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Abstract

Component-based software architectures enable reuse
by separating application-specific concerns into modular
components that are shielded from each other and from
common concerns addressed by underlying services. Even
so, concerns such as invocation rates, execution laten-
cies, deadlines, and concurrency and scheduling semantics
still cross-cut component boundaries in many real-time sys-
tems. Verification of these systems therefore must consider
how composition of components relates to timing, resource
utilization, and other properties. However, existing ap-
proaches only address a sub-set of the concerns that must be
modeled in component-based distributed real-time systems,
and a new more comprehensive approach is thus needed.

To address that need, this paper offers three contribu-
tions to the state of the art in verification of component-
based distributed real-time systems: (1) it introduces a
formal model called real-time component automata that
combines and extends interface automata and timed au-
tomata models; (2) it presents new component composi-
tion operations for single-threaded and cooperative multi-
tasking forms of concurrency; and (3) it describes how the
composed models can be combined with task locations, a
scheduling model, and a communication delay model, to
generate a combined representation of the application com-
ponents and supporting services that can be verified by ex-
isting model checkers. These contributions are embodied in
an open-source tool prototype called the Real-time Compo-
nent Model Translator (RTCMT).

1. Introduction

To promote the separation of application-specific and
common concerns in distributed real-time systems, new
forms of real-time component middleware[18, 22] support
flexible configuration of timers, threads, remote communi-
cation, release guards and other common features, for each

∗This research was supported in part by NSF grant CCF-0448562 titled
“CAREER: Time and Event Based System Software Construction.”

application’s needs. Unfortunately, the very flexibility that
allows desirable combinations of features to be configured,
also may allow configurations in which deadlocks, race con-
ditions, missed deadlines, and other concurrency and tim-
ing hazards can arise. Furthermore, a configuration that
is suitable for one set of applications may introduce haz-
ards for other applications. Specific hazards easily can be
overlooked by system integrators during the component as-
sembly process, and as an application grows larger, the ex-
panding combinations of configuration options may make
manual verification impractical.

Therefore, it is essential to develop automated tools for
verification of these systems. These tools should track the
compatibility of software components, provide valid mid-
dleware configuration options, and verify properties such
as the absence of deadlocks or the timeliness of required
responses. Model checking has emerged as an important
technology for verification of distributed real-time systems
in which application and middleware details can be ana-
lyzed together, but no existing approach is well suited for
verification of systems built with real-time component mid-
dleware. Section 2 summarizes related work and compares
our research to those approaches.

Contributions of this paper: To address the limitations
of existing approaches for verification of systems built us-
ing real-time component middleware, this paper offers a for-
mal verification approach that is specifically designed for
component-based distributed real-time systems. Section 3
provides an overview of our approach and a brief discus-
sion of the timed automata model upon which it builds. This
paper provides three main contributions to the state of the
art in verification of component-based distributed real-time
systems: (1) Section 4 introduces a formal model called
real-time component automata that combines interface au-
tomata and timed automata models with task specifications;
(2) Section 5 presents new real-time component composi-
tion operators for single-threaded and cooperative multi-
tasking, and an operator for multi-threaded composition
as in interface automata; and (3) Section 6 describes how
composed models then can be combined with task location
specifications and a scheduling model to generate a timed



automaton representation of a system with which proper-
ties can be verified by existing model checkers. Section 7
presents realistic examples that illustrate how the real-time
component model can be used for verification in practice.
Section 8 summarizes our contributions and offers conclud-
ing remarks.

2. Related Work

Component modeling environments: Karsai et al. [8]
proposed using formal domain specific models within a
software development process. In Ptolemy [7], the exe-
cution of atomic actors is described in terms of interface
automata [5]. PTIDES [23] includes an executable sim-
ulation capability, but unlike our approach does not sup-
port executable composition with models of lower level
middleware services. DREAM [12] and SaveCCM [4]
are component-based modeling frameworks based on timed
automata model checker U[3], which support model
checking of tasks inside components. Unlike our approach,
those models do not directly support preemptive semantics.

Compositional real-time analysis: Shin and Lee[16][17]
developed a compositional real-time scheduling framework
to establish global timing properties by composing timing
constraints from locally analyzed tasks. A restriction of the
framework is that the tasks are independent; therefore, it is
not possible to analyze a system in which components may
interact. The Interface Algebra[21] uses a bounded-delay
resource model, the EDF scheduling algorithm and a new
task workload model; there is only one scheduling compo-
nent model for the entire system. Therefore, composition
refers to the grouping of tasks and a task group is called a
component. A limitation of this approach is that the delay
and CPU capacity parameters must be assigned at the task
level: if an end-to-end task consists of several sub-tasks, it
requires that the CPU capacity and delay of each sub-task
be determined before the Interface Algebra can be used to
decide if they are compatible.

Model checking: Traditional model checkers like S
[11] and Bogor [13] do not support explicit modeling of
time. In the discrete time model, a global non-decreasing
clock is maintained and monotonically incremented [20].
The discrete time model requires that continuous time be
approximated by a fixed quantum, which may limit the pre-
cision with which the system is modeled. BIP[2] is a real-
time component modeling framework built on top of the dis-
crete time model. In the dense time model, times at which
events occur are represented as real numbers which increase
monotonically without bound. The representative formal-
ization of this model is called timed automata [1] which we

review in the next section. Although timed automata allow
modeling of dense time, they do not express preemption se-
mantics, since the flow conditions of the variables in a timed
automata model must remain constant in all states. Hybrid
automata [9] model systems where the flow conditions of
variables can change among states, making it possible to
represent preemption behaviors by setting the flow condi-
tions of certain variables in some states to zero. A drawback
of hybrid automata is that their verification is generally un-
decidable except with special constraints.

Modeling middleware services: In [19], Subramonian et
al. demonstrated middleware modeling techniques that map
software abstractions directly to timed automata. Although
this approach epitomizes the actual implementation of soft-
ware systems, it suffers from three problems: (1) models
must be composed through explicit low level interactions,
which is contrary to the principle of encapsulation; (2) such
models express details which may not be essential for mod-
eling the application level, and thus may inflict state space
explosion [6]; and (3) unless concurrency features are en-
coded directly into the models[18], every software compo-
nent is treated as an active object [15] which creates the
potential for mismatches with different actual concurrency
implementations, and makes models more difficult to de-
velop, understand and reuse.

3. Overview of the Solution Approach

As was described in Section 1, our goal is to automate
the verification of properties such as absence of deadlocks
or timeliness of responses, by composing individual mod-
els of real-time software components. However, there are
important limitations of existing modeling approaches: in-
terface automata lack a way to specify and verify tim-
ing constraints; timed automata do not support preemp-
tion; model checking with hybrid automata is generally un-
decidable; the compositional real-time scheduling frame-
work only works for independent tasks; and in the Inter-
face Algebra, delay and CPU capacity must be specified
before a composition can be checked. To overcome these
limitations, our approach combines and extends timed au-
tomata and interface automata with a periodic workload
model[16] and a fixed priority scheduling model which re-
quire knowledge of task periodicity and scheduling policies.
We exploit that information to calculate the response time
of each task in the presence of preemption and to define
the corresponding timing constraints in a timed automata
model. This approach thus allows us to verify properties
of component-based distributed real-time systems with pre-
emptive scheduling, by checking timed automata models.

To realize our verification approach, we have developed
and formalized a new model called real-time component



automata that supports specification and analysis of com-
ponents’ functional semantics and timing constraints, along
with component composition operators and system schedul-
ing policies. We define a node abstraction which identifies
the (possibly composite) components that can be scheduled
on each processor. Based on this approach, we have de-
veloped a prototype tool called the Real-time Component
Model Translator (RTCMT) to automate the conversion of
our new real-time component models into timed automata
models, which an existing model checker can use to verify
specified properties. In Sections 4, 5, and 6, we describe
how the RTCMT represents and composes real-time com-
ponent automata and translates them into timed automata.

Background: We now summarize features of the timed
automata model, upon which our approach builds. A timed
automaton[1] is a finite state Büchi automaton extended
with a set of real-valued variables called clocks. Transi-
tions between states are guarded by clock constraints which
represent timing delays. Let X be a set of clock variables.
The set of clock constraints C(X) is defined as follows: all
inequalities of the form x ≺ c or c ≺ x are in C(X), where ≺
is either < or ≤ and c is a non-negative rational number, and
if φ1 and φ2 are in C(X), then φ1 ∧ φ2 is in C(X).

The timed safety automata [10] model simplifies the
timed automata model with location invariants and removes
accepting locations. Formally, A timed safety automaton is
a 6-tuple A = (Σ, S , S 0, X, I,T ) where: Σ is a finite set of
alphabets, S is a finite set of locations, S 0 ⊆ S is a set of
starting locations, X is a set of clocks, I : S → C(X) is
a mapping from locations to clock constraints, called loca-
tion invariants, and T ⊆ S × Σ × C(X) × 2X × S is a set of
transitions. For any transition t ∈ T , θs(t) and θd(t) ∈ S rep-
resent the source and destination locations of a transition;
δ(t) ∈ C(X) is the time guard which must be satisfied when
the transition is taken; γ(t) ∈ 2X is a set of clocks that are
reset to zero once the transition is taken. In the subsequent
sections, we extend the timed safety automata model with
component abstractions and preemption semantics.

4. Real-time Component Automata

In the real-time component automata model, which also
extends interface automata [5], a real-time component can
be either basic or composite. A basic real-time component
consists of input and output actions as well as a (timed)
automaton which describes its behavior. The input and out-
put actions are used to specify how a real-time component
can interact with its environment or other components. The
input actions are used to model methods1, actions on the re-
ceiving ends of message transmission channels, or actions

1We use the term method in this paper to indicate any invokable piece
of code with well-defined points of entry and return.

at the return location of a method invocation. The output ac-
tions are used to model method invocation points, the send-
ing ends of message transmission channels, and the point
of return from a method invocation. The input and output
actions that represent the return locations and return actions
of method invocations, are called returned input actions and
returning output actions respectively. A segment of exe-
cution starts with an input action that receives requests or
events from its environment, processes the requests, and
then generates outputs to the environment.

p0

p1

[2]

p2

p3

a2?

ra2!
a1?

ra1!

a1 a2

ra1 ra2

q0 q1 q2

q3q4q5

a3? a2!

ra2?

a4!ra4?

ra3!

ra2 a3 ra4

a2 ra3 a4

Figure 1. Two real-time components P and Q

Figure 1 shows two real-time components in our model,
in which transition labels followed by “!” and “?” repre-
sent output and input actions respectively. A new timing
constraint called a task constraint is also used, which con-
sists of a worst case execution time (WCET) and a prior-
ity. The WCET, denoted by square brackets in our model,
represents the maximum accumulated CPU time that can
be spent in a location. The priority is an integer that indi-
cates the scheduling preferences among tasks. In Figure 1,
a WCET of 2 time units is shown beside location p1. A lo-
cation with a task constraint is a task location; otherwise,
it is a non-task location. The task constraints are trans-
formed into location invariants and transition guards based
on the real-time component composition operators (which
we consider in Section 5) and the preemptive scheduling al-
gorithm used (which we consider in Section 6). A real-time
component location can have a location invariant or a task
constraint but not both.

More formally, a real-time component P =

(AI
P,A

O
P ,A

H
P , S P, s0

P, XP, IP,KP, ωP,TP) consists of
the following elements: (i) AI

P and AO
P represent the input

and output actions respectively. AIO
P = AI

P ∪ A
O
P is the

set of external actions of the real-time component. AI
P

and AO
P are mutually disjoint, i.e. AI

P ∩ A
O
P = ∅. (ii) AH

P
is a set of internal actions. (iii) S P = S T

P ∪ S N
P is a set

of locations, where S T
P is a set of task locations and S N

P
is a set of non-task locations. S T

P and S N
P are mutually

disjoint. (iv) s0
P ∈ S N

P is a starting location. (v) XP is a set of
clocks. (vi) IP : S P → C(XP) is a mapping from locations
to location invariants, where C(XP) is the set of clock



constraints defined. Moreover, for any s ∈ S T
P , Ip(s) = ∅.

(vii) KP ⊂ N ×N : is a set of task constraints with WCETs
and priorities, where N is the set of natural numbers.
(viii) ωP : S P → KP is a mapping from locations to task
constraints. (ix) TP ⊆ (S P × AIO

P × 2A
H
P ×C(XP)× 2XP × S P)

is a set of transitions.
If a location s is a non-task location then ωP(s) = ∅. The

disjunction operator ∨ for task constraints is defined as

ωP(s1)∨ωP(s2) =


∅ if ωP(s1) = ωP(s2) = ∅,

ωP(s1) if ωP(s1) , ∅ and ωP(s2) = ∅,

ωP(s2) if ωP(s1) = ∅ and ωP(s2) , ∅,
undefined if ωP(s1) , ∅ and ωP(s2) , ∅.

For ease of discussion, we also define the following func-
tions which retrieve attributes of a transition τ in a real-time
component: θ(τ) maps to a tuple (s, s′) where s and s′ are
the source and destination locations of the transition τ re-
spectively, α(τ) maps to the input or output action that is
associated with the transition t, and β(τ) maps to the set
of internal actions that are associated with the transition t.
Given real-time components P and Q, the internalized ac-
tions IntA(P,Q) refer to the matched actions between P and
Q, i.e, IntA(P,Q) = (AI

P ∩A
O
Q) ∪ (AO

P ∩A
I
Q).

5. Real-time Component Composition

A composite real-time component is constructed from
real-time subcomponents using a specified real-time com-
ponent composition operator. There are three real-time
component composition operators in our approach: par-
allel, atomic and monitor. Each of these operators corre-
sponds to a form of concurrency commonly provided by
real-time component middleware: multi-threaded, single-
threaded and cooperative multitasking respectively. The
parallel composition operator is derived from the interface
automata approach. The atomic and monitor composition
operators are novel contributions of our work. The paral-
lel composition operator cannot be used directly on a real-
time component with task constraints. Section 6 discusses
how to convert a real-time component model with task con-
straints into one without them.

Formally, a composite real-time component is defined
as follows. Given real-time components P and Q, the
composition of P and Q (denoted by P ⊗ Q, P � Q
and P ⊕ Q for parallel, atomic and monitor composition
respectively) is a composite real-time component R =

(AI
R,A

O
R ,A

H
R , S R, s0

R, XR, IR,KR, ωR,TR) where:
• AI

R = (AI
P ∪ A

I
Q) − IntA(P,Q), AO

R = (AO
P ∪ A

O
Q) −

IntA(P,Q) andAH
R = AH

P ∪A
H
Q ∪ IntA(P,Q);

• S R = S P × S Q;
• s0

R = (s0
P, s

0
Q);

• XR = XP ∪ XQ;

• IR : S R → C(XR), where IR(sP× sQ) = IP(sP)∧ IQ(sQ);
• KR = KP ∪ KQ;
• ωR : S R → KR is a mapping from locations to task

constraints that is defined in each composition opera-
tor; and

• TR ⊆ (S R ×A
IO
R × 2A

H
R ×C(XR) × 2XR × S R) is subject

to the composition rules for each operator.

5.1. Parallel Composition

Parallel composition, denoted by operator ⊗, describes
the case where the composed real-time components run
concurrently, though they may synchronize where their in-
put and output actions match. Figure 2 shows the parallel
composition of real-time components P and Q from Figure
1, where a2 and ra2 are the only two actions that exist in
both P and Q and thus may be synchronized in the com-
posed automaton. Other transitions in P and Q can inter-
leave arbitrarily when they are enabled at the same time.

p0q0 p0q1 p3q2 p0q3 p0q4 p0q5

p1q0 p1q1 p1q3 p1q4 p1q5

p2q0 p2q1 p2q3 p2q4 p2q5

a3? a2 ra2 a4! ra4?

a3? a4! ra4?

a3?
a4!

ra4?

a1? a1? a1? a1? a1?

ra3!

ra3!

ra3!

ra1! ra1!
ra1!

ra1!
ra1!

a1 a3 ra4

ra1 ra3 a4

Figure 2. Real-time component P ⊗ Q

Here, we only describe the case where P and Q do not
contain task constraints, and discuss the case with task con-
straints in Section 6. The rules for parallel composition are
defined as follows:
(1) For any transition τ, where θ(τ) = (sPsQ, s

′
Ps′Q), sP , s′P

and sQ , s′Q, τ is a transition of R if and only if there
exist both a transition τP ∈ TP where θ(τP) = (sP, s

′
P)

and a transition τQ ∈ TQ where θ(τQ) = (sQ, s
′
Q) such

that α(τP) = α(τQ) ∈ IntA(P,Q). The guard expression
of τ is the conjunction of those of τP and τQ. The clock
resets of τ are the union of those of τP and τQ. The
external actions of τ, α(τ) = ∅. The internal actions of
τ, β(τ) = β(τP) ∪ β(τQ) ∪ {α(τP)}.

(2) For any transition τ, where θ(τ) = (sPsQ, s
′
PsQ), τ is a

transition of R iff there exists a transition τP ∈ TP where
α(τP) < IntA(P,Q) and θ(τP) = (sP, s

′
P). The actions,



guard expression and clock resets of τ are the same as
with τP.

(3) Any transition τ, where θ(τ) = (sPsQ, sPs′Q), is a tran-
sition of R iff there exists a transition τQ ∈ TQ where
α(τQ) < IntA(P,Q) and θ(τQ) = (sQ, s

′
Q). The actions,

guard expression and clock resets of τ are the same as
with τQ.

Rule 1 describes the synchronization between real-time
subcomponents when matches exist between input and out-
put actions, such as actions a2 and ra2 in Figure 2. Rules
2 and 3 are symmetric, describing the interleaving of ac-
tions other than those synchronization points described in
rule 1. This symmetry holds for all three compositions, so
only one of the symmetric rules for the other compositions
will be presented.

5.2. Atomic Composition

Atomic composition, denoted by operator �, describes
the case where only one real-time subcomponent can be ex-
ecuted at a time, with interleaving only occurring when the
output actions of one real-time subcomponent match the in-
put actions of the other. Figure 3 shows the result of atomic
composition of real-time components P and Q from Figure
1. This composition represents the situation where a real-
time component provides multiple services which must be
executed sequentially rather than concurrently.

p0q0 p0q1 p3q2 p0q3 p0q4 p0q5

p1q0

p2q0

a3? a2 ra2 a4! ra4?

a1?

ra3!

ra1!

a1 a3 ra4

ra1 ra3 a4

Figure 3. Real-time component P � Q

The rules for atomic composition are defined as follows:
(1) For any transition τ, where θ(τ) = (sPsQ, s

′
Ps′Q), sP , s′P

and sQ , s′Q, τ is a transition of R if and only if the
following conditions hold:
• there exist both a transition τP ∈ TP where θ(τP) =

(sP, s
′
P) and a transition τQ ∈ TQ where θ(τQ) =

(sQ, s
′
Q) such that α(τP) = α(τQ) ∈ IntA(P,Q),

• sP and sQ are not both task locations,
• s′P and s′P are not both task locations.

The guard expression for τ is the conjunction of those
of τP and τQ. The clock resets of τ are the union of
those of τP and τQ. The external actions of τ, α(τ) = ∅.

p0q0 p0q1 p3q2 p0q3 p0q4 p0q5

p1q0 p1q4

p2q0 p2q4

a3? a2 ra2 a4! ra4?

a1?

ra3!

ra1!

a1?

ra1!

a1 a3 ra4

ra1 ra3 a4

Figure 4. Real-time component P ⊕ Q

The internal actions of τ, β(τ) = β(τP)∪β(τQ)∪{α(τP)}.
The task constraint of sPsQ, ω(sPsQ), is ω(sP)∨ω(sQ);
similarly, ω(s′Ps′Q) = ω(s′P) ∨ ω(s′Q).

(2) For any transition τ, where θ(τ) = (sPsQ, sPs′Q), τ is a
transition of R iff the following conditions hold:
• there exists a transition τQ ∈ TQ and α(τQ) <

IntA(P,Q) such that θ(τQ) = (sQ, s
′
Q);

• sP is not a task location, i.e. ω(sP) = ∅; and
• one of the following provisions holds:

(i) sP = s0
P,

(ii) there exists a transition τr ∈ TR, such that
α(τr) ∈ IntA(P,Q) and θ(τr) =

(
s
′

Ps
′′

Q, sPsQ

)
,

or
(iii) there exists a transition τr ∈ TR, such that

α(τr) < IntA(P,Q) and θ(τr) =
(
sPs

′′

Q, sPsQ

)
.

Furthermore, the actions, guard expression and clock
resets of τ are the same as those of τQ.

As for parallel composition, rule 1 for atomic compo-
sition refers to the synchronization of input and output ac-
tions between real-time subcomponents. The constraint that
only one of sP or sQ can be a task location ensures no pre-
emption exists in atomic composition. Rule 2 enforces that
transitions from different real-time subcomponents cannot
be enabled at the same time except in the initial state.

5.3. Monitor Composition

Monitor composition, denoted by operator ⊕, describes
the case where real-time components cooperatively share
a single thread. In atomic composition, another request
cannot be processed until the current one is completed;
however, monitor composition allows a composite real-time
component to enable an input action from one real-time sub-
component while it is blocked on an input action from an-
other. For example, in Figure 3 there is only one execution
path from (p0q1) to (p0q0), while the path diverges at (p0q4)
in Figure 4, which illustrates monitor composition of real-
time components P and Q from Figure 1. The divergence



exists only because the transition from (p0q4) to (p0q5) is on
an input action from Q whereas P provides the input action
in the transition from (p0q4) to (p1q4). The monitor compo-
sition rules are the same as for atomic composition, except
for a relaxation of the third condition of rule 2 by adding
the provision: (iv) sQ = s0

Q and there exists a transition
τR ∈ TR such that θ(τR) = (sPsQ, s

′
PsQ) and both α(τ) and

α(τR) are input actions.

5.4. Node Boundaries and Operator Precedence

A node specification is also needed to enable real-time
analysis for distributed and multi-core systems. A node de-
fines the extent of a (possibly composite) real-time compo-
nent which uses a single processor. We denote node bound-
aries with curved braces in a composition expression, e.g.,
{P ⊗ Q} ⊗ {R}.

The composition operators in our approach represent the
different concurrency strategies used in modern middle-
ware frameworks. Atomic composition is primarily used
to connect real-time components via method calls or ser-
vice handlers. Monitor composition is used for connecting
real-time components via cooperative multitasking. Paral-
lel composition within a node connects real-time compo-
nents via preemptive multitasking. Parallel composition of
nodes (i.e., in a distributed or multi-core system) constitutes
non-preemptive (physically parallel) multitasking. Since a
node represents a physical scheduling boundary, atomic and
monitor composition are solely used for real-time compo-
nents within a node, and only parallel composition can be
used between real-time components on different nodes.

A natural operator precedence order, which our real-
time component model enforces, arises from the defini-
tions of the composition operators and the node boundaries.
Atomic composition is only defined over real-time com-
ponents that execute completely before yielding the single
thread to another real-time component, and thus has high-
est precedence. Monitor composition still assumes single-
threaded execution and thus has second highest precedence.
Parallel composition within a node has third highest prece-
dence since it allows arbitrary concurrency of its real-time
subcomponents but depends on a common processor within
that node. Parallel composition between nodes has lowest
precedence.

6. Conversion to Timed Automata

In this section we describe how our real-time compo-
nent model can be converted by the RTCMT tool into an
equivalent timed automata representation for verification
with an existing timed model checker. An important chal-
lenge in achieving this conversion is that timed automata
do not easily support the modeling of preemptive real-time

systems. The problem stems from the fact that clocks in
timed automata can only progress uniformly in all locations
even though preemption assumes that time progresses in
a designated location and it should stop progressing there
when preemption occurs. To overcome this problem, we
use response times instead of maximum execution times for
model verification. However, response times generally are
not available during model specification, and must be de-
rived for a specific scheduling algorithm. For example, con-
sider tasks T1 and T2 which have periods of 3 and 20 time
units, and WCETs of 1 and 5 respectively, under rate mono-
tonic scheduling.

L2

L1 L2,1

t2 ≤ 8

t1 ≤ 1t1 ≤ 1

//t2 := 0

//t1 := 0//t1 := 0

Figure 5. Timed automata model of T1 and T2
with response time transformation

To illustrate the complexities that must be addressed,
Figure 5 shows a timed automata model of the scenario
where the maximum execution time of T2 is replaced by
its respective response time. Note that locations L1 and L2
represent states where tasks T1 and T2 are running without
any other tasks in the scheduler, and L2,1 represents the state
where T1 preempts T2 before T2 finishes. The text shown
beside a directed edge is a 3-tuple, separated by delimiter
/, representing the attributes of a transition if present. The
first and second elements of the tuple give the guard and the
external actions, while the third element gives the internal
actions and/or clock resets of the transition.

There are two problems with the model shown in Figure
5, which we address in this section. First, the model dead-
locks when t2 > 7 in L2 and then a transition is taken to
L2,1. If task T1 spends exactly 1 time unit to finish, no valid
transition exists because of the invariant of L2: at that point,
t2 already would be greater than 8, and hence the transition
from L2,1 to L2 won’t be valid. Second, it is not semanti-
cally correct for T2 to stay in L2 for more than 5 time units
without transitioning to L2,1. These problems motivate the
following refinements to our approach.

Preemption counting: Our solution to the deadlock
problem is to add extra counters to the model in order to
count the number of times that a task can be preempted by
other tasks before its completion. For the previous exam-
ple, we introduce a variable C2,1 to represent the number of
times T2 is preempted by T1. As Figure 6 illustrates, C2,1 is



L0 L2

L1 L2,1

t2 ≤ 5 + C2,1

t1 ≤ 1t1 ≤ 1

/b?/t2 := 0,C2,1 := 0

t2 == 5 + C2,1//
/a?/C2,1 + +,

t1 := 0
t1 == 1///a?/t1 := 0t1 == 1//

Γ0〈a, 3〉 Γ0〈b, 20〉

a b

Figure 6. Timed automata model of T1 and T2
with preemption counting mechanism

t ≤ π

α!

t == π//t := 0

Γ0

α, π

α

Figure 7. Real-time component template Γ0

incremented when T2 is preempted by T1, and the invariant
of L2 is changed to t2 ≤ 5 + C2,1 which represents the re-
sponse time of T2 when T2 is preempted by T1 exactly C2,1
times. We define HP(i) to be the set of indexes of the task
locations which have higher priority than task i in location
si; ei to be the WCET of task i; and C j,k to be the number
of times that task j can be directly or indirectly preempted
by task k. The maximum time that can be spent in loca-
tion si is ei +

∑
k∈HP(i) Ci, jek. In addition, we use separate

automata to output task start events periodically. In Fig-
ure 6, real-time components Γ0〈a, 3〉 and Γ0〈b, 20〉 (which
instantiate the real-time component template2 in Figure 7
with different parameters) trigger the transitions in T1 and
T2 with corresponding periodicities. The transition from L2
to L2,1 is thus subject to the timing constraints specified in
Γ0〈a, 3〉 and Γ0〈b, 20〉, without needing to specify an upper
bound on C2,1.

Under-constrained and over-constrained models:
Even with those transformations, the resulting timed
automata still contain some behaviors that couldn’t
possibly happen in a real systems. Consider Figure
6 without the underlined constraints. A trace like
L0

t=0
−−→ L2

t=4
−−→ L2,1

t=4.5
−−−−→ L2

t=6
−−→ L0 would be allowed in

the model, but it couldn’t happen in a real system because
2For compactness of representation, we adapt the parametrized model

template approach from U to our real-time component models.

t ≤ π

t == π//t := 0

α!

rα?

t == π//

t ≤ π deadline miss

Γ1
α, π

rα

α

Figure 8. Real-time component template Γ1

the trace stays in L2 for more than 5 time units which would
exceed the maximum execution of T2. We call this kind
of transformed model under-constrained. One remedy to
this problem is to strengthen the constraints with transition
guards such that the transitions out of task locations can
only be taken at exactly the corresponding WCET time
units, as shown in Figure 6 by the underlined constraints.
We call this kind of model over-constrained because not all
behaviors that could happen in the system are represented
in the model. For example, the case where task T1 finishes
in 0.5 time units is not represented by the over-constrained
model in Figure 6.

Although our transformations thus cannot model pre-
emptive systems in perfect fidelity, the over- and under-
constrained models are still very useful to check the prop-
erties of a system. The under-constrained model can be
used to check if certain desired properties will be even-
tually/globally true for all traces of a system, because an
under-constrained model covers all behaviors of the real
systems. The over-constrained model is useful to find (more
rapidly) traces that contain undesired properties such as
a deadlock or a timing violation and to track down the
sources of problems, since any problems found using an
over-constrained model also exist in the system.

Urgency: All input and output actions in our real-time
component model are synchronous; i.e, a transition with
internalized actions won’t be taken until all the guards on
the transition are enabled. We adopt the urgent semantics
used for the urgent channels in U, for all actions in
our model; i.e., a transition with internalized actions will be
taken without delay as soon as it becomes enabled.

Taking the real-time component template Γ1 in Figure 8
as an example, if action α was not treated as urgent, the sys-
tem could stay in the starting location forever, even if α was
enabled in other real-time subcomponents. To ensure the
action is eventually taken without relying on urgent seman-
tics, an invariant t ≤ π would be required for the starting
location of Γ1. However, it is often impractical for a system
designer to anticipate the maximum queuing delays for I/O
actions without knowledge of the entire system. As a con-
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α1?

α2!

rα2?
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[ε]
Γ4

α, δ

t < 3

α!

/rα?/t := 0

t == δ//
rα?

t ≤ δ

deadline miss

rα

α

Figure 9. Real-time component templates Γ2, Γ3 and Γ4

sequence, we choose to use urgent semantics exclusively in
our real-time component model.

Communication delays: Our real-time component
model also allows explicit specification of timing delays,
e.g., in real-time component communications. The process
of adding a delay δ to a transition τ from location L0 to
location L1 involves replacing τ in the model with (1) a
new location Lδ with an invariant t ≤ δ; (2) a new transition
from L0 to Lδ with a clock reset t := 0; and (3) a new
transition from Lδ to L1 with a clock reset t := 0.

7. Illustrative Verification Examples

With the previously mentioned real-time composition
operators and the transformation of task locations and tran-
sitions, it is possible to express a variety of middleware
communication and concurrency constructs rigorously and
easily. The WaitOnConnection and WaitOnReactor strate-
gies (where remote method calls are handled in a blocking
or non-blocking manner, respectively [18]) are modeled di-
rectly by the atomic and monitor composition operators re-
spectively. A thread pool framework [14] can be modeled as
parallel compositions of multiple instances of the same real-
time component automaton. Asynchronous communication
channels can be modeled as real-time components which
provide message queue automata to be composed with event
sources and sinks using the parallel composition operator.

With the ability to analyze systems with dependent tasks,
it is also fairly easy to model critical sections protected by
semaphores using a priority ceiling protocol in our frame-
work. If a task contains a critical section, it can be divided
into a sequence of sub-tasks separated by the critical sec-
tions where the critical sections are also modeled as sub-
tasks. All basks except the critical sections will assume the
priority of the original task. These sub-tasks are then con-
nected by transitions according to the their execution order.
Critical section sub-tasks guarded by the same semaphore
in a node should all be assigned the same priority, whose
value is greater than that of any of the original tasks from

P0 ≡

Γ4〈a, 100〉
P1 ≡

Γ3〈a, b, 25〉

P2 ≡

Γ2〈c, 25〉

P3 ≡

Γ3〈b, c, 25〉

Client S1 S2
a

ra

b

rb
c

rc

Figure 10. Example with callback scenario

which the sub-tasks were obtained. Since the critical sec-
tions have higher priorities than the related original tasks,
they won’t be preempted by those tasks in the model. We
now present two more comprehensive examples to illustrate
how our real-time component model can be used to verify
the properties of real world systems.

7.1. Verification with Concurrency and Priority Ef-
fects

The first example, in which the constituent real-time
components are instantiated from the templates shown in
Figure 9, is shown in Figure 10. This example is based on
[18] and it demonstrates how properties of a component-
based distributed real-time system can be affected by the
choice of concurrency strategies used by underlying mid-
dleware. It consists of 3 nodes: Client, S1 and S2. Real-
time component P0 in node Client initiates output action a
within 3 time units and real-time component P1 in S1 waits
for action a, processes it for 25 time units and then relays
it to real-time component P3 in S2 for further processing.
Similarly, P3 waits for input action b from P1, processes it
for 25 time units and then relays it to P2 in S1. When P2
completes processing in another 25 time units, it issues ac-
tion rc and returns to its initial state. Subsequently, P3 and
P1 will return to their initial states when the transitions with
actions rc and rb are enabled. If the transition with action
ra in P0 is taken within the deadline of 100 time units, the
initial location in P0 will be reached; otherwise a deadline
miss location will be reached.



P0 ≡

Γ4〈a, 10〉
P2 ≡

Γ5〈a, b, 3, 2〉
P4 ≡

Γ1〈b, 2〉

P1 ≡

Γ4〈c, 40〉
P3 ≡

Γ1〈c, 4〉

⊗

a

ra

b

rb

rc

c

RateGen1

RateGen2

S1 S2

Figure 11. Example with two flows

Since node S1 consists of two real-time components, P1
and P2, different composition operators could be used. We
transformed the models with various composition operators
into timed automata models and verified the transformed
models with the U model checker, using the tempo-
ral logic expression E<> deadlock to see if there was a
deadlock in the over-constrained model. For the case with
atomic composition P1 � P2, which modeled two CORBA
services configured with a single thread and a WaitOnCon-
nection strategy, (or a co-location optimization as in TAO
[14]) the model checker successfully detected and showed
a trace that led to deadlock. Under atomic composition, the
transitions with input action c in P2 and output action c in
P3 were not simultaneously enabled, and thus the system
reached a deadlock.

We also used the expression E<> deadlock to do a
quick check for the existence of deadlock in the over-
constrained models for the cases S1= {P1 ⊕ P2} and S1=

{P1 ⊗ P2}, which represented that node S1 was configured
with a single-threaded WaitOnReactor strategy or a multi-
threaded concurrency strategy, respectively. The model
checker indicated that the property was not satisfied in ei-
ther case. We then used the expression A[] !deadlock to
check the under-constrained models and the model checker
reported the property was satisfied, at which point we were
sure there was no deadlock in either of those two cases.
Similarly, the model checker also reported no deadline miss
when we used A[] !Client.deadline miss to check
the under-constrained models. However, if another node
Client2 with real-time component P4 ≡ Γ0〈d, 100〉 was
added to the system and node S1 added real-time component
P5 ≡ Γ2〈d, 25〉 to accept the input action from P4, a dead-
line miss could still occur no matter whether S1 had mon-
itor or parallel composition. The resulting traces showed
that the deadline miss happened when the transition with
action d is taken immediately before both transitions with
action c in P2 and P3 were enabled. If we refined the sys-
tem to use parallel composition but with priorities assigned
so that T3 of P1 and T0 of P2 had higher priorities than T0 of
P5, which modeled a multi-threaded system with different
priority lanes, then the deadline wouldn’t be missed in the
resulting system.

T1

T2

α1?

α2!

rα2?

rα1!

[ε1]

[ε2]

Γ5
α1, α2, ε1, ε2

α1

rα1

rα2

α2

Figure 12. Real-time component template Γ5

7.2. Verification with Priority, Delay, and Deadline
Effects

Figure 11 shows a system with two periodic message
processing flows, which in addition to Γ1 and Γ4 also instan-
tiates real-time component template Γ5 shown in Figure 12.
The first flow is generated by node RateGen1 with a period
of 10 time units, is processed by task T1 of P2 and subse-
quently by tasks T0 of P4 and T2 of P2. The second flow is
generated by RateGen2 and is only processed by task T0 of
P3. P2 and P3 are collocated in the same node; therefore,
they are subject to mutual interference through preemptive
scheduling. We assign tasks in P2 to have higher priorities
than those in P3 according to rate monotonic scheduling.

An important part of this model is the real-time
components P0 and P1 on the RateGen1 and Rate-
Gen2 nodes, which enable the transitions with output
actions a and c in the interval of 10 and 40 time
units, respectively. If those real-time components fail
to receive responses within their deadlines (represented
by the δ variable in Γ4), the deadline miss loca-
tion will be reached. Therefore, we used the tempo-
ral logic expression A[] !(RateGen1.deadline miss
|| RateGen2.deadline miss) to check whether the sys-
tem was schedulable. With the under-constrained model
transformed from the example in Figure 11, the U
model checker could verify it was schedulable because
the above temporal logic expression was satisfied in all
executions of the model. We then changed the model
to impose communication delay of 2 time units between
S1 and S2, and in another trial shortened the deadline
of RateGen2 to 9, and in subsequent verification with
U, the temporal logic expression was not satisfied
in either of those cases. We also obtained a deadline
miss trace (by checking E<> RateGen1.deadline miss
|| RateGen2.deadline miss with the over-constrained
model) in each trial. Therefore, that the system would not
be schedulable with either of those modifications was eas-
ily detected using the under-constrained models, and the
sources of the problems were easily identified using the
over-constrained models.



8. Conclusions

Real-time component middleware helps to hide com-
plexities from software developers; however, those hidden
complexities may have an impact on crucial properties of
a system, which may be very hard to detect without auto-
matic verification tools. Significant research has been con-
ducted to apply model checking to ease the development,
assembly and verification of software systems. However,
existing approaches do not adequately support verification
of component-based distributed real-time systems.

The research presented in this paper provides a formal
and practical foundation for automatic verification of prop-
erties of component-based distributed real-time systems.
Our approach to modeling these systems integrates and ex-
tends: timed automata, interface automata and traditional
schedulability analysis. The RTCMT tool introduced in
Section 3 and the illustrative examples presented in Sec-
tion 7 are available for download as open-source software
at www.cse.wustl.edu/˜hh1/rtcmt.html.
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