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Huang-Ming Huang and Christopher Gill
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Abstract

Component based middleware helps to facilitate soft-
ware reuse by separating application-specific concerns into
modular componentsthat are shielded from the concerns
of other components and from the common concerns ad-
dressed by underlying middleware services. In real-time
systems, concerns such as invocation rates, execution laten-
cies, deadlines, and concurrency semantics cross-cut mul-
tiple component and middleware abstractions. Thus, the
verification of these systems must consider features of the
application components (e.g., their execution latencies and
relative invocation rates) and of the supporting middleware
(e.g., concurrency and scheduling) together. However, ex-
isting approaches only address a sub-set of the features that
must be modeled in component based real-time systems, and
a new more comprehensive approach is needed.

To address that need, this paper offers three main con-
tributions to the state of the art in the verification of com-
ponent based real-time systems: (1) it introduces a formal
model calledcomponent automatathat combines new in-
put/output rate specifications with input/output actions and
timed internal actions from the existing interface automata
and timed automata models respectively; (2) it presents new
component composition operations for single-threaded and
cooperative multi-tasking, in addition to composition un-
der the preemptive multi-tasking semantics assumed by in-
terface automata; and (3) it describes how the composed
component models then can be combined with task location
specifications, a scheduling model, and a communication
delay model, to generate a combined timed automaton rep-
resentation of the components and middleware that can be
verified by existing timed model checkers.

1. Introduction

To promote the separation of application-specific and
common concerns in real-time systems, new forms of real-

∗This research was supported in part by NSF grant CCF-0448562 titled
“CAREER: Time and Event Based System Software Construction.”

time middleware[19, 22] have emerged which typically of-
fer flexible options for timers, threading, remote communi-
cation, and other common features, which can be configured
specifically for each application’s needs. Unfortunately, the
very flexibility that allows desirable combinations of com-
ponent and middleware features to be configured, also may
allow configurations in which deadlocks, race conditions,
missed deadlines, and other concurrency and timing haz-
ards can arise. Furthermore, a middleware configuration
that is suitable for one set of applications may introduce
hazards for a different set of applications. Although the
concerns encapsulated by individual components and mid-
dleware services are usually documented by their develop-
ers, concerns easily can be overlooked by system integrators
during the component assembly process and as an appli-
cation grows larger, the increasing number of components
may cause an explosion of possible combinations of config-
uration options, making manual verification impractical.

Therefore, it is essential to develop automated tools for
verification of these systems. The tools should track the
compatibility of software components, provide valid mid-
dleware configuration options, and verify the presence, ab-
sence, or possibility of properties such as deadlocks or
the timeliness of required responses. Model checking has
emerged as an important technology for verification of real-
time systems in which application and middleware details
must be analyzed together, but no existing model checking
approach is entirely well suited for verification of systems
built with real-time component middleware. Section 2 sum-
marizes work related to the research presented in this paper,
and compares our work to those approaches.

Contributions of this paper: To address the limitations
of existing approaches for verification of systems built us-
ing real-time component middleware, this paper offers a for-
mal verification approach that is specifically designed for
those systems. Section 3 provides an overview of the ap-
proach along with a brief discussion of the timed automata
model upon which the approach builds. This paper provides
three main contributions to the state of the art in verifica-
tion of component-based real-time systems: (1) Section 4
introduces a formal model calledcomponent automatathat
combines new input and output rate relationships with in-



put/output actions and timed internal actions (from the ex-
isting interface automata and timed automata models re-
spectively); (2) Section 5 presents new component compo-
sition operations for single-threaded and cooperative multi-
tasking, along with composition under the multi-threaded
semantics assumed by interface automata; and (3) Section 6
describes how the composed component models then can
be combined with task location specifications, a schedul-
ing model, and a communication delay model, to generate
a timed automaton representation of the combined compo-
nents and middleware that can be verified by existing timed
model checkers. Section 7 summarizes these contributions
and offers concluding remarks.

2. Related Work

Component modeling environments:A body of ongo-
ing research has focused on how to ensure the correctness
of component based software systems. Karsai et al. [9]
proposed a model-integrated approach for software devel-
opment in which formal domain specific models are used
within a software development process.

In Ptolemy [8] actors communicate through interfaces
calledports. The execution of atomic actors is described in
terms of interface automata [6]. The PTIDES [23] approach
includes an executable simulation capability, but unlike our
approach does not support an executable composition with
models lower level middleware components.

DREAM [14] supports model-based schedulability anal-
ysis of time and event-driven DRE systems. DREAM offers
a computational model consisting of tasks, timers, event
channels and schedulers. Tasks are triggered either by a
timer or external aperiodic events and tasks communicate
among themselves by means of an event channel. Within
this computational model, DREAM considers the problem
of deciding the schedulability of a given set of tasks with
time and event-driven interactions. By using timed au-
tomata models for each of the elements in the computational
model, the schedulability problem is converted [14] into a
reachability problem in the composed model.

Formal models: Model checking is a powerful ap-
proach for the automatic verification of finite state concur-
rent and reactive systems. Generally speaking, a system to
be checked is modeled as a state transition system which
can be converted to finite state automata (e.g. Büchi au-
tomata [21]). Traditional model checkers like S [12] and
Bogor [15] do not support explicit modeling of time. In
other words, specifying the relative magnitude of delays be-
tween events, which may be critical to verifying correctness
of real-time systems such as aircraft, industrial machinery
and robots, is not directly supported in those tools. Several
approaches have been proposed toward addressing model
checking real-time systems, by modeling time explicitly.

The first approach is discrete time modeling, in which a
global non-decreasing clock is maintained and monotoni-
cally incremented [20] [5]. All automata in the system can
read and compare local clocks against the global clock to
calculate the relative delays between two states. The ben-
efit of this approach is that it can be integrated easily with
traditional model checking tools. BIP[2] is an example of
a real-time component modeling framework built on top of
the discrete time model. However, the discrete time model
requires that continuous time be approximated by a fixed
quantum (in advance) which may limit the precision with
which the system is modeled.

The other approach for modeling time is the dense time
model. In this model, times at which events occur are repre-
sented as real numbers which increase monotonically with-
out bound. The representative formalization of this model
is calledtimed automata[1] which we review in the next
section. Although timed automata allow modeling of dense
time, it is not possible to express preemption semantics in
a timed automata model. More specifically, the flow con-
ditions of the variables in a timed automata model must re-
main constant in all states. In other words, it cannot directly
model and verify the behavior of a system with preemptive
scheduling policies. Hybrid automata [10] constitute an-
other formal model for mixed discrete-continuous systems
where the flow conditions of variables can change among
states. Therefore, it is possible to represent preemption be-
haviors by setting the flow conditions of certain variables in
some states to zero. One drawback of hybrid automata is
that their verification is generally undecidable except with
some special constraints, and the complexities of those de-
cidable special cases are often NP-hard.

Modeling middleware services:The mapping between
software components and the automata for model check-
ing is also an important topic. One way to model com-
ponent based applications and their supporting middleware
services is for each software component to be modeled as
an individual automaton and the communications between
components to be represented by channels in various rep-
resentations supported by modeling checking tools; how-
ever, this approach does not fully capture the semantics of
the application when components can be collocated on the
same host. The problem arises in the context of the reactor
or leader/follower patterns [17] that are used in the design
of most middleware service layers (for the sake of mem-
ory and CPU efficiency). As described by Subramonian et
al. [18], the use of those patterns coupled with different
configuration options (such as wait-on-reactor or wait-on-
connection) in middleware, can affect the safety and live-
ness properties of a system.

In [18], Subramonian et al. demonstrated techniques that
support middleware modeling in U and the IF toolset.
These techniques map software abstractions directly to



timed automata. For example, inter-process communica-
tion (IPC) channels are modeled with a set of read/write
buffers, and read/write operations of the IPC channel model
are directly invoked. Although this approach epitomizes
the actual implementation of software systems, it suffers
from three problems: (1) lack of higher-level abstractions –
model developers must specify the communication in terms
of read/write operations on the IPC channels, which is con-
trary to the general principle of encapsulation; (2) it con-
tains many details which may not be essential for model-
ing and model checking at the application level, and thus is
more prone to inflict state space explosion [7]; and (3) ev-
ery software component is treated as an active object [17]
which creates the potential for mismatches between mod-
els and different concurrency implementations and makes
models more difficult to develop and understand.

3. Overview of the Solution Approach

As was described in the previous section, there are im-
portant limitations of the existing modeling approaches.
Timed automata do not support preemption, interface au-
tomata lack a way to specify relative rate relationships be-
tween input and output, and model checking with hybrid
automata is generally undecidable. Our approach combines
and extends timed automata and interface automata mod-
els with traditional scheduling analysis and enforcement
algorithms [13]. Traditional scheduling analysis requires
task scheduling policies and task periodicity, which are not
present in a timed automata model. We exploit that extra
information to calculate the response time of a given task
(state) in the presence of task preemption. After the re-
sponse time is obtained, it can be used to define the cor-
responding timing constraints in a timed automata model.

The major benefit of this approach is that it allows us to
verify the real-time responsiveness of distributed systems
with preemptive scheduling using timed automata models.
Note that a restriction of our approach is that it assumes the
scheduling algorithms used in the systems to be verified can
be analyzed with an established theory.

To realize our system verification approach, we develop
and formalize a new component model that supports the
specification of the required component functional seman-
tics and timing constraints as well as component composi-
tion strategies and system scheduling policies. Based on the
new component model, we are developing a prototype tool
to automate the process of converting our new component
model into a timed automata model, after which it is possi-
ble to use an existing timed automata model checker such
as U [3] or the IF toolset [4] to verify the correctness
of the model.

We now summarize features of the timed automata
model, upon which our approach builds. A timed

automaton[1] is a finite state Büchi automaton extended
with a set of real-valued variables calledclocks. Transitions
between states are guarded byclock constraintswhich rep-
resent timing delays. More formally, letX be a set ofclock
variables. The set ofclock constraints C(X) is defined as
follows:

• All inequalities of the formx ≺ c or c ≺ x are inC(X),
where≺ is either< or≤ andc is a nonnegative rational
number.

• If φ1 andφ2 are inC(X), thenφ1 ∧ φ2 is in C(X).

The timed safety automata[11] model simplifies the
timed automata model with location invariants and removes
accepting locations. Formally, Atimed safety automatonis
a 6-tupleA = (Σ,S,S0,X, I ,T) such that

• Σ is a finite set ofalphabets.

• S is a finite set oflocations.

• S0 ⊆ S is a set ofstarting locations.

• X is a set of clocks.

• I : S → C(X) is a mapping from locations to clock
constraints, calledlocation invariants.

• T ⊆ S × Σ ×C(X) × 2X × S is a set oftransitions. For
any transitiont ∈ T, θs(t) andθd(t) ∈ S represent the
source and destination locations of a transition;δ(t) ∈
C(X), is the time guard which must be satisfied when
the transition is taken;γ(t) ∈ 2X, is a set of clocks that
are reset to zero once the transition is taken.

In the subsequent sections, we extend the timed safety
automata model to accommodate component abstractions
and preemption semantics.

4. Component Automata

To better support modeling and verification of systems
build using real-time component middleware, we have de-
veloped a newcomponent automatonabstraction, which ex-
tends interface automata [6], for model specification. A
component can be eitherbasicor composite. A basic com-
ponent consists of rate basedinput and output actionsas
well as a (timed) automaton which describes the behav-
iors of the component. The input and output actions are
used to specify how a component can interact with its en-
vironment or other components. The input actions are used
to model procedures/methods that can be invoked in pro-
gramming languages, actions on the receiving ends of mes-
sage transmission channels, or actions at the return location
of a procedure/method invocation. The output actions are



used to model the invocation points of procedures/methods,
the sending ends of message transmission channels as well
as the point of return from a procedure/method invocation.
The input and output actions that represent the return loca-
tions and return actions of procedure/method invocations,
are calledreturned input actionsand returning output ac-
tions respectively. A component automaton starts with an
input action that receives requests or events at a speci-
fied rate from its environment, processes the requests, and
then generates outputs to the environment again at speci-
fied rates. Figure 1 shows two examples of components, in
which the transitions that are followed by “!” and “?” rep-
resent the output and input actions respectively.

a1 a2

ra1 + a1 ra2 + a2

p0

p1

[2]

p2

p3

a1?

ra1!

a2?

ra2!

ra2 a3 ra4

a2 + 0.5a3 ra3 + ra4 a4 + ra2

q0 q1 q2

q3q4q5

a3? a2!

ra2?

a4!ra4?

ra3!

Figure 1. Two example components P and Q

In addition, a new timing constraint called atask con-
straint is used in our component abstraction. A task con-
straint consists of aworst case execution time(WCET) and
a priority. The WCET represents the maximum accumu-
lated CPU time that can be spent on a location. In the timed
automaton model, the constraints over clocks do not change
in accordance with automaton composition. This is usually
used to represent certain cases such as timer expiration. On
the other hand, WCET is also a value that can be used to cal-
culate the response time of a state for preemptive schedul-
ing algorithms, which we consider in Section 6.2. In Figure
1, the WCET is shown beside locationp1. The priority in
a task constraint is an integer that indicates the scheduling
preferences among tasks. A location with a task constraint
is atask location; otherwise, it is anon-task location.

To enable scheduling analysis of components, it is also
necessary to establish the relationship between the rates of
input and output actions, which is a novel contribution of
this work. For example, we may specify that the output rate
of actiona2 for componentQ in Figure 1 is half of the input
rate of actiona3. There are two reasons to specify the rate
relationship explicitly. First, the rate of an output action
may depend on the values of certain data variables which
may not be relevant to the rest of the model. Using the
explicit rate specification can reduce the complexity of the
model. Second, it allows us to express relationships such as

the correlation between input actions more abstractly. In the
rest of this paper, we will use+ to denote the relationship
between input and output rates as shown in Figure 1.

More specifically, a component P =

(AI
P,A

O
P,A

H
P ,SP, s0

P,XP, IP,KP, ωP,TP, fp) consists of
the following elements

• AI
P andAO

P represent the input and output actions re-
spectively. AIO

P = AI
P ∪ A

O
P is the set ofexternal

actionsof the component.AI
P andAO

P are mutually
disjoint, i.e.AI

P ∩A
O
P = ∅.

• AH
P is a set of internal actions.

• SP is a set of locations.

• s0
P ∈ SP is a starting location.

• XP is a set of clocks.

• IP : SP → C(XP) is a mapping from locations to a set
of location invariants, whereC(XP) is the set of clock
constraints defined in Section 3.

• KP ⊂ Q
+×Q+ : is a set of task constraints with WCETs

and priorities, whereQ+ is the set of non-negative ra-
tional numbers. .

• ωP : SP → KP is a mapping from locations to task
constraints.

• TP ⊆ (SP × AIO
P × 2A

H
P ×C(XP) × 2XP × SP) is a set of

transitions.

• fP : AO
P → F (AI

P) is a function from the input actions
to output rate relations.

For brevity of notation, we will useω to represent the
function from a location to its task constraint in a compo-
nent; that is, ifs ∈ SP, thenω(s) = ωP(s). If a locations is
a non-task location thenω(s) = ∅. The disjunction operator
∨ for task constraints is defined as

ω(s1) ∨ ω(s2) =


∅ if ω(s1) = ω(s2) = ∅,

ω(s1) if ω(s1) , ∅ andω(s2) = ∅,

ω(s2) if ω(s1) = ∅ andω(s2) , ∅,

undefined ifω(s1) , ∅ andω(s2) , ∅.

Given a set of input actionsAI
P, the set of output rate

relationsF (AI
P) is defined as follows :

• For all x ∈ R, x ∈ F (AI
P).

• For all x ∈ AI
P, x ∈ F (AI

P).

• For all x, y ∈ F (AI
P), the expressionsx + y, x × y,

min(x, y) andmax(x, y) are all elements ofF (AI
P).



For the convenience of future discussion, we also define
the following functions which retrieve certain attributes of
a transitionτ in a component:

• θ(τ) maps to a tuple (s, s′) wheresands′ are the source
and destination locations of the transitionτ respec-
tively,

• α(τ) maps to the input or output action that is associ-
ated with the transitiont, and

• β(τ) maps to the set of internal actions that are associ-
ated with the transitiont.

Given two componentsPandQ, theinternalized actions,
denoted asIntA(P,Q), refer to the matching external actions
betweenP andQ, i.e, IntA(P,Q) = (AI

P∩A
O
Q)∪(AO

P∩A
I
Q).

5. Component Composition

A composite component is constructed from subcom-
ponents using a specifiedcomponent composition scheme.
There are three different composition schemes in our ap-
proach:parallel, atomic, monitor. Each of these schemes
corresponds to a form of concurrency commonly provided
by real-time component middleware: multithreaded, sin-
gle threaded and cooperative multitasking respectively. The
parallel composition approach is derived from the interface
automata approach. The atomic and monitor composition
approaches are novel contributions of our work. The paral-
lel composition scheme cannot be used directly on a compo-
nent with task locations. Section 6 discusses how to convert
a component with task locations into one without them.

Formally, a composite component is defined as follows:
given componentsP and Q, the composition ofP and Q
(denoted byP ⊗ Q, P � Q andP ⊕ Q for parallel, atomic
and monitor composition respectively) is a componentR =
(AI

R,A
O
R,A

H
R ,SR, s0

R,XR, IR,KR, ωR,TR, fR) where

• AI
R = (AI

P ∪ A
I
Q) − IntA(P,Q), AO

R = (AO
P ∪ A

O
Q) −

IntA(P,Q) andAH
R = A

H
P ∪A

H
Q ∪ IntA(P,Q),

• SR = SP × SQ,

• s0
R = s0

P × s0
Q,

• XR = XP ∪ XQ,

• IR : SR→ C(XR), whereIR(sP× sQ) = IP(sP)∧ IQ(sQ),

• KR = KP ∪ KQ.

• ωR : SR → KR is a mapping from locations to task
constraints that is defined in each composition scheme.

• TR ⊆ (SR ×A
IO
R × 2A

H
R ×C(XR) × 2XR × SR) is subject

to the composition rules for each composition scheme.

• fR : AO
R → F (AI

R).

If a is an output action of bothP andR, then the value
of fR(a) is fP(a) with all internalized actions ofRbeing
recursively substituted with the values fromfQ until no
internalized actions ofR are in the formula. Similarly,
if a is an output action of bothQ andR, then the value
of fR(a) is fQ(a) with all internalized actions ofRbeing
recursively substituted with the values fromfP until no
internalized actions ofRare in the formula.

5.1. Parallel Composition

a1 a3 ra4

ra1 + a1 ra3 + ra4 a4 + 0.5a3

p0q0 p0q1 p3q2 p0q3 p0q4 p0q5

p1q0 p1q1 p1q3 p1q4 p1q5

p2q0 p2q1 p2q3 p2q4 p2q5

a3? a2 ra2 a4! ra4?

a3? a4! ra4?

a3?

a4!

ra4?

a1? a1? a1? a1? a1?

ra3!

ra3!

ra3!

ra1! ra1!
ra1!

ra1! ra1!

Figure 2. The composite component P⊗ Q

The parallel compositionscheme is used to describe a
system in which the composed components run concur-
rently, though the components to be composed may syn-
chronize at the points where there are matches between the
input and output actions. Figure 2 shows the parallel com-
position of the two components in Figure 1. In this sub-
section, we will only describe the case where components
P and Q do not contain task constraints. We will discuss
the case with task constraints in Section 6. The rules for
parallel composition are defined as follows:

1. For any transitionτ, whereθ(τ) = (sPsQ, s
′
Ps′Q), sP ,

s′P andsQ , s′Q, τ is a transition ofR if and only if there
exists a transitionτP ∈ TP whereθ(τP) = (sP, s

′
P) and

a transitionτQ ∈ TQ whereθ(τQ) = (sQ, s
′
Q) such that

α(τP) = α(τQ) ∈ IntA(P,Q). The guard expression of
τ is the conjunction of those ofτP andτQ. The clock
resets ofτ are in the union of those ofτP andτQ. The
external actions ofτ, α(τ) = ∅. The internal actions of
τ, β(τ) = β(τP) ∪ β(τQ) ∪ {α(τP)}.

2. For any transitionτ, whereθ(τ) = (sPsQ, s
′
PsQ), τ is

a transition ofR if and only if there exists a transi-
tion τP ∈ TP whereα(τP) < IntA(P,Q) andθ(τP) =



(sP, s
′
P). The actions, guard expression and clock re-

sets ofτ are the same as withτP.

3. For any transitionτ, whereθ(τ) = (sPsQ, sPs′Q), τ is
a transition ofR if and only if there exists a transi-
tion τQ ∈ TQ whereα(τQ) < IntA(P,Q) andθ(τQ) =
(sQ, s

′
Q). The actions, guard expression and clock re-

sets ofτ are the same as withτQ.

Rule 1 describes the synchronization between subcom-
ponents when matches exist between input and output ac-
tions, as the actionsa2 and ra2 shown in Figure 2. Rules
2 and 3 are a symmetric duo that describes the interleaving
of actions other than those synchronization points described
in rule 1. Since all component compositions are symmetric,
only one of the symmetric rules for other compositions will
be presented for the rest of this section.

5.2. Atomic Composition

a1 a3 ra4

ra1 + a1 ra3 + ra4 a4 + 0.5a3

p0q0 p0q1 p3q2 p0q3 p0q4 p0q5

p1q0

p2q0

a3? a2 ra2 a4! ra4?

a1?

ra3!

ra1!

Figure 3. The composite component P� Q

Atomic composition is used to describe a system where
only one subcomponent can be executed at a time, with no
arbitrary interleaving between the executions of subcompo-
nents. The interleaving can only occur when the output ac-
tions of one subcomponent match the input actions of the
other subcomponents. Figure 3 shows the result of atomic
composition of the two components from Figure 1 in Sec-
tion 4. The rules for atomic composition are defined as fol-
lows.

1. For any transitionτ, whereθ(τ) = (sPsQ, s
′
Ps′Q), sP ,

s′P andsQ , s′Q, τ is a transition ofR if and only if the
following conditions hold.

• there exists a transitionτP ∈ TP whereθ(τP) =
(sP, s

′
P) and a transitionτQ ∈ TQ whereθ(τQ) =

(sQ, s
′
Q) such thatα(τP) = α(τQ) ∈ IntA(P,Q),

• sP andsQ are not both task locations,

• s′P ands′P are not both task locations.

The guard expression forτ is the conjunction of those
of τP andτQ. The clock resets ofτ are in the union of
those ofτP andτQ. The external actions ofτ, α(τ) = ∅.
The internal actions ofτ, β(τ) = β(τP)∪β(τQ)∪{α(τP)}.
The task constraint ofsPsQ,ω(sPsQ), isω(sP)∨ω(sQ);
similarly,ω(s′Ps′Q) = ω(s′P) ∨ ω(s′Q).

2. For any transitionτ, whereθ(τ) = (sPsQ, sPs′Q), τ is a
transition ofR if and only if the following conditions
hold:

• there exists a transitionτQ ∈ TQ andα(τQ) <
IntA(P,Q) such thatθ(τQ) = (sQ, s

′
Q);

• sP is not a task location, i.e.ω(sP) = ∅;

• and one of the following conditions holds:

– sP = s0
P,

– there exists a transitionτr ∈ TR, such that
α(τr ) ∈ IntA(P,Q) andθ(τr ) =

(
s
′

Ps
′′

Q, sPsQ

)
,

– there exists a transitionτr ∈ TR, such that
α(τr ) < IntA(P,Q) andθ(τr ) =

(
sPs

′′

Q, sPsQ

)
.

Furthermore, the actions, guard expression and clock
resets ofτ are the same as those ofτQ.

Like parallel composition, rule 1 of atomic composition
refers to the synchronization of input and output actions be-
tween subcomponents. However, the constraint that only
one of the locationssP and sQ can be a task location en-
sures no preemption exists in atomic composition. Rule 2
enforces that transitions from different subcomponents can-
not be enabled at the same time except in the initial state.

5.3. Monitor Composition

Monitor composition is used to express composition
where components cooperatively share a single thread. In
atomic composition, another request cannot be processed
until the current one is done; however, monitor composi-
tion allows a composite component to enable an input ac-
tion from one subcomponent while it is blocked on an in-
put action from another subcomponent. For example, there
exists only one execution path from (p0q0) and (p0q1) in
Figure 3 before it returns to (p0q0), while the path diverges
from (p0q4) in Figure 4. Notice that the divergence exists
only because the transition between (p0q4) to (p0q5) is an
input action from subcomponentQ which is different from
the subcomponentP that provides the input action in the
transition between (p0q4) to (p1q4).

Formally, the monitor composition rules are the same as
those for atomic composition except for the addition of an
extra condition in the third bullet of rule 2:



a1 a3 ra4

ra1 + a1 ra3 + ra4 a4 + 0.5a3

p0q0 p0q1 p3q2 p0q3 p0q4 p0q5

p1q0 p1q4

p2q0 p2q4

a3? a2 ra2 a4! ra4?

a1?

ra3!

ra1!

a1?

ra1!

Figure 4. The composite component P⊕ Q

– sQ = s0
Q and there exists a transitionτR ∈ TR such that

θ(τR) = (sPsQ, s
′
PsQ) and bothα(τ) andα(τR) are input

actions.

All the composition relations are symmetric (i.e.,P # Q
is equivalent toQ # P, where# can be either�, ⊕ or
⊗). Moreover, the atomic and monitor composition rela-
tions must be nested inside parallel composition relations.
For example,P ⊗ (Q � R) is legal whileP � (Q ⊗ R) is
not. Atomic and monitor compositions, which are designed
to model component composition under single threaded and
cooperative multitasking, must be used before parallel com-
position, which is designed to model multi-threaded compo-
sition.

6. Conversion to Timed Automata

The timed automata model does not support the mod-
eling of preemptive systems with the specification of the
maximum execution time of certain locations. The problem
stems from the fact that clocks in timed automata can only
progress uniformly in all locations; however, maximum ex-
ecution time for a location represents the concept that time
only progresses in the designated location and it should stop
progressing when preemption occurs. To avoid this prob-
lem, we use response times instead of maximum execution
times for model verification. However, response times gen-
erally are not available during model specification, and must
be derived from the specific scheduling algorithm. For ex-
ample, Table 1 shows two periodic tasksT1 andT2 and their
expected response times when the Rate Monotonic Schedul-
ing algorithm is used. Figure 5 shows a timed automata
model of the scenario where the maximum execution time
of T2 is replaced by its respective response time. Note that
the locations directlyL1 and L2 represent the states where

tasksT1 andT2 are running without any other preempted
tasks in the scheduler, andL2,1 represents the state where
T1 preemptsT2 beforeT2 finishes.

However, there are two problems with the model shown
in Figure 5. First, the model contains a deadlock, whent2 >
7 in L2 and then transition toL2,1. If taskT1 spends exactly
1 time units to finish, no valid transition exists because of
the invariant ofL2: at that point,t2 would be greater than
8 already and hence the transition fromL2,1 to L2 won’t be
valid. Second, it is not semantically correct forT2 to stay in
L2 for more than 5 time units without transitioning toL2,1.

T1 T2

execution time 5 1
period 20 3

response time 8 1
preemption overhead 3 0

Table 1. The parameters of T1 and T2

L2

t2 ≤ 8

L2,1

t1 ≤ 1
L1

t1 ≤ 1

t2 := 0

t2 ≤ 8

t1 := 0t1 ≤ 1t1 := 0t1 ≤ 1

Figure 5. Timed Automata Model of T1 and T2

with response time transformation

6.1. Response Time with Preemption
Counting Mechanism

One remedy to the deadlock problem is to add a guard
t1 <= 7 with the transition fromL2 to L2,1. However, this
doesn’t solve the second problem mentioned above where
the model allows a task to stay in a location longer than the
designated maximum execution time. Without resorting to
the hybrid automata model, an extra mechanism is needed
to count the number of times that a task can be preempted by
other tasks before its completion. In the example shown in
Table 1, if Rate Monotonic Scheduling is used,T2 can only
be preempted byT1 at most 3 times. Therefore, an integer



C2,1 for counting the number of preemption is added into
the model as shown in Figure 6.

L2

t2 ≤ 5+C2,1

L2,1

t1 ≤ 1
L1

t1 ≤ 1

t2 := 0

t2 ≤ 5+C2,1

C2,1 + +

C2,1 <

⌈
6+C2,1

3

⌉

t1 ≤ 1t1 := 0t1 ≤ 1

C2,1 := 0

t1 := 0

Figure 6. Timed Automata Model of T1 and T2

with Counting Mechanism

To be more specific, given a set ofn tasks{Ti |0 ≤ i < n}
in a node, we defineJ(i) to be the set of indexes of the tasks
which have higher priority thanTi does. If the worst case
execution time and periodicity ofTi areei and pi respec-
tively, then the response timer i of taskTi can be calculated
using the following formula.

r i = ei +
∑

k∈J(i)

⌈
r i

pk

⌉
ek.

Our transformation utilizes the response time formula and
replaces the terms

⌈
r i

pk

⌉
with discrete countersCi,k. These

counters encode the number of times thatTi is preempted
by Tk directly or indirectly. Therefore, the timeti which the
taskTi spends before completion is subject to the constraint
ti ≤ ei +

∑
k∈J(i) Ci,kek , Ci,k ∈

[
0,1, · · · ,

⌈
max(ti )

pk

⌉]
andmax(ti)

is the upper bound ofti . This constraint can be used as the
invariant of the task location representingTi and the guard
for the transition that represents the termination ofTi . In
addition,ti andCi, j where j ∈ [0, · · · , i −1] are reset to zero
when the taskTi starts, and the counterCi, j is incremented
when the taskTi is directly or indirectly preempted by an-
other taskj. However, the upper bound ofCi, j cannot be
calculated directly from the formula because it depends on
the upper bound ofti and is a recursive formula. Therefore,
we use the following formula to guard the transitions for
whichCi, j is incremented.

Ci, j <

⌈
ei +
∑

k∈J(i) Ci,kek + ej

p j

⌉

This guard ensures that the number of times thatT j is ex-
ecuted beforeTi completes cannot exceed what is allowed
by the specified rate ofT j .

6.2. Node Abstraction

P0

a?

[2]

ra!

a

ra + a

P1

b? [3]

a!

ra?[2]

rb!

b ra

rb + ra a + b

P2

c? [1]

d!

rd?[1]

rc!

c rd

rc + rd c + d

P3

d? [1]

a!

ra?[1]

rd!

d ra

rd + ra a + d

Figure 7. Example Components.

A nodedefines the boundary of a (composite) compo-
nent which can be scheduled by a single processor schedul-
ing algorithm. Given the components shown in Figure 7, we
define the nodeN1 to beP0⊗P2⊗ (P0�P1). If the input ac-
tionsa, b, c are periodic with frequencies 0.05 Hz, 0.02 Hz
and 0.1 Hz respectively, the needed CPU utilization bound
of N1 can be easily obtained. In this case, the utilization
would be 0.44, which means the node is schedulable under
the Rate Monotonic Scheduling algorithm.

P4

t = 20/a!//

/ra?/t := 0/

ra

a + 0.05

P5

t = 50/b!//

/rb?/t := 0/

rb

b + 0.02

P6

t = 20/c!//

/rc?/t := 0/

rc

c + 0.05

Figure 8. Example Stimulus Components.

Since a node represents a physical scheduling bound-
ary, in addition, the atomic and monitor composition are
solely used for single threaded composition. Only parallel
composition can be used between components of different
nodes. For convenience, brackets will be used to denote



the boundary of a node. Taking the composite component
[P0 ⊗ P2 ⊗ (P0 � P1)] ⊗ [P3] as an example, it contains two
nodesP0 ⊗ P2 ⊗ (P0 � P1) andP3.

Similar to interface automata, a component isopenwhen
it contains external actions; otherwise, it isclosed. For the
components in Figures 7 and 8, the composite component
[P0 ⊗ P2 ⊗ (P0 � P1)⊗ P0] ⊗ [P3] ⊗ [P4 ⊗ P5 ⊗ P6] is closed
because all actions are internalized after composition.

Consider for example the nodeN ≡ [P0 ⊗ P2 ⊗ (P0 �

P1) ⊗ P0] and the composite componentM ≡ N ⊗ [P3] ⊗
[P4 ⊗ P5 ⊗ P6]. To analyze the responsiveness of a fixed
priority system, a composite component in the system has
to be closed because only closed systems have enough in-
formation about the required input rates of the tasks in each
node. The number of tasks in each node is the number of
task locations in the node. The composite componentN has
7 tasks: two fromP0, two fromP2 and three from (P1�P0).
Given the output action rate relations for the components in
Figure 7, it is possible to derive the input rates of all the
actions inN of M. For example, the input action “b?” of
P1 � P0 matches the output action “b!” of P5; therefore the
input rate ofb in P1 � P0 is the same with the output rate of
b in P5, which is 0.02 Hz. Similarly, the input rates of “a?”
in the two instances ofP0 in nodeN and “c?” in P2 in node
N are 0.05 Hz.

6.3. Task Location Conversion

Given a node which is composed of components with
task locations, we defineJ(i) to be the set of indexes of the
task locations which have higher priority than a task loca-
tion si in the node, i.e. ,

J(i) =
{
j
∀ j,wheresj has higher priority thansi

}
.

E(i) represents the maximum time that can be spent on the
locationsi when it is directly or indirectly preempted bysk

(k ∈ J(i)) for exactlyCi,k time; to be more precise,

E(i) = ei +
∑

k∈J(i)

Ci,kek.

Before the components with task locations in a node can be
composed using the rules in Section 5, the following trans-
formation must be performed for each component:

• Identify all the task locations (tasks) in the node and
sort them according their respective priorities.

• For each task locationsi , add a unique clock variableti
and a set of counters

{
Ci, j

Ci, j ∈ N ,∀ j ∈ J(i)
}

in si ’s
respective component to represent the time spent on
the locationsi .

• For each transition whose destination location is a task
locationsi , add a clock resetti := 0 and counter resets{
Ci, j := 0

∀ j ∈ J(i)
}
.

• For each task locationsi , add an invariantti ≤ E(i).

• For each transition whose source location is a task lo-
cationsi , add a transition guardti ≤ E(i).

After the transformation of individual components, par-
allel composition within a node can be done with the rules
described in section 5.1 with the addition of following rule:

4. For any transitionτ, whereθ(τ) = (si sj , si , s′j), in ad-
dition, both si and sj are task locations; thenτ is a
transition ofR if and only if the priority ofsj is higher
than that ofsi . The guard ofτ is the conjunction of

Ci, j <
⌈

E(i)+ej

P j

⌉
and the guards ofτi andτ j . The actions

of τ are the union of the actions ofτ j andCi, j + +.

No task constraint will remain after the above transfor-
mation and composition; therefore, we can directly use the
rules in section 5.1 for the composition between nodes.

6.4. Modeling Communication Delays

Besides composition schemes, timing constraints can be
added to internalized actions during component composi-
tions. This is a unified way to specify the timing delay be-
tween component communications. The timing constraints,
referred to ascomposition constraints, include a set of clock
variablesX′ to be referred to ascomposition resetsand a
set of clock constraintsC(X′) to be referred to ascomposi-
tion guards. Composition constraints may bedirectedfor
representing asymmetric communication overhead. For ex-
ample, the composite componentP0 � P1 from Figure 7
has two internalized actionsa andra operating in opposite
directions. Thus we can use one set of composition con-
straints fora and another set forra. With the previously
mentioned composition schemes and the transformation of
task locations, it is possible to express a variety of middle-
ware communication and concurrency constructs rigorously
and easily. Other than the wait-on-connection and wait-on-
reactor communication strategies modeled by atomic and
monitor composition schemes, the ACE thread pool reac-
tor framework [16] can be modeled as parallel composi-
tions of multiple instances of the same component automa-
ton. Asynchronous communication channels between com-
ponents can be modeled as components which provide mes-
sage queue automata to be composed with event sources and
sinks using the parallel composition scheme.

7. Conclusions

Real-time component based middleware helps to hide
complexities from software developers; however, those hid-
den complexities may have an impact on the properties of



a system. These issues may be very hard to detect by de-
velopers. Significant research has been conducted to apply
model checking to ease the development, assembly and ver-
ification of software systems. However, the resulting ap-
proaches do not adequately support verification of impor-
tant real-time aspects of real-time component middleware-
based systems.

The purpose of the research described in this paper is
to provide a formal foundation for developing tools that
can automatically verify properties of real-time component
based systems. Our approach to modeling integrates and
extends three different technologies: timed automata, inter-
face automata and traditional schedulability analysis. Based
on this research we are currently building a prototype tool
for verification of real-time component based systems.

References

[1] R. Alur and D. L. Dill. A theory of timed automata.Theo-
retical Computer Science, 126(2):183–235, 1994.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous
real-time components in bip. InSEFM ’06: Proceedings
of the Fourth IEEE International Conference on Software
Engineering and Formal Methods, pages 3–12, Washington,
DC, USA, 2006. IEEE Computer Society.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial on
U. In M. Bernardo and F. Corradini, editors,For-
mal Methods for the Design of Real-Time Systems: 4th In-
ternational School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM-RT
2004, number 3185 in LNCS, pages 200–236. Springer–
Verlag, September 2004.

[4] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The
if toolset. In M. Bernardo and F. Corradini, editors,For-
mal Methods for the Design of Real-Time Systems: 4th In-
ternational School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM-RT
2004, number 3185 in LNCS, pages 237–267. Springer–
Verlag, September 2004.

[5] S. V. A. Campos.A quantitative approach to the formal ver-
ification of real-time systems. PhD thesis, Carnegie-Mellon
University, 1996. Chair-Edmund M. Clarke.

[6] L. de Alfaro and T. A. Henzinger. Interface automata. In
ESEC/FSE-9: Proceedings of the 8th European software en-
gineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software engi-
neering, pages 109–120, New York, NY, USA, 2001. ACM
Press.

[7] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled.Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[8] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Lud-
vig, S. Neuendor, e Sonia, and S. Yuhong. Taming
heterogeneity—the ptolemy approach, 2002.

[9] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted
Bapty. Model-integrated development of embdded software.
Proceedings of the IEEE, 91(1):145–164, Jan. 2003.

[10] T. Henzinger. The theory of hybrid automata. InProceed-
ings of the 11th Annual IEEE Symposium on Logic in Com-
puter Science (LICS ’96), pages 278–292, New Brunswick,
New Jersey, 1996.

[11] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for real-time systems.Information
and Computation, 111(2):193–244, 1994.

[12] G. J. Holzmann. The model checker spin.IEEE Transac-
tions on Software Engineering, 23(5):279–295, 1997.

[13] J. W. S. Liu.Real-Time Systems. Prentice Hall, Upper Sad-
dle River, NJ, USA, 2000.

[14] G. Madl, S. Abdelwahed, and G. Karsai. Automatic verifi-
cation of component-based real-time corba applications. In
Proceedings of the 25th IEEE International Real-Time Sys-
tems Symposium (RTSS ’04), Dec. 2004.

[15] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible
and highly-modular software model checking framework.
CM SIGSOFT Software Engineering Notes, 28(5):267–276,
2003.

[16] D. C. Schmidt and C. Cleeland. Applying patterns to de-
velop extensible and maintainable ORB middleware.Com-
munications of the ACM, CACM, 40(12), 1997.

[17] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects, Volume 2. Wiley & Sons,
New York, 2000.

[18] V. Subramonian, C. Gill, C. Sanchez, and H. Sipma.
Reusable models for timing and liveness analysis of mid-
dleware for distributed real-time embedded systems. In6th
ACM Conference on Embedded Software (EMSOFT ’06),
pages 252–261, Seoul, South Korea, Oct 2006.

[19] V. Subramonian, N. Wang, L. Shen, and C. Gill. The design
and performance of configurable component middleware for
distributed real-time and embedded systems. InProceedings
of the 25th IEEE International Real-Time Systems Sympo-
sium (RTSS ’04), pages 252–261, Dec. 2004.

[20] S.V. Campos and E. Clarke. Real-Time Symbolic Model
Checking for Discrete Time Models. In T. Rus and C. Rat-
tray, editors,Theories and Experiences for Real-Time Sys-
tem Develpment. World Scientific Press, AMAST Series in
Computing, 1994.

[21] W. Thomas. Automata on infinite objects. pages 133–191,
1990.

[22] Y. Zhang, C. Lu, C. Gill, P. Lardieri, and G. Thaker. Mid-
dleware support for aperiodic tasks in distributed real-time
systems. InRTAS ’07: Proceedings of the 13th IEEE Real
Time on Embedded Technology and Applications Sympo-
sium, pages 497–506, Washington, DC, USA, Apr. 2007.
IEEE Computer Society.

[23] Y. Zhao, J. Liu, and E. Lee. A Programming Model For
Time-Synchronized Distributed Real-Time Systems. In13th
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS ’07), Apr. 2007.


	Modeling Timed Component-Based Real-time Systems
	Recommended Citation
	Modeling Timed Component-Based Real-time Systems

	tmp.1418338203.pdf.7fibP

