε-core is defined as:

Cη = {ũ ∈ I(η)|
∑
i∈Sj

ũi ≥ ηSj
− ε,∀Sj ∈ S}.

In order to assess stability of the grand coalition, the core, both its value ηN , and120

the reward allocated to each player is needed. Therefore, there is a need to define121

an allocation mechanism of the coalition’s rewards among the players. One of the122

most used allocation mechanisms is the Shapley value (Shapley, 1953, 1971). An123

additional reason for choosing Shapley’s value is its connection with feedback control124

and uncertainty as it was shown in (Bauso and Timmer, 2012)125

Definition 2.5. The Shapley value of player i, given a coalitional game < N, η >
is defined as:

φi(η) =
∑

Sj⊂N\{i}

|Sj |!(|N | − |Sj | − 1)!

|N |!
(ηSj∪{i} − ηSj

).

The Shapley value can be interpreted as the expected weighted contribution of126

player i when it joins the grand coalition in a random order.127

3. Motivating example. Various applications of the TU games have been con-128

sidered in literature. Examples include Market games (Shapley and Shubic, 1969),129

public good games (Bodwin, 2017), the bankruptcy problem (Aumann and Maschler,130

1985) and inventory problems (Chinchuluun et al., 2008). Applications which com-131

bine TU games with optimisation and learning include micro-grid problems (Saad et132

al. , 2013) and coordinated replenishment (Bauso and Timmer, 2009).133

The case study which is considered in this article, the intelligent mobility network134

application, falls in the category of the inventory problems. Players should decide if135

it is more beneficial to create a coalition and share the cost of the inventory or it is136

better to bear the cost alone.137

Intelligent mobility deals with the smart transport of items, goods or individuals138

from source to destination nodes using shared facilities like buses, trams, electric139

vehicles. Suppose that items are initially stored in the supply centre indexed by 0140

and need to be transported to different destination centres generically indexed by i,141

i = 1, . . . , n. Destination centres are characterized by a time-varying demand which142

is independent identically distributed across time and centres.143

Note here that the capacitate vehicle routing problem is usually solved in two144

parts. In the first one the assignment problem is solved, i.e. one makes decisions145

about the sites that should be visited. In the second part the optimal route is found146

through traveller salesman algorithms for example. In this article we focus on the147

first part, where the network topology is not playing a significant role. The manager148

of destination center i bids the quantity to be transported from the supply center149

and terminating in center i based on his forecast of the future demand. Managers150

can collaborate and place joint bids with the advantage of compensating potential151

fluctuation of the their demand. This can be represented using a graph and a cycle,152

namely, a closed path with source and destination in node zero, see for instance the153

three transport cycles originating from and terminating in 0 and touching destination154

centres {1, 2, 3}, {4}, and {5, . . . , 9} in the network of Figure 1(a).155

This manuscript is for review purposes only.
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(a) Three transport cycles originating from and terminat-
ing in 0 and touching destination centers {1, 2, 3}, {4},
and {5, . . . , 9}.
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(b) One transport cycle originating from and terminat-
ing in 0 and touching all destination centers.

Fig. 1. Example of a distribution network

When all managers act jointly, we say that they form a grand coalition. In such156

case a single cycle will touch all destination centres as described by the transport157

cycle originating from and terminating in 0 and touching all destination centres in158

Figure 1(b).159

In stable environments, in cases where the cost function of players is deterministic,160

and it possible to obtain observations without noise the conventional analysis of TU161

games can be applied, i.e. results about the existence of the core, or the evaluation162

of nucleus or Shapley’s value.163

In particular, consider the scenario where N = {1, . . . , n} be the set of receiving
centres. For each coalition S ∈ S, let DS be a random variable representing the
aggregate demand faced by that coalition. Let us assume that DS has continuous
probability density function f(DS). In other words, the probability that the aggregate
demand is between a and b is

P(a ≤ DS ≤ b) =

∫ b

a

f(DS) dDS .

The continuous cumulative distribution function (CDF) is F (b), and represents the
probability that the aggregate demand is less than or equal to b:

F (b) := P(DS ≤ b) =

∫ b

0

f(DS) dDS .

Let Θ be the order quantity, p in R+ be the sale price, s in R+ be the penalty164

This manuscript is for review purposes only.



6 M. SMYRNAKIS, D. BAUSO AND H. TEMBINE

price for shortage, when demand exceeds supply, and let h in R+ be the penalty price165

for holding, when supply exceeds demand.166

Introduce the stock variable ZS = Θ−DS . Denote the indicator function by167

(1) IR+(ZS) =

{
1 if ZS ∈ R+

0 otherwise.
168

Then, the expected profit for the generic coalition S ∈ S under the order quantity169

Θ is given by170

(2) 〈PS(DS ,Θ)〉 = E
[
pmin(Θ, DS)− cΘ − [sIR+

(ZS)− hIR+
(−ZS)]|ZS |

]
.171

In the above we express the expected profit as function of the expected shortage and172

expected holding, which are given by173

(3)
E
[
IR+

(−ZS)|ZS |
]

=
∫∞

Θ
f(DS)(DS −Θ) dDS ,

E
[
IR+

(ZS)|ZS |
]

=
∫ Θ

0
f(DS)(Θ−DS) dDS .

174

We can then rewrite the expected profit as175

(4)
〈PS(DS ,Θ)〉 = E[pmin(Θ, DS)]− cΘ

−sE
[
IR+

(−ZS)|ZS |
]
− hE

[
IR+

(ZS)|ZS |
]
.

176

The following relation between the expected shortage Es and the expected holding177

Eh holds:178

E
[
IR+

(ZS)|ZS |
]

=
∫ Θ

0
f(DS)ZS dDS

=
∫∞

0
f(DS)ZS dDS −

∫∞
Θ
f(DS)ZS dDS

= Θ− 〈Ds〉+ E
[
IR+

(−ZS)|ZS |
]
,

179

where 〈ys〉 is the mean demand and is given by
∫∞

0
f(DS)DS dDS . The problem faced180

by the coalition is the one of maximizing the expected profit with respect to the order181

quantity Θ, which is the decision variable:182

maxΘ

{
E[pmin(Θ, DS)]− cΘ

−sE
[
IR+

(−ZS)|ZS |
]
− hE

[
IR+

(ZS)|ZS |
]}
.

183

Assuming concavity of 〈PS(DS ,Θ)〉 the optimal order quantity Θ∗ is obtained by184

computing the derivative of 〈PS(DS ,Θ)〉 with respect to Θ and taking it equal to185

zero. To do this, after rearranging the first term Emin(Θ, DS) in the above equation186

as below187

Emin(Θ, DS) =
∫ Θ

0
DSf(DS) dDS +

∫∞
Θ

Θf(DS) dDS

= 〈DS〉 −
∫∞

Θ
DSf(DS) dDS +

∫∞
Θ

Θf(DS) dDS
188

we can rewrite the expected profit as189

〈PS(DS ,Θ)〉 = p〈DS〉 − cΘ
−sΘ

∫ Θ

0
f(DS) dDS + s

∫ Θ

0
DSf(DS) dDS

+(p+ h)Θ
∫∞

Θ
f(DS) dDS − (p+ h)

∫∞
Θ
DSf(DS) dDS .

190

This manuscript is for review purposes only.
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Then for the derivative we have191

d
dC (〈PS(DS ,Θ)〉)
= −c− s

∫ Θ

0
f(DS) dDS − sΘf(Θ) + sΘf(Θ)

+(p+ h)
∫∞

Θ
f(DS) dDS − (p+ h)Θf(Θ) + (p+ h)Θf(Θ)

= −c− s
∫ Θ

0
f(DS) dDS + (p+ h)

∫∞
Θ
f(DS) dDS

= −c− sF (Θ) + (p+ h)[1− F (Θ)],

192

where F is the cumulative distribution function (CDF) of y. The optimal order193

quantity is given by:194

(5) F (Θ∗S) =
p+ h− c
p+ h+ s

.195

Let F−1 be the inverse function of F then it holds196

(6) Θ∗S = F−1
(p+ h− c
p+ h+ s

)
.197

Then, the optimal expected profit is198

(7)

〈PS(DS ,Θ
∗
S)〉 = pµ− cΘ∗S − s

∫ Θ∗
S

0
(Θ∗S −DS)f(DS) dDS

−(p+ h)
∫∞

Θ∗
S
(DS −Θ∗S)f(DS) dDS

= pµ− cΘ∗S − s(Θ∗S − µ+ E∗h)− (p+ h)E∗h
= pµ− cF−1

(
p+h−c
p+h+s

)
− s
(
F−1

(
p+h−c
p+h+s

)
−µ+ E∗h

)
− (p+ h)E∗h,

199

where we denote by E∗h the expected surplus under the optimal order quantity Θ∗S .200

Consider a sequence of sampling intervals indexed by k = 0, 1, . . .. We build on201

the results for the optimal order quantity (6) and expected profit (7), which we have202

obtained above. We assume that the demand at interval k has a Normal distribution203

with mean DS(k − 1) and variance σ2:204

(8) DS(k)−DS(k − 1) ∼ N (0, σ2).205

We can rewrite the optimal order quantity in terms of the number of standard
deviations away from the mean:

Θ∗S = DS(k − 1) + k∗σ,

where k has standard Normal distribution. Denote by Φ(k) the CDF of a standard
Normal distribution, from (5) we have

Φ(k∗) =
p+ h− c
p+ h+ s

.

To obtain (6) from (5), we introduced the inverse function F−1. We follow the same
procedure here and consider the inverse function Φ−1 of Φ. Then, for the optimal k∗

it holds

k∗ = Φ−1
(p+ h− c
p+ h+ s

)
.

This manuscript is for review purposes only.



8 M. SMYRNAKIS, D. BAUSO AND H. TEMBINE

Denote the expected surplus of k as

G(k) =

∫ ∞
k

(DS − k)f(DS) dDS .

Then, from (7) the optimal expected profit is206

〈PS(DS ,Θ
∗
S)〉 = pµ− c(DS(k − 1) + k∗σ)

−s[k∗σ + σG(k∗)]− (p+ h)σG(k∗)
= pµ− cyk−1−σ(c+ s)︸ ︷︷ ︸

<0

k∗−σ(s+ p+ h)︸ ︷︷ ︸
<0

G(k∗).207

Note that the expected profit decreases with the standard deviation σ, namely, the208

volatility of the demand.209

Coalition games that are subject to probabilistic demand/ characteristic function,210

as in the aforementioned example, have been also studied in the context of stochastic211

cooperative games (Suijs et al., 1997; Toriello and Nelson, 2017). In that context212

conditions for a stable core were devised. Similarly the news agent problem (Muller213

et al., 2002; Hartman and Dror, 2005; Slikker et al., 2005) is a coalition problem where214

probabilistic utilities emerge. The literature concerning this problem also focuses on215

conditions for non-empty core and fair allocations.216

In the current article a different approach is adopted. The control of the stochastic217

process in order to be bounded around the core is considered, instead of trying to218

define suitable conditions for the core of the game to be non-empty. As a result a219

formulation of TU games with dynamically changing characteristic function, which220

allows its representation as a stochastic process is provided. A saturated controller is221

used in order for the process to be bounded around the core. The proposed controller222

resembles the “Best response” decision making process. Hence, stochastic differential223

inclusions emerge from the control process. Therefore, analysis of a stochastic process224

which can be occured through the TU game formulation is provided, based on the225

theory of stochastic differential inclusions Benaim et al. (2005).226

Since the cost function is not constant throughout the game any more and in each227

time step of the decision making process a fluctuated version of the cost function is228

available because either of changes in the environment or noisy observations. This229

analysis focuses on the control of the outcome of the stochastic process either to be230

in the core or bounded in the ε-core based on the volatility of the perturbations.231

4. Model and problem statement. This section is separated into two parts.232

The fist contains the description of the dynamic TU model and provides an illustrative233

example of a 3-player game. The second part contains the representation of the234

dynamic TU game as a stochastic process and a proposed control strategy which235

allows an a solution bounded in the e-core of the dynamic TU-game. The distance ε236

from the core depends on the volatility of the stochastic process.237

4.1. TU Games with noisy observations. A dynamic TU game is described238

by < N, η(t) >, where η(t) is a time-varying characteristic function representing the239

values of different coalitions. In real life applications there are many uncontrollable240

processes which introduce uncertainty either on the rewards of the coalitional games241

or the observations of the other players’ decisions. In the intelligent mobility network242

problem, of the previous section, managers can have an estimate of the ordering243

capacities of the other managers. This estimate can be of the form of a probability244

distribution which changes over time. Therefore, the uncertainty can be modelled as245

a stochastic process.246
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It possible to represent a dynamic TU game in Matrix form. In addition, fol-247

lowing the dynamic programming paradigm, all the constraints which arise from248

the definition of the core can be represented as inequalities. In particular, let BH249

be a ((q − 1) × n)-matrix whose rows are the characteristic vectors ySj ∈ Rn of250

each coalition other than the grand coalition, i.e., Sj ∈ S, Sj 6= N . In other words251

BH = {(ySj )T }Sj∈S, Sj 6=N .252

The characteristic vectors are in turn binary vectors representing the participation253

or not of a player i in the coalition Sj , whereby y
Sj

i = 1 if i ∈ Sj and y
Sj

i = 0 if i /∈ Sj .254

For any allocation in the core of the game C(η(t)) we have:255

ũ(t) ∈ C(η(t)) ⇔ BHũ(t) ≥ η(t),(9)256257

where the inequality is to be interpreted component-wise, and for the grand coalition258

it is satisfied with equality due to the efficiency condition of the core, i.e,
∑n
i=1 ũi(t) =259

ηN(t), where ηN(t) denotes the qth component of η(t) and is equal to the grand coalition260

value.261

Let262

(10) B =

[
BH −I
1T 0T

]
∈ { − 1, 0, 1}q×n+(q−1).263

Inequality (9) can be rewritten as an equality by using an augmented allocation264

vector given by u :=
[
ũ
s

]
∈ Rn+q−1 where s is a vector of q − 1 non-negative surplus265

variables. Then, we have266

(11) Bu(t) = η(t).267

For a 3-player coalitional game equation (11) takes the form



1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0


︸ ︷︷ ︸

B



ũ1

ũ2

ũ3

s1

s2

s3

s4

s5

s6


︸ ︷︷ ︸

u

=



η1

η2

η3

η4

η5

η6

η7


︸ ︷︷ ︸

η

.

Remark Note here that in general TU coalitional games, as well as the formulation268

which is proposed in this article, suffer from the curse of dimensionality. In particular,269

the dimensionality of B will exponentially increase with the number of players and270

possible actions. In that case a distributed solution as the one in (Nedich and Bauso271

, 2013) can be used in order to cluster the problem to smaller sub-problems which are272

feasible to be solved.273

4.2. TU games as a stochastic process. Let us assume that the perturba-274

tions of the characteristic function are bounded in an ellipsoid. Let w(t) denote the275

perturbed observation of the players at time t, w0(t) being the time-varying charac-276

teristic function and w̃(t) the perturbation term, such as a bias in the estimator of the277
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characteristic function w0(t). In the case of an additive perturbation term the drift278

from w0(t) can be expressed as w(t) = [w0(t) + w̃(t)]. The analysis of the dynamic279

TU games which follows in the rest of this article is based on the assumption that the280

perturbations are bounded in an ellipsoid, i.e w(t) can be written as:281

(12) w(t) ∈ W = {w ∈ Rq : wTRw ≤ 1}.282

The changes in the characteristic function as they are realised by the players can be283

written then as284

(13) dη(t) = w(t)dt− ΣdB(t), in Rq,285

where ΣdB(t) is a random noise with zero mean and Σ = diag((Σii)i=1,...,q) ∈ Rq×q286

for given scalars Σii, all full column rank, and B(t) ∈ Rq is a q-dimensional Brownian287

motion, which is independent across its components, independent of the initial state288

η0, and independent across time.289

Instead of studying the evolution of the characteristic function in order to solve a
TU game the surpluses sj can be studied. Note that the difference between the allo-
cated value and the coalitional Sj , corresponds to surplus variable sj and is described
as,

sj(t) =
∑
i∈Sj

ũi(t)− ηj(t).

A positive value for sj(t) can be interpreted as a debit for the coalition, whereas290

a negative value can be interpreted as a credit. The main insight is that if all the291

surpluses are non-negative, then the total allocation to any coalition exceeds the value292

of the coalition itself and the allocation vector lies in the core. Also, note that there293

are only q−1 surplus variables because coalition N has no surplus (
∑
i∈N ũi−ηq = 0)294

due to the efficiency condition of the core.295

Let x(t) ∈ Rq, denote the cumulative excess which is obtained as follows. In296

essence, every component of vector Bu(t) is the total reward given to the members297

of a coalition at time t, and the drift from this reward, w(t), is subtracted. Then, a298

positive x(t) means positive cumulative excess.299

Let us denote the controler in linear state feedback form as:300

(14) u(x) = K(x, t)x,301

where K(x, t) ∈ co{K(i)}i∈I .302

Then the problem of stabilising the core can be cast as a problem of solving the303

following stochastic differential inclusion:304

(15) dx(t) ∈ F (x)dt+ ΣdB(t).305

Also,306

(16)
F (x) := {ξ ∈ Rq| ξ = (BK(x, t)− I)x− w,

K(x, t) ∈ co{K(i)}i∈I , w ∈ W},
307

for assigned polytopic sets co{K(i)}i∈I , and ellipsoidal set W, and where B(t) is a308

Brownian motion weighted by a matrix Σ and B defined as in (10).309

The stability, well-posedness and existence of solution to (15), when saturated310

linear controllers are used has been studied in Hu et al. (2006); Cai et al. (2009); Hu311

et al. (2005); Jokic et al. (2008); Grammatico et al. (2014).312

For any symmetric positive definite matrix P ∈ Rn×n, define the function V (x) =313

xTPx and the ellipsoidal target set Π = {x ∈ Rn : V (x) ≤ 1}. We are interested in314

studying convergence of the solutions of (15) to the target set.315
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5. Examples. The stochastic differential inclusion (15) arises in the case of sat-316

urated controls, and in the case of two-population games. We discuss next these three317

examples.318

5.1. Example 1: saturated controls. Assume that controls are bounded319

within polytopes320

(17) u(t) ∈ U = {u ∈ R(q−1)+n : u− ≤ u ≤ u+},321

where u+, u− are assigned vectors. Note that we can assume the characteristic func-322

tion centred at zero as in (12) as we can always center the hypercube of u(t) around323

any desired value.324

In addition, for any matrix K ∈ Rn+(q−1)×q, define as saturated linear state325

feedback control any policy326

(18) u = −sat{Kx} =

{
−Kx if Kx ∈ U
u(x) ∈ ∂U otherwise,

327

where ∂U indicates the frontier of set U .328

In the above, the sat{.} operator has to be interpreted component-wise, namely329

(19) ui = sat[u−
i ,u

+
i ]{−Ki•x},330

where Ki• denotes the ith row of K and where, for any given scalar a and b

sat[a,b]{ζ} =

 b, if ζ > b,
ζ, if a ≤ ζ ≤ b,
a, if ζ < a.

Henceforth we omit the indices of the sat function.331

Under the control u = sat{−Kx}, the closed-loop dynamics mimics the differen-332

tial inclusion (15) as follows333

dx ∈ {(−x+Bsat{−Kx} − w)dt+ ΣdB(t), w ∈ W}.334

5.2. Example 2: distribution network. Consider a distribution network335

problem where there is a demand for a specific commodity and the reward for sup-336

plying it is suitably described by our control law. When the demands are based on a337

diffusion process, their evolution can be written as:338

(20) ḋ = w(t)−
∑

dB(t).339

Then (13) can be written with respect to ḋ as:

dη(t) = [w0(t) + ḋ(t) + ΣdB(t)]dt− ΣdB(t).

The excess then can be written as340

(21) dx(t) = (−x(t) +BHu(t))dt− dη(t),341

where u is the control vector as defined in (18).342
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u(j)\w(k) w(1) · · · w(q̃)

u(1) Bu(1) − w(1) · · · Bu(1) − w(q̃)

...
...

...
u(p̃) Bu(p̃) − w(1) · · · Bu(p̃) − w(q̃)

Table 1
The possible vector payoffs.

5.3. Example 3: approachability. Equation (15) is in the same spirit as in343

Hart and Mas-Colell’s paper (Hart and Mas-Colell, 2003) on continuous-time ap-344

proachability.345

In particular (15), can be obtained when a 2-player repeated game with vector
payoffs as displayed in Table 1, is considered. Let A1 = {u(1), . . . , u(p̃)} and A1 =
{w(1), . . . , w(q̃)} be the actions sets of player 1 and 2. Denote a1 = [a11, . . . , a1p̃]

T and
a2 = [a21, . . . , a2q̃]

T the mixed strategies of player 1 and 2, respectively. Introduce
the mixed extension mapping ∆(A1)×∆(A2)→ U ×W, such that (a1, a2) 7→ (u,w)
where

u =

p̃∑
j=1

a1ju
(j), w =

q̃∑
k=1

a2jw
(k).

Consider the time-average expected (over opponent’s play) payoff defined as346

Γ(s) =
1

s

∫ s

0

(Bu− w) dτ ∈ Rq.347

If we rescale the time window using s = et, take x(t) = Γ(et) and differentiate with
respect to t, we obtain the differential equation (15). Note that, after rescaling the
time window, we have

x(0) =

∫ 1

0

(Bu− w) dτ ∈ Rq.

Adopting a “population-game dynamics” perspective, the state x(t) ∈ Rq repre-348

sents the current average payoff over the population.349

6. Main results. In this section it is shown that the second moment of the350

deviations from the core, x(t), is bounded, when a saturated linear feedback controller351

is used. This is achieved by the use of polytopic techniques (Mayne , 2003). Polytopic352

constraints are widely used in order to model problems related to robust control353

problems when the transition matrix of the process is state-dependent, i.e. ẋ = A(x)x.354

In addition, because no further constraints have been imposed on (15), the proposed355

methodology can be used to control dynamic TU games when (15) describes the356

dynamics of the game.357

Our idea is to rewrite the above dynamics in the following polytopic form358

(22) dx ∈ {(BK(x, t)− I)x(t)− w(t)dt+ ΣdB(t), w ∈ W},359

where the time varying matrices K(x, t) are expressed as convex combinations of360

|I| matrices K(i), i ∈ I. More precisely the expressions for K(x, t) are361

(23) K(x, t) =
∑
i∈I

σ̃i(x, t)K
(i),

∑
i∈I

σ̃i(x, t) = 1.362
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The control policy is then

u = Kx = (
∑
i∈I

σ̃i(x, t)K
(i))x,

∑
i∈I

σ̃i(x, t) = 1.

In the case of saturated controls the procedure to derive the weights in the above363

control policy are discussed in (Gomes da Silva, 2001).364

Theorem 6.1. The distance of any solution of the stochastic differential inclu-365

sion (15) from the target set Π is second-moment bounded if for all x ∈ Xj, j ∈ I366

(24) xT
[
Q(Ψ(i))T + Ψ(i)Q+ αQ+

1

β
R−1

]
x ≤ 0,367

where Ψ(i) = [BK(i) − I] and Xj is any subspace where K(i) is in the support Sj of
K, i.e., the control is

u = Kx = (
∑
i∈Sj

σ̃i(x, t)K
(i))x,

∑
i∈Sj

σ̃i(x, t) = 1.

Proof. The analysis is then performed within the framework of stochastic stability368

theory (Loparo and Feng, 1996). To this end, consider the infinitesimal generator369

L[·] = lim
dt→0

1
2E
∑
i∈I dx

T∇2
xx[·]dx+ EdxT∇x[·]
dt

,(25)370

and the Lyapunov function V (x) = xTPx. The stochastic derivative of V (x) is371

obtained by applying (25) to V (x), which yields372

LV (x(t)) = lim
dt→0

EV (x(t+ dt))− V (x(t))

dt
373

= lim
dt→0

1
2E
∑
i∈I dx

T∇2
xx[V (x)]dx+ EdxT∇x[V (x)]

dt
374

=
1

2

∑
i∈I

Σ2
ii(x)(∇2

xx[V (x)])ii + [BK(·)x− x− w]T ·375

·∇x[V (x)] +∇x[V (x)]T [BK(·)x− x− w].376

Using ∇2
xx[V (x)] = P and ∇x[V (x)] = Px the above can be rewritten as follows, for377

all x 6∈ Π, and w ∈ W378

(26)

LV (x) = [−x+BK(x, t)x− w]TPx
+xTP [−x+BK(x, t)x− w] +

∑q
i=1 Σ2

ii(x)Pii
= xT [BK(x, t)− I]TPx+ xTP [BK(x, t)− I]x
−wTPx− xTPw +

∑q
i=1 Σ2

iiPii < 0.

379

Let Π = Rq \ Π. From the S-procedure, we know that for all x ∈ Π, and w ∈ W380

condition (26) holds if there exist α, β ≥ 0, such that for all (x,w) ∈ Π×W381

(27)

LV (x) = xT [BK(x, t)− I]TPx
+xTP [BK(x, t)− I]x
−wTPx− xTPw +

∑q
i=1 Σ2

iiPii
≤ α(1− V (x)) + β(‖w‖2R − 1) ≤ 0.

382
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The last inequality is obtained from observing that

Π×W := {(ξ, ω) : 1− V (ξ) ≤ 0, ‖ω‖2R − 1 ≤ 0}.

Let Ψ(x, t) = [BK(x, t)− I], inequality (27) can be rewritten as383 [
x
w

]T [
Ψ(x, t)TP + PΨ(x, t) + αP −P

−P −βR

] [
x
w

]
−α+ β +

∑q
i=1 Σ2

iiPii ≤ 0.

384

Trivially it must hold β ≤ α. Assume without loss of generality that β = α −385 ∑q
i=1 Σ2

iiPii.
1 Recall that α and β can be chosen arbitrarily. After pre and post-386

multiplying by Q = P−1, the above condition becomes387 [
x
w

]T [
QΨ(x, t)T + Ψ(x, t)Q+ αQ −I

−I −βR

] [
x
w

]
≤ 0.388

Now, as the state never leaves the region S(ψθ), i.e., x(t) ∈ S(ψθ), we can always389

express A(x(t)) as a convex combination of the Ajs as in (23).390

By convexity, the above condition is true if it holds, for all j = 1, . . . , 2n,391

(28)

[
x
w

]T [
Q(Ψ(i))T + Ψ(i)Q+ αQ −I

−I −βR

] [
x
w

]
≤ 0,392

where Ψ(i) = [BK(i) − I]. Using the Shur complement condition (28) is implied393

by (24).394

Based on the above stated theorem we can infer that the solution of a dynamic TU395

game when (15) is used will lie in the ε-core. This is because even if the disturbance396

in 13 is a q-dimensional unbounded Brownian motion, the dynamics of the process397

are bounded in the second moment.398

Stronger conditions are established in the following corollary.399

Corollary 6.2. The distance of any solution of the stochastic differential inclu-400

sion (15) from the target set Π is second-moment bounded, if there exists a scalar401

α ≥ 0 such that, for all K(i), i ∈ I402

(29) Q[BK(i) − I]T + [BK(i) − I]Q+ αQ+
1

β
R−1 < 0.403

Proof. Straightforward from observing that (29) implies (24).404

Note that conditions (24) simply impose that each one of the conditions (29) (for405

fixed j) holds only in a specific region of the state space and not over the entire Rn.406

In this sense, condition (24) is weaker than (29).407

Let d(x,Π) be the distance of any given x ∈ Rq from the target set Π. Consider408

a modified stochastic differential inclusion409

(30) dx(t) ∈ F (x)dt+ Σ(x)dB(t),410

where Σ(x) is the weight of the random noise which is now upper bounded by the411

distance of x from the target set, i.e., Σ(x) ≤ d(x,Π). We are in a position to412

establish the next result relating to the case where the variance of the stochastic413

process vanishes the closer the trajectory is to the target set.414

1Pii is not known a priori so we need to implement a guess method
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Corollary 6.3. Let Σ(x) ≤ d(x,Π) and let Ψ(i) = [BK(i) − I]. Any solution of415

the stochastic differential inclusion (30) converges to the target set Π almost surely if416

for all x ∈ Xi, i ∈ I417

(31) xT
[
Q(Ψ(i))T + Ψ(i)Q+ αQ+

1

β
R−1

]
x ≤ 0.418

Proof. The underlying idea is that for all x 6∈ Π, and w ∈ W419

(32)

limx→Π L(V (x))

= limx→Π

{
[−x+BK(x, t)x− w]TPx

+xTP [−x+BK(x, t)x− w] +
∑q
i=1 Σ2

ii(x)Pii

}
= xT [BK(x, t)− I]TPx+ xTP [BK(x, t)− I]x
−wTPx− xTPw < 0.

420

We then look for α, β ≥ 0, such that for all (x,w) ∈ Π×W421

(33)

LV (x) = xT [BK(x, t)− I]TPx
+xTP [BK(x, t)− I]x
−wTPx− xTPw
≤ α(1− V (x)) + β(‖w‖2R − 1) ≤ 0,

422

which is equivalent to setting β ≤ α and solving423 [
x
w

]T [
Ψ(x, t)TP + PΨ(x, t) + αP −P

−P −βR

] [
x
w

]
−α+ β ≤ 0.

424

After pre and post-multiplying by Q = P−1, and using convexity, the above condition425

leads to (28), and this concludes the proof.426

Let B(t) be a zero-mean random noise such that
∫
dB(t) has bounded support.427

For instance, think of
∫
dB(t) as a truncated Gaussian noise with bounded support428

in the interval [−κ̄σ, κ̄σ] for a positive scalar κ̄. The counterpart of (15) is then429

(34) dx(t) ∈ F (x)dt+ ΣdB(t).430

Assume B(t) ∈ [−Σ,Σ] and let W̃ := {ω : ω = w + σ̃, w ∈ W, σ̃ ∈ [−Σ,Σ]}. Also, let

R̃ be such that
W̃ ⊆ W̄ := {ω : ‖ω‖2

R̃
− 1 ≤ 0}.

We are in a position to state the following main result.431

Theorem 6.4. Any solution of the stochastic differential inclusion (15) converges432

to the target set Π if for all for all K(i), i ∈ I433

(35)
[
Q(Ψ(i))T + Ψ(i)Q+ αQ+

1

β
R̃−1

]
≤ 0.434

Proof. For all x 6∈ Π,435

(36)

V̇ (x) ∈
{

[−x+BK(x, t)x− w ± Σ]TPx

+xTP [−x+BK(x, t)x− w ± Σ], w ∈ W
}

=
{
xT [BK(x, t)− I]TPx+ xTP [BK(x, t)− I]x

−(w ± Σ)TPx− xTP (w ± Σ), w ∈ W
}
< 0.

436
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Recall that W̃ := {ω : ω = w + σ̃, w ∈ W, σ̃ ∈ [−Σ,Σ]}. From the above we have437

that for all x 6∈ Π it must hold438

(37)

V̇ (x) ≤ maxω∈W̃{
xT [BK(x, t)− I]TPx+ xTP [BK(x, t)− I]x

−ωTPx− xTPω
}
< 0.

439

For all x ∈ Π, and ω ∈ W̃ the above condition holds if there exist α, β ≥ 0, such that440

for all (x,w) ∈ Π×W441

(38)

V̇ (x) = xT [BK(x, t)− I]TPx
+xTP [BK(x, t)− I]x
−ωTPx− xTPω
≤ α(1− V (x)) + β(‖w‖2R − 1) ≤ 0.

442

From the definition of R̃ it holds

W̃ ⊆ W̄ := {ω : ‖ω‖2
R̃
− 1 ≤ 0}.

For all (x,w) in

Π× W̄ := {(ξ, ω) : 1− V (ξ) ≤ 0, ‖ω‖2
R̃
− 1 ≤ 0},

condition (38) can be rewritten as443

(39)

[
x
ω

]T [
Q(Ψ(i))T + Ψ(i)Q+ αQ −I

−I −βR̃

] [
x
ω

]
≤ 0.444

and this concludes our proof.445

7. Intelligent Mobility Network. In this section the stability analysis of the446

case study of the intelligent mobility network of Section 3 is presented.447

Initially the deterministic version of dynamics (15) is decomposed as448

(40)
dx(t) ∈ {(−x(t) +Bu(t)− w̃(t))dt

+ΣdB(t), w̃(t) ∈ W̃},449

where w̃(t) is an uncertain but bounded deviation from the expected profit, given by450

(41)
w̃(t) = [PS(y,Θ∗S)− EPS(y,Θ∗S)]S∈S

∈W (2) := {w ∈ Rm| δ ≤ w ≤ δ}.451

In the above expression δ and δ are upper and lower bounds respectively, and are452

obtained as453

δ := PS(DS ,Θ
∗
S)− EPS(y,Θ∗S),(42)454

δ := PS(DS ,Θ
∗
S)− EPS(y,Θ∗S).(43)455

Before we calculate δ
j

and δj , note that to derive (40), we simply write the real456

profit as combination of expected profit w0(t) and deviation from the expected profit457

w̃(t), namely w(t) = w0(t) + w̃(t). The expected profit is a priori known and given458

by w0(t) = [〈PS(DS ,Θ
∗
S)〉]S∈S .We can then design a first control input u0(t) based459
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on the Shapley allocation to compensate the optimal expected profit. To do this, let460

u0(t) be obtained from the following equation:461

(44) Bu0(t) = w0(t) = [ESJ(y,Θ∗S)]S∈S .462

To obtain an expression for δ
j

let us maximize the profit of the corresponding463

coalition S with respect to y, namely464

DS := arg maxDS
PS(DS ,Θ

∗
S)

= arg maxDS
{pµ− cΘ∗S − smax(0,Θ∗S −DS)

−(p+ h) max(0, DS −Θ∗S)} = Θ∗S .
465

Then, the maximal profit for coalition S is

max
y
PS(y,Θ∗S) = PS(DS ,Θ

∗
S) = PS(Θ∗S ,Θ

∗
S) = pµ− cΘ∗S .

Substituting the above in (42), we have

δ
j

:= pµ− cΘ∗S − 〈PS(DS ,Θ
∗
S)〉.

Similarly, to obtain δj used in (43), let us minimize the profit of the corresponding466

coalition S with respect to y, namely467

DS := arg minDS
PS(DS ,Θ

∗
S)

= arg minDS
{pµ− cΘ∗S − smax(0,Θ∗S −DS)

−(p+ h) max(0, DS −Θ∗S)} = 0.
468

The above means that the minimal profit is obtained when the power output is zero,
which leads to

min
y
PS(y,Θ∗S) = PS(DS ,Θ

∗
S) = PS(0,Θ∗S) = pµ− (s+ c)Θ∗S .

Substituting the above in (43), we have

δj := pµ− (s+ c)Θ∗S − 〈PS(DS ,Θ
∗
S)〉.

We can conclude that469

w̃(t) ∈ W̃ := {w ∈ Rm|
[pµ− (s+ c)Θ∗S − 〈PS(DS ,Θ

∗
S)〉]S∈S} ≤ w

≤ [pµ− cΘ∗S − 〈PS(DS ,Θ
∗
S)〉]S∈S}.

470

As last step we define the parametrized ellipsoid

Πk = {ω ∈ Rm : k2ωTΦω ≤ 1},

where Φ is a matrix in Rm×m and consider the problem of finding the smallest ellipsoid
Πk which contains W(2):

k∗ = max
k
{k|Πk ⊃ W(2)}.

The dynamic model we obtain is then471

dx(t) ∈ {(−x(t) +Bu(t)− ω)dt+ ΣdB(t), ω ∈ Πk∗},472

which is of the same form as in (15).473
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8. Simulations. An application of the multi-inventory coalitional model, which474

was described in the previous section, can be found in the electricity trade market.475

Consider the case of n electricity producers which should meet the electricity demands476

of a central distributor. The expected profit of a generic coalition is described by (2)477

under the following two assumptions (Baeyens et al., 2013):478

• The structure of the network does not affect the prices and the demand of479

electricity.480

• The electricity market system comprises of a single ex-ante forward penalty481

and a single ex-post imbalance penalty for variations from the contracted482

values.483

The dynamic demand of such system can be defined as the diffusion process of484

(20) and the excess is defined as in (21). In the simulations of this section a saturated485

controller of the form of (18) is used here K = kB−1 and k = 2
3 . In our simulations486

we consider the case of four players/energy producers that should decide if they will487

be part of a coalition and share the costs and profits from energy production. The488

initial demand was set to [0.1693 0.2019 0.1304 0.0562]T . The drift parameter489

w was bounded in wTRw ≤ 1 and R was set to be the identity matrix. Figures 2-4490

depict the evolution of the excess, the variance of the excess and the Shapley value491

respectively.492

As it is evident from Figure 2 the excess is always non-negative for all the coalitions493

which is an indication of a non-empty core. In addition the excess is grouped according494

to the number of the coalition’s members. In particular, the excess for the coalitions495

with one member have greater excess than the coalitions with two members and496

the coalitions with two members have greater excess than the coalitions with three497

members. The grand coalition has excess near to zero.498

Figure 3 depicts the variance of the excess of all possible coalitions. As it can be499

seen from Figure 3 the variances of all coalitions converge to a constant value smaller500

than one.501

Figure 4 depicts the Shapley’s value for all players over time. Since the excess502

value is always positive we can conclude that the core is non-empty.503

9. Conclusion. The problem of controlling the allocations in dynamic TU games504

is considered. Stochastic differential inclusions are used to model the uncertainty of505

dynamic TU games, which can be occurred either as a result of a dynamic environ-506

ment or noisy observations. A model is proposed, which extends the results of Bauso507

et al. (2010) that allows allocation to be controlled by taking into account the de-508

terministic and stochastic uncertainty which exists in the evolution of the excess of509

a coalition. In particular based on linear matrix inequality conditions it is shown510

that the stochastic differential inclusion solutions are second-moment bounded. An511

intelligent mobility scenario is used to show the applicability of the proposed method-512

ology. Additionally simulations in a distribution network are employed which support513

the theoretical results, by showing stability of the core and bounded variance of the514

coalitions’ excesses.515

Future work could include a distributed version of the proposed model. This will516

increase the efficiency of the proposed methodology’s applicability in scenarios which517

include thousand of players. In addition the performance of the proposed methodology518

and limitation which may arise from the usage of real distribution network’s data in519

the simulations will be considered.520
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