27,958 research outputs found

    Scalable Mining of High-Utility Sequential Patterns With Three-Tier MapReduce Model

    Get PDF
    High-utility sequential pattern mining (HUSPM) is a hot research topic in recent decades since it combines both sequential and utility properties to reveal more information and knowledge rather than the traditional frequent itemset mining or sequential pattern mining. Several works of HUSPM have been presented but most of them are based on main memory to speed up mining performance. However, this assumption is not realistic and not suitable in large-scale environments since in real industry, the size of the collected data is very huge and it is impossible to fit the data into the main memory of a single machine. In this article, we first develop a parallel and distributed three-stage MapReduce model for mining high-utility sequential patterns based on large-scale databases. Two properties are then developed to hold the correctness and completeness of the discovered patterns in the developed framework. In addition, two data structures called sidset and utility-linked list are utilized in the developed framework to accelerate the computation for mining the required patterns. From the results, we can observe that the designed model has good performance in large-scale datasets in terms of runtime, memory, efficiency of the number of distributed nodes, and scalability compared to the serial HUSP-Span approach.acceptedVersio

    Efficient chain structure for high-utility sequential pattern mining

    Get PDF
    High-utility sequential pattern mining (HUSPM) is an emerging topic in data mining, which considers both utility and sequence factors to derive the set of high-utility sequential patterns (HUSPs) from the quantitative databases. Several works have been presented to reduce the computational cost by variants of pruning strategies. In this paper, we present an efficient sequence-utility (SU)-chain structure, which can be used to store more relevant information to improve mining performance. Based on the SU-Chain structure, the existing pruning strategies can also be utilized here to early prune the unpromising candidates and obtain the satisfied HUSPs. Experiments are then compared with the state-of-the-art HUSPM algorithms and the results showed that the SU-Chain-based model can efficiently improve the efficiency performance than the existing HUSPM algorithms in terms of runtime and number of the determined candidates

    An efficient parallel method for mining frequent closed sequential patterns

    Get PDF
    Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research attention, because it is an important task in sequences mining. In recently, many studies have focused on mining frequent closed sequential patterns because, such patterns have proved to be more efficient and compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential patterns. This approach overcomes the problems of parallel mining such as overhead of communication, synchronization, and data replication. It also solves the load balance issues of the workload between the processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to minimize the idle CPU time.Web of Science5174021739
    • …
    corecore