795 research outputs found

    The DEAR-COTS hard real-time subsystem

    Get PDF
    In this report, the Hard Real-Time Subsystem of DEAR-COTS is described, and the services it must provide are identified. This report is an input of ISEP/IPP and FEUP for the specification of the DEAR-COTS architecture (deliverable to the FCT)

    Verification of Component-based Distributed Real-time Systems

    Get PDF
    Component-based software architectures enable reuse by separating application-specific concerns into modular components that are shielded from each other and from common concerns addressed by underlying services. Even so, concerns such as invocation rates, execution latencies, deadlines, and concurrency and scheduling semantics still cross-cut component boundaries in many real-time systems. Verification of these systems therefore must consider how composition of components relates to timing, resource utilization, and other properties. However, existing approaches only address a sub-set of the concerns that must be modeled in component-based distributed real-time systems, and a new more comprehensive approach is thus needed. To address that need, this paper offers three contributions to the state of the art in verification of component-based distributed real-time systems: (1) it introduces a formal model called real-time component automata that combines and extends interface automata and timed automata models; (2) it presents new component composition operations for single-threaded and cooperative multitasking forms of concurrency; and (3) it describes how the composed models can be combined with task locations, a scheduling model, and a communication delay model, to generate a combined representation of the application components and supporting services that can be verified by existing model checkers. These contributions are embodied in an open-source tool prototype called the Real-time Component Model Translator (RTCMT)

    Tools for Real-Time Control Systems Co-Design : A Survey

    Get PDF
    This report presents a survey of current simulation tools in the area of integrated control and real-time systems design. Each tool is presented with a quick overview followed by a more detailed section describing comparative aspects of the tool. These aspects describe the context and purpose of the tool (scenarios, development stages, activities, and qualities/constraints being addressed) and the actual tool technology (tool architecture, inputs, outputs, modeling content, extensibility and availability). The tools presented in the survey are the following; Jitterbug and TrueTime from the Department of Automatic Control at Lund University, Sweden, AIDA and XILO from the Department of Machine Design at the Royal Institute of Technology, Sweden, Ptolemy II from the Department of Electrical Engineering and Computer Sciences at Berkeley, California, RTSIM from the RETIS Laboratory, Pisa, Italy, and Syndex and Orccad from INRIA, France. The survey also briefly describes some existing commercial tools related to the area of real-time control systems

    Reconciling Repeatable Timing with Pipelining and Memory Hierarchy

    Get PDF
    This paper argues that repeatable timing is more important and more achievable than predictable timing. It describes microarchitecture approaches to pipelining and memory hierarchy that deliver repeatable timing and promise comparable or better performance compared to established techniques. Specifically, threads are interleaved in a pipeline to eliminate pipeline hazards, and a hierarchical memory architecture is outlined that hides memory latencies

    Distributed real-time operating system (DRTOS) modeling in SpecC

    Get PDF
    System level design of an embedded computing system involves a multi-step process to refine the system from an abstract specification to an actual implementation by defining and modeling the system at various levels of abstraction. System level design supports evaluating and optimizing the system early in design exploration.;Embedded computing systems may consist of multiple processing elements, memories, I/O devices, sensors, and actors. The selection of processing elements includes instruction-set processors and custom hardware units, such as application specific integrated circuit (ASIC) and field programmable gate array (FPGA). Real-time operating systems (RTOS) have been used in embedded systems as an industry standard for years and can offer embedded systems the characteristics such as concurrency and time constraints. Some of the existing system level design languages, such as SpecC, provide the capability to model an embedded system including an RTOS for a single processor. However, there is a need to develop a distributed RTOS modeling mechanism as part of the system level design methodology due to the increasing number of processing elements in systems and to embedded platforms having multiple processors. A distributed RTOS (DRTOS) provides services such as multiprocessor tasks scheduling, interprocess communication, synchronization, and distributed mutual exclusion, etc.;In this thesis, we develop a DRTOS model as the extension of the existing SpecC single RTOS model to provide basic functionalities of a DRTOS implementation, and present the refinement methodology for using our DRTOS model during system level synthesis. The DRTOS model and refinement process are demonstrated in the SpecC SCE environment. The capabilities and limitations of the DRTOS modeling approach are presented

    Modeling Timed Component-Based Real-time Systems

    Get PDF
    Component based middleware helps to facilitate software reuse by separating application-specific concerns into modular components that are shielded from the concerns of other components and from the common concerns addressed by underlying middleware services. In real-time systems, concerns such as invocation rates, execution latencies, deadlines, and concurrency semantics cross-cut multiple component and middleware abstractions. Thus, the verification of these systems must consider features of the application components (e.g., their execution latencies and relative invocation rates) and of the supporting middleware (e.g., concurrency and scheduling) together. However, existing approaches only address a sub-set of the features that must be modeled in component based real-time systems, and a new more comprehensive approach is needed. To address that need, this paper offers three main contributions to the state of the art in the verification of component based real-time systems: (1) it introduces a formal model called component automata that combines new input/output rate specifications with input/output actions and timed internal actions from the existing interface automata and timed automata models respectively; (2) it presents new component composition operations for single-threaded and cooperative multi-tasking, in addition to composition under the preemptive multi-tasking semantics assumed by interface automata; and (3) it describes how the composed component models then can be combined with task location specifications, a scheduling model, and a communication delay model, to generate a combined timed automaton representation of the components and middleware that can be verified by existing timed model checkers. This research was supported in part by NSF grant CCF-0448562 titled CAREER: Time and Event Based System Software Construction

    Extempore: The design, implementation and application of a cyber-physical programming language

    Get PDF
    There is a long history of experimental and exploratory programming supported by systems that expose interaction through a programming language interface. These live programming systems enable software developers to create, extend, and modify the behaviour of executing software by changing source code without perceptual breaks for recompilation. These live programming systems have taken many forms, but have generally been limited in their ability to express low-level programming concepts and the generation of efficient native machine code. These shortcomings have limited the effectiveness of live programming in domains that require highly efficient numerical processing and explicit memory management. The most general questions addressed by this thesis are what a systems language designed for live programming might look like and how such a language might influence the development of live programming in performance sensitive domains requiring real-time support, direct hardware control, or high performance computing. This thesis answers these questions by exploring the design, implementation and application of Extempore, a new systems programming language, designed specifically for live interactive programming

    Resource-Constrained Embedded Control Systems: Possibilities and Research Issues

    Get PDF
    A survey that points out research issues and open problems in the area of integrated control and real-time scheduling. Issues that are discussed include temporal robustness, schedulability margin, optimal and direct feedback scheduling, quality-of-control, and tools

    Human-Computer Interaction in Mobile Context : A Cognitive Resources Perspective

    Get PDF
    Human-computer interaction is currently shifting its focus from desktop-based interaction to interaction with "beyond the desktop", which is embedded into everyday activities. In order to support users more elegantly, these mobile, wearable, and ubiquitous computing devices are envisioned to adapt inte lligently to their context. Thus far, however, the mobile use contexts per se have received attention, as most research has been technology-driven. Drawing from cognitive psychology, user modeling in human-computer interaction, and ethnomethodology, a framework is put forward here to analyse mobile use situations from the point of view of resource competition. The framework assumes that mobility is inherently multitasking and easily leads to competition for cognitive and other human resources. This "cognitive resource competition" framework is elaborated and associated with the psychological principles of capacity and multitasking. It looks at the typical social, interactional, cognitive, and physical tasks in mobility, relates them to the typical cognitive resources they compete for, and, based on known capacities of cognitive faculties, pinpoints restrictions and resources for action that can emerge in a given mobile situation. It is argued that the approach is useful for identifying the perceptual, attentional, and cognitive capabilities of a user in a mobile situation. The approach has implications for the design and innovation of intelligent, context-sensitive user interfaces and services. Furthermore, a practical method for making human resources visible in a design session is proposed and evaluated
    • …
    corecore