
Syddansk Universitet

Software Engineering Environment for Component-based Design of Embedded
Software
Guo, Yu

Publication date:
2010

Document Version
Final published version

Link to publication

Citation for pulished version (APA):
Guo, Y. (2010). Software Engineering Environment for Component-based Design of Embedded Software.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 15. jan.. 2017

http://findresearcher.sdu.dk/portal/en/publications/software-engineering-environment-for-componentbased-design-of-embedded-software(da622660-8544-11df-846a-000ea68e967b).html

A Dissertation for the Degree of Doctor of Philosophy

Software Engineering Environment

for Component-based Design of

Embedded Software

by

Yu Guo

Mads Clausen Institute for Product Innovation

University of Southern Denmark

Soenderborg, Denmark

2009

c© 2009
Yu Guo

All Rights Reserved

ii

Acknowledgements

First of all, I wish to thank my supervisor, Prof. Christo Angelov, this thesis
would not have been possible without his expert guidance. His comments and
suggestions were always extremely perceptive, helpful, and appropriate. And, I
am grateful for his inspiring and encouraging me to pursue a career in embedded
software research, and for enabling me to do so.

I am thankful for suggestions, comments, and contributions from my colleagues
at the Mads Clausen Institute for Product Innovation. I am very grateful to Asso-
ciate Prof. Nicolae Marian for his scienti�c advice and knowledge. My enormous
debt of gratitude can hardly be repaid to my friend, Assistant Prof. Krzysztof
Sierszecki, who provided many insightful discussions and suggestions throughout
the Ph.D. project. I also thank the wonderful sta� in the MCI for always being so
helpful and friendly. For this research, implementation was essential. Many people
from MCI helped with this, for which I would like to thank them wholeheartedly.

Many people participating in the MoDES project from Aalborg University
helped me in various ways. I am especially grateful to Prof. Anders P. Ravn, and
Associate Prof. Arne Skou for all that they have taught me during our project
meetings and workshops. I am particularly thankful to my friend, István Knoll,
who provided a lot of very useful input and ideas to this research work, during
our collaboration.

I would like to deeply thank Nicholas Gunder and Torben Ho�mann from
Motorola A/S, for their valuable input to this work from the industrial point of
view.

Thanks to the Danish Council for Strategic Research for funding this project.
My sincere gratitude goes to my parents for their love, support and patience. I

owe special thanks to my wife Dong, for her love, care and understanding. It would
have been much more di�cult for me to accomplish this work without her support.

Yu Guo
Viborg, September 2009

iii

iv

Abstract

The extensive and ever increasing use of embedded real-time control systems poses
a serious challenge to software developers, in view of con�icting requirements
concerning time to market, development costs, safety and dependability. It is
hard to satisfy these requirements using conventional software technology, which
is largely based on informal design methods and manual coding techniques. That
is why it is necessary to develop new design methods and tools that will eventually
help improve existing practices.

These considerations have motivated the development of the framework �
Component-Based Design of Software for Distributed Embedded Systems (COMD-
ES) and the related software design methodology, in an attempt to provide a
solution to the problems formulated above. The essence of this methodology is
the adoption of formal models used to systematically develop embedded software
applications that are correct by construction, and ultimately � con�gure appli-
cations from prefabricated reusable components, with the support of appropriate
tools. It combines component-based design with a model-driven software devel-
opment approach, which reduces development time through design automation,
enhances software quality by deriving the implementation from models, and en-
ables software speci�cation on a more abstract level, using an adequate modelling
language.

The COMDES framework provides a domain-speci�c modelling language that
can be used to specify relevant aspects of system structure and behaviour in the
domain of distributed embedded control systems with hard real-time constraints.
The framework has been further extended with a number of meta-models that
have been derived from the formal speci�cation of domain-speci�c design mod-
els. The meta-models can be used to represent prede�ned component models as
well as application models in a computer-aided software engineering environment.
Furthermore, component models have been realized following carefully developed
design patterns, which provide for an e�cient and reusable implementation. The
components have been ultimately implemented as prefabricated executable objects
that can be linked together into an executable application.

v

The development of embedded software using the COMDES framework is
supported by the associated integrated engineering environment consisting of a
number of tools, which support basic functionalities, such as system modelling,
validation, and executable code generation for speci�c hardware platforms.

Developing such an environment and the associated tools is a highly complex
engineering task. Therefore, this thesis has investigated key design issues and
analysed existing platforms supporting model-driven software development that
can be used as a foundation of a component-based software engineering environ-
ment, in order to develop a viable toolset for the COMDES framework. As a
result, the Eclipse platform has been chosen to implement the software engineer-
ing environment, due to its strong support for tool development by integrated
model-driven development frameworks such as the Eclipse Modelling Framework,
Graphical Modelling Framework, etc.

Based on theoretical investigations and hands-on experiences, this thesis fo-
cuses on the practical aspects of building the COMDES software engineering en-
vironment on the Eclipse platform, with an emphasis on technologies and tools
concerning both model-driven and component-based development of embedded
software.

Preliminary experiments have indicated that the COMDES framework and its
development toolset may o�er a better approach to embedded software develop-
ment than previous technologies, and in particular � speed up the development
cycle and improve the quality of software for distributed real-time embedded con-
trol systems.

vi

Abstrakt

Den voksende brug af indlejrede realtids kontrolsystemer stiller store udfordringer
til softwareudviklere set i lyset af modstridende krav, som time-to-market, ud-
viklingsomkostninger, sikkerhed og pålidelighed. Det er svært at møde disse krav
ved brug af konventionel softwareudviklings-teknologi, som stort set er baseret på
uformelle designmetoder og manuel kodning. Det er derfor nødvendigt at udvikle
nye designmetoder og -værktøjer, som på sigt vil kunne være med til at forbedre
den eksisterende praksis på området.

Disse overvejelser har motiveret til udvikling af et værktøj til komponent-
baseret design af software for distribuerede indlejrede systemer � Component-
based Design of Software for Distributed Embedded Systems (COMDES) � og den
relaterede software design metode i forsøget på at levere en løsning til problem-
stillingerne skitseret ovenfor. Kernen i denne teknologi er anvendelsen af formelle
modeller. Ved at bruge disse modeller, kan indlejrede softwareapplikationer ud-
vikles systematisk, konstrueres korrekt ved implementationen og endeligt, at det
bliver muligt at kon�gurere applikationer fra færdigbyggede og genbrugelige kom-
ponenter, under anvendelse af passende værktøjer. De kombinerer komponent-
baseret design med den modeldrevne softwareudviklingsmetode, som mindsker
udviklingstiden ved automatisering af visse designprocesser, forbedrer softwarens
kvalitet ved automatisk at generere implementationen fra modeller og den mulig-
gør speci�kation af software på et mere abstrakt niveau, ved at bruge et passende
modelleringssprog.

I COMDES indgår et domæne-speci�kt modelleringssprog som kan bruges til
at speci�cere relevante aspekter af systemets struktur og funktionalitet inden-
for domænet distribuerede indlejrede kontrolsystemer med hårde realtids krav.
Frameworket er yderligere udvidet med et antal metamodeller, udledt af den
formelle speci�kation af domænespeci�kke designmodeller. Metamodellen kan
bruges til at repræsentere såvel forudde�nerede komponentmodeller som app-
likationsmodeller for computerunderstøttet softwareudvikling. Derudover blev
komponentmodeller implementeret, der følger præcist udviklede designmønstre,
som muliggør en e�ektiv og genbrugelig implementation. Endelig blev komponen-

vii

terne implementeret som præfabrikerede eksekverbare objekter, der kan afvikles
og linkes sammen i en eksekverbar applikation.

Udvikling af indlejret software ved brug af COMDES frameworket er under-
støttet af det tilhørende udviklingsmiljø (IDE), som dækker over et antal værk-
tøjer der understøtter basale funktioner som systemmodellering, validering, kode-
generering og kompillering for speci�kke hardware-platforme.

Konstruktion af sådanne udviklingsmiljøer og de tilhørende værktøjer er en
meget kompleks udviklingsopgave. I denne afhandling bliver derfor designspørgs-
mål af central vigtighed undersøgt og eksisterende platforme, der understøtter
modeldrevet softwareudvikling, der kan bruges som fundament til et komponent-
baseret softwareudviklings-værktøj, analyseret med henblik på udvikling af et an-
vendeligt sæt værktøjer for COMDES.

Eclipse blev valgt som platform for implementeringen af softwareudviklings-
værktøjet, da den med det integrerede modeldrevne udviklingsframework, meget
godt understøtter udvikling af værktøj som f.eks. Eclipse Modeling Framework,
Graphical Modeling Framework, osv.

Baseret på teoretiske undersøgelser og praktisk erfaring, fokuserer denne afhan-
dling på praktiske aspekter vedrørende udviklingen af COMDES softwareudviklings-
værktøjet på Eclipse platformen og med vægt på teknologier og værktøjer til både
modeldrevet og komponentbaseret udvikling af indlejret software.

Foreløbige eksperimenter indikerer, at COMDES og det tilhørende udviklings-
værktøj muliggør en bedre tilgang til udvikling af indlejret software end tidligere
teknologier, og mere konkret, den kan gøre udviklingsprocessen hurtigere og sam-
tidig bidrage til en højere produktkvalitet ved distribuerede indlejrede realtids-
kontrolsystemer.

viii

List of Publications Developed During the PhD Project

Publications in Refereed Conference Proceedings

• Kebin Zeng, Yu Guo and Christo Angelov. Graphical Model Debugger
Framework for Embedded Systems. Accepted for presentation to the 13th

DATE Conference and Exhibition: Design, Automation and Test in Europe

(DATE2010), Dresden, Germany, March 8-12, 2010.

• Christo Angelov, Krzysztof Sierszecki and Yu Guo. Formal Design Models
for Distributed Embedded Control Systems. In Proceedings of the 2nd Inter-
national Workshop on Model Based Architecting and Construction of Em-

bedded Systems (ACES-MB 2009), Denver, Colorado, USA, October 2009.

• Yu Guo, Krzysztof Sierszecki and Christo Angelov. Model-Driven Devel-
opment of Domain-Speci�c Applications: Tool Support. In Proceedings of

11th Symposium on Programming Languages and Software Tools and 7th

Nordic Workshop on Model Driven Software Engineering (SPLST 2009 and

NW-MODE 2009), Tampere, Finland, August 2009.

• Yu Guo, Krzysztof Sierszecki, and Christo Angelov. COMDES Development
Toolset. In Proceedings of the 5th International Workshop on Formal As-

pects of Component Software (FACS 2008), pages 233-238, Malaga, Spain,
September 2008.

• Christo Angelov, Xu Ke, Yu Guo, and Krzysztof Sierszecki. Recon�gurable
State Machine Components for Embedded Applications. In Proceedings of

the 34th EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA 2008), pages 51-58, Parma, Italy, September 2008.

• Yu Guo, Krzysztof Sierszecki, and Christo Angelov. A (Re)Con�guration
Mechanism for Resource-Constrained Embedded Systems. In Proceedings of

the 32nd Annual IEEE International Computer Software and Applications

Conference (COMPSAC 2008), pages 1315-1320, Turku, Finland, July/Au-
gust 2008.

• Yu Guo, Feng Zhou, Nicolae Marian, and Cristo Angelov. Hardware-in-the-
Loop Simulation of Component-Based Embedded Systems. In Proceedings of
the 8th International Workshop on Research and Education in Mechatronics

(REM 2007), Tallinn, Estonia, June 2007.

ix

• Nicolae Marian and Yu Guo. Model-Based Design of Embedded Software.
In Proceedings of the 7th International Workshop on Research and Education

in Mechatronics (REM 2006), Stockholm, Sweden, June 2006.

Publications in Conference Proceedings

• Yu Guo, Torben Ho�mann, and Nicholas Gunder. Autocoding State Ma-
chine in Erlang. In Proceedings of the 14th International Erlang/OTP User

Conference, Stockholm, Sweden, November 2008.

Other Publications in Refereed Conference Proceedings

• Zdravko Karakehayov and Yu Guo. Parallel Embedded Systems: Where
Real-Time and Low-Power Meet. In Proceedings of the ISCA's 21st Inter-

national Conference on Parallel and Distributed Computing and Communi-

cations Systems (PDCCS 2008), New Orleans, Louisiana, USA, September
2008.

Internal Project Reports

• Yu Guo. Production Cell case study, Real-Time Systems Project Report,
Mads Clausen Institute, University of Southern Denmark, December 2007.

• Xu Ke and Yu Guo. Case Studies in Component-based Design for Distributed
Embedded Systems, Distributed Embedded Systems Project Report, Mads
Clausen Institute, University of Southern Denmark, June 2006.

x

Contents

Acknowledgements iii

Abstract v

Abstrakt vii

1 Introduction 3

1.1 Distributed real-time embedded control systems 3
1.2 Component-based development of embedded software 6
1.3 Model-driven software development 12
1.4 Research motivation and goals . 19

2 Model-driven Software Development Frameworks 25

2.1 Examples of embedded system development tools 26
2.1.1 IEC 61131-3 standard . 26
2.1.2 IAR visualSTATE . 29
2.1.3 AutoFocus . 32
2.1.4 Summary . 35

2.2 Required aspects and features of MDSD platforms 36
2.3 GME . 39
2.4 Cadena . 42
2.5 MOFLON . 45
2.6 MetaEdit+ . 48
2.7 Eclipse modelling project . 50
2.8 Summary . 52

3 Domain-Speci�c Modelling Language: the COMDES Framework 56

3.1 Speci�cation of system structure 59
3.1.1 COMDES-II design models � an introduction 59
3.1.2 Distributed control system speci�cation 63
3.1.3 Control actor speci�cation 64

xi

3.2 Speci�cation of system behaviour 66

3.2.1 COMDES-II model of computation � an introduction . . . 66

3.2.2 Speci�cation of function block behaviour 67

3.2.3 Speci�cation of actor behaviour 70

3.2.4 Speci�cation of system behaviour 71

3.3 COMDES software development process 73

3.4 Summary . 75

4 Platform-Independent Model: the COMDES Meta-Model 78

4.1 Overview of the COMDES software design method 79

4.2 Domain-speci�c meta-modelling concepts and notations 83

4.3 Meta-model of COMDES . 85

4.3.1 Reuse pattern . 85

4.3.2 Function blocks . 87

4.3.2.1 A generic meta-model of function blocks 87

4.3.2.2 Basic function blocks 89

4.3.2.3 Composite function blocks 91

4.3.2.4 State machine function blocks 94

4.3.2.5 Modal function blocks 97

4.3.2.6 Drivers . 101

4.3.3 System composition . 102

4.3.3.1 Actor . 102

4.3.3.2 System . 104

4.3.4 Platforms . 105

4.3.5 Repository . 108

4.4 Summary . 111

5 Platform-Speci�c Model: A Run-time Environment 112

5.1 Meta-model of a run-time environment 114

5.1.1 Application . 114

5.1.2 Tasks . 115

5.1.3 Messages . 117

5.1.4 Events . 119

5.2 Transformation speci�cation . 120

5.3 Example . 126

5.4 Summary . 128

xii

6 Platform-Speci�c Models: COMDES Implementations 129

6.1 Function block design pattern . 130
6.1.1 Introduction to function block implementation 130

6.1.1.1 FB interface and implementation 130
6.1.1.2 FB functions � reentrant functions 131
6.1.1.3 Function block type and instance 131

6.1.2 Basic function blocks . 132
6.1.3 Drivers . 136
6.1.4 Composite function blocks 136
6.1.5 State machine function blocks 138
6.1.6 Modal function blocks . 144

6.2 Actor pattern . 150
6.3 Down to executable code . 151

6.3.1 Binaries of function block and application 151
6.3.2 Build scripts . 152

6.4 Summary . 154

7 From Platform-Independent Model to Platform-Speci�c Model:

the COMDES Development Environment 156

7.1 Overview of the development process and tools 158
7.2 Function block development . 160
7.3 Application development . 162
7.4 COMDES development environment on Eclipse 168

7.4.1 Modelling tools . 170
7.4.1.1 Meta-modelling 170
7.4.1.2 Constraints . 171
7.4.1.3 Graphical modelling support 173
7.4.1.4 Programming and building environment 176

7.4.2 Model-to-Model transformation tools 177
7.4.3 Model-to-Text transformation tools 180
7.4.4 Tool integration . 184

7.5 Summary . 188

8 Demonstrations 190

8.1 Production cell case study in COMDES 191
8.1.1 Introduction to the case study 191
8.1.2 System design speci�cation 193
8.1.3 Run-time environment and platforms 196
8.1.4 Hardware-in-the-loop simulation and related experiments . 198

xiii

8.2 Case study evolution: a tool demonstration 198
8.3 Model-driven development tools from industrial perspective 205
8.4 Summary . 207

9 Conclusion and Future Work 209

9.1 Conclusion . 209
9.2 Summary of the Ph.D. project . 212
9.3 Future work . 214

Glossary 218

Bibliography 219

Appendix: Model-Driven Software Development in Industry 231

xiv

List of Figures

1.1 A control system . 4
1.2 An interchangeable trigger from a crossbow 7
1.3 A wooden block . 13
1.4 MOF architecture with four meta-layers 18

2.1 CoDeSys programming system . 28
2.2 A state machine model in visualSTATE 31
2.3 Basic modelling concepts of AutoFocus: the meta-model 33
2.4 AutoFocus system structure diagrams 34
2.5 DSL development process . 37
2.6 GME modelling concepts . 40
2.7 A real-time kernel model in GME 41
2.8 Cadena's three tiered framework 43
2.9 A meta-model in Cadena . 44
2.10 A meta-model for a state machine design language 46
2.11 A story diagram specifying an operation that deletes a diagram and

its contained elements . 47
2.12 A mobile application speci�cation language in MetaEdit+ 49
2.13 A graphical DSL in Eclipse . 51
2.14 Tools for building a component-based development environment . . 53

3.1 COMDES-II actor network � an example: the DC Motor Control

System . 60
3.2 COMDES-II Controller actor . 61
3.3 The Digital control task composed of state machine and modal func-

tion blocks . 61
3.4 Actor execution under Distributed Timed Multitasking 66
3.5 Jitter-free execution of distributed transactions 67
3.6 COMDES-II software development process 74
3.7 Overview of the development toolchian 76

xv

4.1 COMDES software design method 79
4.2 Building blocks of the COMDES solution 80
4.3 COMDES function blocks . 81
4.4 MDSD approach for building applications in COMDES 84
4.5 Core Ecore models in UML class diagram 85
4.6 Kind-Type-Instance pattern . 86
4.7 Generic function blocks . 87
4.8 Input, Output, Constant and InternalSignal 88
4.9 Meta-model of Basic FB . 90
4.10 A basic FB model . 90
4.11 Meta-model of Composite FB . 91
4.12 Meta-model of FB diagram . 92
4.13 A FB diagram of a CFB . 92
4.14 Meta-model of ExtendInput and ExtendOutput 93
4.15 Coupling SMFB and MFB . 95
4.16 A state machine model . 95
4.17 Meta-model of state machine FB 96
4.18 Meta-model of modal FB . 98
4.19 A modal FB model . 99
4.20 Meta-model of SharedInput and SharedOutput 100
4.21 Meta-model of drivers . 101
4.22 An actor model . 103
4.23 Meta-model of actor . 103
4.24 Meta-model of system . 105
4.25 A system model . 105
4.26 Meta-model of signal . 106
4.27 Meta-model of network node . 106
4.28 Meta-model of repository . 109
4.29 A repository model . 110

5.1 Meta-model of a HARTEXµ application 116
5.2 Meta-model of kernel primitives . 117
5.3 Meta-model of tasks . 118
5.4 Meta-model of messages . 118
5.5 Meta-model of events . 119
5.6 Examples of actor chain . 123
5.7 An example of COMDES system model 126
5.8 Transformed HARTEXµ application model 127

xvi

6.1 Function block type table . 138
6.2 DC Motor Control System: mode change control state machine . . 139
6.3 Binary decision diagrams for next state mappings 140
6.4 A Modal FB . 148

7.1 Overview of the COMDES Toolset 159
7.2 Component development tools . 161
7.3 Application development tools . 164
7.4 A dependency linked list . 165
7.5 The property sheet for a COMDES signal 174
7.6 An actor graphical representation model 175
7.7 A tooling model for the system editor 175
7.8 A mapping model for the system editor 176
7.9 Model transformation . 178
7.10 Java based transformation . 179
7.11 COMDES generator tool description 187

8.1 Top view of the production cell model 192
8.2 3D view of the production cell model 192
8.3 Actor diagram of control system 194
8.4 Table actor and its internal function blocks 195
8.5 Load subsystem con�guration . 197
8.6 StarterKit STK300 . 198
8.7 Implementation of the Production Cell case study 199
8.8 Modelling environment . 200
8.9 Instantiation of a reusable FB model in a repository viewer 201
8.10 Actor editor . 201
8.11 Property sheet . 202
8.12 Model validation . 202
8.13 Transformed HARTEXµ model . 203
8.14 Generation tools . 204
8.15 Generated executable in the application repository 204

xvii

xviii

In the history of the human race, the making and usage of tools mark the
spot where human is distinct from animal. Benjamin Franklin is credited with
�rst de�ning the human being as a �tool-making animal.� The arti�cial tools were
made of di�erent materials � from stone, bronze, iron, etc., to arti�cial material,
composite material, etc., and even materials existing in a virtual form � program
code. Meanwhile, the purpose of using tools has shifted from food gathering and
food production to tool production, machine production and software production.
After spending hundreds, and even thousands of years in exploration and practice,
we have been stepping into the age of making tools that produce software to control
machines used in various human activities.

This thesis tells a story of making such tools for the purpose of software pro-
duction, as a tiny drop in the ocean of human history . . .

1

2

Chapter 1

Introduction

1.1 Distributed real-time embedded control sys-

tems

As human beings, we not only use traditional tools to help us with daily activities,
but also try to develop new kinds of tools, machines and intelligent devices that
will make it possible to reduce and ultimately, replace manual work. Nowadays,
the majority of tools, machines and smart devices are controlled by so-called
embedded systems.

Embedded systems span all aspects of modern life and there are many exam-
ples of their use, such as telecommunications applications, consumer electronics,
household appliances, transportation systems, medical equipments, and so on.
Such applications employ increasingly embedded systems to provide �exibility,
e�ciency and advanced features.

In addition to hardware such as microprocessor, memory, I/O ports, etc., the
implementation of embedded system's functionality relies predominantly on soft-
ware � embedded software is quickly gaining importance as embedded applications
grow in numbers and complexity, because software can reduce the cost of hard-
ware when it comes to mass production. Embedded software is usually written
for special-purpose hardware, sometimes using a small real-time operating system
such as VxWorks, Nucleus, eCos, and so on. As a consequence, the operation of
embedded systems is not solely dependent of their hardware, but also the embed-
ded software. The combination of these two factors determines how an embedded
system behaves.

As one of important characteristics, embedded system industry is �embedded�
into other industries, as embedded systems are designed to do some speci�c task
for speci�c industrial applications, rather than to be a general-purpose computer

3

for multiple tasks. Therefore, the industry or application domain that the embed-
ded system is tailored for plays a key role during the development of embedded
software.

Most of the industries deploy embedded systems for the purpose of control,
and most of the control systems found in nature are feedback control systems as
de�ned in Control Theory. Such systems sense the environment to determine the
desired output (reference value) and the actual output of an object of control, use
the di�erence between the two values to generate a control signal, and act on the
object of control using the generated control signal (see Fig. 1.1).

Figure 1.1: A control system

As the prices of modern small microcontrollers are going cheap, it's very com-
mon to implement control systems as embedded systems. Embedded control sys-
tems are found in cars, airplanes and houses, information and communication
devices such as digital TV and mobile phones, and autonomous systems such as
service or edutainment robots.

Embedded systems are not always standalone devices. Many embedded sys-
tems consist of small, computerized parts, meaning that a central control computer
is substituted by several embedded systems (nodes) with local signal-processing
and control functions. In such a system, the microcontrollers of various nodes
do not share memory. Instead, nodes communicate with one another through
communication networks, such as high-speed buses or telephone lines. Such a
system is called a distributed embedded system, as the overall control task is dis-
tributed over a network of nodes and each of them performs only a part of the
task. The bene�ts of introducing distribution of embedded systems are obvious:
better performance through parallel execution of programs; increased reliability
by using redundant nodes; less restrictive localization of nodes by the introduction
of networking; easier modi�cation or enhancement by addition or replacement of
nodes.

Many embedded control systems are reactive systems that must respond quickly
to events taking place in the external environment. Such systems are subject to

4

a �real-time constraint� � i.e., the control signal generated by the system must be
provided before a speci�c time interval � usually called deadline, after receiving
a stimulation event. The completion of an operation after its deadline may lead
to a critical failure of the entire system. A real-time embedded control system
is usually used in mission-critical applications involving surroundings or human
lives, which are of growing importance for modern society. The operation of such
an embedded system depends not only upon its logical correctness but also upon
the time in which it is performed. As a consequence, embedded software for such
a real-time system is quite complicated.

Things are becoming even more complicated when combining a distributed
system and a real-time system together in a control application. With the con-
tinuing advances in the computational power, and reductions in the costs of high-
performance processing and memory elements, more and more devices such as
intelligent sensors, actuators with substantial processing capabilities are used in
a range of distributed embedded real-time control applications. The networked
embedded systems must run autonomously, while simultaneously communicating
and responding to unanticipated combinations of events at run-time.

As distributed real-time embedded control applications grow more complex, so
is the embedded computing software! As an integral part of embedded systems, the
embedded software systems are characterized by functional and non-functional as-
pects. Embedded system developers have to consider requirements of both aspects,
together with physical constraints. Functional requirements specify the expected
functionalities or features, while non-functional requirements specify mainly per-
formance (such as timing, memory etc). For the same functional requirements,
non-functional properties can vary depending on a large number of factors and
choices, including the overall system architecture and the characteristics of the
underlying platform [1].

Timing, as one of the non-functional aspects, is of utmost signi�cance to the
real-rime application. Hence, it is not only necessary to ensure that the functional
behaviour of the system is correct but also � its timing requirements are met.
However, developing software for complex, distributed real-time control systems
has become more di�cult, because of the ever increasing complexity of applications
and the gap between software development productivity and complex hardware
availability [2]. Consequently, software development cost and time are quite high.

To sum up, according to Thomas A. Henzinger, �an embedded system is an
engineering artefact involving computation that is subject to physical constraints.
The physical constraints arise through two kinds of interactions of computational
processes with the physical world: (1) reaction to a physical environment, and (2)

5

execution on a physical platform. [. . .] embedded systems consist of hardware,
software, and an environment� [1]. The development of embedded systems is
getting increasingly complex as they tend to become more and more distributed
and real-time in nature. As a result, according to Colin Atkinson, �the methods
and technologies that have traditionally been used to develop embedded systems
are starting to reach the limits of their scalability� [3].

Today's embedded engineer must be familiar with a wide range of technologies
for describing both hardware and software. Translating from the requirements of
a problem, speci�c to an industry, to a solution requires a deep understanding of
the technologies that comprise an appropriate solution. Furthermore, end-users
expect the result to be fast, available, scalable, etc. The expectations can be met
by introducing adequate software engineering approaches into embedded software
development.

Several methods exist that can be used to improve software development pro-
ductivity and thus bridge the gap between the present levels of hardware and
software technology. One of them, component-based development, is quite at-
tractive in the domain of embedded systems, as it advocates the idea of quickly
creating software by assembling applications from reusable software components.

1.2 Component-based development of embedded

software

The idea of Component-Based Development (CBD) is in fact quite old. By saying
old, we do not mean it is as old as decades ago when the notion of component
was introduced into the area of software programming. By saying old, we mean
thousands of years old!

At the end of the Warring States Period of China (5th century BC to 221
BC), the state Qin, as one of the Seven Warring States, easily defeated the other
six major states as well as a dozen of minor states in a couple of years, and
e�ectively uni�ed China in 221 BC. According to records from historical books
(e.g. Strategies of the Warring States), her army was not large enough to defeat all
armies from the six states. One of the possible reasons why Qin was transformed
from a backward state into one that surpassed the other six states was found out
lately by archaeologists � the weapons that the army was equipped with.

Some of their weapons as well as parts of weapons were discovered by ar-
chaeologists at di�erent ancient battle�elds where her army fought against their
opponents. The weapons include crossbows, long swords, dagger-axes, halberds,
etc. To people's surprise, the pieces of these weapons (see Fig. 1.2 for an ex-

6

ample), dating from that period and excavated from di�erent areas, are exactly
identical to each other and interchangeable, which makes it possible for individual
soldiers to replace broken parts quickly and easily with new ones.

Figure 1.2: An interchangeable trigger from a crossbow

The fact tells us that tools for �ghting had already been �componentized�
around thousands of years ago! Such an approach helped the army react as fast
as possible to changes, and maintained it as the most dominant force in China.

Based on experience, a human being really gets bene�ts by breaking a com-
plicated product down into smaller pieces that have well-de�ned interfaces. Such
activity makes the product �exible, because it is possible to easily replace a com-
ponent when the product requirements change. Reuse of components in new
products accelerates development and lowers cost. Furthermore, sharing a com-
mon interface between components helps multiple organizations collaborate more
easily.

A product can be assembled from smaller components. Such a practice has
been repeated by our great ancestors for thousands of years in various already
mature development activities. As a relatively new industry commenced in the
middle of the 20th century, what people are searching and researching now for
software development is not quite di�erent from what others have done before.
Researchers in this area are trying to break complicated software down into inter-
changeable pieces (components), in order to improve productivity. Before the con-

7

cept of �Software Componentization� was introduced, most of software developers
already designed and wrote software products out of multiple pieces of previously
written code. They just needed to replace those pieces with new implementations
for another product. Modular programming as a software design technique was
introduced in the late 1970s, by Niklaus Wirth. This technique, which is still
widely used in practice, increases the extent to which software is composed from
separate parts, called modules, thus improving maintainability. Douglas McIlroy
is considered as the person who formulated the idea that software should be com-
ponentized, i.e. built from prefabricated components, at the NATO conference
on software engineering in Garmisch, Germany, 1968, with a publication entitled
Mass Produced Software Components [4].

Unfortunately, according to Clemens Szyperski, �components are well estab-
lished in all other engineering disciplines, but until recently were unsuccessful in
the world of software� [5]. Software products, unlike traditional products, are
hard to maintain. Software producers have found that most of their time is spent
on maintaining the software rather than developing it. As one of the reasons,
software products are subject to changes. Once a requirement has been changed,
it usually takes producers long time to modify the product, because developers
have to gather all knowledge of designs and code in order to decide where to mod-
ify. Moreover, after the modi�cation, they will have to spend time to ensure the
changed parts do not in�uence other parts of the system. In case of any di�culty
of reaction to changes, their opponents will have enough time to kick them out of
the market.

The occurrence of CBD seems promising to give a solution of the problem.
�The objective of CBD,� according to Katharine Whitehead, �is to improve the
software development process by assembling new software from prebuilt software
components rather than developing it from scratch� [6].

Katharine Whitehead, in her book �Component-based Development: principles
and planning for business systems�, gives a de�nition of software component:

�A software component is a separable piece of executable software that
makes sense as a unit, and can interoperate with other components,
within some supporting environment. The component is accessible
only via its interfaces and is capable of use as-is, after any necessary
installation and con�guration procedures have been carried out. In
order for it to be combined with other components, it must be possible
to obtain details of its interface� [6].

She addresses �separability� as the �rst principle of de�ning components. It
must be possible to separate a component from its context and use it in another

8

context. She considers a software component as a black box with invisible internal
implementation, thus any access to the component has to be through its interface.
The implementation of a component can be changed without a�ecting its use by
other components, provided that the new component o�ers the same functionality
as previously.

She speci�cally emphasizes a software component as being a prebuilt entity,
rather than a source unit that might be assembled into a program and then com-
piled; consequently, components are not assembled before compilation but after-
wards. The assembly of components then involves a con�guration process.

Another de�nition given by Clemens Szyperski in his book �Component Soft-
ware: Beyond Object-Oriented Programming� presents an idea that is close to the
statement discussed above:

�A software component is a unit of composition with contractually
speci�ed interfaces and explicit context dependencies, which can be
deployed independently and is subject to the third party composition�
[5].

Both of the de�nitions implicitly designate the concept of reuse as an im-
portant characteristic property of a software component. A software component
should be designed and implemented so that it can be reused when composed
with other components. In other words, it needs to be well separated from its
environment and other components. An implementation of a software component
is invisible behind its interface that de�nes the component's access point. Users
of the component know no details beyond the interface and its speci�cation. The
de�nition of the interface is of key importance to the de�nition of a component.
The component can be reused without relying on anything but their interfaces
and speci�cations.

Once individual software components have been constructed, they should be
able to cooperate usefully. A framework copes with how components can be
composed into a large system. A descriptive de�nition of component framework
is given by Clemens Szyperski as follows:

�A component framework is a software entity that supports compo-
nents conforming to certain standards and allows instances of these
components to be `plugged' into the component framework� [5].

This de�nition points that an important role of a framework is to regulate the
interaction between component instances.

9

Nowadays, there are a number of mature and sophisticated technologies in-
cluding components and frameworks developed for various purposes, such as Ob-
ject Management Group's CORBA, Sun's Enterprise Java Beans and Microsoft's
COM, which are major component players in the world of Web and Desktop appli-
cations. Moreover, plug-in technique for the Firefox web browser, and the Eclipse
development platform, etc., also illustrate good practices of using components.

However, the bene�ts of using CBD, such as reductions in development time
and cost, are much more di�cult to realize in embedded systems development,
as an important design challenge for such complex real-time embedded systems
is to satisfy non-functional requirements, while ensuring proper functional be-
haviour, when building new applications from existing components. Development
of embedded software meeting such combined requirements is time- and manpower
consuming, especially when the requirements are changing from time to time.

The creation of component-based software for real-time embedded control ap-
plications is now high on agenda of the research community. For one example,
in the area of industrial automation, the IEC 61131-3 [7] standard de�ned by
the International Electrotechnical Commission has received worldwide industrial
acceptance for development of programmable logic controllers (PLCs).

Under the IEC 61131-3 standard, a PLC application is divided into a num-
ber of software components that are written in any of the languages proposed
in the standard. For instance, Function Block Diagram is used for specifying
signal processing and data �ows in application programs composed of function
blocks. Function block diagrams can be combined with sequential function charts

to express the interaction of control algorithms and application logic. The entire
software required to solve a particular control problem can be formulated as a
con�guration that is speci�c to a particular type of control system, including the
arrangement of the hardware, i.e. processing resources, memory addresses for I/O
channels, etc.

IEC 61131-3 is the �rst real endeavour to standardize programming languages
for industrial automation. Compared with traditional programming systems, it
appears to be a major step forward. However, it has also certain limitations,
e.g. strictly periodic execution of application programs. This has stimulated the
development of the follow-on standard IEC 61499, which employs event-driven
function blocks and function block networks.

Koala [8][9] is another example of a component-based technology, which has
been developed and used by Philips. It is tailored for development of software
in consumer electronics such as televisions, video recorders, etc., which are often
resource constrained since they use cheap hardware to keep development costs

10

low. A Koala component is a piece of code that can interact with its environment
through explicit interfaces only. As a consequence, a basic Koala component has
no implicit dependencies on other Koala components. Also, a Koala component is
said to be hardware-independent, since hardware dependency is encapsulated in
particular components. Interaction with the environment, including the underly-
ing hardware-dependent services is exclusively via interfaces.

A system using the Koala components is built on top of a small real-time kernel
with preemptive scheduling, which separates high frequency from low frequency
tasks. It is possible to specify the order of tasks using precedence relations and
mutual exclusion. But, there is no support for timing properties.

The technology has been proven suitable for consumer electronics software.
However, the weak point of Koala lies in the lack of tools supporting e�cient
development on a large scale. Koala developers must conform to rules that can
be violated, unless checked automatically [10].

There are also a number of other component technologies for embedded sys-
tems [10][11][12] such as Prediction-Enabled Component Technology (PECT) [13]
developed by Carnegie Mellon University, Rubus developed by Arcticus Systems
AB [14], PECOS [15] developed as a collaborative project between industrial and
research partners, AutoFocus [16][17][18] developed at the Technical University
of Munich, and so on. However, there is currently no widely accepted component
technology for embedded software development, due to the fact that requirements
vary considerably in di�erent application domains.

Research on software components and frameworks for this kind of system has
been carried out in the Mads Clausen Institute for Product Innovation, Univer-
sity of Southern Denmark [19][20]. It addresses the problems of component-based
design including systematic de�nition of software components and their composi-
tion, such that components can be used to adequately specify the structure and
behaviour (i.e. functional and timing behaviour) of an embedded software system.

To sum up, as with componentization activities humans did thousands of years
ago, the contemporary organizations who �rst master the art of component-based
embedded systems development will be able to react to changes of requirements
quickly, because the approach can improve productivity concerning software de-
velopment, by breaking down a large problem into sub-problems and solve those
separately. Software components can be reused, thus it is not necessary to reim-
plement functionalities in a di�erent application within the same domain.

Component technology indisputably provides us with a better handle on com-
plexity than previous technologies. Nevertheless, the growing size of applications
and the demands for shorter time-to-market still leave many issues open for further

11

consideration. One of the issues is how to produce the software components as well
as the application composed from them? Do we have to create them one by one
manually? Or could we produce them automatically? What kind of technology
can be applied to realize the bene�ts of component-based development?

Obviously, the productivity can be further increased if automation is intro-
duced into the embedded software development process. However, this issue goes
beyond the scope of pure component-based development. A joint consideration of
component-based development and model-driven techniques can help us address
the above problem.

1.3 Model-driven software development

Emperor Taizong of Tang (599-649) once said, �Using copper as a mirror allows
one to keep his clothes neat; Using history as a mirror allows one to see the future
trends.� Before we discuss software and embedded systems, let us have a look at
history and see what happened in the printing industry, in order to understand how
the component-based approach is related to the model-driven approach. Before
the technique for printing text was invented, how were books produced? All books
were copied out by hand. If each page is seen as a component of a book, people
had to manually replicate each component as many times as the number of book
copies. This was not only a long and expensive process, but it also meant that
every book was di�erent. Although handwriters were conscientious in their work,
the errors in copies of books were still inevitable. The more times a book was
copied the more mistakes were made.

People must have been tired of copying books, which could be the reason why
the printing technique was invented. For example, with the woodblock printing
technique, people prepared a wooden pattern (Fig. 1.3), whereby the areas to
show `white' are cut away, leaving the characters or image to show in `black' at
the original surface level. It is only necessary to ink the block and bring it into
�rm and even contact with the paper or cloth, in order to achieve an acceptable
print.

Usually, each block was created for one page of a book. If a page is a com-

ponent of a book, the woodblock for the page can be seen as a model of the
component. Therefore, the �model-driven book development� approach has been
widely adopted in the printing industry. Compared to handwriting, the bene�ts
of using woodblocks are obvious: 1) woodblock printing is faster and the book
printing process can be automated; 2) all books from one set of woodblocks are
identical and 3) the content of the book are kept on a set of woodblocks which is

12

independent of the media they are printed on.

Figure 1.3: A wooden block

This technique, together with the new printing process, made the mass produc-
tion of relatively cheap books possible for the �rst time. The e�ects of introducing
models in the printing industry were dramatic: reliable maps could be printed for
explorers, musicians could reproduce their work for others, and scholars could
spread their new ideas.

Similarly, the relationship of a model to components can also be seen as a
statue mold to statues or a cookie cutter to cookies, etc., which give certain shapes
according to a pattern. Components can be created in many di�erent ways, but
shaping or forming them around, or on models is one of the ways to quickly create
identical components. If a component is something in the real word, then the
model is a conceptual representation or abstract description of the thing.

The way that people are creating software is not quite di�erent from the way
people copied books before the printing age came. The only changes are that books
are replaced by software products, pages by software components, and handwriters
by programmers.

In the �eld of embedded software, people are still handwriting software prod-
ucts! Even though some parts of software have been componentized and can be
generated, most of software has to be written manually line by line, only with the

13

help of �copy� and �paste� commands. The titans of software industry can produce
excellent software products mainly because they are maintaining a huge army of
programmers, a �nest development process as well as a management system, or
a monopoly position within the companies' own areas, rather than adopting an
approach based on system modelling and automatic code generation. The situa-
tion in small-scale companies is even worse, since they have neither the monopoly
position nor the excellent development process and management system. In order
to lower the cost of development, outsourcing is widely used in practice. However,
it is especially di�cult to outsource embedded software, as its execution hardware
and external environment are required on the spot to test the developed software
product. Consequently, months or years of delay from design to implementation
are inevitably introduced.

The techniques of describing a software system have been limited as well.
When source code is the only way to describe software, then the only people who
can be intimately involved in its production are the programmers. Description of
software is still on a relative low level of abstraction.

In fact, the history of software development has seen a steady lifting of the
level of abstraction at which developers operate. Assembly language has been
largely replaced by higher-level languages such as C. And the C itself has been
marginalized by C++, .NET or Java with the widespread adoption of object-
orientation. Model-Driven Software Development (MDSD) is perhaps the next
evolutionary step in software technology, as it tries to separate a problem's solution
from its technical detail.

MDSD [21][22] has received much attention as a way of improving the e�ciency
of software development. In a word, MDSD is a methodology advocating the use
of models in software development. The goal of MDSD is to increase development
speed through automation, enhance software quality by deriving implementation
from model, and enable software �programming� on a more abstract level, using
an adequate modelling language.

Model-Driven Architecture (MDA) [23][24][25][26] is a particular approach to
model-driven development based on the use of the Object Management Group's
(OMG) modelling technologies. OMG's version of MDSD helps to manage the
growing complexity of software development by de�ning corresponding layers of
abstraction. The focus of MDA is on standardization of notations, such as the
Meta-Object Facility (MOF) [27], the Uni�ed Modelling Language (UML), etc.
The UML has been successful and started to be adopted in industry. MDA is
�an approach to system development, which increases the power of models in
that work. It is model-driven because it provides a means for using models to

14

direct the course of understanding, design, construction, deployment, operation,
maintenance and modi�cation� [23].

Model is a core concept of MDA. Models provide a higher-level of abstraction
than the code, in which software components are usually written. Consequently,
a problem can be described by models in a way that avoids delving into techno-
logical detail. A model can be represented in one or more notations. A notation
determines how to represent a model as a speci�c set of symbols, and these may
be either graphical or textual. MDA de�nes a model as follows:

�A model of a system is a description or speci�cation of that system and
its environment for some certain purpose. A model is often presented
as a combination of drawings and text. The text may be in a modelling
language or in a natural language� [23].

Platform is also a core concept in the context of MDA, MDA de�nes a platform
as follows:

�A platform is a set of subsystems and technologies that provide a
coherent set of functionality through interfaces and speci�ed usage
patterns, which any application supported by that platform can use
without concern for the details of how the functionality provided by
the platform is implemented� [23].

Based on the two concepts, MDA makes a distinction between Platform-

Independent Models (PIMs) and Platform-Speci�c Models (PSMs). A platform
independent model focuses on the operation of a system while hiding the details
necessary for a particular platform. It re�ects the part of the complete speci�-
cation that does not change from one platform to another. A platform-speci�c
model combines the speci�cations in the PIM with an additional focus on the
details of using a speci�c platform by a system.

As a signi�cant step of MDA, Model transformation �is the process of con-
verting one model to another model of the same system� [23]. Typically, in the
context of MDSD, a transformation occurs from PIM to PSM, which can be done
manually, with computer assistance, or automatically.

To express a model, a modelling language is considered necessary. A modelling
language is an arti�cial language that can be used to convey information or knowl-
edge about systems in a structure that is de�ned by a consistent set of rules. The
rules are used for interpretation of the meaning of components in the structure.
The �owchart, introduced in 1930s, that represents an algorithm or process using
boxes and arrows of various kinds, is maybe the most popular modelling language
adopted in designing or documenting a process or program.

15

As one of the OMG standards, the UML is a widely recognized and used
modelling standard nowadays. It is a graphical modelling language for visualiz-
ing, specifying and constructing the artefacts of a software-intensive system. The
UML o�ers a standard manner of representing system blueprints, including con-
ceptual things such as business processes and system functions as well as concrete
things such as programming language statements, database schemas, and reusable
software components. UML is designed to be compatible with the object-oriented
software development methods. A set of diagrams are used as partial graphical
representations of a system's model in UML, such as use case diagrams, class
diagrams, sequence diagrams, etc.

As a general-purpose modelling language, UML is used for a wide variety of
purposes across a broad range of domains. However, UML is often criticized as
being large and complex, because it contains many diagrams and constructs that
are redundant or infrequently used. Furthermore, learning and adopting UML
is also problematic, especially when required of engineers, who are familiar with
notations and concepts from a speci�c business domain, lacking the prerequisite
skills.

UML includes a pro�le mechanism that allows it to be constrained and cus-
tomized for speci�c domains and platforms. By using concepts like stereotypes,
tagged values and constraints, the standard UML can be extended to �t a par-
ticular domain. For instance, in order to use UML in the domain of real-time
embedded system, special UML pro�les have been developed such as MARTE
[28], which provides additional capabilities for model-driven development of real-
time and embedded systems. However, basic UML knowledge is still required from
the embedded system engineers.

Instead of trying to support all possible software problems, a Domain-Speci�c
Language (DSL) concentrates on a speci�c subset of problems and directly ad-
dresses the problems faced by the end user in a particular area, such as telecom-
munication systems, real-time systems, control systems, GUI generation, etc.
Domain-Speci�c Modelling (DSM) is a software engineering methodology for de-
signing and developing systems, most often IT systems such as computer software.
It involves systematic use of a DSL to represent the various facets of a system and
to build domain models that describe a bounded �eld of interest or knowledge.
DSM languages tend to support higher-level abstractions than general-purpose
modelling languages, and they require less e�ort and fewer low-level details to
specify a given system.

Having a modelling language designed for a speci�c domain allows a tight �t
with exact needs of the domain, thus reducing the time needed by developers to

16

learn the modelling language, since it o�ers terms and concepts that are familiar
to the developers. By focusing on the speci�c problem domain, such languages
map more closely to the desired solution, which is thus easier to develop, optimize
and use. In the domain of real-time embedded control application, a DSL can be
designed as well.

A domain-speci�c language is usually de�ned by another language. In the
context of MDSD such a language is often called meta-model. A meta-model is a
special kind of model that speci�es the abstract syntax of a modelling language.
Consequently, the language for de�ning a meta-modelling language is called meta-
meta-model. In the context of MDA, meta-models are expressed using a meta-
meta-model standard � Meta-Object Facility. Essentially, it is a domain-speci�c
modelling language designed for de�ning modelling languages. A meta-model of
a DSL is an instance of the MOF, and a model built using the DSL is an instance
of the meta-model.

The MOF framework for meta-modelling is based on an architecture with
four meta-layers. These layers are illustrated in Fig. 1.4. The topmost layer
in this architecture (meta-meta-model, MOF) de�nes an abstract language and
framework for specifying, constructing and managing technology neutral meta-
models. It is the foundation for de�ning any modelling language. All meta-models
de�ned by MOF are positioned at the M2 layer, such as UML for specifying
or visualizing software systems. The models of the real world, represented by
concepts de�ned in the corresponding meta-model at the M2 layer are at the M1
layer. As an illustration, a vending machine model is de�ned in UML at the
M1 layer. Finally, at the M0 layer are things from the real world, which can be
considered as instances of model elements. For example, the vending machine
UML model can be used to generate software code running in as many as vending
machines in the real world.

In this study, meta-models at the M2 layer will be created in the MOF lan-
guage, which can be used to describe domain-speci�c models used to specify dis-
tributed real-time embedded control systems. Tools based on these meta-models
will be created to facilitate M1 layer models creation as well as transformation.
Eventually, code will be generated and executed on a hardware platform at the
M0 layer.

To summarize, the model-driven software development approach enables the
domain application developers to focus on the design solution using platform-
independent models, without being constrained by any implementation-related
considerations. After a complete and fully validated domain model has been cre-
ated, tools can be used for converting the model into a platform-speci�c model

17

Figure 1.4: MOF architecture with four meta-layers

by integrating implementation details. That model is consequently used for gen-
erating the source code. In case of any change or bug removal, the models are
updated and new code will be generated again. As a result, a domain expert who
gets trained on the tools will be able to build the model himself, while the software
experts are only used for developing new tools thus making the MDSD concept
more and more viable. Therefore, it is not necessary to maintain a large number
of programmers to write code for the application and consequently, the cost of
development can be reduced.

However, such an excellent idea does not seem to have been fully adopted
by software producers yet. According to Urban Roth, an IBM Rational sales
specialist who gave a talk about MDSD from an industry perspective at the Mads
Clausen Institute in 2009, less than 15% of the companies in Nordic countries have
started to introduce the MDSD approach in the software development process. In
order to get more knowledge of the situation regarding MDSD usage in industry,
a simple survey has been made. A question: �Is the Model-Driven Development
approach company-widely used to develop software products?� has been posted to
the software development community. It was answered by 16 people having various
software related positions in di�erent industries, such as developer, architect, sales

18

manager, consultant, etc.
From the answers a conclusion can be made: software people believe that the

MDSD is the technology of the future, because the use of models is quite analogous
to what happened in other engineering disciplines such as mechanical engineering
and electronics, which brought quite a lot of bene�ts. However, there are obstacles
preventing the MDSD approach from being popular: on the one hand, it is hard to
generate a complete application from the model; on the other hand, tool support
is inadequate.

In particular, the popularity of this approach is limited by the insu�cient
maturity of the toolsets available. In most cases, the toolset is not there yet to
support full-scale MDSD development. There are few tools that provide all MDSD
features. Some model-based tools (e.g. IAR visualSTATE) deal with only a part
of the development process and generate only the skeleton of the application,
whereas the rest of the code has to be added manually.

However, the generation of complete applications is possible when MDSD is
combined with a component-based framework, because in such a case, the domain-
speci�c part (usually written manually) is implemented as a repository of reusable,
prefabricated components.

Component-Based Development increases the productivity of software devel-
opment due to the reuse of components. CBD focuses on the decomposition of
the software, rather than the automation of the development process, which is
addressed by MDSD. Thus, the combination of MDSD and CBD will lead the
industry towards interoperable, reusable, portable software components based on
standard models. With adequate tool support, automatic generation will also re-
duce the number of errors in the resulting programs, compared to manual coding,
thus improving software quality and dependability.

1.4 Research motivation and goals

The widespread use of real-time embedded control systems poses a serious chal-
lenge to software developers, in view of severe and con�icting requirements that are
related to issues as diverse as economy of production, time to market, safety and
dependability. These systems are characterized by a number of domain-speci�c
properties, such as tight interaction between software, hardware and the external
environment, complex computation dedicated to certain tasks, reliable operation
under hard real-time constraints and restricted operational resources. The above
requirements cannot be met by currently used software technology, which is largely
based on informal design methods and manual coding techniques.

19

As development of software for such systems is a challenging task, a new ap-
proach towards software development is needed, i.e. industrial production of soft-
ware for embedded applications. This is a hot topic of research in the Software
Engineering community, which can be largely characterized by keywords such as
model-driven and component-based design of embedded software. The essence of
this methodology is the adoption of formal models (frameworks) that are used
to systematically develop software applications, and ultimately � con�gure appli-
cations from prefabricated software components, with the support of appropriate
tools.

This methodology can be further enhanced by the introduction of automation
during various phases of software development, resulting in systems that are easier
to develop, integrate and maintain. Furthermore, discontinuity gaps typically
arising in the process of development, whereby the implementation is not always
consistent with the speci�cation, can be eliminated since the implementation can
be derived from, or generated directly from speci�cation models.

A modelling language for specifying systems in the application domain is thus
required. However, a shift in focus away from general-purpose modelling languages
to domain-speci�c modelling languages provides a solution for the problem of lan-
guage incompatibility between the application domain and technical solutions.
With domain-speci�c modelling languages, application developers or domain ex-
perts specify an application using modelling techniques that belong to, or are
even unique for the domain. Such a model bridges the gap between speci�ca-
tion in the application domain and the implementation in the technology domain.
Moreover, the DSL approach actually lifts the development task to higher levels
of abstraction from which the desired implementations can be generated automat-
ically. Consequently, domain experts can easily and quickly specify and generate
or con�gure embedded software that can be understood by more people than just
embedded programmers.

The combination of component-based and model-driven development will in-
crease the productivity of embedded software development and the portability of
the software. It can lead the embedded software industry into a win-win situa-
tion, as the two approaches have complementary advantages. On the one hand,
the well-known problem, i.e. the impossibility to generate the whole software us-
ing MDSD, due to the lack of business logic, can be solved with the support of the
CBD approach, where prefabricated software components carrying the business
logic can be reused in a new application model. As a result, no code needs to be
generated for these reused component models. On the other hand, the MDSD, as
a software engineering paradigm, promises to reduce manual development work

20

by producing automatically software components and applications from models.
To reach the win-win situation in the domain of real-time control systems,

a comprehensive component-based framework, re�ecting the true nature of the
domain, has to be created �rst. Developing such a framework, including a domain-
speci�c modelling language, as well as component models and design patterns, is
a highly complex engineering task, which is currently in the focus of attention of
many research groups.

Research is currently going on at the Mads Clausen Institute, University of
Southern Denmark, aimed at developing executable models and libraries of soft-
ware components for embedded applications, which has so far resulted in the
development of the COMDES framework (Component-based Design of Software
for Distributed Embedded Systems) and design patterns for reusable and/or re-
con�gurable components such as function blocks, actors etc., as well as a timed-
multitasking kernel architecture providing an operational environment for this
type of system [19][29][30][31][20].

However, the developed software design methods can be e�ciently used pro-
vided there is a computer-aided software engineering environment, consisting of a
set of tools, supporting various stages of the software development process.

The goal of the project is to study the problems related to real-time embedded
software design, using both CBD and MDSD approaches, and provide solutions
and the associated software development environment that will hopefully con-
tribute to the development of embedded applications. Accordingly, the research
tasks of the project can be formulated as follows:

• Prototype meta-modelling of the COMDES DSL has been tried out during
several projects, and has been partially de�ned [29][30]. These meta-models
largely focused on the structure and behaviour of signal-processing compo-
nents, execution and interaction of components, and composition of applica-
tions. However, to make the COMDES framework useful, the de�nitions of
only DSL and components are not su�cient. It is also necessary to address
issues like reuse, transformation to platform, allocation to networked plat-
form, automatic generation of all executable code, etc. This means that the
meta-model of the COMDES framework has to contain enough information,
so that it can be used to specify domain-speci�c structure and heteroge-
neous behaviour for real-time embedded control systems. Then, it should be
possible to systematically translate models into source code, and the trans-
lation can be e�cient and complete. The transformations between model
and model, model and code need to be considered as well.

• In accordance with the development process of the COMDES framework,

21

necessary tools supporting the process have to be identi�ed and the func-
tionalities of each tool have to be de�ned, such as system speci�cation, com-
ponent speci�cation, component code generation, application con�guration.
Another issue is their integration into a complete environment and devel-
opment of methodology providing a consistent representation and interplay
between domain-speci�c modelling techniques, as well as an interchangeable
representation of data used by various tools. The domain-speci�c develop-
ment environment �nally captures speci�cations and automatically gener-
ates or con�gures the target applications in the real-time embedded control
engineering domains.

• Technologies required for building the tools as well as the engineering envi-
ronment need to be studied and compared, in order to cover all aspects of
the COMDES software development process. A prototype of the engineering
environment integrating the tools has to be implemented. The environment
itself must be implemented as exchangeable modules (plug-ins) within a
higher-level framework, such as Eclipse or GME that will be used as a soft-
ware bus integrating constituent tools. These and other relevant issues will
be studied in the project with the ultimate goal of developing a prototype
version of a toolbox supporting embedded software development under the
COMDES framework.

A number of success stories in the traditional Software Engineering domain
have proved that CBD is an important step along the road of improving software
development productivity. We are trying to make this technology facilitate the
development of embedded software as well. Furthermore, we strongly believe that
the embedded software industry will increasingly adopt models as �rst-class arte-
facts, and tools automating the steps between models and executable code should
be built to support this kind of development in a speci�c application domain.

To form an e�ective basis for the development of real-time embedded systems,
this project is about building an integrated environment for modelling such sys-
tems with components, and for automatic con�guration of the application and
generation of its implementation. The study is expected to contribute to several
�elds of interest:

• To the embedded software development world, it presents a methodology
for the development of distributed embedded control systems, which com-
bines open architecture and predictable behaviour under hard real-time con-
straints. The embedded system is composed from autonomous system agents
(actors), which are con�gured from trusted prefabricated components.

22

• To the component-based development society, it provides not only an imple-
mentation of reusable and recon�gurable components for embedded software,
but also a framework allowing for applications to be composed of instances
of these components. The components and application can be speci�ed in a
high-level abstraction as models from which implementations can be gener-
ated automatically.

• To the model-driven software development world, it provides meta-models
describing the component-based framework including DSL, components, run-
time environment, and platform, etc., speci�c to distributed real-time em-
bedded control systems. Accordingly, a set of tools based on the meta-
models that automatically transform embedded software models into code
are speci�ed and implemented. Furthermore, the study can also be seen as
an illustrative example of how to adopt the MDSD approach in embedded
software development.

• To the Eclipse community, since the toolset is ultimately implemented in
the Eclipse platform, it provides a demonstration of building a domain-
speci�c modelling environment, combined with a component-based software
development environment, using the Eclipse projects.

Finally, the tools built in this project will hopefully help embedded control
application developers build systems quickly and correctly, and inspire other re-
searchers and developers to create similar tools that rescue programmers from the
tedious manual coding work.

The remainder of the thesis proposes a solution to the problem formulated
above, which is presented in more detail in the following chapters.

Chapter 2 presents design issues concerning tools and technologies that can
be used to develop a software development environments (toolset) supporting
component-based development of embedded software. A number of tools have
been carefully studied in terms of both the functionality o�ered and the technol-
ogy used in order to choose a suitable platform for toolset development.

Chapter 3 presents COMDES (Component-based Design of Software for Dis-
tributed Embedded Systems) � a domain-speci�c framework for embedded control
systems, and the associated software design process. The framework contains a
domain-speci�c language that can be used to specify the structure and behaviour
of distributed real-time embedded control systems using prefabricated executable
components.

Chapter 4 presents a detailed discussion of a set of platform-independent mod-
els that are used to specify components and systems under the COMDES frame-

23

work, which can be seen as an implementation of design methods presented in
Chapter 3. These are illustrated using COMDES graphical notations with accom-
panying meta-models and constraints formally describing the domain models.

As a framework for real-time applications, COMDES needs a run-time environ-
ment to ful�ll all the timing requirements of applications. Therefore, a meta-model
of a real-time operating system is described in Chapter 5, which can be seen as a
platform-speci�c model of a COMDES application. Furthermore, a speci�cation
is given to show how to transform a platform-independent model to a platform-
speci�c model.

The presented COMDES models have been used to develop a number of com-
ponent design patterns, i.e. possible implementations of the models. Chapter 6
presents design patterns for COMDES executable components of the Basic, Com-
posite, State Machine and Modal Function Block kinds as well as Signal Drivers,
and also discusses patterns of higher-level components such as Actors. These
implementation patterns can be used to ful�ll the functional requirements of a
COMDES application.

The COMDES design method is essentially concerned with the models of em-
bedded systems and model transformations in a computer-aided environment.
Chapter 7 presents the transformation processes � from models to executables, as
well as a prototype version of the envisioned software engineering environment for
con�guration of applications from prefabricated components. The Eclipse plat-
form is used to host the environment.

The COMDES framework and its components have been experimentally val-
idated in a number of real-time control case studies. Chapter 8 presents ex-
periments developed during the Ph.D. project: a simpli�ed version of well known
Production Cell Case Study, using the developed toolset for the purpose of demon-
stration.

Finally, Chapter 9 concludes the thesis by discussing the problems addressed
during the execution of the project, and outlines possible directions of future
investigation.

This thesis has been developed under the Danish national research project �
Model Driven Development of Embedded Systems (MoDES), carried out jointly
by three academic partners: SDU/MCI (Mads Clausen Institute, University of
Southern Denmark), AAU/CISS (Centre for Embedded Software Systems, Aal-
borg University), DTU/IMM (Department of Informatics and Mathematical Mod-
elling, Technical University of Denmark), as well as a number of industrial part-
ners, i.e. PAJ Systemteknik, Center for Software Innovation, Danfoss A/S, Skov
A/S, etc. It has been funded by the Danish Council for Strategic Research.

24

Chapter 2

Model-driven Software Development

Frameworks

We are pursuing the goal of creating a development environment comprising a
comprehensive set of tools that will be used to develop embedded real-time soft-
ware. Users of the tools will be able to model a system, check the models, and
generate the software through one or more transformation steps. To obtain such
tools, the simplest way could be: grab a bunch of programmers, start coding from
scratch as soon as possible, and wait for a couple of years. During the process,
outsourcing could be a choice to lower the cost.

However, this is not something that a Ph.D. student with only three years of
project time can a�ord. Fortunately, there are other tools and development plat-
forms available in the world of MDSD, which can be used as foundations to assist
and speed up the development of the tools that we need. Such tools or environ-
ments typically provide a meta-modelling language � a set of generic concepts that
are abstract enough such that they are common to most domains. They can signif-
icantly lower the cost of obtaining tool support for a DSM language by providing
assistance for meta-model creation and generating parts of the implementation
i.e. editors for the modelling language. As a result, we need only to focus on the
meta-model constructs that are tailored for the domain characteristics.

This chapter �rst introduces a number of existing system development tech-
nologies for embedded real-time control systems mainly from the tool point of
view, and then provides a brief overview of typical modelling technologies and
engineering methodologies for MDSD with respect to CBD that could be used to
create domain-speci�c tools.

25

2.1 Examples of embedded system development

tools

Presently, there are numerous component-based and model-based software devel-
opment technologies for embedded real-time control systems available in both the
academic and commercial domains [32]. Some of them are quite sophisticated
and have been validated in industrial applications. This section presents a brief
overview of tool support for several software design methods that are typical ex-
amples in their areas of application: industrial control systems speci�ed in terms
of function block diagrams and other languages de�ned in standard IEC 61131-
3; embedded applications speci�ed in terms of hierarchical and concurrent state
machines, and �nally � component-based development of software for distributed
embedded applications.

2.1.1 IEC 61131-3 standard

The automation industry has adopted the IEC 61131-3 standard, which de�nes a
number of special-purpose languages for programmable logic controllers (PLCs)
used for automation of electromechanical processes, such as control of machinery
on factory assembly lines, amusement rides, or lighting �xtures. This kind of con-
troller is usually designed for multiple inputs and output arrangements, extended
temperature ranges, immunity to electrical noise, and resistance to vibration and
impact. A PLC is an example of a real-time system since output results must
be produced in response to input conditions within a bounded time, otherwise
unintended operation will result.

Under IEC 61131-3, a PLC can be programmed using one or more languages
de�ned in the standard. IEC 61131-3 is the only global standard for industrial
control programming. It harmonizes the way people design and operate industrial
controls by standardizing the programming interface, which allows people with
di�erent backgrounds and skills to create di�erent elements of a program during
di�erent stages of the software lifecycle: speci�cation, design, implementation,
testing, installation and maintenance. The standard includes the de�nition of the
Sequential Function Chart language, used to structure the internal organization
of a program, and four interoperable programming languages: Instruction List,
Ladder Diagram, Function Block Diagram and Structured Text. Via decomposi-
tion into logical elements, each program is structured, increasing its reusability,
reducing errors and increasing programming and user e�ciency.

Presently, there are a number of vendors who o�er IEC 61131-3-based devel-

26

opment environments for control applications, such as MULTIPROG from KW-
Software GmbH, OpenPCS from SYS TEC electronic GmbH, SIMATIC STEP 7
from Siemens AG, CoDeSys from 3S-Smart Software Solutions GmbH, etc. Due
to the fact that these development environments are designed for the purpose of
commercial use, they typically contain a number of tools providing comprehensive
support for a broad variety of tasks that are typically executed in an automation
project:

• The toolset basically provides a programming environment supporting all
the �ve programming languages according to de�nition in IEC 61131-3.

• It usually comes with an o�ine simulator to execute and debug programs
no matter if any control hardware is available. The simulator can run on
the same computer as the programming system. As a result, an application
can be debugged before it goes to the real process and thus save valuable
time when it comes to integration.

• It o�ers a compiler that generates code containing controller-speci�c binary
instructions that can be directly executed.

• It provides a library of loadable function blocks for control tasks. For exam-
ple, a standard PID control algorithm is implemented as a function block
that can be graphically con�gured with the appropriate parameters, and
be used wherever closed-loop control tasks are needed, e.g. temperature
control, pressure control, �ow control as well as �ll-level control, etc.

Apart from the above mentioned essential features, an IEC 61131-3 develop-
ment environment usually also supports features like deployment management,
controller online updates, version control, system diagnostics, etc. which are help-
ful and meaningful to industrial users.

This kind of environment can be illustrated with the CoDeSys Automation
Suite � a comprehensive software development toolset for industrial automation
systems. All common automation tasks solved by means of software can be realized
with the CoDeSys Suite based on the widely used controller and PLC programming
system of the same name. Matching the IEC 61131-3 standard, it supports all
standard programming languages but also allows for the inclusion of C-routines.

CoDeSys v3.3 consists of a number of tools for PLC software development.
The basic toolset includes:

• CoDeSys V3 � the IEC 61131-3 programming system supporting all of the
programming languages de�ned in the IEC standard (see Fig. 2.1)

27

• Gateway Server � for the communication between the CoDeSys programming
system and compatible controllers

• CoDeSys SP Win V3 � a SoftPLC under Windows NT/2000/XP with soft
real-time properties

The development environment contains the PLC programming system with
complete online and o�ine functionality, compilers as well as additional compo-
nents for con�guration, visualization etc. Optional tools are available for ap-
plication in speci�c domains, i.e. motion control. Communication between the
development and the device layer is based on the CoDeSys Gateway Server.

Figure 2.1: CoDeSys programming system

Apart from programming, the toolset also supports deployment by organising a
project to include the programming objects that make up a PLC program together
with the resource objects necessary to run one or several instances of the program
(application) on certain target systems (PLCs, devices).

Programming objects (POUs) such as programs, functions, function blocks,
methods, interfaces, actions, data type de�nitions etc., are not device-speci�c but
they might be instantiated for use on a device. For this purpose, program POUs
must be called by a task of the respective application. The execution of program-
ming objects is controlled by one or several tasks. Real preemptive multitasking

28

can be realized, but the user must explicitly take care of the synchronization
problems.

A device object represents a speci�c (target) hardware object, such as con-
troller, �eldbus node, bus coupler, drive, I/O-module, monitor, etc. Each device
is de�ned by a device description that speci�es the properties of a device concern-
ing con�gurability, programmability and possible connections to other devices. It
must be installed on the local system in order to be available for allocation. It is
possible to run an application on a simulation device which is per default available
within the programming system. So, no real target device is needed to test the
online behaviour of an application.

A standard library is provided, containing all functions and IEC 61131-3-
compatible function blocks that are required as standard POUs for an IEC pro-
gramming system. Several other libraries are shipped supporting additional func-
tionalities, e.g. a utility library containing a collection of various blocks that
can be used for bit/byte manipulation, auxiliary mathematical functions, signal
generators and analogue signal processing, etc.; communication-speci�c libraries
allowing an IEC application to remotely access devices in accordance with the
type of �eldbus used; and a basic library providing function blocks for motion
control, i.e. controlling the motion of a single axis as well as the synchronized
motion of two axes.

The tool supports code generation through integrated compilers and the use
of machine code results in short execution times. However, machine code will not
be generated until the application project gets downloaded to the target device
(PLC, simulation target). Therefore, no code generation is done when the project
is compiled via the build commands. The build process is done to check the project
for syntactical errors.

The development environment itself is built as a component-based system,
where the functionality available in the environment depends on the currently
used plug-ins (components). In addition to the essential system plug-ins, customer
speci�c plug-ins can be optionally created, such as various editors, code generators,
communication drivers, etc.

2.1.2 IAR visualSTATE

IAR visualSTATE is a set of highly sophisticated and easy-to-use development
tools for designing, testing and implementing embedded applications modelled
with hierarchical and concurrent state machines (UML Statecharts). It provides
advanced veri�cation and validation utilities and generates very compact C/C++
code that is 100% consistent with system design. As a commercial tool, it also

29

provides automatic documentation generation with comprehensive information.
The visualSTATE toolset comprises the following fully integrated tools al-

lowing for development and test of embedded applications based on Statecharts
diagrams:

• Navigator � a graphics-based project management tool for the overall han-
dling of visualSTATE projects, from model design over test and simulation,
to code generation and documentation of visualSTATE projects

• Designer � a graphics-based application for designing Statecharts diagrams
using the UML notation

• Veri�cator � a powerful test tool for dynamic formal veri�cation of models
created with the Designer

• Validator � a graphics-based application for simulating, analysing, and de-
bugging models created with the Designer

• RealLink � a tool for testing a model in a target application

• Coder � the tool can automatically generate code on the basis of models
created with the Designer

• Documenter � a tool allowing for creating an up-to-date documentation re-
port on a visualSTATE project, including design, tests, and code generation

In addition, it can be fully integrated with the existing IAR Embedded Work-
bench, a fully integrated C/C++ compiler and debugger toolset, enables true
state machine debugging on hardware, including direct graphical feedback in var-
ious levels of detail.

As a tool for design tasks dealing with functional behaviour, it has a graphics-
based editor for designing Statecharts diagrams using the UML notation (see Fig.
2.2). An embedded application can thus be designed by drawing objects, events,
and actions etc, based on the concept of hierarchical state machines that can cap-
ture concurrent behaviour inside one state machine. The concept also incorporates
both Mealy semantics, in which actions are associated with transitions between
states, and Moore semantics, in which actions can take place within states.

The design philosophy of visualSTATE can be expressed as follows:

• Map events in the environment, like device driver input or interrupts, to
state machine events.

30

Figure 2.2: A state machine model in visualSTATE

• Capture the discrete system logic in states, events, transitions and actions
using UML diagrams.

• Map actions to functions or device drivers interacting with the environment.

By separating the core system logic from the environment, it is possible to
generate extremely tight C code for the state machine logic. As a result, it is
easy to port a design to di�erent hardware platforms with minor modi�cations
involving events and actions. The generated code can run on any target, regardless
of Operating System (OS). There are no requirements on any OS services, since a
design model can express concurrency among state machines. If an OS is present,
it is very easy to integrate a visualSTATE model into the run-time environment.

Formal veri�cation can be performed on the model, thereby discovering pos-
sibly erroneous behaviour at an early stage. The visualSTATE veri�cation is an
example of model checking, which is a set of di�erent methods of algorithmically
verifying that a model satis�es a speci�cation, such as absence of deadlock, un-
reachable states or unused events etc.

There is also a validation tool available to ensure at an early stage of design

31

that the application behaves as expected, even before the hardware exists. It
o�ers operations such as stepping through states, setting breakpoints, animation,
etc. The functionality includes graphical animation of the state diagram when
executing, the possibility to set breakpoints at the state machine level instead of
the C level, as well as trace and log functionality.

In summary, visualSTATE is an integrated development environment for de-
veloping, testing, and implementing embedded applications based on Statecharts
diagrams. It includes several tools, which help increase productivity and qual-
ity when developing embedded software. Its design model is especially suited to
dealing with the discrete-event behaviour of systems.

2.1.3 AutoFocus

AutoFocus [16][17][18] has initially been developed at the Technical University
of Munich (TU Munich) and further development has been carried out by TU
Munich and Validas. It provides a graphical software development environment
for distributed embedded systems. The main focus of AutoFocus is on the mod-
elling, simulation, validation and code generation facilities for component-based
embedded applications. Furthermore, it supports version control, test manage-
ment and test visualization.

The tool supports a modelling language that comprises a set of concepts used
to describe distributed systems, i.e. components, ports, channels, control states,
etc. These concepts are based on the idea of a system being made up of a network
of communicating components. A simpli�ed representation of the AutoFocus
meta-model is shown in Fig. 2.3 [16], using the UML class diagram notation as
the meta-modelling language.

As the main building blocks of systems, components encapsulate data, internal
structure, and behaviour. Components can communicate with their environment
via well-de�ned interfaces. Components are concurrent: each one of them runs se-
quentially; however, in a set of components, each component's run is independent
of the other components' runs. A global system clock drives all components in
a system, and each component carries out one operation per system clock cycle.
Components can be hierarchically structured, i.e., consist of a set of communicat-
ing sub-components.

Control states and transitions de�ne the control state space and the �ow of
control inside a component. Each transition connects two distinct controls states
(or one control state with itself, in case of a loop transition) and carries a set of
annotations i.e. guards, assignments, etc. determining its �ring conditions.

Ports are used for the communication between a component and its environ-

32

Figure 2.3: Basic modelling concepts of AutoFocus: the meta-model

ment. Components read data from input ports and send data to output ports.
Ports are named and typed, allowing only speci�c kinds of values to be sent/re-
ceived to/from them. There are two kinds of ports: so-called immediate ports
and delayed ports. Immediate ports pass along the value that is written to them
immediately, that is, within the same system clock cycle, whereas delayed ports
propagate values written to them not before the next system clock cycle.

Channels connect component ports. Channels are unidirectional, named, and
typed. They de�ne the communication structure of a system.

AutoFocus uses a signal-based communication. Communication is performed
in a synchronized manner: all components communicate in a time-driven round-
based scheme with a global time-rate for all components. Within each round,
events for occurrence of a message as well as the non-occurrence can be detected.

The above concepts are su�cient to describe a large class of systems. Based on
these concepts, AutoFocus provides four di�erent views of the system. Each of
those views concentrates on di�erent aspects of the system, i.e. system structure,
functional behaviour, etc. The integration of the views on a common semantic
basis [17] leads to an integrated formal speci�cation of the system.

System Structure Diagrams (SSDs) (Fig.2.4) describe the static aspects of a
distributed system via a network of interconnected components exchanging data
over channels. It provides both the topological view of a distributed system and
the syntactic interface of each individual component. System structure diagrams

33

are represented graphically, where rectangular vertices symbolize components and
arrow-shaped edges stand for channels.

Figure 2.4: AutoFocus system structure diagrams

The types of the data processed by a distributed system are de�ned in a textual
notation. It allows the experienced developer to de�ne his own data types and
corresponding functions while designing of the model. The data types de�ned here
may be referenced by other views, for example as channel data types in SSDs, or
by local variables of components.

State transition diagrams (STDs) are used to describe dynamic aspects, i.e.
the behaviour of a distributed system and its components. Each system compo-
nent can be associated with an STD, and each state of a state transition diagram
can have an STD as a substructure. These diagrams are similar to Statecharts
diagrams, known from the UML modelling language. Graphically, they are repre-
sented as graphs with labelled oval nodes as states and arrows as transitions.

Besides STDs, extended event traces (EETs) may also be used to describe the
behaviour of distributed systems by exemplary runs associated with a component-
based view of the system. The interaction view can be represented as extended
event traces describing the communication within the system, and between the
system and the external environment. The notations used are similar to message
sequence charts (MSCs) or sequence diagrams.

Architecture. The AutoFocus tool is designed as a distributed environ-
ment with a common repository containing all project-related documents and
multiple clients connected over a network [18]. The core of an AutoFocus client

34

is the project browser, displaying all projects, their documents, and versions avail-
able in the repository. By selecting a document, the project browser requests the
document from the repository and opens a window using the appropriate editor.

Editors. AutoFocus provides di�erent editors for the graphical descrip-
tion techniques. All of these editors use an identical user interface concept with
mouse-based user interactions to facilitate fast editing of SSDs, EETs and STDs.
Hierarchical diagrams, which are a core concept of the AutoFocus system model,
are fully supported by the editors.

Library. Various prede�ned libraries of basic components are available. If
there are no suitable components for a particular area of application, it is also
possible to build a dedicated library containing the required components.

Syntactic checks. Abroad variety of syntactic consistency checks is o�ered by
theAutoFocus tool, such as: Do all components have a re�nement or behaviour?
Are all the ports connected and are all the channels bound? Do all components
have a unique name? Are the transitions connected?

Simulation. Semantic diagram consistency is supported by the tool by sim-
ulating the system. It is possible to run the simulation using the AutoFocus
GUI on the host computer, without any real embedded hardware. It allows devel-
opers to view the SSDs and the STDs and to track the signals graphically. In the
simulation process the cycle-time can be adjusted, so that the simulation can be
viewed at the speed desired. The simulation also visualizes the state of the whole
system including active automaton states and values of variables and channels,
which o�er a good overview on how the entire system reacted to input signals.

Code generation. From the models created with the AutoFocus tool Java,
Ada or ANSI-C code can be generated with corresponding code generators. The
generated code can be run on various platforms, where Java, Ada or C code may be
compiled and executed. Using cross compilers the ANSI-C code may be adjusted
to run on almost any embedded system.

2.1.4 Summary

Based on the introduction given so far, it can be clearly seen that the embed-
ded development tools basically concern the description of system in high-level
languages based on a number of concepts or models, and transformation of the
system description into low-level code. Advanced development tools usually place
the emphasis on modelling in a domain-speci�c language rather than coding in a
general-purpose language.

The tools from the IEC 61131-3 family have been accepted by the automation
industry, thus the functionalities provided by the tools directly re�ect industrial

35

requirements. The visualSTATE is a model-driven development tool employing
state machines as the underlying modelling concept. It contains tools not only
for modelling and code generation, but also for analysis, such as veri�cation and
validation (simulation). Unfortunately, it does not provide adequate support for
components, and reuse is possible only at the source code level.

AutoFocus is a good example of an environment integrating the model-driven
and component-based development approaches, whereby a system is decomposed
into a number of components that have a well-de�ned meta-model as foundation.
Users start software development by formally modelling the system, using certain
graphical and textual notations. While modelling a system, components that
are saved in libraries can be reused at model level. Apart from code generation,
checking and analysis against models are supported as well. Both system structure
and functional behaviour can be modelled in this environment. However, the
modelling concepts do not deal with timing behaviour explicitly.

Such tools reveal typical features of a modern embedded software develop-
ment environment, concerning model-driven and component-based development:
domain concepts used as foundation, graphical modelling of components and sys-
tems, library of component models, analysis of the system in order to validate the
model, code generation out of the validated model, deployment on various hard-
ware platforms, etc. However, developing domain-speci�c modelling tools sup-
porting all these features is a very complicated task. It can be eventually made
easier by using design methods and software engineering environments (platforms)
speci�cally targeted at tool development.

The rest of this chapter will discuss software technologies and development
platforms that can be used to create comprehensive domain-speci�c tools and
toolsets, using a model-driven software development (MDSD) approach.

2.2 Required aspects and features of MDSD plat-

forms

As depicted in Fig. 2.5, when implementing the MDSD developers typically start
with creating a meta-model of the domain-speci�c language used to specify the
PIM. The DSL is used to model the structure and behaviour of the target system
on an abstract level. It is also necessary to create a meta-model for the PSM,
in case the PSM and the PIM are written in di�erent DSLs. These abstract
PIM models will then successively be transformed into more speci�c models, and
transformations between PIM and PSM have to be precisely speci�ed. Textual
artefacts such as code, con�guration scripts, documentation, etc., will be �nally

36

generated, resulting in the desired system. Thus, developers have to deal with a
lot of di�erent meta-models, and they need tool support in de�ning, transforming,
and generating meta-models.

Figure 2.5: DSL development process

In terms of the process, languages like meta-model de�nition language, GUI
de�nition language, constraint de�nition language, transformation de�nition lan-
guage and code generator de�nition language are necessary to construct a DSL,
as well as the corresponding tools.

The meta-model de�nition language (meta-meta-model) is used to build a
meta-model that de�nes the structure of the DSL involving the vocabulary of
domain concepts in the language, how these concepts can be combined to create
domain-speci�c models, etc. The meta-model de�nition language is usually rich
enough to describe modelling languages for a wide variety of domains.

The GUI de�nition language de�nes the way that models are presented, such
as using graphical notations or textual notations. In other words, the meta-model
de�nition language de�nes the abstract syntax of a DSL, while the GUI de�nition
language de�nes the concrete syntax.

Although the structure of models has been restricted by a meta-model of the
DSL, when model instances are created by developers, they could still be incom-
plete or incorrect. Hence, certain constraints on the meta-models have to be
speci�ed, so as to make sure that their static semantics is correct. In this context,
static semantics means the set of rules that specify the well-formedness of domain
models, such as multiplicity constraints, aggregation constraints, etc., that are

37

typically de�ned in a constraint de�nition language.

The meaning of the domain concepts in a DSL is given by dynamic semantics,
which guides the execution and transformation of the models. As DSL adopts
concepts from the problem domain, it should be designed intuitively clear, so that
a domain expert would easily know the meaning of the language elements. De-
notational semantics and operational semantics are the main approaches that can
be used to formalize the meaning of DSL constructs [33]. Model transformation
usually implements the DSL's semantics.

Model transformations are an integral part of the model-driven software de-
velopment approach. Transformations between models that conform to corre-
sponding meta-models can be implemented in a model-to-model transformation
language. If the target of a transformation is text or code, it can be viewed as a
special case of model transformation � model-to-text transformation. A language
that speci�es a code generation process can save countless hours and reduce te-
dious coding. Furthermore, since the eventual goal is to extract information from
the model data in some way, facilities are needed to parse models based on meta-
models before doing any transformation.

For example, the Model Driven Architecture [23], which has been proposed by
the Object Management Group, provides support for MDSD by o�ering a concep-
tual framework with an emphasis on standardization. Within the scope of MDA,
the OMG standard provides Meta Object Facility as a language for the de�nition
of meta-models and thus, a DSL can be based on MOF. The GUIs for UML can
be used as GUIs for the DSL too, provided that the DSL extends the UML meta-
model using pro�les. A particular instance of the meta-model is exported as an
XMI (XML Metadata Interchange) document, which is accepted by most of the
MDA tools as an input format. UML class diagrams do allow the speci�cation
of some basic rules, for example, the multiplicity of associations. For more com-
plex semantic speci�cations, however, UML employs Object Constraint Language
(OCL) expressions to specify constraints. Together with UML 2.0, action seman-
tics is a way of specifying algorithmic behaviour, i.e. the implementation of class
operations. Query/View/Transformation (QVT) is one of the OMGs standards
used to describe transformations between source and target models. Although
there is no standard for code generation, a number of technologies exist on the
market parsing UML-based models and transforming them into code.

Presently, there are several notable DSL development tools from academic
research that meet the requirements discussed above. However, there is one more
thing to consider. While the MDSD approach focuses on di�erent aspects of
software development other than CBD, some meta-modelling approaches disregard

38

the means for componentization and reusability at the model level. However, in
the context of CBD, component reuse is a natural requirement. When taking
both CBD and MDSD approaches into account, some DSL development tools
explicitly provide means for modelling components, and afterwards, allow for the
use and reuse of the de�ned component models when creating application models.
Therefore, support for componentization and reusability at the model level by the
fundamental DSL development tools should also be a point of consideration.

The following sections provide a brief overview of MDSD tools that can be
used as a foundation for building specialized tools constituting an engineering
environment for component-based development of embedded software. These tools
are evaluated in terms of the aspects discussed above.

2.3 GME

The Generic Modelling Environment (GME) [34][35] is a powerful tool developed
by Vanderbilt University Institute for Software Integrated Systems (ISIS), sup-
porting graphic de�nition of domain-speci�c modelling languages and the capa-
bility to generate domain-speci�c graphic modelling environments. GME allows
the users to de�ne a meta-model paradigm using an extended UML class diagram
notation with constraints written in OCL. Based on the meta-model paradigm,
GME generates a domain-speci�c modelling environment, whereby entities de�ned
in the paradigm are available to graphically construct domain-speci�c models.

The tool is used mostly in the context of the Model-Integrated Computing
(MIC) approach [36] that addresses the problems of designing, creating, and evolv-
ing information systems by providing domain-speci�c modelling environments, in-
cluding model analysis and model-based program synthesis tools. MIC places
models in the centre of the entire life cycle of systems, including speci�cation,
design, development, veri�cation, integration, and maintenance. MIC facilitates
MDSD by providing a technology for the speci�cation and use of domain-speci�c
modelling languages (DSMLs), a fully integrated meta-programmable MIC tool
suite, and an open integration framework supporting formal analysis tools, veri�-
cation techniques and model transformations in the development process. More-
over, MIC not only deals with automatic applications synthesis from the model,
but also emphasizes model analysis. Following the MIC approach, one will be able
to develop a model integrated computing environment for a given problem.

The syntactic de�nitions of a DSL are modelled using the MetaGME language
(Fig. 2.6 [34]). The MetaGME o�ers a set of generic concepts such as Project,
Folder, Model, Atom, Connection, etc., to create a meta-model. The static se-

39

mantics are speci�ed with constraints using the OCL. Thus, complex constraints
such as relationships constraints, rules for the containment hierarchy and prop-
erty values can be represented in GME. Meanwhile, a built-in constraint manager
is provided to enforce all domain constraints during model building. This con-
straint manager can be invoked explicitly by the user, and it is also invoked when
event-driven constraints are present during modelling.

Figure 2.6: GME modelling concepts

An editor for domain-speci�c modelling is automatically con�gured once its
meta-model has been de�ned and imported into the tool, which requires no GUI
de�nition language. Additional methods are available for customizing GME for
implementing domain-speci�c visualization of the models. But this kind of cus-
tomization capability is limited without modi�cation of the source code of the
tool.

GME is good at creating diagrams describing the static structure of a system
such as class diagram and UML component diagram, but it is hard to make
diagrams representing the dynamic behaviour of a system like message sequence
chart, UML activity diagram, etc., without largely modifying the tool.

40

GME itself does not provide any transformation de�nition language. But there
is a Graph Rewriting and Transformation (GReAT) language [37][38] � a graphical
language for the speci�cation of graph transformations between domain-speci�c
modelling languages built in GME. GReAT uses meta-models to specify the ab-
stract syntax of the input and the target models, and sequenced graph rewriting
rules for specifying the transformation itself.

GME provides several techniques, i.e. The Builder Object Network (BON), for
programmatic access to the GME model information. Access to the objects, and
to the relationships between them, is available through methods that act on these
objects. The obtained information can be further used for generating program
code or system con�guration.

GME o�ers no code generation de�nition language. However, the architecture
of GME can be extended through its Add-on mechanism. External tools such
as code generator can register to receive some events and will be automatically
invoked when the events occur.

Figure 2.7: A real-time kernel model in GME

GME supports model reuse by providing concepts of types and instances. By
default, a model created from scratch � based on a metatype � is a type. An

41

instance of a model can be created from a type. Therefore any modi�cation in
a type model propagates down to all its instances. In this way, it is possible to
create libraries of type models that can be used in multiple applications. Based on
prede�ned and veri�ed models residing in these libraries, the developer is able to
create new instances in his or her project without losing the connection to the pro-
totype model. Thus, further enhancements and corrections in the original model
can be easily propagated to all of its instances automatically. Types, instances and
the creation of instances from types are supported by the GME modelling engine,
thus such models and mechanisms need not be constructed in meta-models.

The tool GME (current version 7.6.29) is available at the website of the
Institute for Software Integrated Systems (http://www.isis.vanderbilt.edu/
projects/tools). It is based on Microsoft COM technology and runs only on
the Windows platform. The source code is available for download too, so it is
possible to make customization with any language that supports Microsoft COM
technology (C++, Visual Basic, C#, Python etc.).

2.4 Cadena

Cadena [39] is an Eclipse-based extensible integrated modelling and development
framework for component-based systems, developed by the Laboratory for Spec-
i�cation, Analysis, and Transformation of Software (SAnToS) in the Computing
and Information Sciences Department of Kansas State University. Cadena models
are type-centric in that multi-level type systems are used to specify and enforce
a variety of architectural constraints relevant to the development of large-scale
systems.

Cadena meta-modelling capabilities can be used to formally capture the de�-
nition of widely used component models such as the CORBA Component Model
(CCM), Enterprise Java Beans, NesC, etc. Cadena meta-modelling can also be
applied to specify new component models, including domain-speci�c component
models that are tailored to the characteristics of a particular domain or underlying
middleware capabilities.

The Cadena Architecture Language with Meta-modelling (CALM) is the meta-
modelling language on which Cadena is based. It employs a three-tiered meta-
modelling approach to de�ne a modelling language for a given component frame-
work (Fig. 2.8 [40]), where a model in a particular tier de�nes the language or
vocabulary of entities that can be used in constructing models in the tier below
it. Constraints like multiplicity of associations can be speci�ed when building the
meta-model.

42

The style tier is used to de�ne structures of the architecture elements according
to domain properties (i.e. the vocabulary from a domain) by specifying domain-
speci�c languages for building types of components, interfaces, and connectors,
etc. It describes a meta-model of the architectural elements that can be used in
the construction of a system. Meta-models for PIM and PSM can be built in
the style tier in CALM. Having component kinds de�ned in this tier guarantees
that component types and instances conform to the vocabulary speci�ed by the
style, enables precise speci�cation of components used in the underlying compo-
nent framework, and enables precise speci�cation of domain-speci�c component
modelling languages.

Once an architecture or platform has been described in a style, those domain-
speci�c languages can be used in the module tier to de�ne component and interface
types within a particular architecture. These component types and interface types
conform to the component kinds and interface kinds described within the style.
Types serve as a template from which a set of component instances can be gen-
erated; changes in a component type will propagate to all of its instances. The
scenario tier is used to allocate instances of declared component and connector
types. Scenarios contain instances of component types, instances of other scenarios
(as nested scenarios), and connectors, which tie the instances together.

Figure 2.8: Cadena's three tiered framework

43

The Cadena tool supports both de�nition of meta-models and models in a
form-based or graphical-based GUI. It can in turn be used for creating models
that conform to the newly de�ned meta-models. A GUI de�nition language is
not necessary if a new GUI for a given domain-speci�c modelling is not required.
Means for constraint de�nition, transformation de�nition and code generation
are not o�ered by Cadena. It supports only multiplicity and multiplexity as
constraints when de�ning a meta-model. CALM models can be connected to
analysis and code generation facilities via Cadena plug-ins. Some of Cadena plug-
ins serve as model interpreters that realize the semantics of CALMmodels. Cadena
core APIs are available to parse a model (scenario). In addition to that, the
Cadena object model itself is implemented using the Eclipse Modelling Framework
(EMF). As a consequence, every Cadena model can also be parsed by EMF APIs
too.

Figure 2.9: A meta-model in Cadena

The Cadena is built using the Eclipse environment and framework, leading to
easy enhancement and extension of the features that Cadena currently provides.
This enables developers to build model-driven engineering environments that in-
clude facilities for editing component implementations, model-level con�guration,

44

code generation, simulation, veri�cation, and creation of system builds, etc.
As a MDSD tool, Cadena is directly related to CBD, which makes Cadena

di�erent from other MDSD tools that are not dedicated to the CBD approach. Its
type system matches quite well the inherent reuse requirement of component-based
systems. As a result, the reuse of components in Cadena becomes easy, since the
component type system has been integrated into the development process following
the three tiers, and in turn does not have to be meta-modelled. Without such a
type system, component kind, type, instance as well as relations among them have
to be explicitly constructed in meta-models. Meanwhile, implementations of such
a type mechanism must be provided.

To summarize, CALM/Cadena is �a rigorous type based framework for mod-
elling multiple component middleware platforms, systematically organizing and
transitioning between platform de�nitions, and creating customized development
environments that leverage domain knowledge and automate development process
steps to enable early design decisions for entire product lines�[41].

The tool (currently v. 2.x) is available at the website of the Cadena project
(http://cadena.projects.cis.ksu.edu). It is an Eclipse-based tool, thus re-
quiring Eclipse 3.2 or 3.3 and J2SE 5.0 series Java Virtual Machine.

2.5 MOFLON

MOFLON [42] is an integrated, standard-compliant meta-modelling environment
developed by Real-Time Systems Lab, Technische Universität Darmstadt. With
MOFLON, developers can create well-structured meta-model of a DSL and gen-
erate the complete application logic in Java code. The generated code features
tailored and re�ective access interfaces, an event mechanism, constraint checking,
and XMI import and export facilities.

MOFLON has an OMG's MOF 2.0 standard-compliant visual language as
a meta-modelling language to specify the abstract syntax of a domain-speci�c
modelling language (Fig. 2.10). Furthermore, OCL 2.0 is employed to specify
constraints that cannot reasonably be expressed visually. Consequently, the static
semantics of a meta-model can be expressed more precisely.

Unlike other tools that usually implement the semantics through a model trans-
formation or code generation process, MOFLON provides a language � Story
Driven Modelling (SDM) that allows for the speci�cation of the dynamic seman-
tics of domain-speci�c languages. When specifying the operations of a MOFLON
class, the actual behaviour is described in a story diagram [43] in terms of activi-
ties and transitions using a graphical editor, rather than being written as a piece

45

Figure 2.10: A meta-model for a state machine design language

of source code (Fig. 2.11).
From all speci�cations MOFLON generates Java code, which conforms to Sun's

Java Metadata Interface (JMI) standard � a standard for metadata management.
This code can then be utilized in order to analyse, transform, and integrate models
that conform to the domain-speci�c meta-models. JMI de�nes both a tailored and
a re�ective interface for meta-models. Re�ective interfaces are independent from
a considered MOF speci�cation and can be used for generic access of a compliant
model and generic exploration of the underlying meta-model. Tailored interfaces
allow for convenient typed access to models based on the speci�ed meta-model.

MOFLON is more about meta-modelling, model analysis, transformation and
integration; hence, it does not support a concrete syntax. An editor for the DSL
model has to be provided by developers manually, with the help of the Java code
generated from meta-models.

Model-to-model transformation in the world of MOFLON is also referred to
as model integration. An approach based on Triple Graph Grammars (TGG) [44]
allows for the visual and declarative speci�cation of model-to-model transforma-
tion rules. TGGs explicitly maintain the correspondence of two models by means
of correspondence links that map elements of one model to elements of the other

46

Figure 2.11: A story diagram specifying an operation that deletes a diagram and
its contained elements

model and vice versa.

As a meta-modelling environment, MOFLON enables its users to visually spec-
ify the domain-speci�c meta-model of a considered system. However, by design
it has no concern of component-based development, and thus o�ers no facility for
component model reuse like those provided by GME and Cadena. But models
for component type and instance can be speci�ed with the MOF, and the typing
could be either speci�ed in a story diagram or implemented, based on generated
Java code.

Within the MOFLON environment, the above described technologies � MOF
2.0, OCL 2.0, SDM, and TGG have been combined into a solution for a meta-
modelling and speci�cation language [45]. With these technologies, meta-models
and constraints of a DSL can be created, models can be transformed and the
complete application logic can be generated in JMI-compliant Java code. A DSL
solution for modelling, model analysis, transformation, and integration can be de-
veloped based on the generated code combined with suitable parsers, tool adapters

47

and user interfaces.
The tool (currently, v. 1.3.1) is available at http://www.moflon.org for Win-

dows, Linux and Mac platforms. The Java run-time environment is also necessary
to install and run the tool. The source code of the tool can be accessed as well.

2.6 MetaEdit+

MetaEdit+ [46][47] is an environment for developing domain-speci�c modelling
languages and code generators. The research behind the genesis of MetaEdit+
was carried out at the University of Jyväskylä.

MetaEdit+ facilitates modelling language de�nition with form-based tools
based on the GOPPRR meta-meta modelling language (a language for de�ning
modelling languages). The language provides a set of meta-modelling concepts
like Graph, Object, Property, Port, Relationship, etc. Based on these concepts,
it is also possible to create a meta-model graphically. Because there is no need
for any compilation of code, the language de�ner can test the modelling language
under construction while building it. For de�ning the modelling constraints, in-
stead of providing means to program the constraints of the problem domain into
the language, MetaEdit+ o�ers a wide variety of rule templates to choose from.
Some constraints are de�ned by simply choosing the templates from dialog boxes
rather than programming them. The modelling environment automatically en-
forces the constraints during modelling, thus supporting the modeller in making
correct designs. The templates are limited and can express constraints like types,
occurrence, connectivity, uniqueness, setting default values and de�ning a regular
expression to validate the input values, etc.

MetaEdit+ provides a symbol editor that allows DSL developers to design their
own visual representation for the modelling language [48]. A graphical notation
can be drawn with the editor, thus a GUI de�nition language is not necessary.
A feature, that distinguishes MetaEdit+ from other tools is that an objects ap-
pearance can also be de�ned conditionally, so that it changes automatically if one
of its own, or other object's property values, roles or relationships are changed.
MetaEdit+ o�ers three editors for modelling � a diagram editor, matrix editor
and table editor, allowing the users to choose and switch to whichever format is
more convenient. This feature makes the tool already best-suited for graph-like
languages (Fig. 2.12 [49]).

In MetaEdit+, generators are de�ned using the MERL scripting language. It
provides powerful means for navigating through the model structures (multiple
models and di�erent modelling languages) accessing the design data according to

48

the meta-model. MERL can access multiple models and generate multiple �les,
set protected regions into generated �les, and access external �les and tools during
generation.

MetaEdit+ provides an application-programming interface (API), which can
be used to access meta-model as well as model elements and data programmatically
in real-time. The API also supports model import and export as XML (Extensible
Markup Language).

The tool does not provide a model-to-model transformation de�nition lan-
guage, but the transformation can be implemented via the MetaEdit+ API, which
can be used to read, create, and update models [50]. Capabilities of extending
the tool with other tools are limited; the MetaEdit+ can only execute external
commands via generators. It does not support reuse of models.

MetaEdit+ (currently v. 4.5) is a commercial tool, which is available for all the
major platforms including Windows, Linux, and Mac OS. A 31-day evaluation ver-
sion can be downloaded from http://www.metacase.com. As a commercial tool

Figure 2.12: A mobile application speci�cation language in MetaEdit+

49

whose version 1.0 was released back in 1993, it o�ers practical and mature fea-
tures that are useful for daily development work, such as multi-user environment,
versioning of models, model animation while running code, automatic tracing of
generated code back to model elements, etc.

2.7 Eclipse modelling project

The Eclipse platform can provide the technology foundation for a DSL develop-
ment environment. It o�ers many projects related to domain-speci�c modelling
tool design. There is a broad spectrum of solutions, which o�er a variety of capa-
bilities.

The Eclipse Modelling Framework (EMF) is a modelling framework for that
platform. It provides facilities to create a meta-model, with the support of a
meta-modelling language � the Ecore meta-model that is aligned closely with the
eMOF (essential MOF).

Implementation classes in Java can be generated from Ecore models. These
classes provide a tailored API for building instances of the meta-model. Domain-
speci�c models that conform to the Ecore models can be also parsed by the gen-
erated tailored API or EMF re�ective API. EMF also comes with a couple of
additional generators that generate editors and a generic editing framework for
editing the models. The EMF contains a validation component providing the ca-
pacity of constraint de�nition written in Java or OCL for any EMF meta-model.

The Eclipse Graphical Modelling Framework (GMF) project can be used for
the rapid development of standardized Eclipse graphical modelling editors, by
providing a generative component and runtime infrastructure for developing such
tools. It supports the automatic generation of graphical editors for EMF meta-
models. To obtain a graphical editor for a DSL based on the EMF meta-model,
an additional model must be created to be used by the GMF generator, which
describes how the generated editor will look like and behave. The editor can be
generated out of that model. Furthermore, speci�c behaviour or graphics can be
added using manual coding.

Since model-to-model transformation is a key aspect of MDSD, the model-
to-model transformation (M2M) project delivers a framework for model-to-model
transformation languages. ATL (ATLAS Transformation Language) is a model
transformation language and toolkit. It provides ways to produce a set of tar-
get models from a set of source models based on EMF technology. Its model-
to-model transformation engine has matured over the past few years and is in
widespread use. Alternatively, as an OMG standard for model transformation,

50

QVT (Query/View/Transformation) de�nes a standard way to transform source
models into target models, which is available as an M2M component too.

There is a Model-to-Text (M2T) project that focuses on the generation of
textual artefacts from models. Java Emitter Templates (JET) is a generic template
engine that can be used to generate source code and other output from templates.

Like MOFLON and MetaEdit+, the EMF meta-modelling environment does
not provide special support for component-based development, similar to what
GME and Cadena o�er. Models for component instance and type need to be
speci�ed with the Ecore, and the typing has to be implemented based on generated
Java implementation classes.

Figure 2.13: A graphical DSL in Eclipse

As an open platform, the Eclipse consists of more tools other than modelling,
i.e. it provides the tools Eclipse Java Development Tools (JDT) and Plug-in
Development Environment (PDE) for development tools for Eclipse. Because the
Eclipse is the de-facto platform for implementation of this project, the introduced
Eclipse-based technologies in this chapter will be described in more detail in the
following chapters.

The Eclipse (currently v. 3.4) can be downloaded from http://www.eclipse.

org. There is an Eclipse modelling package that contains a collection of Eclipse

51

Modelling Project components, including those introduced in this section. It is a
Java-based tool, and can run in Windows, Linux and Mac platforms.

2.8 Summary

There are also other publications comparing similar tools and technologies, used to
construct a DSL and related software development tools. In [51], Sivonen has com-
pares several DSL development tools and technologies, in order to build a tool for
a DSL and a code generator. Adopting the MDSD approach to develop the tool,
the survey is focused only on meta-modelling languages, constraint languages, as
well as generator de�nition languages. The above paper also compared the avail-
ability of the development tools such as license, documentation and support, etc.
It does not consider other criteria, listed in our survey, that are instrumental for a
development environment when using MDSD for component-based development.

In [45], �fteen integrated solutions and technology families for DSL construc-
tion are compared covering categories like OMG standards, family of schema-based
graph/model transformation environments, classic meta-CASE solutions, as well
as text-based approaches. The work covers a broad range of criteria i.e. abstract
syntax, concrete syntax, static semantics, dynamic semantics, model analysis,
model transformation, model integration, acceptability, scalability, tool availabil-
ity and expressiveness. However, they do not mention the model reuse aspect,
which is quite important when developing a MDSD solution for component-based
development.

A summary of the features of the presented MDSD development environments
is given in Fig. 2.14. The survey of the above tools, in view of the de�ned
requirements, is based not only on the reviewed publications, but also on our
experience gained while using these tools, to build a prototype toolset supporting
the COMDES framework.

Tools like GME, Cadena, MetaEdit+ and Eclipse are actually integrated meta-
modelling development environments as they support two distinct tasks: 1) They
support the de�nition of meta-models, constraints, concrete syntax and editors for
user-de�ned DSLs; 2) They make the newly-de�ned DSLs available in the tool,
allowing the application developers to use the user-de�ned DSLs. Such kind of
tool is very convenient when constructing a DSL, because once a meta-model of
the DSL has been built, modelling editors based on the meta-model can be easily
con�gured or generated, resulting in easy testing of the meta-model.

Compared to GME, Cadena, MetaEdit+ and Eclipse, MOFLON lacks any sup-
port for the de�nition of the concrete syntax of modelling languages. MOFLON

52

Figure 2.14: Tools for building a component-based development environment

only generates a Java implementation conforming to a meta-model, which can
only be used as a foundation of building a modelling editor; this makes it harder
to use when testing and tuning the meta-model. Furthermore, MOFLON is not
an extensible environment, meaning that tools for processing models (i.e. code
generator) built in MOFLON cannot be integrated into the MOFLON environ-
ment itself. GME, Cadena and Eclipse not only allow the user to use the newly
de�ned DSL, but can also be extended with customized tools, on which an entire
development environment, dedicated to a user-de�ned DSL, can be based.

Cadena is particularly concerned with component-based development, being
able to deal with component reuse by design. Its three-tier architecture featuring
kind, type and instance of a component, can be directly used to model the reuse
aspect of a component-based framework. The instantiation is taken care of by the
tool. It has a graphical editor supporting modelling, but currently the editor is not
so convenient and �exible to use, and customization of the editor (i.e. customized
shape of component) is not provided by the tool. Moreover, only the cardinality
constraints of relationships are supported in Cadena. In the future, when this tool
is further developed and a facility supporting more complex constraints de�nition
is provided, it could become the foundation of our COMDES toolset, as it is based
on the Eclipse and EMF framework, and tools for model-to-model and model-to-
text transformation can be implemented using projects from the Eclipse world.

MetaEdit+ is a commercial meta-modelling product, which o�ers a Symbol
Editor facilitating the customization of visual modelling e�ects and a promising
code generation tool for easy automatic synthesis of code and documentation.
However, the meta-modelling process in MetaEdit+ is not as straightforward as
that in GME or Eclipse EMF, and moreover, constraints de�nition is limited.

GME was the tool used to prototype the COMDES domain-speci�c language

53

in its early stage of development [52]. GME enables a powerful meta-modelling
capability by providing a number of unique meta-modelling concepts, such as sets,
references and aspects, etc.; in addition, the OCL language is fully implemented.
Automatic synthesis of programs is also supported by GME through user-de�ned
plug-ins and the BON API.

A de�ciency of GME is that it is di�cult to dynamically change the graphical
representation of models due to the adopted (�xed) Model-View-Controller archi-
tecture [52]. The customization capability is limited without modi�cation of the
source code of the tool. For example, connection class is used to express a relation-
ship between two objects in GME and the connection can only have attributes.
No other classes, such as atoms and models can be contained in the connection.
Attributes are values of prede�ned simple types, such as integer, string, Boolean
and enumeration. Consequently, if a connection is used in the meta-model to
express an association, the associations modelled using the connection primitive
will be visualized as a line between the objects, and the line can only have de�ned
attributes. However, in certain cases, a model line needs to contain other models
with complicated structures. And there is no way for meta-modelling to satisfy
this kind of requirement, without modifying the tool.

Among the tools discussed in this chapter, the Eclipse platform is the one we
selected to implement the software engineering environment for COMDES. One
of the reasons is that it supports strong meta-model de�nition, GUI de�nition
and �exible constraint de�nition languages. A complex graphical DSL usually
requires several kinds of diagram to specify an embedded system. Moreover, in
each diagram models need to be checked against constraints, which is sometimes
not possible or cumbersome using only OCL. The Eclipse provides a validation
framework that allows for constraints to be checked using Java. Based on the EMF
generated meta-model implementation classes, parsing models is quite easy using
either tailored API or re�ective API. Besides JET, there are other third party tools
available for code generation. Although model reuse is not supported by default,
this feature can be implemented at the meta-model level (see Chapter 4 � Section
4.3.1). With the support of various modelling projects, some baseline of tools
can be generated automatically, if the meta-model of a DSL has been de�ned.
Tools can be easily built and integrated into the Eclipse platform through its
plug-in mechanism. Moreover, it allows for collaboration between heterogeneous
development tools by providing a tool integration solution. Speci�cally, ModelBus
[53] is a model-driven tool integration framework that can be used to build a
seamlessly integrated tool environment for a given development process.

The presented platforms support a broad spectrum of solutions for building

54

MDSD tools with respect to CBD. But after the introduction of the COMDES
framework and its development process in the following chapters, it will be seen
that building the COMDES development environment is a complex problem,
which cannot be directly addressed by the presented technologies, as the cor-
responding platforms are not directly targeted at the COMDES development pro-
cess. Therefore, to achieve our goal, we need a number of technologies and tools
as foundations, which will be described in more detail after the the COMDES
framework and development method have been introduced.

55

Chapter 3

Domain-Speci�c Modelling

Language: the COMDES

Framework

Nowadays, embedded software development is still dominated by conventional de-
sign methods and manual coding techniques. However, these are not able to cope
with continuously growing demands for high quality of service, reduced devel-
opment and operational costs, reduced time to market, as well as ever growing
demands for software safety and dependability. In particular, software safety is
severely a�ected by design errors that are typical for informal design methods, as
well as implementation errors that are introduced during the process of manual
coding.

This situation has stimulated the development of new software design meth-
ods based on formal design models (frameworks) specifying system structure and
behaviour, which can be veri�ed and validated before the generation of the pro-
gram code [10][1]. Furthermore, model-driven development can be combined with
component-based design, whereby design models are implemented by means of
reusable and recon�gurable components. Thus, embedded applications can be con-
�gured using repositories of prefabricated and validated components (rather than
programmed), whereby the con�guration speci�cation is stored in data structures
containing relevant information such as component parameters, input/output con-
nections, execution sequences, etc. Hence, it is possible to recon�gure applications
by updating data structures rather than reprogramming and reloading the entire
application.

The main problem that has to be addressed with this method is to develop a
comprehensive, yet intuitive and open framework for embedded systems. There
are a considerable number of frameworks developed in the traditional Software

56

Engineering domain that employ components with operational interfaces as well
as various types of port-based objects, e.g. actor frameworks [54][55][56][14][57].
However, it can be argued that the architecture of the framework (i.e. models used
to specify component functionality, interfacing and interaction) should be derived
from areas such as Control Engineering and System Science, taking into account
that modern embedded systems are predominantly control and monitoring sys-
tems. This approach has been used for some time with industrial control systems,
whose software is built from component objects (function blocks) that implement
standard application functions and interact by exchanging signals. Accordingly,
function blocks are `softwired' into function block networks that are mapped onto
real-time control tasks, e.g. standards IEC 61131-3 [7] and IEC 61499 [58].

Unfortunately, this is a relatively low-level approach, which is inadequate for
modern embedded applications. These vary from simple controllers to highly
complex, time-critical and distributed systems featuring autonomous subsystems
with concurrently running activities (tasks) that have to interact with one another
within various types of distributed transactions. The above standards do not
provide modelling techniques and component de�nitions at this level and do not
de�ne concurrency, whereby the mapping of function block networks on real-time
tasks, as well as task scheduling and interaction are considered implementation
details that are not a part of the standard.

In order to overcome the above problems, the Control Engineering models must
be augmented with concepts and techniques developed in the Computer Science
domain (concurrency, scheduling, communication, state machines, etc.), as advo-
cated by leading experts in the area of Embedded Software Design, e.g. [1][59].
The resulting framework must support compositionality and scalability through a
well-de�ned hierarchy of reusable and recon�gurable components, including both
actors and function blocks (FBs). On the other hand, it has to adequately specify
system behaviour for a broad range of sequential, continuous and hybrid control
applications.

These guidelines have been instrumental in developing the COMDES frame-
work [19] and its follow-on version COMDES-II [31][20]. This is a domain-speci�c
framework for time-critical distributed control applications, featuring a hierar-
chical component model, as well as transparent signal-based communication at
all levels of speci�cation. In COMDES-II, an embedded application is composed
from actors, which are con�gured from prefabricated function blocks. This is an
intuitive and simple modelling technique that is easy to use and understand by
application experts, i.e. control engineers.

So far, COMDES-II design models have speci�ed informally using graphical

57

and textual notations [31][20]. Previous research has also addressed the problem of
developing meta-models of COMDES components using the modelling notations
of GME [29][30]. However a complete meta-model of the framework has not been
developed. This problem has been now addressed in the context of the Eclipse
framework and its EMF modelling language (see Chapters 4 and 5). However, de-
veloping a complete meta-model requires a precise and unambiguous speci�cation
of design models constituting the domain-speci�c language of COMDES-II. This
can be best accomplished by developing a formal (mathematical) speci�cation of
the framework.

The formal speci�cation of a component-based framework such as COMDES-II

is a complex task, which must be addressed systematically, having a clear idea of
its objectives. Speci�cally, it is necessary to provide an answer to the following
questions: what aspects of the framework are to be speci�ed; how is that to be
achieved (i.e. what techniques should be used) and ultimately � why is it needed,
i.e. what is the purpose of the exercise?

The formal speci�cation of an embedded application in COMDES-II must
consider two interrelated aspects, in the context of component-based design of
embedded software:

• Speci�cation of system structure

• Speci�cation of system behaviour

In other words, it is necessary to specify an application as a composition of
prefabricated components, following precisely de�ned rules and constraints. This
must result in a set of diagrams that provide an adequate and unambiguous de-
scription of the application, much in the same way as circuit diagrams specify
hardware applications. On the other hand, it is necessary to precisely specify the
operation of the application, implemented as a composition of �trusted � compo-
nents having precisely de�ned behaviours in the functional and timing domains.
This must be done in accordance with the modelling techniques and principles
of operation of COMDES-II, i.e. executable components modelling integrated
circuits, component hierarchy and composition, clocked synchronous model of
computation, etc., allowing for the extensive use of the principle of separation of

concerns [31][20].
One important observation is that the speci�cation of system behaviour must

be consistent with, and follow from the speci�cation of system structure. In par-
ticular, when following a component-based approach, an application is conceived
as a composition of prefabricated components; hence, it is natural to specify its
behaviour as a composition of component functions. In the case of COMDES-II,

58

system structure is described by hierarchical data �ow models, i.e. function block
and actor networks, whereby the execution of components (function blocks and
actors) is modelled by the corresponding functions � from input signals to output
signals. Consequently, system behaviour can be speci�ed by one or more composite
functions representing signal transformations � from system input to system out-
put signals, which are executed in response to timing or external events. However,
the detailed speci�cation of some component functions may require an operational
speci�cation, e.g. the state transition function of state machine components [60].

Precise speci�cation of system structure and behaviour is a precondition for
developing a domain-speci�c methodology that will ultimately make it possible to
con�gure component-based embedded applications that are correct by construc-

tion. In particular, precise behavioural speci�cation is a prerequisite for the devel-
opment of appropriate analysis methods that will be used to assess the behaviour
of the con�gured application. This can be done using either the original design
models or equivalent analysis models derived through some kind of semantics-
preserving model transformation, e.g. COMDES � Simulink and COMDES �

Uppaal transformations [61].
The above guidelines have been used to develop the formal speci�cation of

COMDES-II, which is presented in the following sections. The rest of the chapter
is organized as follows: Section 3.1 presents a top-down speci�cation of system
structure in terms of data �ow models describing actors and actor interactions,
as well the internal structure of actors, which are composed of prefabricated func-
tion blocks. Section 3.2 presents a bottom-up speci�cation of system behaviour
starting with function block behaviour, followed by actor behaviour and �nally
� system behaviour. These are de�ned as composite functions specifying signal
transformations � from input to output signals � of function blocks, actors and
the system itself, respectively. Section 3.3 discusses the implications of the pro-
posed framework for the software development process, which is ultimately aimed
at designing systems that are correct by construction. The concluding section
summarizes the main features of the proposed framework and their implications.

3.1 Speci�cation of system structure

3.1.1 COMDES-II design models � an introduction

In COMDES-II, an embedded system is conceived as a composition of active
objects (actors) that communicate by exchanging labelled state messages (signals).
Communication is transparent, i.e. independent of the allocation of actors onto

59

network nodes. Accordingly, the system structure can be represented by an actor
network � a data �ow model specifying system actors and the signals exchanged
between them (see e.g. Fig. 3.1).

Figure 3.1: COMDES-II actor network � an example: the DC Motor Control
System

An actor is modelled as an integrated circuit consisting of a signal-processing
block, which is mapped onto a non-blocking (basic) task, as well as input and
output signal drivers that are used to exchange signals with other actors and the
outside world (see Fig. 3.2). Actor tasks are con�gured from function blocks and
are modelled by function block networks. A function block is a reusable executable
component that may have multiple instances within a given con�guration. There
are four kinds of function block: basic, composite, state machine and modal func-
tion blocks that can be used to implement a broad range of sequential, continuous
and hybrid applications.

Basic function blocks have simple stateless behaviour, which is speci�ed by
functions de�ning signal transformations � from input signals to output signals
(e.g. a PID controller function block). Complex stateful behaviour is implemented
with modal function blocks (MFBs). These may be viewed as a generalization of
stateless function blocks: a MFB has a number of operational modes where each
mode is associated with one or more FB instances used to execute the corre-
sponding control action. A modal function block receives indication of current
mode from a supervisory state machine (SSM), whereby it executes the corre-
sponding action, in the context of a continuous or sequential control actor, e.g.
manual/automatic control of DC motor rotation speed (see Fig. 3.3). A function
block network may be encapsulated into a composite function block, which can be

60

Figure 3.2: COMDES-II Controller actor

subsequently reused as an integral component.
Signal drivers are a special class of component � these are wrappers provid-

ing an interface to the system operational environment by executing kernel or
hardware-dependent functions. Speci�cally, signal drivers can invoke kernel prim-
itives to transparently broadcast and receive signals, independent of the allocation
of sender and receiver actors on network nodes [62].

Figure 3.3: The Digital control task composed of state machine and modal function
blocks

61

A detailed informal description of the above component models is given else-
where [20]. The following discussion presents a formal speci�cation of COMDES-II

components and component con�gurations. The latter takes into account the two
levels of the framework, i.e. system and actor levels, which are treated in a top-
down fashion. At the top level, the system is described as an actor network � a
data �ow model involving system actors and the global signals exchanged between
them, as well as a de�nition of the signals in terms of identi�ers and constituent
signal variables. At the next level, each system actor is described by a function

block network, i.e. a data �ow graph involving constituent function blocks and the
internal signals exchanged.

In the broad sense, the COMDES framework consists of the four parts de-
�ned in this thesis (Chapter 4): domain-speci�c modelling language, executable
components, run-time environment and platform. In the narrow sense, COMDES
means only the domain-speci�c modelling language: it has two major versions,
COMDES-I [29] [19] [63], and COMDES-II [30] [31] [64].

Under COMDES-I, the distributed embedded application is conceived as a
composition of subsystems, i.e. function units, such as sensor, controller, actuator,
etc., where each function unit encapsulates a number of active objects (activities)
that execute separate threads of control within the function unit. However, func-
tion units are modelled as software integrated circuits that are statically allocated
onto network nodes, whereby it is not possible to dynamically recon�gure a func-
tion unit or to allocate its activities onto several network nodes [31]. COMDES-II

adopts an actor-based model, whereby a system is composed of actors encapsu-
lating a single thread of control that communicate with each other by exchanging
labelled messages (signals). This model o�ers greater �exibility, since actors may
operate autonomously or be grouped into logical subsystems, independent of their
physical allocation.

COMDES-I de�nes a state machine that is capable of executing function
blocks and/or function block sequences, speci�ed by function block networks,
within di�erent states/modes of operation. This is essentially a hybrid state ma-
chine, which combines the reactive and transformational aspects of component
behaviour. COMDES-II employs a master-slave model, whereby modal continu-
ous behaviour is speci�ed with two types of component, i.e. a supervisory state
machine, which is coupled to one or more modal function blocks. Such a model
reduces the complexity of the state machine due to separation of concerns: in that
case reactive behaviour is realized by the state machine component, whereas trans-
formational behaviour is delegated to the modal function blocks. Furthermore,
this model also o�ers the possibility of distributed allocation of the components

62

making control decisions and executing the corresponding control actions.

3.1.2 Distributed control system speci�cation

A distributed embedded control system (ECS) is modelled as an actor network:

ECS =< A,S,C >, (3.1)

where A is the set of system actors, S is the set of system signals and C is the set
of channels used to exchange signals between actors. The set of system actors A
consists of environment actors Aenv modelling the plant, and control actors Acon

operating in a distributed system environment:

A = Aenv ∪Acon. (3.2)

The set of system signals S can be represented as:

S = Sin ∪ Scom ∪ Sout, (3.3)

where Sin is the subset of physical input signals, Scom is the subset of signals
(messages) exchanged over a communication network, and Sout is the set of output
physical signals. Furthermore, ∀si ∈ S : si =< Idi, SVi >, where Idi is a signal
identi�er and SVi is a set of signal variables de�ned in terms of variable names
and the corresponding data types:

SVi = {< namei1 : type
i
1 >,< namei2 : type

i
2 >, · · · , < nameiki : type

i
ki >}, (3.4)

e.g. signal OStationParameters consisting of PID parameters, such as propor-
tional, integral and derivative gain values (see Fig. 3.2).

The communication relationship between actors is speci�ed in terms of chan-
nels that are de�ned by a source � signal � destination relation:

C ⊂ A× S × 2A. (3.5)

e.g. one of the channels depicted in Fig. 3.1, which is speci�ed by the tuple
< Sensor, Sensor_Speed, {Controller, V izualization_Unit} > .

In an actual implementation, control actors will be allocated to network nodes,
and channels � to the network communication channel and physical I/O channels.
The subsequent discussion presents the internal structure of control actors. It
assumes a real-time network with predictable message latency, such as CAN, which

63

has been used for the experimental validation of COMDES-II.

3.1.3 Control actor speci�cation

A system control actor can be de�ned as:

acon =<X, Lin, NFB, Lout,Y > (3.6)

where: X is the set of input signals received by the actor, X ⊂ S, Lin is an
input signal latch, NFB is a signal-processing network of function blocks, Lout is
an output signal latch and Y is a set of output signals generated by the actor,
Y ⊂ S.

The input latch is used to receive input signals and decompose them into input
signal variables constituting the set V , which may be viewed as local (internal)
signals that are processed by the function block network. The latter computes
output variables constituting the set W , which are used to compose the output
signals generated by the output latch (see e.g. Figs. 3.2 and 3.3).

The I/O latches are composed of communication objects called signal drivers,
denoted as Din and Dout. In particular:

Lin = {Din
i }, (3.7)

where Din
i is an input signal driver, generating internal input signals Vi, Vi ⊂ V ,

corresponding to the constituent variables of input signal sini ,

Lout = {Dout
i }, (3.8)

where Dout
i is an output signal driver, accepting internal output signals Wi,Wi ⊂

W , corresponding to the constituent variables of output signal souti .
The I/O latches are activated at the release and deadline instants of the actor

task. This is a basic (non-blocking) task, whose internal structure is speci�ed as
a function block network performing the transformation of input signal variables
into output signal variables: V → W .

The FB network is modelled by an acyclic data �ow graph (see e.g. Fig. 3.3),
which can be de�ned as follows:

NFB =< B,Z,Con >, (3.9)

where B is a set of function blocks, Z is a set of FB network variables and Con is
the set of FB network connections.

64

A function block performs the signal transformation X → Y , where X is the
set of FB input variables, X ⊂ Z, and Y is the set FB output variables, Y ⊂ Z.
Speci�cally, a function block can be de�ned as:

FB =< X, Y, P, F > . (3.10)

where X, Y and P denote input, output and persistent variables, respectively and
F is a set of functions.

Input variables X are generated by input drivers or other function blocks,
X ⊂ Z. These are used together with persistent variables to compute output
variables Y , Y ⊂ Z. Persistent variables P represent the internal state of the
function block, which is retained from one execution to the next, e.g. various
types of controllers, �lters, etc [7]. Simple function blocks may not have internal
state, e.g. arithmetic function blocks, comparators, etc. Output variables are
computed by functions f ∈ F that are de�ned as y = f(x, p), where y ∈ Y, x ∈ X
and p ∈ P . A detailed description of various kinds of FB is given in Chapter 4.

The variables constituting the set Z may be viewed as local signals associated
with the function block network:

Z = V ∪ I ∪W, (3.11)

where the input signal variables V are generated by input drivers and processed
by function blocks; internal variables I are generated and processed by function
blocks; output signal variables W are generated by function blocks and used by
output drivers to compose output signals.

FB network connections are used to wire function blocks with input and out-
put signal drivers, and with each other. The corresponding set can be speci�ed
as a union of subsets denoting input, internal and output connections: Con =

Conin ∪ Conint ∪ Conout. These are de�ned as source � internal signal � destina-
tion relations as follows:

Conin ⊂ Lin × V ×B,
Conint ⊂ B × I ×B,
Conout ⊂ B ×W × Lout,

(3.12)

e.g. the connection represented by the tuple < SSM,mode,MFB > shown in
Fig. 3.3.

65

3.2 Speci�cation of system behaviour

3.2.1 COMDES-II model of computation � an introduction

System operation is speci�ed in terms of distributed transactions executed in ac-
cordance with a model of computation known as Distributed Timed Multitasking

[31], which is presently supported by the distributed real-time kernel HARTEXµ
[62]. The distributed transaction involves a number of actors that execute trans-
action phases by invoking sequences of function blocks within the corresponding
actor tasks.

Actors interact with each other by exchanging labelled state messages (signals)
using dedicated communication objects (signal drivers) that provide for transpar-
ent broadcast communication between the actors involved. Control actors interact
with environment actors by exchanging physical signals via signal drivers that are
triggered at precisely speci�ed time instants, resulting in the elimination of trans-
action jitter.

Distributed Timed Multitasking (DTM) combines the concepts of Timed Mul-
titasking [55] and transparent signal-based communication. With this model, it
is assumed that signal drivers are short pieces of code that are executed atom-
ically in logically zero time at precisely speci�ed time instants, which is typical
for control applications. Speci�cally, input signal drivers are executed when the
actor task is released, and output drivers � when the task deadline arrives (see
Fig. 3.4) or when the task comes to an end, if it has no deadline. Consequently,
task I/O jitter is e�ectively eliminated as long as the task comes to an end before
its deadline.

Figure 3.4: Actor execution under Distributed Timed Multitasking

Jitter-free operation can be extended to distributed systems, e.g. a phased-
aligned transaction involving the actors Sensor (S), Controller (C) and Actuator

(A) from Fig. 3.1, which are triggered by a periodic timing event, such as a

66

synchronization (sync) message denoting the initial instant of the transaction
period (T), with deadline D ≤ T (see Fig. 3.5). In this case, input and output
signals are generated at transaction start and deadline instants, resulting in the
elimination of transaction I/O jitter.

Figure 3.5: Jitter-free execution of distributed transactions

The following discussion presents a formal speci�cation of system operation,
taking into account the adopted model of computation and the model of system
structure developed in the preceding section.

3.2.2 Speci�cation of function block behaviour

Function block operation is speci�ed with simple and/or composite functions from
FB input variables x(k) to FB output variables y(k), x ∈ X, y ∈ Y , assuming
periodic execution of system actors and constituent function blocks, which are
invoked at time instants kT, k = 1, 2, · · · , where T is the execution period of the
host actor.

Basic function blocks implement standard signal-processing functions, such as:
y(k) = f(x(k)) � with simple FBs implementing various kinds of mathematical
operations, comparators, etc., or y(k) = f(x(k), p(k− 1), p(k− 2), · · · , p(k− l)) �
with function blocks having persistent state, where the state is de�ned in terms of
one or more persistent state variables p(k−1), p(k−2), · · · , p(k− l), retained from

67

previous periods 1, 2, · · · , l and updated during each period (as speci�ed by the
concrete FB algorithm, e.g. the discrete-time versions of �lters, various control
algorithms, etc. [7]).

A composite function block (CFB) encapsulates a FB network whose behaviour
is speci�ed with one or more functions such as: y(k) = f(x(k)), where f is a com-
posite function specifying the transformation of signals from CFB inputs to CFB
outputs, which is de�ned in terms of the functions executed by the constituent
function blocks. Assuming that the CFB encapsulates a sequence of r function
blocks where the output signals of a function block (except the last one) are input
signals of the next one, this function can be represented as: f = fr◦fr−1◦.◦f1,
or using another notation: y(k) = fr(fr−1(. . . (f1(x))) . . .).

In the general case, this function will have a di�erent expression for each
particular con�guration of the FB network, which has to be always speci�ed by
an acyclic data �ow diagram. However, cycles are allowed at actor level but these
are e�ectively broken by one-period delays due to the adopted clocked synchronous
model of computation (see below).

The supervisory state machine implements the reactive aspect of actor be-
haviour, in separation from the transformational (signal processing) aspect, which
is delegated to the modal function block. The SSM generates two output signals
� s and u, meaning state (or mode) and state-updated, which are speci�ed by the
corresponding functions:

s(k) = f(s(k − 1), e(k), pr(e(k)) � a state transition function

u(k) =

{
true � when s(k) 6= s(k − 1)

false � when s(k) = s(k − 1)
� a Boolean function,

(3.13)

i.e. u(k) = true, when a state transition has taken place, and u(k) = false, when
no transition has taken place.

In the above expression e(k) denotes a transition trigger, i.e. an event speci�ed
as a Boolean expression involving binary input signals that are present at time kT ,
T is the period of the host actor, and pr(k) is the priority of the event triggering
the transition from s(k − 1) to s(k).

The modal function block implements the signal processing aspect of actor be-
haviour by executing constituent function blocks within the corresponding modes
of operation. These compute control signals yi, i = 1, 2, · · · , r, by invoking sig-
nal transformation functions f1, f2, · · · , fr � from input signals to output signals.
Subsets of these functions are selected for execution, depending on the mode (m)
and enabled (b) input signals indicated by the state machine function block, such
that:

68

∀yi ∈ Ap, yi(k) = fi(x(k)), and
∀yi ∈ Aq, q 6= p, yi(k) = yi(k − 1) � when m(k) = p and b(k) = true;

∀yi, yi(k) = yi(k − 1) � when b(k) = false,

(3.14)

where Ap is a control action, i.e. a subset of control signals yi generated by the
MFB in mode p and fi is the function executed by the corresponding function
block in order to generate the output signal yi, yi ∈ Ap. For instance, the control
signal voltage of Fig. 3.3 will be generated by a PID function block if mode has
been updated to automatic.

The composition of supervisory state machine and modal function block oper-
ates as a periodically executed event-driven state machine [60], whose operational
semantics is informally presented below:

• The supervisory state machine is activated after the corresponding actor is
triggered for execution by a periodic timing event or a signal arrival event.

• The supervisory state machine determines the current mode in response to
a transition trigger (event), and if several transitions are possible, chooses
the one triggered by the highest-priority event.

• In the absence of a transition trigger the state machine remains in the pre-
vious state (state/mode is not updated). A transition without a labelling
signal is triggered by the clock signal, which is treated as an input signal
that is always present.

• The modal function block executes a signal transformation function in order
to compute one or more control signals associated with the current mode, if
enabled by the state-updated signal.

• If the mode has not been updated, the MFB is not enabled and its output
signals retain their previous values. Hence, execute-once semantics typical
for event-driven state machines (hence no self-transition loops unless explic-
itly required).

The presented state machine model combines predictable execution typical for
time-driven state machines with the inherent expressiveness of event-driven state
machines, since diagram clutter due to self-transition loops is eliminated.

69

3.2.3 Speci�cation of actor behaviour

Actors generate reactions to triggering events in the form:

e→ Y (3.15)

where Y is the set of output signals generated by the actor in response to a
triggering event e. The latter may be one of the following: periodic timing event
� either local timing event ↑(kT) or global timing event ↑sync(kT); external event
↑xtrigger, where xtrigger is one of the actor input signals, e.g. a message arrival
event or a user input event (see also the meta-model of Actor in Chapter 4) 1.

Actor output signals y ∈ Y are speci�ed by functions of input signals x ∈X

that are latched by input drivers at the time of input tin. With periodic actors
triggered by local or global timing events tin = kT, k = 0, 1, 2, · · · .

Output signals are composed of output signal variables generated by the actor
FB network, which has a zero logical execution time. Hence, the output signal
variables are logically related to the input time instant kT :

w(k) = ψ(v(k)), (3.16)

where ψ is a composite function � from input signal variables v ∈ V to output
signal variables w ∈ W that constitute actor input signals x and output signals
y, respectively.

With simple actors having purely transformational behaviour:

ψ = fn ◦ fn−1 ◦ · · · · · · ◦ f1, (3.17)

where fi are signal-transformation functions executed by the constituent function
blocks, i = 1, 2, · · · , n.

With complex actors built from supervisory state machines coupled to modal
function blocks, each mode generates certain control signals speci�ed by the cor-
responding functions, for example:

w1(k) = ψ1(v(k)) � generated in mode 1 (3.18)

w2(k) = ψ2(v(k)) � generated in mode 2

· · · · · ·
wl(k) = ψl(v(k)) � generated in mode l

1Bold letters denote actor-related variables.

70

In this case, for each ψi, ψi = fi ◦ s , where s is the state transition function
and fi(v(k)) is the signal transformation function executed by the modal function
block when the supervisory state machine has indicated that s(k) = i.

In the general case:

ψi = fi ◦ s ◦ g (3.19)

where g denotes a preprocessing function. The latter is executed by a prepro-
cessing (basic or composite) function block, generating a transition-trigger signal
for the supervisory state machine (e.g. various types of arithmetic, comparators,
counters, etc.)

The output variables generated by the actor task are used to compose output
signals, which are latched into the output drivers at the time of output:

y(tout) = ψ(x(tin)), (3.20)

tout = tin +D = kT +D, k = 0, 1, 2, · · · ; 0 < D ≤ T.

Hence:

y(kT +D) = ψ(x(kT)), (3.21)

and the actor as a whole has constant, non-zero logical execution time, i.e. clocked
synchronous semantics [65].

In the special case of actor without deadline, it is assumed that D = 0, and
tin = tout = kT . Hence: y(k) = ψ(x(k)), and the actor has a perfect synchronous
semantics. This is the case with intermediate actors of phase-aligned transactions,
where the deadline is usually associated with the last actor, which has to generate
the control signal at the transaction deadline instant (see e.g. Fig. 3.5).

3.2.4 Speci�cation of system behaviour

System operation is speci�ed in terms of distributed transactions, such as the
transaction shown in Fig. 3.5, assuming: 1) Periodic phase-aligned transactions
involving non-blocking basic tasks, such as the one shown in Fig. 3.5, which are
typical for distributed control applications [66]; 2)Non-blocking signal-based com-
munication; 3)Distributed Timed Multitasking, which is an extension of Timed
Multitasking for distributed transactions.

Under these assumptions, a periodic phase-aligned transaction with a period
Ttrans can be represented as a sequence of transaction phases, involving a number
of actors, which are executed in response to a global timing event ↑sync(kTtrans)

71

represented by the arrival of a synchronisation (sync) message generated by a sync
master node:

↑sync(kTtrans)→ y1; y1 = ψ1(x1), (3.22)

↑x2 → y2; y2 = ψ2(x2),

· · · · · ·
↑xn → yn; yn = ψn(xn),

where: x1 = xin,x2 = y1, · · · ,xn = yn−1,yn = yout.
Hence, transaction execution can be modelled with a composite function:

F = ψn ◦ ψn−1 ◦ · · · ◦ ψ1, (3.23)

where ψi is the function implemented by the i-th actor, i = 1, 2, · · · , n.
Taking into account Distributed Timed Multitasking, transaction execution

can be represented as a transformation from input signals xin(tin) to output signals
yout(tout), where tin and tout are determined by the transaction period Ttrans and
deadline Dtrans:

↑sync(kTtrans)→ yout, (3.24)

yout(kTtrans +Dtrans) = F (xin(kTtrans));Dtrans ≤ Ttrans

This can be explained in more detail with the example shown in Fig. 3.5, i.e.
a phase-aligned transaction involving the actors Sensor, Controller and Actuator :

Sensor : ↑sync(kTtrans)→ y1;y1(kTtrans) = ψ1(x1(kTtrans)) (3.25)

x1 = xin: sensor signal; y1: process variable

Controller : ↑x2 → y2;y2(kTtrans) = ψ2(x2(kTtrans)) (3.26)

x2 = y1: process variable; y2: control signal

Actuator : ↑x3 → y3;y3(kTtrans +Dtrans) = ψ3(x3(kTtrans)) (3.27)

x3 = y2: control signal; y3 = yout: actuator signal

In the above example:

• Sensor is a periodic actor with a period equal to Ttrans and a zero deadline.

• Controller is e�ectively a periodic actor triggered by the arrival of the process

72

variable message x2, having zero deadline.

• Actuator is e�ectively a periodic actor triggered by the arrival of the control
variable message x3, having a non-zero deadline equal to the transaction
deadline Dtrans. Hence, its outputs are latched at time instants kTtrans +
Dtrans, k = 0, 1, 2, · · · ;Dtrans ≤ Ttrans.

Consequently, the behaviour of the system can be represented by the function:

yout(kTtrans +Dtrans) = F (xin(kTtrans)), (3.28)

where: F = ψ3 ◦ ψ2 ◦ ψ1.
In the general case, the distributed system may consist of multiple subsystems

executing distributed transactions with di�erent rates of activation (multi-rate
system), e.g. a multi-loop distributed control system. Accordingly, subsystem
actors are allocated onto network nodes, and subsystem channels � onto the phys-
ical communication channel(s). This raises the issue of concurrent execution of
transaction tasks/communications within the corresponding operational domains.

Following the adopted model of computation (Fig. 3.4), actor tasks are ex-
ecuted in a dynamic priority-driven scheduling environment provided by node-
resident kernels, which are instances of the HARTEXµ timed multitasking kernel
[62]. Communication takes place in a real-time network supporting predictable
interactions, such as CAN. Transparent signal-based communication is supported
by a dedicated protocol provided by the HARTEXµ kernel. With this protocol,
signal drivers are executed atomically at precisely speci�ed time instants that are
�xed on the time axis. This makes it possible to eliminate the undesirable e�ects
of task preemption and network communication, i.e. transaction I/O jitter, as
long as transaction (end-to-end) response times are less than the corresponding
end-to-end deadlines.

3.3 COMDES software development process

The presented software architecture has important implications for software safety
and predictability, as well as the envisioned software development process, which
is depicted in Fig. 3.6.

In particular, applications are con�gured from pre-validated (trusted) com-
ponents, following strict composition rules that are derived from the syntax and
static semantics of the framework. The behaviour of software components and ap-
plications is rigorously speci�ed via a hierarchy of formal models that constitute

73

Figure 3.6: COMDES-II software development process

the behavioural semantics of the framework. On the other hand, the use of timed
multitasking makes it possible to engineer highly predictable systems operating in
a �exible, dynamic scheduling environment.

However, the con�gured applications must be proven correct with respect to
the required functional and timing behaviour. This is facilitated by the princi-
ple of separation of concerns, which is widely used in the proposed framework,
e.g. separate treatment of computation and communication, functional and tim-
ing behaviour, reactive and transformational behaviour, etc. Accordingly, sys-
tem behaviour can be analysed using appropriate techniques and tools, following
semantics-preserving transformations from system design models to the analysis
models supported by standard tools such as Simulink and Uppaal.

In particular, Simulink can be used to analyse the behaviour of predominantly
continuous systems via numerical simulation, e.g. closed-loop and modal contin-
uous control systems composed of signal-processing actors/function blocks. That
is facilitated by the similarity between COMDES-II design models and Simulink

analysis models representing the controller part of the system, both of which are
discrete-time data �ow models (function block networks). This can be done by
converting a validated Simulink model into an equivalent COMDES-II model.
Alternatively, it is possible to export a COMDES-II design model to the Simulink

74

environment, by wrapping COMDES-II components into S-functions and wiring
them together [67][68], following the interconnection pattern of the original de-
sign model. However, it is necessary to model explicitly the latching of input and
output signals, so as to precisely convey the timed multitasking semantics of the
COMDES-II design model.

Uppaal [69][70] is envisioned as a veri�cation tool for systems exhibiting pre-
dominantly sequential reactive behaviour, which are usually modelled by state ma-
chines, and systems of interacting state machines. However, in this case COMDES-

II design models are quite di�erent from the analysis models (Uppaal timed au-
tomata), which requires substantial model transformation in order to preserve the
semantics of the original design model [61]. Uppaal can also be used for the pur-
pose of schedulability analysis. However, the separation of timing and functional
behaviour, which is inherent to Distributed Timed Multitasking, makes it pos-
sible to assess transaction schedulability using numerical response-time analysis
methods and tools, e.g. the method presented in [66].

The envisioned software development process will make it possible to engineer
embedded applications that are correct by construction. This will hopefully elim-
inate design errors, which are di�cult and costly to repair. On the other hand,
implementation errors will be eliminated through an automated process of code
generation and con�guration that will be supported by an integrated development
tool-chain (see Fig. 3.7), whose architecture and Eclipse-based implementation are
investigated in this project. The elimination of both design and implementation
errors will ultimately increase software safety, which is of paramount importance
for the safety of the embedded application as a whole.

3.4 Summary

The chapter has presented a formal speci�cation of COMDES-II � a domain-
speci�c framework for distributed embedded control systems, which combines open
architecture and predictable behaviour under hard real-time constraints. In this
framework, the embedded system is composed from autonomous system agents
(actors), which are con�gured from trusted prefabricated components, such as
basic, composite, state machine and modal function blocks.

Actors interact by exchanging signals, i.e. labelled messages with state mes-
sage semantics, rather than using I/O ports or operational interfaces. This fea-
ture facilitates system recon�guration and provides for transparent communication
between system actors, resulting in �exible and truly open distributed systems.
Signal-based communication is also used for internal interactions involving con-

75

Figure 3.7: Overview of the development toolchian

stituent function blocks. That is why system con�guration is speci�ed by data
�ow models at all levels of speci�cation. Consequently, actor behaviour is rep-
resented as a composition of component functions, and system behaviour � as a
composition of actor functions.

A clocked synchronous model of execution is applied at actor and system lev-
els, i.e. Distributed Timed Multitasking. With this model, input and output
signals are latched at transaction start and deadline instants, respectively, result-
ing in constant, non-zero delay from inputs to outputs. Non-zero delay eliminates
causality loops and �xpoint problems and is better suited to distributed operation.
On the other hand, the latching of input and output signals results in the elimina-
tion of I/O jitter at both task and transaction levels. Consequently, this technique
makes it possible to engineer highly predictable distributed systems while retain-
ing the �exibility and ease of recon�guration that are inherent to dynamically
scheduled systems.

The above features make it possible to treat separately functional and timing
behaviour at both actor and system (transaction) levels. Concurrency is sepa-
rated from functionality too, being delegated to the actor and transaction levels.
Likewise, it is possible to treat separately di�erent kinds of functional behaviour,
i.e. reactive (event-driven) and transformational (data �ow) behaviour, which are
delegated to separate components � supervisory state machine and modal function
blocks.

76

Separation of concerns is expected to strongly facilitate system design and
analysis, resulting in the development of embedded systems that are correct by
construction. This will eliminate design errors, which are di�cult and costly to
repair. On the other hand, implementation errors will be eliminated through an
automated process of con�guration and code generation. In the end, the elimina-
tion of the basic sources of error will increase software safety, which is of paramount
importance for the overall safety of embedded applications.

The formal design models presented in this chapter have been used to derive
the meta-models of software components and the framework as a whole, which are
presented in the following two chapters.

77

Chapter 4

Platform-Independent Model: the

COMDES Meta-Model

COMDES is a framework intended for component-based development of software
for embedded systems, and speci�cally � for control systems with hard real-time
constraints. As a component-based framework, COMDES not only advocates
the reuse of components at implementation level (code), but also supports the
speci�cation of systems at design level (model) from prede�ned component models.
By following a model-driven software development methodology, a meta-model
should be de�ned and used to specify relevant aspects of system structure and
behaviour. Based on the meta-model, a number of models can be derived to fully
describe a designed system, thus allowing for an application to be automatically
synthesised.

This chapter presents an overview of the COMDES design method, followed by
a detailed discussion of the COMDES framework, i.e. the COMDES meta-model
� a set of models that are used to specify components and systems, developed un-
der the framework, in a platform-independent manner. The meta-model describes
formally domain models using a number of class diagrams in a bottom-up fashion.
It is derived from, and consistent with the formal speci�cation of the framework
design models presented in Chapter 3. Where necessary, the description is ac-
companied by corresponding domain-speci�c models, in the form of COMDES
graphical notations.

78

4.1 Overview of the COMDES software design me-

thod

A COMDES solution to a problem in the distributed real-time embedded control
system domain is represented by four building blocks, which emphasize related
aspects of the COMDES software design method (see Fig. 4.1): domain-speci�c
language, run-time environment, executable function blocks and platforms. Addi-
tionally, repositories are used to store reusable components as well as applications.

Figure 4.1: COMDES software design method

• The Domain-Speci�c Language is de�ned in terms of design models that
are used to represent system structure as well as behaviour in a platform-
independent way (see Chapter 3).

• The Run-time Environment provides mechanisms for concurrent execution
of COMDES actors, inter-actor communication and event handling, in ac-
cordance with the adopted timed multitasking model of computation.

• Function blocks are used to implement the reactive and transformational
behaviour of the system.

• Platforms provide a number of hardware architectures on which the system
may be implemented.

A system modelled using the COMDES DSL is composed of function blocks
and mapped onto objects provided by the run-time environment and platform.
In particular, the COMDES model of concurrency requires that the run-time
environment is implemented as a timed multitasking kernel, and function blocks

79

are prefabricated for several processor architectures. Speci�cally, the platform-
independent COMDES system model is related to an actual implementation (see
Fig. 2) by means of:

• Platform: allocating actors onto physical nodes having appropriate means
of communication and interaction with other nodes and the physical envi-
ronment.

• Run-time Environment: mapping actors onto real-time tasks, global signals
onto messages, and choosing the right scheduling scheme, etc.

• Function Block: con�guring actors from prefabricated software components.

Figure 4.2: Building blocks of the COMDES solution

COMDES DSL: COMDES provides a domain-speci�c language specifying
relevant aspects of system structure and behaviour within the domain of dis-
tributed real-time embedded control systems. A system design formulated in the
DSL can be hierarchically constructed from a set of components without syn-
tactical errors and ambiguity of semantics. A COMDES system in particular
is composed from a number of actors that communicate by exchanging labelled
messages (signals). Communication is transparent, i.e. independent of the al-
location of actors onto network nodes. An actor consists of a signal-processing
block con�gured from reusable components � function blocks, which is mapped
onto a non-blocking task, as well as input and output signal drivers that are used

80

to exchange signals with other actors and the outside world. The COMDES sys-
tem model can be seen as a high-level speci�cation concerning the issues such
as functionality, concurrency, interaction, and so on, from a collection of prede-
�ned components. From a MDA point of view, system models correspond to the
Platform-Independent Models.

Function block: A function block is a component class that may have multi-
ple instances within a given con�guration. Function block types (see Fig. 4.3) can
be reused across multiple projects (e.g. �lter, PID, etc.). They are instances of
kind and can be instantiated when building an application. Types are stored in a
component repository and de�ne the behaviour of a component. When developers
are building an application, they load the component types from a repository and
instantiate them. Instances of the same type share the same behaviour but di�er
by the data structure. Typically, there are many instances of a component of a
given type. Types are created by skilled software engineers using speci�c design
patterns. In contrast, an application is con�gured by domain experts from already
available components stored in the repository (see Fig. 3.7).

Figure 4.3: COMDES function blocks

Run-time environment: The functionality of a COMDES system will be
implemented as a composition of reusable function blocks, whereas the timing as-

81

pects of the system will be managed by the underlying run-time environment � a
real-time kernel HARTEXµ that implements the timed multitasking model of com-
putation. HARTEXµ has been speci�cally developed to provide an operational
environment for COMDES-based applications, and it can be characterised by a
number of advanced features that are discussed in more detail in Chapter 5. Some
of them have to be speci�cally highlighted, since they provide the functionality
needed by COMDES applications:

• Preemptive priority scheduling of non-blocking basic tasks used to imple-
ment system actors. Split-phase execution of tasks and I/O drivers as re-
quired by the Timed Multitasking model of computation.

• Content-oriented message addressing: With this technique a message is ad-
dressed by its name, thus providing support for transparent signal-based
communication.

• Stand-alone and distributed operation: Both modes of operation are sup-
ported making the kernel a versatile solution supporting a broad range of
embedded applications.

• Extensive support for Timed Multitasking including both event-driven and
time-triggered mechanisms used to implement this mode of operation.

The development of HARTEXµ kernel is not a task of this project, but a
meta-model that can be used to de�ne a HARTEXµ model, and then to gener-
ate code from kernel models, will be brie�y presented in Chapter 5. With con-
crete information about the run-time environment, a COMDES system model can
be transformed into a HARTEXµ model. HARTEXµ models correspond to the
Platform-Speci�c Models in MDA.

Platform: Essentially, this part is responsible for providing hardware and
fundamental software abstractions for function blocks, run-time environment, and
eventually � COMDES system models written in the DSL. At the implementation
level, function blocks are prefabricated components ready for reuse. To build a
function block as an executable for di�erent hardware platforms, it is necessary to
have platform models providing information such as architecture, compiler, and
fundamental software libraries (e.g. GNU glibc as C library de�nes the �system
calls� and other basic facilities such as open, malloc, printf, memcpy . . .), etc,
for each platform. For the HARTEXµ kernel, an extra Hardware Adaptation
Layer (HAL) must provide speci�c functions such as context saving and restoring,
global disabling and enabling of interrupts, tick interrupt, idle mode operation,
and network communication drivers. Physical input/output drivers can wrap the

82

HAL interface to a speci�c hardware resource. Finally, from the viewpoint of the
COMDES DSL, the platforms are abstracted as networked nodes that host subsets
of actors. With information concerning the hardware and software aspects of a
platform, a �nal executable system can be generated and deployed on the target
microprocessors, in either a stand-alone or a distributed environment. Obviously,
the concrete system implementation corresponds to the PSM as well.

4.2 Domain-speci�c meta-modelling concepts and

notations

A DSL comprises a set of concepts that are used to describe a speci�c class of
systems. In COMDES, these concepts are derived with attention to the distributed
real-time embedded control systems domain, and are substantiated as a number
of models dealing with dedicated problems: computation, concurrency, system
partitioning, etc. The concepts that describe a DSL are commonly de�ned using
a meta-model, which is a model that speci�es how models can be constructed in
the design modelling language.

Fig. 4.4 illustrates the meta-modelling approach used to develop the COMDES
framework, where a meta-meta-model speci�es the COMDES domain-speci�c
meta-model that is in turn used to specify reusable component models as well
as application models in the particular domain. In particular, the meta-modelling
approach supports component-based software development by de�ning di�erent
kinds of component as a part of the COMDES meta-model according to concepts
from the domain. As a result, component types can be speci�ed by the COMDES
meta-model and stored into repositories. The types will be instantiated to com-
pose application models. Component types, instances and applications are located
at the M1 layer of the MOF four-layer architecture (see Fig. 1.4).

The Ecore provides a meta-meta-model as one of the MOF implementations.
It is located at the M3 layer of the MOF four-layer architecture. In Ecore, a
meta-model can be de�ned by a set of concepts like EClasses, EAttributes,
EReferences, EOperations, etc. A simpli�ed subset of the Ecore model is
shown in Fig. 4.5, which shows only parts of the key Ecore concepts. For a full
description of the Ecore model, please refer to [71]. Most of the modelling concepts
that Ecore de�nes should be quite straightforward to those who are familiar to
UML or object-oriented design. In this section, Ecore is examined in a small
detail, with the aim of enabling readers to understand e�ectively meta-models
de�ned for COMDES.

EClass is used to model classes themselves. Classes are identi�ed by name and

83

Figure 4.4: MDSD approach for building applications in COMDES

can contain a number of attributes and references. To support inheritance, a class
can refer to a number of other classes as its super types. The two attributes de�ned
by EClass itself can be used to specify the particular type of class being modelled.
If interface is true, the EClass represents an interface that declares its operations
and the accessors for its attributes and references, but provides no implementation
for them. An interface cannot be instantiated. The implementation of an interface
is modelled by including the interface in the eSuperTypes reference of a non-
interface EClass ; that class will implement the operations and the accessors for
the structural features declared by the interface. If abstract is true, the EClass
represents an abstract class, from which other classes can inherit features, but
which cannot itself be instantiated.

EAttribute models attributes, the components of an object's data structure.
They are identi�ed by name, and each of them has a data type.

EDataType models the types of attributes, representing primitive and object
data types that are de�ned in Java (because the Ecore provided by the Eclipse
EMF is implemented in Java). Data types are also identi�ed by name.

EReference is used in modelling associations between classes; it models one
end of such an association. Like attributes, references are identi�ed by name and
have a type. However, this type must be the EClass at the other end of the
association. If the association is navigable in the opposite direction, there will be
another corresponding reference. A reference speci�es lower and upper bounds on
its multiplicity. Finally, a reference can be used to represent a stronger type of
association, called containment.

EOperation models the behavioural features of an EClass. EOperations

are contained by an EClass via the eOpearations reference. Notice, that eOpera-
tions is part of a bidirectional association, which allows an EOperation to easily

84

Figure 4.5: Core Ecore models in UML class diagram

obtain the EClass that contains it via the opposite reference � eContainingClass.
EParameter models the operation's input parameters. An EOperation con-

tains zero or more EParameters, accessible via eParameters. Again, this refer-
ence constitutes half of a bidirectional association; the EParameters can access
the EOperation to which they belong via eOperation.

The Ecore features mentioned above are su�cient enough to de�ne the COMDES
meta-model. The meta-model can be represented as class diagrams with these
concepts. Thus, UML notations for concepts like class, interface, attribute, and
inheritance, etc. could be used to express the COMDES meta-model, as described
in the following sections.

4.3 Meta-model of COMDES

4.3.1 Reuse pattern

In order to achieve component reuse, a Kind-Type-Instance pattern has been devel-
oped at the meta-model level (see Fig. 4.6a). Basically, the abstract Componen-
tKind class de�nes the kind of a component that is used to build concrete objects
of the ComponentType class at the component development stage. Types are

85

stored in Repository for later reuse. During application development, objects
of the ComponentInstance class are created, which have an internal structure
identical to the structure of the ComponentType they refer to.

Figure 4.6: Kind-Type-Instance pattern

As an example, the Basic FB part of the COMDES meta-model is conceptu-
ally presented in Fig. 4.6b. The type (BasicFBType) and the instance (Ba-
sicFBInstance) classes inherit the kind (BasicFBKind), so that the instance
(or the type) of that kind can get the de�nition of its structure. The instance
can be instantiated in the FBDiagram whereas the type can be created in the
FBRepository for reuse. In this manner, an instance can also be created at the
application design time without a prede�ned component type model.

Therefore, there are two ways to create a component instance: 1) An instance
can be created in an application using a prede�ned type stored in a repository.
Then, the type's all internal elements are copied into the instance. 2) An instance
can be created without a prede�ned type in an application. A designer is free to
add inputs, outputs or internal elements into this instance. And if necessary, this
instance can be exported to the repository and saved as a type, which increases
the �exibility of the development process, at the cost of extra complexity added
to the implementation of the development environment.

This approach is �exible in that it can be implemented in any object-oriented
environment. It avoids the requirement for the tool implementation environment

86

to support run-time de�nition (construction) of classes [72], although that is sup-
ported in the Java implementation environment using the core re�ection API of
the language (or the dynamic EMF API of the Eclipse platform).

4.3.2 Function blocks

4.3.2.1 A generic meta-model of function blocks

According to the pattern of reuse, three abstract classes are �rstly de�ned as
foundations of all kinds of function blocks. These three abstract classes should be
inherited respectively by other three concrete classes when de�ning each kind of
COMDES function block.

Figure 4.7: Generic function blocks

Fig. 4.71 shows a generic meta-model specifying the common architectural
characteristics of all kinds of FBs in COMDES. Each kind of FB (AbstractFunc-
tionBlockKind) contains functions which are de�ned by the class Function.

The code of a Function should do the computational work for a function block.
It could be speci�ed either in a general-purpose language (e.g. the C language),
which is directly used to implement the function block model, or in a special DSL
that will have to be transformed into the language that implements the function
block model. The �rst approach does not require a transformation step when

1In order to o�er a clean presentation of the meta-model, some classes, which are not im-
portant for depicting the COMDES concept, have been omitted from the �gures. For example,
the majority of classes in the meta-model have an attribute �name� (i.e. Input, Output, Con-
stant, BasicInstance, etc.), which is obtained by inheriting a class called �NamedElement�
that de�nes the name attribute and is not shown on all �gures in this thesis.

87

transforming model into code, but involves moving code-level decisions into the
model without raising the abstraction level. It usually leads to contamination
of the models with implementation concepts that are not derived by the domain
expert, and therefore constitutes a potential source of errors. Alternatively, when
using a DSL that belongs to the same domain, domain experts are spared the
implementation concepts. However, designing such a DSL as well as related tools
takes a considerable amount of time. Therefore, for time being, when such a DSL
does not exist for COMDES yet, the code is speci�ed in the C language.

The attribute includes of a function designates what library functions are
needed by the function block, which is usually accessed by the code. The libraries
are usually provided by platforms or run-time environment that function blocks
are running on.

Figure 4.8: Input, Output, Constant and InternalSignal

The AbstractFunctionBlockKind class contains parameters that are mod-
elled by the Parameter class. Each parameter needs to be speci�ed with data
type and value. The data type of a parameter is de�ned by the attribute type. A
parameter can be used as an input to the FB providing constant data for functions
of a function block. Alternatively, it can be used as an internal variable that a
FB function manipulates when running. In latter case, the value of a parameter
becomes an initial value of the internal variable.

The attribute function of theAbstractFunctionBlockInstance speci�es wh-
ich function to execute during the invocation of a particular FB instance. Its value
must be one of a list of available functions associated with the FB kind de�nition.

88

Each function block has inputs and outputs, which are modelled by the Input
class and the Output class respectively. Normally, a function block should have
both inputs and outputs. However, a driver � as a special kind of FB � has only
one of them, i.e. an input driver FB has only outputs, whereas output driver FB
has only inputs. The de�nitions of the input and output are depicted in Fig. 4.8.

In Fig. 4.8, the Input and the Output are connection points of InternalSig-
nal which transfers data from source to target that are modelled by interfaces
IInternalSignalSource and IInternalSignalTarget respectively. An internal
signal source could be either an output or a constant (de�ned by the Constant
class), whereas an internal signal target is an input. An output and a constant
must have initial values, and their type is one of the COMDESType containing
a set of primitive data types. However an initial value of an input can be ob-
tained from the signal source to which that input is connected. One output can
be connected to several inputs, whereas one input can only accept one incoming
internal signal. A constant does not have an incoming internal signal as its value
cannot be changed at run-time, obviously. According to COMDES FB design
patterns in the C language (see Chapter 6), an input of a FB is implemented as
a pointer to either an output of anther FB or a constant. Outputs and constants
are implemented as variables.

4.3.2.2 Basic function blocks

Basic Function Block (BFB) is a fundamental component that implements trans-
formational behaviour � it generates a set of output signals de�ned as functions
of subsets of input signals, via the corresponding inputs and outputs. BFB im-
plements speci�c process control functions, such as various types of variable pre-
processing, conventional and advanced control algorithms, e.g. PID. Additionally,
function can load/store a persistent piece of data modelled as a parameter that is
used during the next invocation of the component.

The meta-model of basic FBs exactly follows the reuse pattern, as shown in
Fig. 4.9. The AbstractBasicKind extends the AbstractFunctionBlockKind
class, and thus aggregates classes of Input, Output, Function, and Parame-

ter. The BasicType and the BasicInstance are concrete classes, which obtain
their internal structures by inheriting from the AbstractBasicKind class. The
BasicInstance class is associated to the BasicType class via the relationship
type.

The Fig. 4.10 illustrates a BFB instance model named as basic1 in its graphical
concrete syntax, based on the meta-model. It has two inputs and one output. The
function to execute is called plus, which is the only function de�ned in its function

89

Figure 4.9: Meta-model of Basic FB

list. The function simply outputs the sum of two inputs, and the code of the
function is implemented in the C language.

Figure 4.10: A basic FB model

90

4.3.2.3 Composite function blocks

Composite Function Block computes complex signal transformations from inputs
to outputs, e.g. various signal processing functions, according to the synchronous
data �ow model [73][65]. In the meta-model of a CFB (Fig. 4.11), the Abstract-
CompositeKind extends the generic FB meta-model in order to obtain inputs,
outputs, parameters and functions. (The other two abstract classes � for instance
and type � from the generic FB pattern are not shown in this �gure, in order to
keep the �gure clean and simple. These two classes will be neglected when describ-
ing the following FB kinds.) Additionally, the class also extends the FBDiagram
class and consists of two extra relations � ExtendInput and ExtendOutput.

Figure 4.11: Meta-model of Composite FB

The Function Block Diagram (FBDiagram), as a directed graph, aggregates
a number of internal signals and diagram elements (Fig. 4.12). The IFBDia-
gramElement is an abstract interface implemented by FB instances as well as
constants. Data is exchanged between outputs and inputs of constituent FBs
through internal signals. A FB diagram consisting of interconnected function
blocks must be acyclic, which can be enforced by a constraint.

The use of FBDiagram, IFBDiagramElement and their composition for
meta-modelling the composite FB kind is actually inspired by one of the notable
structural design patterns � the Composite Pattern [74], which allows for speci�-
cation of hierarchical components. The hierarchy can be theoretically unlimited,
since the composite FB instance implements the interface IFBDiagramElement.

A relation � ExtendInput is de�ned to allow for the connection between an
input of a container CFB and an input of a constituent FB instance (Fig. 4.13

91

Figure 4.12: Meta-model of FB diagram

Figure 4.13: A FB diagram of a CFB

shows an example model), so that the data to the container CFB can be passed into
its constituent FB input. The constituent FB instance should be an immediate
child of its parent � the container CFB. Analogously, ExtendOutput is de�ned to
connect two outputs � between the container CFB and its immediate constituent
FB output (see Fig. 4.14).

The purpose of the two extra relations is actually to expose the inputs or out-
puts of constituent FB instances. A CFB input can be connected to another input
via ExtendInput, which means data on the two inputs are identical. However,

92

constraints must be added to avoid wrong connections, e.g. two inputs of the con-
tainer CFB being connected by the ExtendInput, or two inputs of constituent
FB instances being connected by the ExtendInput. In other words, an Extend-
Input can be only used to connect an input of a constituent FB instance to an
input of its immediate container CFB. Similar constraints should be applied to
the ExtendOutput, too.

Figure 4.14: Meta-model of ExtendInput and ExtendOutput

The CFB meta-model with multiplexity speci�es only partially the construc-
tion rules for a composite kind (i.e. how many connections can be made on an
output), while other, more strict syntactical rules with respect to interconnec-
tions with child FB instances are speci�ed through implicit constraints. These
additional constraints are summarized below:

• When playing the role of input of a container (parent) CFB, an input can
only be connected to one input of its immediate constituent (child) FB
instances via ExtendInput.

• When playing the role of input of a constituent (child) FB instance, an

93

input can be connected either to one output of another sibling constituent
FB instance via InternalSignal, or to one input of its immediate container
(parent) CFB via ExtendInput.

• When playing the role of output of a container (parent) CFB, an output
can only be connected to one output of an immediate constituent (child) FB
instance via ExtendOutput.

• The type attribute of connected input and output by InternalSignal, or
input and input by ExtendInput, or output and output by ExtendOutput
must be the same.

• A FB diagram must be acyclic.

• A CFB must have at least one function � the CFB kind driver.

CFB executes the function block diagram by means of a standard routine � the
so called CFB kind driver. As a built-in function of CFB, it invokes encapsulated
FB instances according to a static execution schedule, i.e. a linear sequence of
its constituent FB instances. In such an execution schedule, each constituent
FB instance should execute exactly once during a single activation of the CFB.
Because the CFB is actually a directed acyclic diagram, the liner sequence can
be derived from the �ow of signals in the corresponding FB diagram, using a
topological sort algorithm [75].

4.3.2.4 State machine function blocks

COMDES separates the treatment of reactive behaviour (control �ow) and trans-
formational behaviour (data �ow). This is accomplished via two types of compo-
nent � state machine function blocks (SMFBs) and modal function block, whereby
the state machine function block (master) is used to indicate the current state to
one or more modal function blocks (slaves) that perform the required signal trans-
formations within the corresponding states/modes of operation (see Fig. 4.15).

Furthermore, an advantage of this separation-of-concerns model is that the
SMFB and its MBF can be placed in di�erent actors deployed in distributed
network nodes, thus enabling online recon�guration of system actions in the sense
that the MFB nodes can be dynamically replaced by another set of modal FB
nodes, when the master SMFB node is in an appropriate state.

A state machine FB consists of a number of binary inputs, an event-driven state
machine model, and exactly two outputs: state and state_updated(see Fig.
4.16 for an example). When a SMFB is executed, the two outputs are determined

94

Figure 4.15: Coupling SMFB and MFB

according to the input signals. The state output represents the currently active
state of the FB, and state_updated output will be set true if a state transition
has happened, otherwise it is false. The two output signals from a SMFB will be
used by the corresponding modal FBs to execute control actions associated with
speci�c states (see Fig. 4.15).

Figure 4.16: A state machine model

The meta-model of SMFB is depicted in Fig. 4.17. The AbstractStateMa-

chineKind extends the AbstractFunctionBlockKind class to inherit aggrega-
tion relations to the Input/Output classes, the Function class, and the Pa-
rameter class, similar to how other kinds of FB are constructed. However, there
is a constraint regarding outputs that must be complied with:

• There are exactly two outputs associated with a speci�c state machine FB:

95

state and state_updated, and the type of the state_updated must be
Boolean.

Figure 4.17: Meta-model of state machine FB

A SMFB contains an initial state, a number of states labelled by a stateindex,
and transitions labelled by transition trigger (transtrigger) and order. A transi-
tion trigger string should be an expression composed of a set of Boolean values,
Boolean variables and operators. The expression results in a Boolean value, i.e.
true or false. All Boolean variables should be provided by inputs or parameters
of the SMFB, hence these should be of Boolean type as well. Furthermore, a
mechanism is required to test the transition trigger expression against the proper
format consisting of associated Boolean variables, Boolean values and operators,
etc. Counting occurrences (i.e. brackets) should be considered accordingly. The
above requirements can be speci�ed as constraints:

• All Boolean variables in each transition trigger expression of an SMFB must
be declared in inputs or parameters of the SMFB.

• The format of the expression string must be valid.

When multiple outgoing transitions from a source state are enabled to �re at
the same time, transition order is used to deterministically �re the most important

96

state transition and determine the current state. Therefore, the order on each
outgoing transition of one source state should be di�erent. Hence, the following
constraint:

• The order of each outgoing transition of one source state must be unique to
the source state.

Each state has a unique state index that will appear at one of SMFB outputs
� the state output, when the state is activated. From outside of the SMFB, it
should be possible to identify which state is the current active state, and that is
why a constraint has to be applied to the state machine FB in order to guarantee
that all states are distinguished by the stateindex.

• The stateindex number of each state must be unique to a state machine

A State Transition Table can be derived from a state machine model and
subsequently be interpreted by a standard routine � a SMFB kind driver, activated
by the corresponding host actor. When activated, the driver processes the table
containing the successor states of the state visited in the previous execution, in
order to determine the current state. If a state transition has taken place, the
state and state_updated outputs are updated accordingly. Hence:

• A SMFB must have at least one function � the SMFB kind driver.

4.3.2.5 Modal function blocks

A modal function block has a number of operational modes, where each mode ex-
ecutes a speci�c action implemented with a number of constituent function blocks
or constants, e.g. discrete control, continuous control, etc. Constituent function
blocks are instances of function block types implementing the corresponding signal
transformation functions.

An input mode is used to select a particular group of function block to be
executed in a given mode. This input is usually generated by an SMFB. A mode
is enabled for execution by the corresponding value (true) of the enabled input,
i.e. the control action should only be performed when a state transition occurs,
since the SMFB�MFB pair operates as a clocked event-driven state machine (see
Chapter 3 � Section 3.2.2).

The above features are re�ected in the meta-model of the MFB kind, which
is shown in Fig. 4.18. It comprises a set of operation modes, and each Mode

class is a subclass of the FBDiagram class. The Composite Pattern used when
de�ning CFB is applied to the Mode once again. As a result, hierarchy in each

97

mode is possible. Analogous to the meta-model of CFB, a MFB also contains
ExtendInput and ExtendOutput in order to expose the inputs and outputs of
encapsulated FBs. In addition to that, a MFB should contain two mandatory
inputs: mode and enabled. The mode input is used to select executing modes,
and the Boolean enabled input determines whether the execution of a particular
mode is allowed or not. Hence, the following constraint:

• Each MFB should have at least two inputs: mode and enabled, and the
type of the enabled input must be Boolean.

Figure 4.18: Meta-model of modal FB

Since FB instances residing in each mode are executed alternately, sometimes
FB instances executed in di�erent modes need to provide data to one and the same
output of their container MFB. For example, in Fig. 4.19, three function blocks
in three di�erent modes are connected to one output of their container MFB in
order to provide data through the same output named outsignal

Therefore, SharedOutput and ExtendSharedOutput are de�ned to allow
for such kind of connections. A SharedOutput extends the AbstractOutput,
thus it can be connected to an output of its container MFB through an Extend-
Output relation (see Fig. 4.20). The relation ExtendSharedOutput is used to
connect an output of a constituent FB instance to a SharedOutput. A Shared-

Output allows for multiple ExtendSharedOutput connections. At the end of
each execution of MFB, a SharedOutput will be updated to the value of the FB

98

Figure 4.19: A modal FB model

output that is connected to the SharedOutput via ExtendSharedOutput and
whose FB instance has been executed in the current execution. The value is in
turn propagated to a container MFB's output via an ExtendOutput connection.

SharedInput and ExtendSharedInput are de�ned for a similar purpose, so
that inputs of FB instances from di�erent modes are able to obtain data from one
container MFB's input, e.g. input insignal in Fig. 4.19.

Constraints of connections for ExtendInput and ExtendOutput de�ned for
CFB still hold for MFB, except that an input can have one more connection related
to the ExtendSharedInput. The following list presents constraints concerning
SharedOutput, ExtendSharedOutput, SharedInput and ExtendSharedIn-

put :

• When playing the role of input of a container (parent) MFB, an input cannot

99

Figure 4.20: Meta-model of SharedInput and SharedOutput

be connected to a SharedInput by ExtendSharedInput.

• When playing the role of input of a constituent (child) FB instance, an
input must be connected to one of follows: to one output of another sibling
constituent FB instance by InternalSignal ; or to one input of its immediate
container (parent) MFB by ExtendInput ; or to one SharedInput of the
same container MFB by ExtendSharedInput.

• When playing the role of output of a container (parent) MFB, an output
cannot be connected to a SharedOutput by ExtendSharedOutput.

• Every two outputs connected to a SharedOutput of a container MFB
throughExtendSharedOutput must belong to immediate constituent (child)
FB instances that are in di�erent modes of the MFB.

100

MFB utilizes a standard routine � MFB kind driver to execute each mode.
Similar to CFB, the driver invokes all FB instances of a selected mode according
to a linear sequence that is derived from the interconnections of these FB instances.

• A MFB must have at least one function � the MFB kind driver.

4.3.2.6 Drivers

An actor interacts with the outside physical world or other actors through drivers.
In fact, they communicate with each other or with the external world only when
input or output drivers are executed. Drivers are executed atomically, i.e. they
are not interrupted or preempted by other tasks.

Figure 4.21: Meta-model of drivers

Drivers can be modelled as a special kind of function block, thus in the meta-
model (Fig. 4.21) input driver and output driver are subclasses of the Abstract-
FunctionBlockKind. Drivers are classi�ed as communication signal drivers and
physical drivers. Communication signal drivers are responsible for broadcasting
and receiving signal messages within local as well as remote interactions. This
is done in a transparent fashion using kernel communication primitives (in lo-
cal communication), which may invoke the services of a network communication
protocol (in remote communication). Physical drivers are used to sense and actu-
ate signals from/to physical peripherals. In the meta-model, a Boolean attribute
called physical is employed to distinguish the two categories.

I/O drivers play the role of actor interfaces supporting interaction between
the outside environment and the internal context of the actor. A driver can be
considered as a wrapper, which uses a function to decompose an incoming signal

101

into local variables that are accessible via driver outputs � with input driver, and
conversely uses local variables provided by inputs to compose an outgoing global
signal � with output driver. Therefore, in the meta-model, an output driver has
only inputs while an input driver has only outputs, which is enforced by the
following constraints:

• An input driver does not have inputs.

• An output driver does not have outputs.

The functions of drivers are usually related to platform peripherals or run-
time environments, e.g. external input interrupt, ADC (analog-digital converter),
PWM (pulse-width modulator), CAN (Controller Area Network) controller, or
communication services provides by a real-time operating system.

4.3.3 System composition

4.3.3.1 Actor

From the composition point of view, an actor consists of a signal-processing block,
which is mapped onto a non-blocking (basic) task provided by a run-time envi-
ronment, as well as an input latch and an output latch containing input and
output drivers respectively, that are used to exchange signals with other actors
and the outside world. Actors are con�gured from FBs, whereby drivers as special-
purpose FBs are placed in the latches, whereas other kinds of FB are instantiated
and interconnected in the signal processing block, so as to compose a FB diagram
accomplishing the speci�ed functionality. An actor model is illustrated graphically
in Fig. 4.22, and the meta-model of actor is depicted in Fig. 4.23.

From the timing point of view, actors are running in a run-time environment
supporting a model of computation called Distributed Timed Multitasking, featur-
ing split-phase execution of distributed embedded actors. In such an environment,
drivers are executed separately from the signal processing task. Input drivers are
executed when the task is triggered, and output drivers are executed when the
task deadline arrives or when the task comes to an end (if it has no deadline),
resulting in the e�ective elimination of task execution jitter.

A number of actors could be allocated onto one network node, which raises
the issue of concurrent execution of actors. Therefore timing properties must be
explicitly speci�ed in the meta-model.

There are three possible ways to trigger an actor: periodic timing event, spo-
radic external event and signal arrival event. This is speci�ed by the attribute

102

Figure 4.22: An actor model

Figure 4.23: Meta-model of actor

trigger_type of the ControlActor class in the meta-model. An actor can have
at most one trigger.

103

The attribute time_interval is a constant integer strictly greater than zero. If
an actor is triggered by a periodic event, the time_interval attribute indicates the
activation interval of a periodic actor. If an actor is triggered by a sporadic event,
the time_interval means the minimal interval of the occurrence of the sporadic
event. In this case, its value is used for the purpose of analysis because an actor
should �nish its execution before the next possible sporadic event comes. The
value of the time_interval can be ignored if an actor is triggered by a signal
arrival event.

The attribute deadline is a constant integer strictly greater than or equal to
zero, designating the deadline of a given actor. When the deadline of an actor is
explicitly speci�ed and greater than zero, then the actor will generate its compu-
tation outputs at the speci�ed deadline instant, otherwise the actor outputs its
computation results immediately after �nishing computation. For each periodic
or sporadically triggered actor, the deadline value should be strictly no greater
than the corresponding time_interval value.

The attribute execution_time is a constant integer strictly greater than zero
designating the required computation time of a given actor, and typically refer-
ring to the worst-case execution time. If the deadline of an actor is speci�ed
(i.e. deadline > 0), then the execution_time value of the actor must not exceed
its deadline value. If the deadline is not speci�ed but the actor is periodically
activated, then the execution_time value must not be greater than the speci�ed
time_interval value. This attribute is for the purpose of analysis as well.

4.3.3.2 System

A particular COMDES system is a composition of actors, network nodes onto
which actors are allocated, and signals through which actors interact with each
other via drivers. The contained actor class in the meta-model (see Fig. 4.24) is
abstract because a system could be composed of actors modelling controllers or
modelling controlled environments. The de�nition of environment actor can be
similar to the de�nition of the control actor. Fig. 4.25 shows an example system
model in graphical notations.

A system is eventually built out of function block instances and network node
instances whose types are stored in a repository. When con�guring a COMDES
system from these prede�ned types, it is necessary to access the repository to
obtain information about these types. For example: function blocks are stored as
prefabricated objects, and the location of the objects in the repository needs to be
known, so that these objects can be linked to instances that are generated from a
system model. The access to repositories is modelled via the relation repositoryroot

104

Figure 4.24: Meta-model of system

Figure 4.25: A system model

to the Root class.
Signal (see Fig. 4.26) consists of one or more variables and each variable

contained in a signal should have a data type (the COMDESType as shown in
Fig. 4.8), as well as a name speci�ed by the attribute variable. A signal connects
from output driver instance to input driver instance of communicating source and
destination actors. A Boolean �ag trigger is used to designate whether or not the
signal triggers a receiver actor.

4.3.4 Platforms

A network node model is a platform model on which COMDES actors can execute.
Each network node has a hardware aspect (i.e. type of microcontroller) and a
software aspect (i.e. tool-chain used to build application). A COMDES system
may employ a number of identical hardware platforms to host di�erent actors.

105

Figure 4.26: Meta-model of signal

Therefore, the Kind-Type-Instance pattern is used once again in the meta-model
to allow for reuse of network nodes.

An assumption is that that each network node has only one microcontroller,
that is speci�ed by the attribute cpu, as shown in Fig. 4.27. The attribute
required_toolchain speci�es what tools (i.e. compiler, linker) are needed to build
a COMDES executable from the generated source code and prebuilt FBs for the
given node. Values of the two attributes could be referred to by another attribute
� build_script.

Figure 4.27: Meta-model of network node

For the purpose of automating the build process, the attribute build_script

speci�es how to build the COMDES executable with the required tool-chain, and

106

what resources are required. The script can be written in a language that is
speci�c to a build tool that COMDES employs (i.e. GNU make). In the script,
the information about cpu or reqiured_toolchain would be needed.

Moreover, in order to �nd out all resources for the build, this script needs
to have access to the artefacts generated from a COMDES system model, as
well as prebuilt components from the FB repository. However, what source �les
to generate is dependent on the COMDES implementation and code generators,
which are unknown before a generation step. Thus, it is very hard to specify such
information during the modelling stage.

A simple solution is to de�ne a set of external variables representing such
information. The variables are used by the build_script. These variables can be
assigned in another script, which is generated during a transformation step from a
COMDES system model. Then the build_script only needs to include or import
the generated script and use the prede�ned variables (Chapter 6 � Section 6.3).

Another straightforward solution without using any extra de�nitions of vari-
ables would require a two-step generation. In the �rst step, a build script can
be speci�ed with information from a COMDES model, because nothing is known
yet about generated �les. The script is then used to generate a COMDES code
generator's template (or input). In the second step, the code generator reads the
COMDES model and generates a complete script based on the template. However,
this approach requires a complicated code generator supporting dynamic template
reading during generation, because in the second step, the code generation tem-
plates are not �xed.

The meta-model of the network node can be re�ned with more classes and
associations to model platforms including hardware aspect, software aspect or
even timing aspect in more detail. For example, each node could have a number
of devices and each device needs a device driver. When a COMDES actor driver
accesses a device, it is necessary to check if the device and its driver exist on the
allocated network node. If it does not match, meaning that the network node
does not satisfy the actor's requirement, other types of network node should be
considered.

Delivering general hardware abstractions is a di�cult task caused by the large
variety of architectures used in embedded system design. Furthermore, since
COMDES is intended to provide a solution for embedded software rather than
hardware, such detail is not provided in the meta-model. However, tasks like
checking a device driver against a COMDES driver can still be ful�lled if the task
is left to compilers. In the meta-model, a network node can contain a number of
libraries. Each library needs to be speci�ed with a declaration and an implementa-

107

tion, which describes what function calls (i.e. device drivers) the node can provide.
Remember that the Function class in the generic FB pattern (Fig. 4.7) contains
the attribute includes, specifying a list of function calls required in the code of a
function. So, when a component developer creating a driver (or other FBs) and
writing implementation code for it, he (or she) has the knowledge of what device
drivers or function calls he (or she) is invoking from within the code and has to list
these function calls in the includes attribute. Next, the developer will compile the
source code of the component for a speci�c platform, which provides the required
function calls. If the required function calls do not match the provided ones, the
component will not be compiled, and as a result, a prebuilt component for the
platform will not be available for reuse. Consequently, the component model as
well as its objects should not be seen in the repository.

4.3.5 Repository

A COMDES repository root comprises three distinct repositories: an application
repository that collects all COMDES applications, function block repository that
stores all reusable function block type models, interfaces and executables, and a
platform repository that contains models related to hardware and software (i.e.
de�nitions, function libraries, etc.).

The meta-model of the repository is quite straightforward (Fig. 4.28), and the
underlying idea is that a repository structure can be generated out of a repository
model. The structure may be implemented by a �le system or a database system.
Consequently, the generated structure just needs to be �lled with contents, i.e.
interface �les, model �les, executable �les, etc. For example, the application
repository contains a number of projects that are modelled respectively by the
ApplicationRepository and the COMDESProject class. Each project model
can be generated as a folder in a �le system that physically holds a number
of application-related �les, e.g. models, source code, executables, con�guration
scripts, etc.

A FB repository is classi�ed according to particular categories, each of them
containing a number of folders modelled by the class FBTypeFolder. Each folder
represents one type of function block and thus should contain all related informa-
tion; for example, the component type model as well as the interface used to access
the component must be provided in its type folder. According to the COMDES
notion of component, function blocks are prebuilt components speci�c to various
platforms, which is modelled by the class Executable and the relation platform

to the NetworkNodeType class.
The platform repository stores models of network node types as well as hardware-

108

speci�c de�nitions that COMDES needs, i.e. de�nitions of COMDES data types
BTYE, UBYTE, etc. These de�nitions are saved in one or more �les that are
speci�ed by the includes attribute the HardwareFolder class. The information
can be later retrieved when a platform is selected for a con�guration.

Figure 4.28: Meta-model of repository

Fig. 4.29 demonstrates a repository model containing an application reposi-

109

tory, a FB repository as well as a platform repository. There are two kinds of
platform in the platform repository: PC and SAM7_EX256. The FB reposi-
tory has three categories: Math, InputDriver andOutputDriver. In the �gure,
a FB type folder from the InputDriver category is selected, and the correspond-
ing information of the folder (i.e. interface, FB type model reference, etc.) is
displayed in the table below. This input driver has only one executable based on
the platform SAM7_EX256.

Figure 4.29: A repository model

In addition to the repository structure de�ned in the meta-model, methods
to access the repository must be available, in order to allow for automatic con-
�guration. For instance, if the repository is implemented as a �le system, it is
necessary to know where a FB executable of a given platform is located, so that it
can be linked to other compiled FB instances in an assembly. Thus, a number of
operations of the Root class must be implemented. The list given below contains
the declarations of four methods that are utilized by the con�gurator tool (see
Chapter 7) to generate the con�guration script. There could be more methods
provided in order to facilitate the process of repository search and information
retrieval.

• boolean isFBTypeInFBRepository(String fbtypeid)

110

• boolean isNetworkNodeTypeInPlatformRepository(String nodetypeid)

• URI getFBExecutablePath(String fbtypeid,String nodetypeid)

• URI getFBInterfacePath(String fbtypeid)

4.4 Summary

This chapter has presented the modelling techniques that COMDES de�nes for
building embedded control applications from reusable components, at a higher
level of abstraction. Speci�cally, a meta-model speci�ed by the Ecore meta-
modelling language formally de�nes the syntax of the COMDES framework, which
is in turn used to support the speci�cation of concrete COMDES component
types, as well as the system models constructed from prede�ned component types.
As a foundation for developing real-time embedded control software using the
COMDES approach, the meta-model contains su�ciently complete information,
so that tools can be employed to automatically generate code from models that can
be directly running on platforms. Based on the meta-model, system dynamics can
be formally speci�ed in terms of timing and functional behaviours, in collaboration
with a function block repository. With concrete information about execution plat-
forms, system implementations can be automatically synthesized via one or more
transformation steps. Final system executables can be con�gured by dedicated
compilers and linkers, and subsequently deployed onto target microprocessors.

The meta-model can be seen as an implementation and a detailed speci�cation
of the COMDES framework introduced in Chapter 3. However, this chapter fo-
cuses only on COMDES building blocks regarding DSL, function blocks, platform
and repository. Another part of the COMDES framework � a run-time envi-
ronment model that can be transformed from a domain model, speci�ed by the
COMDES meta-model, will be described in the next chapter.

111

Chapter 5

Platform-Speci�c Model: A

Run-time Environment

The COMDES design models take both system structural and behavioural aspects
into account. In terms of structure, a system is conceived as a network of actors
that communicate with one another by transparently exchanging signals via en-
capsulated drivers. An actor can be hierarchically composed from di�erent kinds
of function block instances to realize the required system functional behaviour.
For modelling system behaviour, a separation-of-concerns approach is systemat-
ically applied, such that a number of non-functional properties (i.e. real-time
execution and response) are speci�ed with respect to actors, while system func-
tionality is modelled as speci�c function block diagrams contained within actor
tasks. Separation of concerns allows for clear speci�cation of system dynamics
in di�erent aspects. The COMDES framework employs a distributed timed mul-
titasking model of computation, which can be implemented by a corresponding
run-time environment that manages the preemptive execution of prioritized actors
and atomic execution of signal drivers at prede�ned time instants. The HARTEXµ
kernel implements such an environment, and thus can be adopted as a platform
of COMDES-based applications [76][77][78][79][29][62][80].

The original version of the kernel, supporting only stand-alone operation, was
developed by Gourinath Banda in his Master thesis: �Scalable Real-Time Kernel
for Small Embedded Systems�, under the guidance of Prof. Christo Angelov, Uni-
versity of Southern Denmark (SDU), 2003. The kernel implementation has been
subsequently optimised and improved in many aspects, and it has been extended
for distributed operation adopting the CAN communication module, which was
originally developed by Jens Lorenzen in his Master thesis: �Communication Pro-
tocol for Distributed Embedded Systems�, under the guidance of Prof. Christo
Angelov, SDU, 2003. Furthermore, the functionality of the kernel has been ex-

112

tended by new subsystems supporting Timed Multitasking, and the Task Manager
has been redesigned to support the execution of tasks and drivers con�gured from
function blocks. This version was developed by Krzysztof Sierszecki in his Ph.D.
thesis: �Component-Based Design of Software for Embedded Systems�, supervised
by Prof. Christo Angelov, SDU, 2007. The kernel has been validated in a number
of stand-alone and distributed experiments, as well as in course projects and mas-
ter projects executed at the Mads Clausen Institute, SDU. Furthermore, research
in component-based design using the HARTEX architecture has been carried out
by Jesper Berthing in his Ph.D. thesis �Component-Based Design of Safe Real-
Time Kernels for Embedded Systems�, supervised by Prof. Christo Angelov, SDU,
2008.

The latest version of HARTEXµ has been speci�cally developed to provide an
operational environment for COMDES-II applications, and it can be characterized
by the following features [62]:

• Boolean vectors used instead of linked-list queues: Bitwise processing of
Boolean vectors has resulted in considerable reduction of kernel overhead
and constant execution time of kernel functions, independent of the number
of tasks involved.

• Basic tasks sharing one common stack: Tasks are implemented as basic (non-
blocking tasks) that share a common stack, which contributes to smaller
memory overhead and simpler implementation.

• Integrated task and resource management : An elegant protocol called the
System Ceiling Protocol 1 is employed in order to achieve predictable be-
haviour over shared resources by eliminating undesirable e�ects such as dead-
lock, unbounded priority inversion, etc.

• Integrated time and event management : Timing interrupts and external
events are treated in a uniform manner, using event counters and event
control blocks. The event control block speci�es an operation to be carried
out on the occurrence of an event, e.g. release one or more tasks. Thus
the tasks can be released when a speci�ed time interval elapses or an event
threshold is reached.

• Boolean vector semaphores : This is a new type of synchronization object,
which can be used to instantaneously notify a number of tasks about event
occurrence or message arrival.

1This protocol is also known as the Stack-Sharing Ceiling Priority Protocol.

113

• Content-oriented message addressing : With this technique a message is ad-
dressed by its name, freeing application developers from all the associated
details of senders/receivers, message size, message source and destination
etc., thus providing support for transparent signal-based communication.

• Stand-alone and distributed operation: Both modes of operation are sup-
ported making the kernel a versatile solution supporting a broad range of
embedded applications.

• Timed Multitasking : This mechanism combines the advantages of static and
dynamic scheduling and makes it possible to eliminate task and transaction
execution jitter in a dynamic scheduling environment. It is supported by
the Integrated Event Manager.

• Static Time Manager : This is a dedicated kernel component used to e�-
ciently handle hard real-time periodic tasks executing under Timed Multi-
tasking, in the context of concurrently executing time-triggered transactions.

• Easy porting : All architecture-related issues are located in one hardware-
speci�c module, i.e. the Hardware Abstraction Layer, which makes porting
easy.

In this chapter, a simpli�ed representation of the HARTEXµ meta-model is
�rstly developed using the Ecore notations by avoiding details that are not relevant
for COMDES-based applications. Secondly, a transformation from the COMDES
model to the HARTEXµ model based on the corresponding meta-models is pre-
sented. Finally the transformation is illustrated with a trivial scenario.

5.1 Meta-model of a run-time environment

5.1.1 Application

The HARTEXµ kernel consists of various modules implementing speci�c subsys-
tems: Task Manager; Task I/O Manager; Resource Manager; Synchronisation and
Communication Bus; Integrated Event Manager; Timed Multitasking; and Static
Time Manager. Each module provides certain calls (primitives) that can be in-
voked by other module and/or tasks. In addition, the kernel modules and kernel
objects depend on the services of a Hardware Adaptation Layer.

The kernel manages several types of software entity: events, tasks and task
inputs/outputs, and it also provides support for task interaction via messages.

114

The Event Manager processes events and generates execution requests for tasks
and I/Os. This is achieved by means of the primitives release(tasks), and
finish(tasks), which are invoked by the kernel Event Manager (or Static Time
Manager) when processing task-release and deadline events, respectively. The task
outputs and inputs are invoked from within the kernel Task Manager and executed
non-preemptively, before task scheduling takes place, if I/O execution requests
have been registered by the Event Manager. Upon Task Manager activation, the
registered outputs are executed before inputs, in order to make sure that the
precedence relation between sender and receiver tasks is maintained. Released
tasks are executed in a preemptive priority-based environment, the highest-priority
task �rst.

Due to the speci�c architecture of the kernel, a real-time application is con-
structed by just con�guring application-speci�c kernel objects (i.e. tasks, mes-
sages, events, etc.) within the corresponding application-independent modules
(i.e. Task Manager, Synchronisation and Communication Bus, Integrated Event
Manager, etc.). Therefore, only the application-speci�c kernel objects need to be
speci�ed in an application model.

The HARTEXµ kernel has been designed for stand-alone and distributed real-
time systems. In the meta-model (Fig. 5.1), each distributed real-time application
encapsulates a number of nodes as well as messages used to communicate between
nodes. Each node consists of a number of kernel objects, i.e. tasks, semaphores,
resources, events, etc., which are set up during a con�guration. Subsequent sec-
tions discuss relevant models of kernel objects (objects that are not related to this
thesis and COMDES are omitted).

5.1.2 Tasks

Application software in real-time systems is decomposed into several discrete,
signi�cant and appropriate smaller jobs. These are implemented as subroutines
and are referred to as tasks, whose execution is controlled by the kernel task
manager. Synchronisation and communication between tasks are assisted by other
kernel objects like semaphores, messages, etc. All the tasks have a �xed statically
de�ned priority starting from 1, the lowest priority in the system. The HARTEXµ
kernel supports only basic tasks, which can never be blocked. Basic tasks may
be temporarily or permanently disabled. A running basic task will switch to an
inactive state upon exiting the system, and it could be released again if enabled.

Transitions to and from the active task state are e�ected by means of task
management primitives. An incomplete list of the task management primitives is
given below:

115

Figure 5.1: Meta-model of a HARTEXµ application

• release(tasks) � releases one or more enabled tasks and registers input
drivers for execution, as speci�ed by the tasks argument vector

• finish(tasks) � registers output drivers for execution of tasks that just
completed (became inactive)

• disable(tasks) � disables one or more tasks, as speci�ed by tasks

• enable(tasks) � enables one or more tasks, as speci�ed by tasks

The four primitives are modelled using interfaces in the meta-model shown
in Fig. 5.2, such as IReleaseTasks, IFinishTasks, IDisableTasks and IEn-
ableTasks. Any kernel object which implements any of the interfaces is able to
operate on tasks accordingly.

In the meta-model (Fig. 5.3), the task itself is modelled using the Task class.
A task that constitutes an application can have code in which certain primitives
could be called to ful�l requirements of the application. Task input/output are
invoked at the beginning and at the end of task execution respectively. More
precisely, the kernel supports split-phase execution of tasks and I/O in accordance
with the concept of timed multitasking, whereby inputs and outputs are executed

116

at particular time instants in separation from the task. Both of them are assumed
to be short pieces of code executed atomically (non-preemptively). Moreover,
they are executed according to a priority order, such that higher-priority tasks
have higher-priority input/output.

5.1.3 Messages

The kernel provides means for tasks to communicate with one another, so as to
achieve the needed system functionality, in stand-alone and/or distributed sys-

Figure 5.2: Meta-model of kernel primitives

117

Figure 5.3: Meta-model of tasks

tems. Communication is of non-blocking type, i.e. state message communication
with message-overwrite semantics. As shown in the meta-model (Fig. 5.4), a mes-
sage is composed of one or more variables. The task sending a message is referred
to as a Sender task, while the task receiving the message � as a Receiver task.
Sending and receiving messages is e�ected by operations broadcast(message)

and receive(message), which are modelled as interfaces IBroadcastMessage

and IReceiveMessage, respectively. If the receiver task and the sender task are
located in di�erent nodes, the message is considered as a global message. In the
case, the isGlobal attribute should have the Boolean value true.

Message arrival is noti�ed by means of an event. So, the sender task on reaching

Figure 5.4: Meta-model of messages

118

its communication point, broadcasts the message; it noti�es the receivers that the
message is ready by signalling them (and eventually releasing all or some of them).
The receiver tasks, on reaching their communication points, check whether the
message is ready; if ready they just read the message to their local destination
bu�ers and continue their execution sequence.

5.1.4 Events

The purpose of the real-time system is to recognize various timing, external and
internal events, and to generate relevant reactions by executing the corresponding
tasks in a timely and predictable manner. It is the duty of an Event Manager
to identify the occurring events and accordingly, execute speci�c operations, e.g.
release (tasks), finish(tasks), etc., when the event counters of one or more
events expire.

Figure 5.5: Meta-model of events

HARTEXµ uses the concept of Integrated Event, whereby all kinds of events are
treated in a uniform fashion. An integrated event is generated by an event source,
e.g. a tick interrupt or an external hardware interrupt. Events coming from a
particular source are counted and a speci�c event-processing action is executed
when the event counter expires. These actions can be: enable/disable events,
enable/disable tasks, release tasks, �nish tasks, and send message. The actions
are modelled as the corresponding interfaces shown in Fig. 5.2. However, an
action needs to be taken when an associated event has occurred for a prede�ned
number of times. This is an attribute of an integrated event called threshold,
whose possible value is an integer. By default, an event can be either enabled or
disabled which is indicated by the attribute defaultEnable, whose possible values

119

are true or false. This parameter can be changed by disable or enable operations.
The attribute mode of the IntegratedEvent class speci�es whether an event is a
free running or on-o� type. If an event is of on-o� type, the current event will
be disabled once occurred. If it is of free-running type, the event counter of the
event will be reloaded with the threshold value once a new event occurs, and start
to count again.

5.2 Transformation speci�cation

To make sure that a COMDES system is correct regarding timing requirements, a
COMDES system model can be transformed into a HARTEXµ application model
consisting of a number of HARTEXµ kernel nodes corresponding to network node
instances in the COMDES model, such that each COMDES node is mapped to one
kernel node. The latter supervises the execution of actors allocated to the network
node. However, if there were no requirements related to timing, an application
could be executed without a real-time kernel.

In this section, a transformation speci�cation is given to show how to map a
model or an attribute of a model in COMDES to a model or an attribute of a
model in HARTEXµ . The �rst part focuses on the structural transformation of a
COMDES system model, such as from actor to task, from signal to message, etc.
The second part explains how to deal with the timing aspect of the COMDES
system model. This speci�cation can be implemented by a transformation tool
in the COMDES development environment. The input of the tool is a validated
COMDES system model, and the output is a HARTEXµ model.

Transformation Speci�cation (Part 1):

1. Source COMDES system

Target RTOS application

Description For a COMDES system model,

(a) Create a HARTEXµ application model

(b) Transform all network nodes into kernel nodes using rule 2

(c) Transform signals to messages using rule 6

(d) Connect all objects for timing using rule 11

2. Source Network node instance

Target Kernel node

120

Description For a source network node, and the created HARTEXµ appli-
cation model do following:

(a) Create a kernel node model

(b) Transform the network node contained actors into tasks using rule
3

(c) Add the kernel node to the HARTEXµ application model

3. Source Actor

Target Task

Description For an actor on a network instance node, and the kernel node
model transformed from the network node using rule 2, do:

(a) Create a task

(b) Transform the input latch and the output latch of the actor using
rules 4 and 5

(c) Assign the task a priority according to a given policy

(d) Transform timing attributes using rules 8, 9, or 10

(e) Add the task to the kernel node model

4. Source Input latch

Target Task input

Description For an input latch of an actor, and the task transformed from
the actor using rule 3, do:

(a) Create a task input

(b) Add it into the task

5. Source Output latch

Target Task output

Description For an output latch of an actor, and the task transformed
from the actor using rule 3, do:

(a) Create a task output

(b) Add it into the task

6. Source Signal

Target Message

Description For a signal, and the HARTEXµ application model trans-
formed from the COMDES system model using rule 1, do:

121

(a) Create a message

(b) Transform the signal's constituent variables to message variables
using rule 7

(c) Set the message source to the task transformed from the source
actor

(d) Set the message target to the task transformed from the target
actor

(e) If the signal releases an actor, set the message to release the task

(f) If the signal has source and target on di�erent network node in-
stances, set the message as global

(g) Add it to the HARTEXµ application model created using rule 1

7. Source Signal variable

Target Message variable

Description For a signal variable of a signal, and the message transformed
from the signal, do:

(a) Create a message variable

(b) Set variable's type to the type of the signal variable

(c) Add the message variable to the message

Under the COMDES framework, an actor must be triggered for execution. If
an actor is inactive when it is triggered, the actor becomes ready for execution.
Consequently, the actor could be selected to have its state changed to an executing
state, in which the actor is being executed on a processor. Inactive refers to a
state where the actor is not among those actors that can be selected for execution.

There are three ways to trigger an actor: periodic event, sporadic event, and
signal arrival (see the meta-model of actor in Chapter 4). Each actor can be trig-
gered by only one of them. Once an actor is triggered, it is ready to be executed,
and its execution is up to a scheduler. Meanwhile, its deadline is monitored by the
Event Manager, so as to release the actor's output drivers and execute them at
the deadline time instant. If the deadline is zero, the output drivers are executed
immediately after the actor task is �nished.

In case that an actor is periodically activated, the actor is typically trig-
gered by a timer. The duration of the period is speci�ed by the actor attribute:
time_interval. In this case, the deadline is measured starting from the initial time
instant of the period. An actor can be triggered by some external event other than
a periodic timer (e.g. a button pressed). In this case, its deadline is measured from

122

the time instant at which the actor has been triggered. If an actor is triggered by
a signal which is sent by another actor, the two actors constitute an actor chain,
and then the deadline should be measured from the trigger (release) instant of the
�rst actor of the chain.

In an actor chain, except for one actor, each actor should be triggered by a
signal that is sent by another actor in the same chain. The actor that is not
triggered by a signal is called head, and the head actor can be triggered either
by a periodic timing event or a sporadic event. Consequently, the whole chain is
triggered by that event. The actor that is triggered by a signal and is not sending
a signal triggering any other actors is called tail. The deadline of the chain is
de�ned at its tail actor. The actor chain is introduced because the deadline of an
actor chain is measured from release instant of the head actor in such a chain.

The simplest chain consists of one actor. Here, the head and the tail are the
same. This chain can be triggered by either periodic timing event or sporadic
event, and its deadline is measured from the instant when it is triggered. More
complex chains are built by adding subsequent actors. A two-actor chain is shown
in Fig. 5.6a, where A2 is triggered by A1. A1 has the chain's trigger, while A2 has
the chain's deadline. Likewise, an n-actor chain is as shown in Fig. 5.6b, where
A1 has the chain's trigger, and An has the chain's deadline.

Figure 5.6: Examples of actor chain

The transformation of the timing aspect of a COMDES-based application has
mainly to deal with events that trigger actors and set timers to measure deadlines

123

using HARTEXµ kernel objects. The timer measuring the deadline is referred
to as a deadline timer, whereas the timer measuring the period is referred to as
a periodic timer. In the context of the HARTEXµ kernel, an Integrated Event
(IE) can be con�gured as either an external event or a timer, in terms of di�erent
settings, which are processed by the Event Manager module.

In an embedded system, typically, a timer measures time in multiples of tick
interrupt that occurs with a �xed period (i.e. a time period of 10 milliseconds).
This tick interrupt corresponds to the �ne granularity of the time in the system.
In the present kernel the basic tick interrupt has a time period of 10 milliseconds.

A Timer is enabled if it has been started and not stopped since last started,
and there is a future time instant when it is expected to �re an event, else it is
disabled. Enabling starts the timer. When time is due, some actions can be taken.
The actions in HARTEXµ include: release tasks, enable timers or events, and
�nish tasks.

The behaviour of a one-o� timer is that of a timer that does not automatically
restart after an initial �ring. It is speci�ed in terms of the required �ring interval.
The behaviour of a free running timer is that of a timer that automatically restarts
operation after an initial �ring. It is speci�ed in terms of activation period, which
is equal to the �ring interval.

Transformation Speci�cation (Part 2):

8. Source Actor attribute: deadline

Target Integrated event (con�gured as a deadline timer)

Description For an actor, the task transformed from the actor, and the
kernel node model that contains the task, if the deadline of the actor
is speci�ed (> 0), do:

(a) Create a one-o� timer

(b) Set the timer to �re a �nish event, and it �nishes the task

(c) Set the due time to the value of the deadline

(d) Assign the timer to a timing source

(e) Disable the timer by default (how this timer is enabled depends on
how the actor is released)

(f) Add the timer to the kernel node model

9. Source Actor attribute: trigger type is periodic

Target Integrated event (con�gured as a periodic timer)

124

Description For an actor, the task transformed from the actor, and the
kernel node model that contains the task, if the trigger type of the
actor is periodic, do:

(a) Create a free running timer

(b) Set the timer to �re a release event for the corresponding task

(c) Set the due time to the value of the time_interval of the Actor

(d) Assign the timer to a timing source

(e) Enable the timer by default

(f) Add the timer to the kernel node model

10. Source Actor attribute: trigger type is sporadic

Target Integrated event (con�gured as an external event)

Description For an actor, the task transformed from the actor, and the
kernel node model that contains the task, if the trigger type of the
actor is sporadic, do:

(a) Create an event

(b) Set the event to release the corresponding task

(c) Enable the event by default

(d) Assign the event to an event source

(e) Add the event to the kernel node model

11. Source Actor attribute: deadline

Target Connect to deadline timer

Description For an actor and the task transformed from the actor, if the
deadline is speci�ed (> 0), do:

(a) Find the head of the actor chain that the actor belongs to

(b) Make the periodic timer of the head (created in rule 9) or external
event of the head (created in rule 10) enable the deadline timer of
the actor created in rule 8

The transformation speci�cation mainly focuses on the timing behaviour of a
COMDES system model. Other aspects of the model have been abstracted away.
However, the functional behaviour of each actor modelled by function blocks can
be simply represented as code of a HARTEXµ task, which has been abstracted
away from the speci�cation. Furthermore, it does not show how to deal with
hardware-related aspects either. For example, an external event is used to release a
task, but the source �ring the event has to be con�gured from one of the interrupts
of the selected hardware platform.

125

5.3 Example

A trivial case is given in this section to illustrate the transformation of a COMDES
system model into a HARTEXµ application model. As shown in Fig. 5.7, a
COMDES system model consists of two actors as well as one signal. The output
driver of ControlActor is broadcasting the signal that is received by the input
driver of DisplayActor. The signal triggers the DisplayActor.

Figure 5.7: An example of COMDES system model

What is not shown visually is that the actor ControlActor is allocated to
a platform called platform1, whereas the actor DisplayActor is allocated to
another platform called platform2. The timing attributes of ControlActor are
as follows:

� trigger_type is periodic;

� time_interval is 100 ;

� and deadline is not speci�ed, as it is of no concern.

The timing attributes of DisplayActor is speci�ed as:

� trigger_type is signal, which is the received signal;

� time_interval is not used because the trigger type is signal ;

� and deadline is 80, which should be measured from the release time instant
of ControlActor.

A HARTEXµmodel can be obtained after a transformation from the COMDES
system model, which is shown in Fig. 5.8. The model contains two kernel nodes
and one global message that are transformed from the COMDES platforms and

126

Figure 5.8: Transformed HARTEXµ application model

the signal respectively. Each node hosts a task whose input and output correspond
to the drivers of the corresponding actor.

Speci�cally, the kernel node platfrom1_rtos (named in accordance with
platform1 in COMDES) has a kernel object � integrated event con�gured as
a periodic timer. The attributes of PeriodicIE_ControlActor are as follows:

� threshold is 100 ;

� mode is free running ;

� it is enabled by default;

� it releases the task ControlActor ;

� and it enables the deadline timer called DeadlineIE_DisplayActor.

The kernel node platfrom2_rtos contains the deadline timer for task Display-
Actor. The attributes of DeadlineIE_DisplayActor are as follows:

� threshold is 80 ;

� mode is one-o� ;

� it is disabled by default;

� and it �nishes the task DisplayActor by activating its output.

127

5.4 Summary

This chapter has presented a meta-model of a real-time kernel � HARTEXµ ,
implementing a distributed timed multitasking operational environment that has
been conceived in the context of the COMDES framework. COMDES actors are
scheduled dynamically by the HARTEXµ Task Manager at run-time but their I/O
drivers are invoked at precisely de�ned time instants, thus making the application
safe and predictable. A HARTEXµ model can be seen as a platform-speci�c
model corresponding to a platform-independent COMDES model. Therefore, a
transformation from the PIM to the PSM has been presented based on source and
target meta-models, which focuses mainly on the timing aspect of a COMDE-
based application.

The transformation is an implementation of the semantics of the COMDES
DSL regarding its timing behaviour. Thus, it can be understood how the actors
of a COMDES system are executed in a real-time multitasking environment. The
transformation speci�cation given in this chapter could be used as a guideline
when other real-time kernels are considered to be employed as the run-time envi-
ronment of COMDES applications. The ultimate idea is to enable tools to auto-
matically generate a con�guration of a distributed timed multitasking operational
environment from any given COMDES model, in terms of the transformation
speci�cation.

128

Chapter 6

Platform-Speci�c Models:

COMDES Implementations

The previous chapters have introduced a number of COMDES models, which are
platform-independent, in the sense that models are irrelevant to programming
languages. Indeed, these models are crucial for the development of embedded
systems; however, according to the MDSD approach, the platform-independent
models will ultimately be transformed into source code and �nally � executable
code either automatically or manually. While models help people specify an em-
bedded system, code is the one running inside the system, thus it is also signi�cant
to know how the models are implemented.

This chapter focuses in particular on the design patterns of function blocks �
the main kind of component in COMDES. The function block implements embed-
ded systems functional behaviour using a programming language, which represents
a lower level of abstraction than the COMDES DSL. The C language has been
selected as a programming language for COMDES since it is a `de facto' standard
in embedded system programming; it is a high-level language that abstracts hard-
ware, and at the same time provides low-level access to hardware, if necessary.
As a result, these design patterns can be regarded as C platform-speci�c models.
Thanks to the elegant design of these patterns, the reuse and instantiation of FBs
as well as composition of applications can be e�ciently realized in the COMDES
framework.

The executable format for function blocks and COMDES-based applications
will also be presented in this chapter, in order to state clearly how COMDES
models are implemented. Source code based on the patterns needs to be trans-
formed into executable code that is loaded into a system. In embedded systems,
the format of the executable code is usually native binary code, because the di-
rect execution of code in native machine form provides the best performance for

129

a given hardware platform. The transformation basically requires a C compiler
since the FB design patterns are written in the C language. There is a variety of
C compilers available, but GCC together with GNU Binutils, providing assembler
and linker, have been chosen to implement the COMDES framework.

Additionally, traditional software developers are sometimes reluctant to adopt
a generative approach for their development work on embedded systems because
they simply do not trust the generated code. Therefore, understanding the im-
plementation described in this chapter really makes sense to such readers. This
chapter will try to make it clear through detailed discussion accompanying illus-
trations of code, which will hopefully build up the reader's con�dence.

6.1 Function block design pattern

6.1.1 Introduction to function block implementation

Function blocks (FBs) are the main COMDES building components. At the source
code level, FB can be seen as a class specifying a number of reentrant functions, as
well as inputs and outputs used to exchange signals among function blocks. Func-
tion blocks are interconnected via softwiring using pointers to the corresponding
data locations. Softwiring is conceived as an output-to-input(s) connection: out-
put data is stored in an output bu�er of the source FB, and it is subsequently
accessed by one or more destination function blocks through the corresponding
input pointers. This allows for e�cient one-to-many connections by eliminating
the need to copy source data to multiple destination inputs.

6.1.1.1 FB interface and implementation

In accordance with the de�nition of a software component proposed by Katharine
Whitehead (see Chapter 1), there is a distinction between two perspectives of a
COMDES function block: FB interface and FB implementation. The FB interface
summarizes the properties of a FB that are externally visible to the other parts
of the system. All communications between COMDES function blocks are carried
out through interfaces that are de�ned as a set of input pointers and a set of
output bu�ers. (The concept of interface in COMDES is di�erent from the one
usually used in the Object-Oriented world where an interface consists of a set of
functions, which are invoked by other components.) The FB implementation is
the executable realization of a FB and it must conform to the properties stated
in their interfaces.

130

The separation between interface and implementation guarantees FB indepen-
dence. The real implementation of a function block is hidden behind its interface.
The separation also provides a way of updating a function block without in�uenc-
ing other components that interact with the function block � as long the interface
is not changed, resulting in greater �exibility with respect to possible updates.
According to COMDES, the implementation provided to users should be in the
form of compiled objects rather than source code. In this manner, the components
can be directly assembled in an application without compilation. Furthermore,
shipped components are not allowed to be changed by component users, thus
eliminating possible errors due to manual changes of components source code.

6.1.1.2 FB functions � reentrant functions

Each function of a FB should be de�ned as reentrant code, so it can be preempted
in a multitasking environment where a higher-priority task can preempt a lower-
priority task. A reentrant function can be interrupted at any time and resumed
at a later time without loss of data. Reentrant functions either use local variables
or protect their data when global variables are used [81].

To implement a COMDES-compliant component, there are three rules that
apply to the implementation of a FB function, so that the function is reentrant:

� A function cannot use variables in a non-atomic way unless they are stored
on the stack (local variables) or are otherwise the instance variables stored in
the function block execution record (a section of code is atomic if it cannot
be interrupted).

� A function cannot call any other functions that are not themselves reentrant.

� A function cannot use the hardware in a non-atomic way.

As a result of the above guidelines, only local variables and members of an
execution record can be used within a function.

Things become complicated when function blocks use a third-party library,
because it is never known, which parts of the library are reentrant and which are
not. However, nowadays vendors have taken the initiative to provide reentrant
versions of libraries, and therefore, in the following discussion it is assumed that
third-party libraries are reentrant.

6.1.1.3 Function block type and instance

Function blocks are reusable due to their particular features combining function-
ality and data: type and instance. The FB type de�nes FB behaviour (the func-

131

tions). FB instances just store the values for the variables of the corresponding
FB type. Typically, there are many instances of a function block of a single type.
FB instances of the same FB type share the same behaviour and only di�er in the
data they operate on. The behaviour is de�ned by the corresponding FB type.

The FB instance has a kind of �memory� � the so called function block exe-
cution record, which can store local data values, parameters and inputs/outputs
over several invocations. Such a memory is important for FBs as their behaviour
is dependent on the current status of the internal values (persistent variables).
All such data are stored in a static memory area which is assigned to each FB
instance.

6.1.2 Basic function blocks

Each basic FB type must have one interface and one implementation. An interface
is in principle a data structure encapsulating signi�cant execution attributes of
a given type of FB, including inputs, outputs, parameters as well as persistent
internal variables. Listing 6.1 presents a data structure that implements the basic
FB interface, where the basic FB execution attributes are declared. The TypeName
in the name of the declared interface template should be replaced by the actual
FB type name when a speci�c type is de�ned.

Listing 6.1: Basic function block interface pattern
/* output structure */

typedef struct {

/* variables , example: BYTE result; */

} TFBTypeNameOutput;

/* FB interface structure */

typedef struct {

/* input structure */

struct {

/* pointers , example: BYTE *data; */

} input;

/* parameter structure */

struct {

/* pointers , example: BYTE *parameter; */

/* BYTE *internal_variable; */

} parameter;

TFBTypeNameOutput *output;

132

} TFBTypeName;

The interface de�nes the function block data structure TFBTypeName which
contains an input structure, a parameter structure and an output pointer. FB
outputs are placed into an output bu�er containing one or more variables de�ned
by the structure TFBTypeNameOutput. When a speci�c FB instance is created, its
interface as well as output bu�er will be instantiated with appropriate values.

For the purpose of the softwiring connection, all data in the input and param-
eter structures are de�ned as pointers, in order to provide connection to another
function block output or another data bu�er (i.e. a constant). Input pointers
are used to be connected to FB output bu�ers or to constants, through which a
FB can get input data for computation. The output bu�ers encapsulating a set
of variables stores the computation results. Parameter pointers can be connected
to static variables if they are constant during the run-time. Internal persistent
variables of a FB type should be also de�ned within the interface and be accessed
by pointers that are included in the parameter structure.

Listing 6.2 illustrates a FB implementation skeleton consisting of a num-
ber of FB functions as well as the declaration of a FB type data structure �
TFBTypeNameFunctions, through which a speci�c function can be accessed. The
implementation pattern is in fact generic for all kinds of COMDES FBs. Di�erent
kinds of FBs only di�er in their interfaces and concrete functions.

Listing 6.2: Function block implementation pattern
typedef void(* TFBFunction)(void *);

/* FB type data structure */

typedef union {

/* function structure */

struct {

TFBFunction init;

TFBFunction main;

TFBFunction exit;

};

TFBFunction function [3];

} TFBTypeNameFunctions;

/* definition of a FB function: init */

void FBTypeNameInit(void* FB)

{

/* local FB pointer used to access FB instance data */

133

TFBTypeName* lFB = (TFBTypeName *)FB;

/* Start of function code: init */

... ...

/* End of function code: init */

}

/* definition of a FB function: main */

void FBTypeNameMain(void* FB)

{

/* local FB pointer used to access FB instance data */

TFBTypeName* lFB = (TFBTypeName *)FB;

/* Start of function code: main */

... ...

/* End of function code: main */

}

/* definition of a FB function: exit */

void FBTypeNameExit(void* FB)

{

/* local FB pointer used to access FB instance data */

TFBTypeName* lFB = (TFBTypeName *)FB;

/* Start of function code: exit */

... ...

/* End of function code: exit */

}

/* declaration of FB Type */

TFBTypeNameFunctions FBTypeNameFunctions =

{ {

(TFBFunction) FBTypeNameInit ,

(TFBFunction) FBTypeNameMain ,

(TFBFunction) FBTypeNameExit ,

} };

The FB type data structure has two alternative options to access the associated
functions: one is through explicitly named function pointers (i.e. init, main or
exit); another is via an array of function pointers whose index represents the

134

corresponding function (i.e. function[0] denotes the associated FBTypeNameInit

function.) Similar to the interface pattern, the TypeName part of each name should
be replaced by the actual FB name.

Each FB type should have at least one function, where code for the computa-
tional algorithm should be placed. (The example implementation pattern de�nes
three functions). A FB function (e.g. FBTypeNameMain) accepts a pointer referring
to the address of a particular instance, in order to acquire the needed execution
information. In this way, the application-speci�c data stored in FB instances is
separated from the application-independent functions de�ned as FB types. As a
result, prede�ned components can be reused in di�erent applications.

A function needs to be registered as a part of FB type data structure. A global
variable (FBTypeNameFunctions) is declared through which application code can
access functions of a FB type.

If a developer is implementing a reusable basic FB type manually without using
any model and code generator, he/she �rstly needs to �ll out the interface pattern
with speci�c inputs, outputs, and parameters. Keep in mind that the persistent
internal variables are also implemented as parameters. Secondly, he/she has to
write concrete functions manually in C code and must comply with the rules of
reentrant functions. Finally, these functions should be registered into the FB type
data structure.

Listing 6.3 exempli�es the use of the pattern where an FB instance is created
according to a given type. An output bu�er is created, which can be accessed
by other FB instances. A FB is instantiated by creating a variable using the
type de�ned in the interface, and an appropriate value for each pointer must be
assigned.

Listing 6.3: Basic function block instance pattern
/* create a FB instance output buffer */

TFBTypeNameOutput instanceOutput = {/* output initial values */};

/* create a FB instance */

TFBTypeName instance = {

/* input structure */

{/* addresses of connected FB outputs */},

/* parameter structure */

{/* addresses of parameter variables */},

/* output */

&instanceOutput ,

};

135

Listing 6.4 demonstrates how to execute the FB instance by using the speci�c
function of a given FB type. In the example, the main function is invoked to
process the speci�ed FB instance (also called instance in this example) by using
the FB type variable � FBTypeNameFunctions.

Listing 6.4: Basic function block execution pattern
/* execute the main function of a given FB type on the instance */

FBTypeNameFunctions.main(& instance);

6.1.3 Drivers

Patterns for input drivers and output drivers are also implemented similar to the
basic FB kind pattern. However, the interface pattern of the input driver will not
have the input structure (input pointers), because it reads data from the external
environment (i.e. peripheral device or operational environment, by invoking the
corresponding service routine or communication primitive) rather than the output
bu�ers of other function blocks. For similar reason, the interface pattern for the
output driver does not have an output structure as well as a corresponding output
pointer.

The driver implementation pattern is the same as the one used with basic
function blocks. However, the input/output drivers are assumed to be short pieces
of code executed atomically. The assumption might be considered valid since
drivers are implemented as wrappers copying data from one location to another one
without signi�cant computation. These are typically dedicated routines servicing
speci�c peripherals (with physical I/O drivers) or kernel communication primitives
(with communication I/O drivers).

6.1.4 Composite function blocks

A composite function block (CFB) encapsulates a number of FB instances that
are suitably interconnected to constitute a data �ow model, i.e. a function block
diagram (FBD). The CFB executes encapsulated FB instances according to a
static execution schedule, i.e. a linear sequence, which is derived from the encap-
sulated function block diagram when transforming a CFB model into code, using
the topological sort algorithm [75]. In principle, the execution schedule of a given
function block diagram is a table composed of records, each of which speci�es the
execution of the designated function of a given FB type for the corresponding FB
instance (see Listing 6.5).

136

Listing 6.5: FBD table record structure
typedef unsigned char UBYTE;

typedef UBYTE TFBType;

typedef UBYTE TFBFunctionType;

typedef void* TFBInstance;

typedef struct {

TFBType type;

TFBFunctionType function;

TFBInstance instance;

} TFBDiagram;

The FBD table record is de�ned as a structure named TFBDiagram, consisting
of three �elds that specify the internal components to be executed, as follows:

� type: speci�es the type of an encapsulated function block

� function: speci�es which function of the encapsulated function block should
be executed

� instance: speci�es which instance of the encapsulated function block should
be executed

Listing 6.6: Composite function block interface pattern
/* Composite FB interface structure */

typedef struct {

TFBDiagram* FBdiagram;

} TFBComposite;

Accordingly, the CFB interface pattern consists of a single item � FBdiagram,
which is a pointer to the �rst record of the FBD table (see Listing 6.6). The inputs,
parameters and outputs of a CFB type are not necessarily speci�ed explicitly in
the CFB interface structure, since each internal signal going into a CFB input is
actually passed to one of its encapsulated FB inputs, whereas each internal signal
going out from a CFB output is in fact passed from one of its encapsulated FB
outputs. In the meta-model, such input-to-input and output-to-output connec-
tions are modelled using the ExtendInput and the ExtendOutput relations (see
Chapter 4 � Section 4.2).

The FB function implementation pattern of the CFB kind is the same as the
one for the basic FB, except that one of the functions must be the standard and
reusable driver � CFBKindDriver used to execute the function block diagram.

137

The algorithm of the driver allows a CFB to interpret and execute its associated
execution schedule via the corresponding instance interface (Listing 6.7). This
algorithm accepts a CFB instance as an input parameter, scans the corresponding
execution schedule table and executes the encapsulated FB instances by invoking
the designated functions of the constituent FB types, until reaching the end of the
table denoted by a NULL encoding of the corresponding instance �eld.

Listing 6.7: Composite function block driver
/* definition of a FB function */

void CFBKindDriver(void* FB)

{

TFBComposite* lFB = (TFBComposite *) FB;

TFBDiagram* lFBD = lFB ->FBdiagram;

while(lFBD ->instance !=NULL){

/* execute function on an instance of a FB type , */

/* as specified by the current FB diagram record; */

(FBTypes[lFBD ->type])->

function[lFBD ->function](lFBD ->instance);

lFBD ++;

}

}

The FBTypes is a global static table containing pointers to data structures
de�ning the type functions for all FB types used in a system. It is used to �nd
the start address of a particular function of a given type, which is then invoked
with a pointer to the instance record, as speci�ed by the current line of the FB
diagram table (see Fig. 6.1).

Figure 6.1: Function block type table

6.1.5 State machine function blocks

A state machine FB can be implemented using a new version of the State Logic
Controller (SLC) design pattern originally introduced in [82]. The SLC is built

138

around a data structure that contains the computer image of the state transition
graph. It can be e�ciently implemented as a table containing modi�ed (multiple-
output) binary decision diagrams that represent the next-state mappings of various
states within the state transition graph.

The next-state mapping of state s is de�ned as a subset of states Fs = s′ that
are immediate successors of s in the state transition graph. Accordingly, the state
transition graph can be speci�ed by de�ning the next-state mappings of all states
s ∈ S, whereby transition arcs are speci�ed by tuples (s, s′|s′ ∈ Fs) labelled by
the corresponding combinations of transition trigger and transition-order symbols.

Figure 6.2: DC Motor Control System: mode change control state machine

This technique will be illustrated with a simple tutorial example, i.e. a Mode
Change Control state machine, which constitutes the upper level of a hierarchical
state machine used to control a DC motor (see Fig. 6.2). Its state transition graph
can be represented as follows:

Fs0 = s1
Fs1 = s2(e1, 0), s3(e2, 1)

Fs2 = s3(e2, 0), s2(¬e2, 1)
Fs3 = s2(e1, 0), s3(¬e1, 1)

where s0 denotes the initial pseudo-state, s1, s2 and s3 denote states Init,Manual

andAuto respectively, e1 and e2 denote transition triggersmanual and auto, ¬e1
and ¬e2 denote the absence of the corresponding triggers, and bracketed expres-

139

sions � the corresponding <transition trigger � transition order> combinations.

Figure 6.3: Binary decision diagrams for next state mappings

Next-state mappings can be graphically represented by means of modi�ed
(multiple-output) binary decision diagrams, as shown in Fig. 6.3 for the example
state machine. In these diagrams, circular nodes denote signals (transition trig-
gers) that have to be tested in order to determine the current state to be activated
from among the subset of successor states of the previously active state. These

140

are tested in a prede�ned sequence that re�ects the order of the corresponding
transitions.

For example, it is possible to make a transition from s1 to either s2 or s3,
whereby the former transition has higher importance, i.e. lower transition order
index than the other one. That is encoded in the Binary Decision Diagram (BDD)
whereby the trigger e1 is checked �rst and the transition to s2 � taken if e1 is true;
the transition to the s3 will be taken only if e1 is false and e2 � true. In case neither
of the trigger signals is present, the parsing of the BDD ends up in a NULL node,
meaning that no transition is taken and the previous state has to be maintained
in the current period of execution.

The binary decision diagrams of the next-state mappings can be encoded in a
State Transition Table, as shown in Fig. 6.3. The table consists essentially of the
columns Node, successorTrue and successorFalse, whereby the �rst column (Node)
contains symbols denoting BDD nodes, and the other two columns � pointers to
rows containing the corresponding BDD elements. The rows are grouped into
segments containing the next-state mappings of states s0, s1, s2, s3.

The State Transition Table can be interpreted much in the same way as its
graphical counterpart. In particular, it can be processed by a standard routine �
a state machine driver, which is activated periodically by the corresponding host
actor. Within each cycle, the driver processes the BDD containing the successor
states of the state visited in the previous cycle, in order to determine the current
state. If a state transition has taken place, the state and state-updated variables
are modi�ed accordingly, and an associated MFB is subsequently invoked to ex-
ecute the corresponding state action. However, the action is executed only when
the state is visited for the �rst time, and will not be executed in subsequent cycles
if the state is maintained, unless a self transition is explicitly speci�ed. Conse-
quently, the state machine has event-driven execute-once semantics even though
it is periodically activated.

For the purpose of implementation, the state transition table can be encoded
using the row format shown in Listing 6.8, where testedSignal is a pointer to
an object containing the values of tested binary signals (i.e. a signal driver or a
preprocessing function block), mask denotes the bit position of the signal tested. A
NULL value of that pointer denotes a state node, whereby the second �eld contains
the state index. A NULL value of the state �eld denotes a situation where the state
is not changed due to the absence of transition triggers (also called STATENULL).
The other two �elds contain the successorTrue and successorFalse variables.
In the case of a state node, the �rst �eld contains a variable nextState denoting
the �rst line of the corresponding next-state mapping.

141

Listing 6.8: State transition table structure pattern
typedef UBYTE TTestedSignal;

typedef UBYTE TSTTRow;

typedef UBYTE TState;

typedef struct {

TTestedSignal* testedSignal;

union {

TTestedSignal mask;

TState state;

};

union {

TSTTRow successorTrue;

TSTTRow nextState;

};

TSTTRow successorFalse;

} TSTTRecord;

The state transition table of a state machine FB is integrated with its interface
pattern through a pointer, as shown in Listing 6.9. In this state machine FB
interface de�nition, the recordTtable points to a state transition table. The �eld
history is a persistent internal variable used to store the row index of the �rst line
of the next-state mapping that will be processed in the next cycle of execution.
As the state machine has only two outputs: state and state_updated, they are
declared directly in the interface without using an extra output structure. The
inputs do not have to be speci�ed in the interface structure, due to the fact that
they are de�ned in the corresponding testedSignal �elds of the state transition
table.

Listing 6.9: State machine function block interface pattern
typedef struct {

TSTTRecord* recordTtable;

TSTTRow history;

BOOL state_updated;

TState state;

} TFBStateMachine;

The implementation part of the reusable and recon�gurable state machine FB
is the same as the implementation pattern of the basic FB. However, the state
machine driver � SMFBKindDriver is required as a function in order to process the
state transition table and execute the state machine (see Listing 6.10).

Listing 6.10: State machine function block driver
typedef STATENULL (0xFF);

142

void SMFBKindDriver(void* FB)

{

TFBStateMachine* lFB = (TFBStateMachine *) FB;

TSTTRecord* row = lFB ->recordTtable;

TTestedSignal* ts_pointer;

TState current_state;

/* restore row pointer */

row = &lFB ->recordTtable[lFB ->history];

/* determine current state/mode and update output */

do {

ts_pointer = row ->testedSignal;

/* in case of a transition trigger */

if(ts_pointer != NULL){

if(* ts_pointer && row ->mask)

row = &lFB ->recordTtable[row ->successorTrue];

else row = &lFB ->recordTtable[row ->successorFalse];

}

/* in case of a state */

else {

/* get current state */

current_state = row ->state;

/* if a NULL state , state does not change */

if(current_state == STATENULL){

lFB ->state_updated = 0;

return;

}

/* if a real state , state changes */

else {

lFB ->state = current_state;

lFB ->state_updated = 1;

}

lFB ->history = row ->nextState;

return;

}

} while(TRUE);

}

Based on the patterns, the state machine instance implementing the example of
Fig. 6.2 can be implemented as illustrated by Listing 6.11, where sm_table_mySM[]
is an array of the TSTTRecord instances that is precisely consistent with the state
transition table shown in Fig. 6.3. The e_1 and e_2 denote two binary inputs

143

of the state machine instance, and they are connected to two outputs of a FB
called myFBOutput respectively. In one of the records, a STATENULL state denotes
the BDD node that is reached when no transition trigger is present in the current
cycle of execution. At the end of this code, an instance of state machine FB is
created using the de�ned table.

Listing 6.11: A state machine BDD table and instance
#define INIT_BDD_STATE 0

#define MANUAL_BDD_STATE 1

#define AUTO_BDD_STATE 2

#define e1 (& myFBOutput.Manual)

#define e2 (& myFBOutput.Auto)

TSTTRecord sm_table_mySM [] = {

{ NULL , {INIT_BDD_STATE}, {4}, {0} } ,

{ NULL , {MANUAL_BDD_STATE}, {6}, {0} } ,

{ NULL , {AUTO_BDD_STATE , {7}, {0} } ,

{ NULL , {STATENULL}, {-1}, {0} } ,

{ e1 , {0xff}, {1}, {5} } ,

{ e2 , {0xff}, {2}, {3} } ,

{ e2 , {0xff}, {2}, {1} } ,

{ e1 , {0xff}, {1}, {2} } ,

};

TFBStateMachine mySM = {sm_table_mySM ,0,0,0};

It is possible to automatically synthesize the state transition table implementa-
tion from the example state machine model. The key of the synthesis procedure is
the translation from each transition trigger expression into a corresponding BDD
section. Rolf Drechsler and his colleagues (Institute of Computer Science, Uni-
versity of Bremen, Germany) have developed a Java implementation of a BDD
package [83], which may facilitate the implementation of a state machine code
generator using the Java language.

6.1.6 Modal function blocks

Amodal FB is in principle an assembly component containing multiple operational
modes, where each operation mode executes a speci�c control action speci�ed with
constituent function block diagram. The modal FB has two mandatory input
signals � enabled and mode. These are used by a function selecting a FB diagram
to execute as indicated by the input signal mode, if its input signal enabled is true.
The corresponding inputs are typically connected to state machine FB outputs:
state and state_updated respectively.

144

From an implementation point of view, each operation mode of a modal FB
encapsulates a function block diagram whose execution schedule can be statically
determined before run-time. The execution table of a modal FB consists of records
de�ned by the structure � TFBModalModeFBDMappingTable (see Listing 6.12). The
latter contains a �eld � modeIndex that speci�es the mode associated with a
particular function block diagram. This index is compared with the mode input,
in order to determine which FB diagram should be executed. The FBD is a pointer
to the �rst record of a FBD table that speci�es which function block instances
will be executed in this mode.

Listing 6.12: Mode-to-FBD mapping table pattern
typedef struct {

UBYTE modeIndex;

TFBDiagram* FBD;

} TFBModalModeFBDMappingTable;

Once again, the execution table of a modal FB shall be integrated within
the interface pattern of a MFB through a typed pointer � exeTable (see Listing
6.13). The interface has two input pointers enabled and mode. The structure
TFBModalOutput de�nes the outputs of a MFB. The updateTable is a pointer to
a table used to update the outputs of a MFB after the execution of a mode.

Listing 6.13: Modal function block interface pattern
typedef struct {

TFBModalModeFBDMappingTable* exeTable;

BOOL* enabled;

UBYTE* mode;

TFBModalOutput* output;

TFBModalUpdateOutput* updateTable;

} TFBModal;

typedef struct {

UBYTE modeIndex;

void* internalFBOutput;

}TFBModalOutputMap;

typedef struct {

void* output;

UBYTE outputSize;

TFBModalOutputMap* map;

}TFBModalUpdateOutput;

The update table is de�ned by the structure TFBModalUpdateOutput. It maps
the outputs of internal FB instances encapsulated in constituent modes onto the

145

outputs of the MFB, in accordance with the corresponding ExtendSharedOut-
put or ExtendOutput relations. In the TFBModalUpdateOutput structure, the
output is a pointer to an output of a MFB; the outputSize is the length of
the output; the map is a pointer to a mapping table storing the pointers to the
output bu�ers of all internal FBs whose outputs are connected to the MFB's out-
put, and the modes these FBs are encapsulated in. That table is de�ned by the
TFBModalOutputMap structure.

The other MFB inputs are not speci�ed explicitly in the MFB interface struc-
ture, because each internal signal going into a MFB input is actually passed to one
of its encapsulated FB inputs. In the meta-model, such input-to-input connections
are modelled using the ExtendInput or the ExtendSharedInput relations.

Regarding the function of a MFB, the MFBKindDriver is used to execute the
execution schedule table that speci�es constituent function blocks to be executed
in a particular mode of operation (see Listing 6.14). In this algorithm, FBTypes is
the global table storing all FB types used in a system, as explained before. The
memcpy is a standard C function that copies the supplied number of bytes between
two memory locations.

Here, the outputs of the MFB are synchronized only with those values com-
puted by the speci�c internal FB instances that have been executed in the cor-
responding mode, by looking up the corresponding update table. If a MFB is
disabled in the current cycle of execution (enabled = false), internal function
block instances will not be executed and the outputs will be the values computed
in the previous execution cycle. Ultimately, the MFB outputs will retain the
values obtained in the last cycle when the MFB was enabled for execution.

Listing 6.14: Modal function block driver
void MFBKindDriver (void* FB)

{

TFBModal* lFB = (TFBModal *) FB;

TFBModalUpdateOutput* lFBU = lFB ->updateTable;

TFBModalModeFBDMappingTable* lFBE = lFB ->exeTable;

TFBDiagram *fbd;

TFBModalOutputMap* map;

if(*lFB ->enabled == TRUE){

if(lFBE!=NULL){

while(lFBE ->FBD!=NULL) {

if(lFBE ->modeIndex ==*lFB ->mode){

if(lFBE ->FBD==NULL) break;

fbd = lFBE ->FBD;

while(fbd ->instance !=NULL){

FBTypes[fbd ->type]->

146

function[fbd ->function](fbd ->instance);

fbd++;

}

break;

}

lFBE ++;

}

}

/* update each output */

while(lFBU ->output !=NULL){

map = lFBU ->map;

while(map ->modeIndex !=NULL){

if(map ->modeIndex == *lFB ->mode){

if(map ->internalFBOutput !=NULL){

memcpy(lFBU ->output ,

map ->internalFBOutput ,

lFBU ->outputSize);

}

map++;

break;

}

map++;

}

lFBU ++;

}

}

}

For the purpose of demonstration of the above-mentioned patterns, the code
of the example MFB in Fig. 6.4 is given in Listing 6.15 and Listing 6.16.

The MFB contains only one output (outsignal) that is connected to the out-
puts of three FB instances encapsulated in three di�erent modes through a shared
output. Thus, there is only one entry in the update table (myMFB_updateTable),
which maps the output onto the three connected outputs of the constituent FB
instances, by means of the mapping table (myMFB_outsignal_output_map). Ac-
cordingly, if a MFB contains more outputs, more mapping tables and more entries
in the update table are required. An entry with all NULL values denotes the end
of the table.

Listing 6.15: Modal function block driver

/* output */

typedef struct {

UBYTE outsignal;

} TFBModalOutput;

147

Figure 6.4: A Modal FB

/* output */

TFBModalOutput myMFBOutput = { 0 };

TFBModalOutputMap myMFB_outsignal_output_map [] = {

{MODE_INIT , (void *)& initFBOutput.output} ,

{MODE_MANUAL ,(void *)& manualFBOutput.output},

{MODE_AUTO , (void *)& autoFBOutput.output},

{NULL , NULL},

};

TFBModalUpdateOutput myMFB_updateTable [] = {

{(void *)& myMFBOutput.outsignal ,

sizeof(myMFBOutput.outsignal),

148

myMFB_outsignal_output_map },

{NULL , NULL , NULL},

};

The execution table myMFB_table speci�es the mapping between the three
modes and the three function block diagrams encapsulated in the three modes
respectively, identi�ed by the corresponding mode indexes (see Listing 6.16), e.g.
MODE_INIT, MODE_MANUAL and MODE_AUTO. Through this table, each function block
diagram can be located at the corresponding start address. In this example,
function block diagrams are instantiated separately, and each of them consists of
only one basic FB instance.

The execution table myMFB_table is speci�ed together with the update table
myMFB_updateTable when instantiating a MFB � an instance myMFB is created as
shown in Listing 6.16. Additionally, the MFB instance encapsulates three basic
FB instances � initFB, manualFB and autoFB in the corresponding modes of
operation that have to be speci�ed as well.

Listing 6.16: A MFB execution table and instance

TFBDiagram myMFB_exe_schedule_mode_init [] = {

{ FBINITFB , FBINITFB_MAIN , (void *)& initFB },

{ 0, 0, NULL},

};

TFBDiagram myMFB_exe_schedule_mode_manual [] = {

{ FBMANUALFB , FBMANUALFB_MAIN , (void *)& manualFB },

{ 0, 0, NULL},

};

TFBDiagram myMFB_exe_schedule_mode_auto [] = {

{ FBAUTOFB , FBAUTOFB_MAIN , (void *)& autoFB },

{ 0, 0, NULL},

};

TFBModalModeFBDMappingTable myMFB_table [] = {

{MODE_INIT , myMFB_exe_schedule_mode_init},

{MODE_MANUAL , myMFB_exe_schedule_mode_manual},

{MODE_AUTO , myMFB_exe_schedule_mode_auto},

{NULL , NULL},

};

TFBModal myMFB = {

myMFB_table ,&mySM.state_updated , &mySM.output ,

&myMFBOutput , myMFB_updateTable

};

149

6.2 Actor pattern

Actors in COMDES are not designed as reusable components. Therefore each ac-
tor should be created speci�c to a particular application. Hence, it is not necessary
to distinguish actor instance from type.

As a unit of concurrency, an actor has both functional and timing aspects.
From the functionality point of view, an actor executes input drivers in its input
latch, followed by the execution of the signal processing block and the output
drivers in its output latch (see Listing 6.17). The signal processing block is mod-
elled by a FB diagram, which is mapped to a real-time task. Therefore, the FB
instances encapsulated in that task should be executed in a liner sequence, which
can be once again derived directly from the actor model using the topological sort
algorithm [75].

Listing 6.17: A MFB execution table and instance

void ActorInputLatch (void) {

/ * invoke input driver FB instances */

}

void ActorSignalProcessingTask(void) {

/* invoke constituent FB instances according to */

/* their liner sequence of execution. */

}

void ActorOutputLatch (void) {

/* invoke output driver FB instances */

}

From the timing point of view, it is the underlying run-time environment, which
manages the execution of these three functions by invoking them at particular time
instants. Thus, there is no speci�c pattern at the actor source code level, since
various environments might be used to achieve the required timing behaviour.
However, in order to satisfy the timing requirements of a COMDES actor, drivers
should be executed separately from the actor task. Speci�cally, input drivers are
executed when the task is released, whereas output drivers are executed when the
task deadline arrives if its deadline speci�ed. If no deadline has been speci�ed, the
output drivers are executed immediately after the task is �nished. Any run-time
environment (i.e. real-time operating system) that can meet these requirements
can be used to execute an actor as well as its latches. The HARTEXµ kernel is one
example of such a run-time environment. It is possible to generate C code from a
validated HARTEXµ model. However, kernel generation is not in the focus of this
thesis. More information about the HARTEXµ kernel and its implementation in

150

the C programming language can be found in [29].

6.3 Down to executable code

Embedded systems are usually very limited in operational resources, e.g. memory,
processor capacity, and the target platform does not have a native set of develop-
ment tools, or does not have the necessary resources to perform the compilation,
which is often the case. Therefore, it is natural that compile-time operations are
carried out at a host platform where development takes place, whereas run-time
tasks are executed at a target platform, in other words, in the embedded system.
This kind of development approach is called cross-development meaning that the
host system has to be able to produce executable code for another platform.

In a cross-development environment, an executable obtained from a COMDES
model is truly platform-speci�c, where the term �platform� refers to hardware
with a processor used to execute binaries. In a broader sense, it can include a
software tool-chain used to generate the native binaries. However, as mentioned
earlier, GCC with other GNU tools have been chosen as the tool-chain for building
a COMDES application for a particular architecture, in order to target a wide
variety of platforms. GCC is available for most embedded platforms and it target
processor families include: ARM, Atmel AVR, Black�n, H8/300, Motorola 68000,
MIPS, etc. Chip manufacturers today consider a GCC port almost essential to
the success of a product.

6.3.1 Binaries of function block and application

After processing by a GCC compiler, a function block implemented according
to the corresponding design pattern is transformed into a relocatable object �le.
The object is the eventual format of a COMDES component stored for reuse. If
selected in an application, it will be directly linked with other FB objects into an
executable by a linker.

A relocatable �le is an object �le that holds code and data suitable for linking
with other object �les to create an executable. The relocatable �le contains ex-
tensive symbol and relocation information needed by the linker along with object
code. The object code is often divided up into many small logical sections that
will be treated di�erently by the linker. Each relocatable �le is translated as if it
will reside at location zero with a symbol table showing which values in the �le
will need to change if it is moved to some location other than zero. The linker
adjusts these values to be appropriate for where the code and data will actually

151

reside.
An executable �le contains executable code that can eventually be run on a

target hardware platform. The executable code of a COMDES application con-
sists of prebuilt reusable components in the form of data structures and executable
functions. The former represent component instances and the latter � component
types; each particular instance has a corresponding data structure and is associ-
ated by its type with a number of functions.

An executable �le is an object that holds a program suitable for execution.
An executable �le is directly generated by linking the object �le, which has all
relocation done and all symbols resolved (shared library symbols to be resolved
at run-time with dynamic linking is not taken into account in the context of
embedded software development). It is capable of being loaded into memory and
run as a program, i.e. contains object code, but does not need any symbols, and
needs no relocation information. The object code is a single large segment or a
small set of segments that re�ect the hardware execution environment.

An example of object �le is the Executable and Linking Format (ELF) that
was originally developed and published by UNIX System Laboratories as part of
the Application Binary Interface. The ELF standard is intended to streamline
software development by providing developers with a set of binary interface def-
initions that extend across multiple operating environments [84]. The objects in
ELF format can be handled by the GNU C compiler, linker and binary utilities.
Normally, the binary ELF executable generated by the linker, can be directly exe-
cuted in the UNIX or Linux system. ELF has also seen some adoption in non-Unix
embedded system. However, in an embedded system which usually does not accept
the binary executable, an ELF �le has to be translated into another format, e.g.
Intel HEX or Motorola SREC and can be downloaded into the target. Therefore,
it requires an extra tool to perform the transformation such as the GNU objcopy
utility.

The information about the tools used for transformation from source code
to image i.e. compiler, linker, etc. can be speci�ed by the reqiured_toolchain

attribute of a network node instance or type model (see Chapter 4).

6.3.2 Build scripts

In the �eld of computer software, the term �build� refers to the process of con-
verting source code �les into standalone software artefacts that can be run on a
processor. The process of building a program is usually managed by a build tool
that coordinates and controls other programs. Examples of such a program are
make, ant, and maven, etc. The build utility needs to compile and link the various

152

�les, in the correct order. The goal of such an automated build tool is to create
a one-step process for turning source code into a working system. This is done to
save time and to reduce errors.

Make is a utility for automatically building executable programs and libraries
from source code. GNU make is frequently used in conjunction with the GNU
build system that is part of the GNU tool-chain and is widely used in many free
software and open source packages. The tool reads its instructions from text
�les called make�les specifying how to derive the target program from each of its
inputs.

The make�le containing instructions for build is in fact target platform-speci�c
and application-speci�c. It requires tools and source �les as inputs of the tools
speci�ed for a build process, since both of them have in�uence on the output.
The tools, i.e. compiler, linker, etc., can be decided once a hardware platform is
chosen, whereas the input source �les have to be derived from application models.
After each input is listed, a series of instructions may follow, which de�ne how to
transform the input into the output.

According to the COMDES meta-model, the make�le is modelled by the at-
tribute build_script of a network node class. However, a fully complete build script
cannot be given based only on a network node model. The attribute build_script
can contain the building steps (make�le rules) performed by tools (i.e. C com-
piler, linker, etc.) that use a number of prede�ned variables to obtain inputs
and parameters. This part is given when a valid network node model is created.
Listing 6.18 demonstrates a piece of make�le rules (as value of the build_script at-
tribute), where one of the prede�ned variables, COMDES_TYPE_OBJECTS, is used in
one of the rules. The application-speci�c variable is assigned in another make�le
(COMDES.mk) that is included at the beginning of the rules.

Listing 6.18: Make�le � platform-speci�c rules

import variables

include COMDES.mk

makefile rules

all: $(OBJS) $(MEMORIES)

$(MEMORIES): $(OBJS)

$(CC) $(LDFLAGS) -T$(LDSCRIPT)-$@.ld \

-o $(PROJECT)-$@.elf $^ $(COMDES_TYPE_OBJECTS) $(LIBS)

%.o : %.c

$(CC) $(CPFLAGS) -c -o $@ $<

153

The prede�ned variables associated with the input �les are generated from an
input COMDES system model by the so-called con�gurator tool. Listing 6.19 lists
four variables in the �le COMDES.mk that are important for a building process. The
values of these variables should be generated from the COMDES model by the
con�gurator.

Listing 6.19: Make�le � application-speci�c variables

the name of a final executable on a platform

COMDES_NODE_ID =

all source files of FB instances, actors, etc.

COMDES_INS_SOURCES =

all relocatable objects of FB types from FB repository

COMDES_TYPE_OBJECTS =

paths of all FB interfaces, platform headers, etc.

COMDES_INCLUDES_DIR =

As one of the signi�cant tools during the build steps, the linker is used to merge
several relocatable object �les into a single loadable module [85]. Its behaviour is
controlled by the so-called linker script that describes the layout of memory on
the target processor and includes instructions on how the linker is to place object
code modules in that memory. It speci�es how the sections in input relocatable
�les should be mapped into an output executable �le. The GNU linker, ld, ac-
cepts Linker Command Language �les written in a superset of the AT&T Link
Editor Command Language syntax, to provide explicit and total control over the
linking process. Its linker scripts are text �les, which can be written as a series
of commands, i.e. keyword, assignment to a symbol, etc. The contents of a linker
script are both platform-speci�c and application-speci�c, and thus can be handled
in a similar way to the make�le.

6.4 Summary

COMDES advocates the development of embedded control applications using
reusable components at both modelling and implementation levels. Chapter 4
has presented the meta-modelling technique and concrete models concerning the
former issue. At the implementation level, design patterns are de�ned so as to
retain the reusability of components speci�ed at the modelling level, as addressed
in this chapter.

154

The FB design patterns standardise the code structure for all kinds of compo-
nent and provide for e�cient and reusable implementation of the function blocks.
These patterns are actually programming algorithms, and enable models speci�ed
within particular kinds of component to be implemented in a reusable way. A FB
is composed of two parts: an interface implemented as a data structure comprising
necessary execution attributes (such as input pointers, parameters, etc.), as well
as a group of reusable functions implementing the dedicated functionality of the
corresponding type of FB. The interface of an FB can be instantiated to create a
speci�c FB instance with appropriate execution data.

From the binary point of view, no matter how COMDES FBs are modelled
or coded, they are fundamentally no more than relocatable objects, which are
compiled from source �les for a speci�c hardware platform, and can be linked
to an executable. The relocatable objects are stored in a repository for reuse.
When an application is created, the linker should assemble all the objects into a
native executable. Finally, an image from the executable should be created and
downloaded to the target hardware platform for execution. The generation process
from source code to executable can be guided by a number of build scripts.

Tools should be developed such that components and applications can be auto-
matically synthesized from their speci�cations to a maximum extent, thus relieving
the programming e�ort and desirably minimizing the errors incurred by manual
coding. Next, the generation of eventual component code in COMDES can be
guided by the component design patterns. Finally, all generated source codes are
automatically transformed into executable code by means of the GNU GCC and
GNU Binutils.

155

Chapter 7

From Platform-Independent Model

to Platform-Speci�c Model: the

COMDES Development

Environment

In order to make this chapter easier to understand, let us start with a small
example that people have been familiar with: building a house from scratch.

The �rst thing to do is look for a licensed professional architect who can plan
and design the building. He must understand the rules (i.e. building code) to
which the design must conform, so that the requirements of the house (i.e. safety)
can be satis�ed. He also knows the construction methods available to the builder
in constructing the building. According to his knowledge and customer's require-
ments, he should be able to come up with a house plan which depicts the principal
information provided of the house. For example, a �oor plan is an overhead view
of the completed house indicating rooms, all the doors and windows and any built-
in elements, such as plumbing �xtures and cabinets, water heaters and furnaces,
etc. Floor plans will include notes to specify �nishes, construction methods, or
symbols for electrical items. House plans use some lines and symbols to convey
the relationship between objects, i.e. a wall should be drawn using thick solid
lines. Furthermore, a construction method and materials such as brick, stone,
steel, concrete, or others have to be decided too. Next, according to the method
and materials, the steps of building the house are also important. Normally, a
huge majority of houses are built using completely standardized building prac-
tices adopted in America and Europe. The building usually goes through some
steps like: grading and site preparation, foundation construction, framing, instal-
lation of windows and doors, roo�ng, and so on. There are many ways to perform

156

these steps. You could do everything on your own if you had enough knowledge.
Alternatively, a popular way is to assign these tasks to subcontractors. For exam-
ple, the framing is generally done by one subcontractor specializing in framing,
while the roo�ng is done by a completely di�erent subcontractor specializing in
roo�ng. Each subcontractor is an independent business. All of the subcontrac-
tors are coordinated by a contractor who oversees the job and is responsible for
completing the house on time and on budget.

All of the people involved in house building activities need some kind of tools
for assistance, i.e. the architect needs pens, rulers or even a computer to draw the
house plan, the subcontractor for framing needs clamps, and the subcontractor for
roo�ng needs slate cutter, etc. Don't forget those who produce building materials
like bricks, stones, steels, concrete, etc., also need some tools. Using the right
tools makes their job relatively easy. Then a house can be erected up following
the sequence of construction steps and with the help of those experts and tools.

Now, let us come back to our story involving embedded software, where the
goal is to create an embedded program executed on one or more microprocessors
mounted on hardware platforms, for the purpose of measurement and control.
Usually, in the world of embedded software, the executable program running inside
the microprocessors is in the format of binary code.

Similar to architects, domain experts are able to come up with a solution to
a given problem, such as architecture of the system (i.e. closed loop), control
algorithms used, etc. In the context of this project, they need to choose the
component-based method, i.e. COMDES, to realize the design idea. Therefore,
they need to give a speci�cation using the DSL and the concepts (i.e. actor,
signal) introduced in Chapters 3, 4 and 5. Function blocks are the materials used
as building components. They also need to order function blocks supplied by
embedded software engineers who are able to create function blocks for a given
hardware platform, based on the patterns introduced in Chapter 6.

Subsequently, an executable program can be constructed from the speci�ca-
tions through a number of steps constituting the development process. The steps
introduced in this chapter are categorized as: component development process �
for the development of function blocks, and application development process � for
the development of executable application programs, in the context of COMDES.
Meanwhile, tools can be used throughout the steps in order to automate develop-
ment, and their functionalities will be presented in this chapter. In the current
context of COMDES, the application and function blocks are implemented in the
C language; the run-time environment is provided by the HARTEXµ kernel, which
is also written in the C language; and the repository is implemented in a �le sys-

157

tem. Therefore, tools that deal with those C programs and �le systems will be
considered in order to limit the possibilities.

The second part of the chapter will present technologies that can be used to
build these tools on the Eclipse platform, so as to ful�l their functionalities for
COMDES development. It will not give all details on how to implement each tool
in Eclipse. Instead, the discussion mainly focuses on possible technologies and
tools that could be employed to accomplish the task of COMDES tool implemen-
tation, and most signi�cantly, on the experience gained from the task carried out
during the project.

The implementation of the COMDES development environment actually went
through two iterations, where a �rst prototype [86] was built to try out di�erent
possible solutions and discover all potential problems, and an improved version was
subsequently developed, based on the previous experience as well as the solution
to the problems found before. Therefore, we believe that the issues discussed in
the following sections contain meaningful points to consider when building similar
tools. They are also close to practice due to the fact that most of them are derived
from hands-on experiences.

7.1 Overview of the development process and tools

The development of an embedded control system is a di�cult task, which in-
volves various kinds of concepts, models, artefacts, etc. The COMDES methodol-
ogy presents a systematic attempt to decompose this task by separating domain-
speci�c concerns from implementation concerns, and time-related concerns from
functionality concerns.

COMDES is a methodology for embedded real-time control software develop-
ment, whose core is a domain-speci�c modelling language for control applications.
It adopts a model-driven development approach allowing for a solution to a given
problem, independent of implementation details. A COMDES model explicitly
speci�es the exact functional and real-time interaction of software components
with the physical world, which is in turn transformed into implementation that
ensures the speci�ed behaviour on a given platform. The implementation gen-
eration is accomplished using a component-based development method, whereby
the �nal application is composed from prebuilt executable components stored in
binary format. Thanks to the completeness of the COMDES meta-model, the
COMDES application model contains all the information needed, such that it can
be e�ectively transformed into an implementation on a speci�c platform.

The functional aspect of a COMDES system model is transformed into func-

158

tionality code, independent of a run-time environment. The code includes com-
ponent instance code used to �glue� prebuilt component type code according to a
chosen hardware platform.

A COMDES model can express concurrency and timing. However, it does not
contain information that requires detailed knowledge of a run-time environment.
For instance, an actor model speci�es when an input is read, which components are
used for computing, and when an output is provided, without specifying a priority
for the computation task, because that is related to the task management function
of a real-time operating system (RTOS) based on a certain scheduling algorithm.
In this way, di�erent operational environments can be used to implement the
COMDES timing behaviour. If strict timing were not crucially required, it is
even unnecessary to employ an RTOS as a run-time environment: a basic round-
robin scheduler invoking all the actors would be enough. However, in this project,
a COMDES system model is transformed into an RTOS model � a HARTEXµ
model, which is in turn used to generate timing executable code supervising the
execution of the functionality code.

After linking, a �nal executable program is created including COMDES com-
ponents for functionality and RTOS for timing, task scheduling and interaction
on a speci�c hardware.

From the analysis point of view, information can be extracted from the com-
plete COMDES system model, and transformed into appropriate models for anal-
ysis purposes. Thus, tools can be employed on the level of the abstract analysis
model to analyse, verify or simulate the corresponding model. However, the anal-
ysis of COMDES models as well as transformation to analysis models is not a
requirement of this project and is not discussed in this thesis.

Figure 7.1: Overview of the COMDES Toolset

The envisioned software development process covers the main stages of system
development (see Fig. 3.6), i.e. system modelling, system analysis, code gener-

159

ation and con�guration from prefabricated components. It is supported by the
COMDES toolset (see Fig. 7.1), which integrates a number of tools (i.e. Editor,
Translator, Generator, Con�gurator, etc.), and eventually uses external tools (i.e.
GNU compiler, GNU linker, Simulink, Uppaal, etc.) in order to accomplish the
desired operations, e.g. modelling, model analysis, model transformation, code
generation, assembling of executables. The toolset will help to automate the em-
bedded software development process and to improve the quality of the resulting
code.

The above discussion just depicts the abstract concepts concerning the steps
involved in an application development process, how to transform the correspond-
ing models and what tools can be used in a general way. Conceptually, tools
include a modelling tool, model-to-model transformation tool, model-to-text tool,
etc. However, as usually, real world life is much more complex than only con-
cepts. On the way from a COMDES system model to a runnable and deployable
executable program, in particular � as outlined in Fig. 3.6, a multitude of details
should be taken into consideration, the lack any of which may result in a failure
when building applications.

In the following sections, the tool support for component design and implemen-
tation (including executable code generation) is addressed �rst. Next, application
development support o�ered by other tools will be discussed, speci�cally address-
ing issues concerning system modelling, model transformation, code generation,
and con�guration.

7.2 Function block development

According to COMDES, function blocks are stored in component repositories in
binary format, as required for a speci�c platform. Therefore, neither manual cod-
ing nor code generation of function block types takes place during the application
development stage: a system is con�gured from these prebuilt components and is
then able to execute on the corresponding platform.

Before a domain expert starts creating a COMDES system model out of
reusable function blocks, the function blocks have to exist in repositories in the
format of models and binaries. Therefore, embedded software engineers should
create components following a component development process. Equipped with
the knowledge of hardware and software, they are given the task to create reusable
component models, re�ne general components to hardware-speci�c ones, and con-
tribute to the component repositories, following the process outlined in Fig. 7.2.

Firstly, a FB type model needs to be created according to requirements from

160

Figure 7.2: Component development tools

domain experts who need the component. Secondly, a code skeleton of the vali-
dated FB type model can be generated based on the function block design pattern.
In case of basic function block, the skeleton needs to be �lled out with real im-
plementation code. Alternatively, in terms of the meta-model of COMDES, the
implementation code can also be speci�ed in the FB type model and in turn gen-
erated automatically. If necessary, some static analysis tools can be applied to
the source code to further validate the component code against possible manual
mistakes or programming defects, i.e. a basic function block input pointer could
be misused as an output. Thirdly, the source code is compiled into a relocatable
object for a given hardware platform that is modelled as a network node type
model from the platform repository. As a matter of course, the network node type
has to be created prior to this function block model. Binary tools could be used
to evaluate the generated binary in order to obtain more platform-dependent in-
formation, i.e. GNU Binutils for code size, etc. Lastly, all created artefacts needs
to be registered into the function block repository, so that they are available for
reuse during the application development process, including FB type model, FB
type interface, compiled FB type object and optional FB type source code.

Basically, tools like editors and generators should be created speci�c to COMD-
ES function blocks. These tools operate based on the COMDES meta-model
de�ned in previous chapters. Furthermore, external tools like GCC Compiler,
GNU Binutils, etc. are used to assist the development of prefabricated function
blocks.

FB editors are essential to the development process by supporting developers
in the creation and modi�cation of FB type models. There should be an editor
available for each kind of FB, because each of them has a di�erent construct ac-
cording to the COMDES meta-model. Additionally, the editors should provide
a validation functionality that checks models against constraints de�ned together

161

with the meta-model, so that validated FB type models can be provided for down-
stream tools.

A reusable function block type requires a number of functions de�ned, and it is
inevitable for developers to code the functions of basic and driver function blocks;
thus a programming editor (i.e. C editor) integrated with the corresponding FB
type editor will o�er great help and convenience. However, for state machine, com-
posite and modal kind of FBs, the programming editor is not mandatory, owing
to the fact that their functions are implemented by standard routines. These rou-
tines should not be modi�ed, as any change could result in changing the semantics
of those COMDES components.

FB generators integrate certain templates derived from the FB design patterns
and transform FB type models into FB type code based on the meta-model of
each function block kind. As a good practice, model validation should not be a
major task of the code generators; otherwise the FB templates are polluted with
a lot of code for checking input models that has nothing to do with generation.
Instead, the code generators should focus on producing FB type source code for
both implementation and interface.

The compiler converts FB implementation source code into objects � the real
reusable components. The selection of compilers depends on the hardware plat-
forms on which the FB targeted, hence the information such as CPU architecture,
function libraries, and compiler parameters, etc. are speci�ed in the corresponding
network node type model. Subsequently, the transformation done by compilers
can be speci�ed by a script (make�le) generated by FB generators once a plat-
form has been selected. Compilers are usually shipped with the hardware vendors,
hence they are not covered by this study.

Likewise, in the embedded system world, target platforms can also be seen as
reusable components, and can be represented roughly by the COMDES network
type models. Code generation of both components and applications requires in-
formation from these models, therefore the creation and modi�cation of validated
network node type models should also be supported by the corresponding editor,
which is functionally similar to the FB editors.

7.3 Application development

The application development tools support COMDES-based application develop-
ment, which is outlined in the development process steps described below:

1. From a given control problem, a domain expert creates a COMDES sys-
tem model by specifying system structure and behaviours. The functional

162

behaviour can be speci�ed with prede�ned FB models, whereas the timing
behaviour is speci�ed with the attributes of each actor. Actors are allocated
onto network nodes that are also derived from prede�ned models stored in
the platform repository. Next, the system model has to be checked against
syntax and static semantics. Meanwhile, the model could be veri�ed or
simulated against required system properties with adequate tools support.

2. From a validated system model, glue code of FB instances can be generated
by a code generator. The generated code is accompanied with information
stating the used prede�ned FB types stored in the FB repository. If timing
behaviour is not speci�ed in the model, an executable program can be ob-
tained by compiling the generated code and linking the code with the FB
type objects. Otherwise, a run-time environment, i.e. an RTOS is needed.

3. From the system model, a run-time environment (RTE) model and code
can be derived, which determines the timing behaviour of the system. The
code generated from the model should execute the actors in response to the
behaviour of the physical environment.

4. The system model is also used to generate scripts including the whole con-
�guration information. With such information the compiled application
glue code, the selected FB types objects, run-time environment code and
platform-speci�c objects or libraries can be linked together to generate an
executable program.

5. In case of any change on the system model, i.e. addition, modi�cation or
removal of FBs, a recon�guration process is applied. The new system model
should be compared with the previous one in order to �nd out the di�erence.
From the model di�erence, a patch that contains only the changed part of
the system can be obtained.

The application development is accompanied by the corresponding toolset (see
Fig. 7.3) that comprises a number of individual tools as well as repositories holding
the exchanged information. All application speci�c �les generated in each of the
tools are stored in the application repository. In Fig. 7.3, the dotted arrows
represent invocation of the Make utility according to the building script, here
called make�le, whereas the grey arrows denotes the recon�guration process.

System Editor: The system editor is used by domain experts to create a
COMDES system model. In principle, it should integrate functions that check
the created model against constraints. Furthermore, in order to create a complete

163

Figure 7.3: Application development tools

system model containing all used function block instances, dependencies among
function blocks should be solved as another underlying function of the editor. This
function is activated whenever a composite FB or modal FB is instantiated.

Managing component dependencies is a very important and complex issue in
component-based applications. Because a COMDES system is statically de�ned,
the system itself has no mechanism to manage its components at run-time, e.g. in-
stallation of a new component. Therefore, the dependencies between components
have to be solved at design-time. When a developer uses the editor to specify

164

a COMDES model by selecting function blocks from the repository, there might
be some components, such as composite function block instances, that depend on
other function blocks stored in the repository. In principle, the developer should
focus on whether or not the component can satisfy the application requirements,
without concern for the dependency of function blocks. There should be a mech-
anism to help him with �nding all the necessary components from the repository
automatically and integrating them into a complete COMDES system model. The
complete model comes from the components and their dependency components.
Once all dependencies of the application are detected, the model containing all
instances and all function block types used in the application can be obtained.

A component dependency graph [87] can be used to model dependencies be-
tween components in the system, so as to analyse and manage these dependencies.
One way to store dependencies is using a matrix, whereby each component is rep-
resented by a column and a row in the matrix [87][88]. It is easy to understand,
and existing mathematical methods can be applied to it. A matrix-based ap-
proach can be used for COMDES function blocks dependency analysis, taking
into account the perspectives of both FB type and instance, where the dependen-
cies of COMDES function block instances are represented as a matrix and the
relationship between function block type and function block instance is viewed as
a dependency (i.e. any FB instance depends on its type) and also represented
by matrix. Therefore, a complete COMDES application can be obtained via a
number of mathematical operations on matrices [89]. However, the matrix-based
approach can be improved in at least one aspect: a matrix usually contains a
number of zeroes (means that there is no dependency between two components),
resulting in memory consumption and wasting.

Figure 7.4: A dependency linked list

Another way to represent a component dependency graph is with linked lists.
Each component has its list of adjacent (dependency) components. Such a rep-

165

resentation reduces the resource consumption [87]. This approach has been em-
ployed in the current COMDES toolset in order to analyse and manage the de-
pendencies. According to the COMDES meta-model, each composite or modal
component model has an implicit description of dependency, specifying which
other components (both type and instance) are needed. Solving the dependency
is consequently a recursive searching routine. The search starts from the sys-
tem model, which is the top level of all components, and it will not stop until it
reaches basic function blocks that do not depend on any other function block, as
illustrated in Fig. 7.4, where the symbol CX stands for a composite FB, whereas
BX for a basic FB. The linked list can be implemented as a �le system where each
node representing a component model is a �le. The connection among nodes is
represented as a path of the �le system.

Another thing to consider is that, while components are being added into
the application during the dependency resolving stage, they should be named
appropriately and uniquely. The names of instances in the application model are
speci�ed by the developer. Since he has no knowledge about the instances inside
a component instance, those internal instances should be named automatically.
Provided that each two components are not allowed to have identical names, the
rule of naming could be simply de�ned as parent instance name + child instance

name, where the parent instance name is the one speci�ed by the developer and
the child instance name is the internal instance name that is shipped with the
component. Otherwise a namespace mechanism must be developed.

Some MDSD development tools introduced in Chapter 2 (i.e. Cadena, GME)
support model reuse feature. Thus, if an editor is developed based on such kind of
tools, dependencies between components can be resolved automatically with the
underlying algorithms provided by the tools. However, if we base the system model
editor on an MDSD tool, which does not have such a capability (i.e. Eclipse), the
Kind-Type-Instance pattern introduced in Chapter 4 can be employed as a model
of relationships between type and instance, and the dependency is resolved using
either a matrix-based or linked list-based approach that can be implemented as
an extra function integrated into the editor. This function should be called when
a function block type is instantiated in a COMDES system model, and should
automatically create all instances that the type depends on.

The output of the editor is a validated COMDES model that contains su�-
ciently complete information for the next transformation steps, such as model-to-
model transformation, model-to-text transformation, etc.

FB Instance Generator: The COMDES model provided by the system edi-
tor contains all information necessary for the FB instance generator to output glue

166

code. The dependency resolution step is signi�cant to the glue code generation
step. If dependencies were not resolved properly, glue code cannot be completely
generated from a system model, due to the fact that instances required by com-
posite or modal function blocks are not present.

It is important to note that the generated source codes are data structures
representing component instances, which de�ne the application by gluing prebuilt
components together. Manual coding is not necessary, because the application-
speci�c logic has been de�ned as component types, which are stored in the repos-
itory in the form of binary objects. This is in contrast with the code generator
used in the individual component development stage, where the manual coding is
done by a skilled programmer.

This generation is concerned with the application functionality aspect without
involving any timing aspect, because the run-time environment of FBs can be
di�erent and detailed information about the environment is unknown to FBs and
actors.

RTE Translator and RTE Generator: A COMDES system model will
be transformed into a HARTEXµ model according to the transformation speci-
�cation described in Chapter 5. The transform requires the availability of both
the COMDES meta-model and the HARTEXµ meta-model. The RTE translator
should take a COMDES system model as input and should output a complete
HARTEXµ model. The generated HARTEXµ model will be consequently trans-
lated into timing code containing kernel instance data generated by the RTE
generator.

Con�gurator, Compiler and Linker: The �nal executable of a COMDES
application is said to be con�gured, because it consists of prede�ned reusable
components in the form of data structures (FB instances) and executable functions
(FB types).

The con�gurator generates con�guration scripts from a validated COMDES
system model by extracting information about the used FB instances, FB types
and platforms. In a COMDES system model, two or more FB instances might
share the same type, whereas only one type object is needed to link with instance
data code. The con�gurator searches all types needed by instances in an appli-
cation, and selects these type objects based on platform from the repository, and
puts them into the con�guration scripts.

Currently, the COMDES components are implemented in the C language.
Therefore, existing compilers and linkers provided by the GNU tool chains can
be employed to obtain the �nal executable. The compiler and linker are chosen
according to the platform models that a COMDES model is allocated to. Ac-

167

cordingly, the con�gurator generates two scripts used in the application building
process: make�le, which contains a con�guration script specifying what compo-
nents should be linked, and linker script, which speci�es where components should
be placed in memory.

The linker plays a key role in assembling component binaries together. It
combines the instance data objects, the prebuilt objects, as well as a number
of standard libraries and maps them to speci�c memory locations de�ned in the
inker script. The standard libraries are standardized collections of include �les and
routines used to implement common operations, such as mathematical functions
and string manipulation. In addition to the executable, a linker also outputs a
link map that contains information about the memory allocation of component
objects in the executable code.

Another signi�cant characteristic of a COMDES system is its static con�gura-
tion. This means that the system is entirely de�ned during the design stage: there
is no dynamic memory allocation, the �nal code is statically linked, which not only
helps to avoid any run-time overhead, but also eliminates possible run-time errors
like out-of-memory and unresolved references.

Accordingly, COMDES provides a basic o�ine technique for software recon�g-
uration and makes it possible to carry out software recon�guration by deploying
only the modi�ed executable code into a system [89][90][29], i.e. by applying a
patch. Generation of the recon�gured executable code takes into account the
currently running code stored in the embedded device, so the changes are min-
imal. In a recon�guration process, the con�gurator will read the previous link
map to identify changes between the current system executable and the previous
executable in order to generate scripts to control the linker and the compiler that
will eventually generate a patch.

7.4 COMDES development environment on Eclipse

In order to support COMDES application development with a model-driven soft-
ware development approach, some factors must be considered when selecting a
development platform and tools that will be used to create an environment con-
sisting of the toolset. In terms of the adopted process of model-driven development
using the COMDES DSL, facilities for meta-model de�nition, GUI de�nition, con-
straint de�nition, transformation de�nition and code generator de�nition are the
basic requirements to construct the DSL, as well as the corresponding tools. In
addition to the issues concerning DSL development discussed in Chapter 2, the
Eclipse provides more features to support rapid tool development during the de-

168

velopment of the toolset.

The Eclipse is an open-source development platform comprising extensible
frameworks, tools and run-times for building, deploying and managing software
across its life cycle. At the fundamental level, it is an open platform for software
development tools, where one tool on this platform can be easily integrated with
others, since the platform provides a large number of services, APIs (Application
Programming Interfaces), and frameworks common to di�erent tools. The data
needed by the tools can be easily exchanged in the scope of the workspace of
the platform, which consequently helps avoid the problem of �le importing and
exporting between di�erent tools. Moreover, all the tools on this platform can
have uni�ed user interface, which makes it possible to build applications using a
heterogeneous set of tools while providing a set of common views to the end user.

The Eclipse is in fact a good illustration of a component-based system, whose
building component is the so called plug-in. A Plug-in is a structured bundle
of code and/or data that contribute certain functionality to the entire platform.
The Eclipse core is merely an architecture for dynamic discovery, loading, and
running of plug-ins. It handles the tasks of �nding and running the right plug-in
code. Each plug-in can then focus on doing its own task. Furthermore, a plug-in
is used together with an extension mechanism, which provides �exibility in how
tools are integrated. A tool mapped to a plug-in can add extensions to other tools
extension points, so as to support reusability. In this manner, tools on the Eclipse
can incrementally be developed and integrated with others.

The Eclipse platform can host the COMDES development toolset to form an
entire development environment covering a number of model-driven development
activities like modelling, analysis, code generation, building, etc. The tools can
be rapidly developed and integrated based on the plug-in model because of the
important advantages of the Eclipse platform: reuse of existing tools and tools
development support. On one hand, architecting COMDES development tools
as plug-ins to the Eclipse allow for the reuse of features from other projects in
the Eclipse platform to support the COMDES development environment, which
saves a considerable amount of time. On the other hand, from the viewpoint of
the developer of the COMDES tools, this platform provides a number of features,
such as Java development, plug-in development, debugging, etc., which are in-
strumental for the implementation of tools. It also o�ers a variety of capabilities
supporting model-driven development and component-based system design. On
this open platform, some baseline of tools can be generated automatically from
a given model, thus saving time and e�ort. In addition, there are many facili-
ties in the Eclipse platform that support user interface development. The Eclipse

169

workbench provides a number of extension points for adding new views, editors,
wizards, preference pages, perspectives, etc. that can be reused straightforwardly
for user interface development.

The following sections present implementation issues regarding COMDES de-
velopment tools � from the viewpoint of modelling tools, model-to-model transfor-
mation tool, model-to-text transformation tools and integration tools. The mod-
elling tools mainly concern the editors as well as functions behind them, involving
meta-modelling, constraint speci�cation, graphical modelling, textual program-
ming and building. The model-to-model transformation tool refers to the tool
used to transform a COMDES model into a HARTEXµ model. The code genera-
tors and the con�gurator belong to the category of model-to-text transformation
tools, as they transform models to textual artefacts. Finally, the integration of
these model-based tools is discussed.

7.4.1 Modelling tools

7.4.1.1 Meta-modelling

When using the MDSD approach, the foundation of building the development
environment is provided by a meta-model that describes the possible structure of
DSL models by de�ning the language constructs and their relationship as well as
constraints. Meta-models that have been presented in Chapter 4 and 5 describe
the whole COMDES framework involving DSL, component, platform, repository
and run-time. They are also the basis for building the COMDES development
environment, concerning the construction of modelling tools, transformation tools,
generation tools as well as integration of tools supporting those steps.

For constructing a meta-model, the Eclipse Modelling Framework (EMF) proj-
ect provides a meta-modelling language and facilities. In the EMF, a meta-model
is described by the Ecore meta-model that is an implementation of the Meta-
Object Facility (MOF). A meta-model actually extends the Ecore meta-model
by instantiating classes, in the sense that a new class with new attributes in
the de�ned meta-model is created as an instance of an existing one de�ned in
the Ecore meta-model. After a meta-model has been de�ned, the meta-model is
subsequently used by the EMF engine to generate a number of artefacts. These
artefacts are Eclipse plug-ins including: the model implementation classes that are
closely aligned with the meta-model, the basic editor that allows for modelling and
the adapter classes that shield the model implementation code from the editor.

With the support of these generated artefacts, developing the COMDES meta-
model becomes easier. The implementation classes allow for manipulating and

170

maintaining models, based on the meta-model, via programming. These classes are
essentially useful for all tools that manipulate COMDES models. The generated
editor makes it straightforward to test the meta-model by allowing for model
creation, removal and modi�cation, as it is tailored to the meta-model. Therefore,
an iterative development process of the meta-model can be excellently supported,
since in case of bug found in the meta-model, new model implementation classes
and editor can be regenerated quickly. It is not necessary to manually create a
testing environment for the meta-model.

However, the generated editor is very limited in functionally and usability, and
thus cannot be adopted for COMDES graphical modelling. Other editors need to
be created using another Eclipse project based on the generated EMF adapter
classes.

7.4.1.2 Constraints

The way of specifying an embedded system in COMDES is to draw a set of
domain-speci�c diagrams. As a consequence, the modelling of the system amounts
to drawing a number of shapes and arrows and adding some accompanying text,
whose intended meaning is easy to grasp. However, using diagrams has a tendency
to be incomplete and imprecise, as a diagram simply cannot express the statements
that should be part of a thorough speci�cation.

The Eclipse modelling project provides solutions to specify this kind of infor-
mation. As one of the solutions, the Object Constraint Language (OCL) [91] is a
notational language that can be used to specify model restrictions, and can be used
for the de�nition of constraints for a MOF-based modelling language. It o�ers a
number of bene�ts over the use of diagrams to specify a system by augmenting the
model with OCL expressions, resulting in a complete and precise description of the
system obtained. Constraints speci�ed in OCL are added to the meta-model so
that a complete meta-model is obtained [92]. Speci�cally, a class in Ecore can be
annotated with a number of constraints written as OCL expressions. These OCL
expressions will be evaluated in the meta-model implementation classes, which are
generated by the EMF code generation engine. However, practically, the default
EMF code generation engine (EMF version 2.3) does not automatically generate
code that parses and evaluates OCL expressions, so manual coding is required to
add such functionalities into the generated classes.

However, a quite straightforward non-OCL based solution is also available on
the Eclipse platform: a set of text-based speci�cations of constraints and a Java
implementation used to check constraints. This approach can be applied to re-
place the OCL-based approach. A set of functions that take a meta-model class

171

as input and return either true or false can perfectly perform the checking task,
as long as they carefully implement the speci�cation. These functions should be
integrated into the generated meta-model implementation classes. In this way,
a complete meta-model implementation in Java can be obtained. However, the
approach requires the speci�cation of constraints to be well documented; other-
wise, di�erent readers might make di�erent assumptions, which will result in an
incorrect implementation.

The two approaches are in fact used together during the building of the
COMDES development toolset, based on the consideration that throughout the
transformation from a PIM to a PSM, the constraints involved are actually cate-
gorized into two levels, namely � platform-independent constraints and platform-
speci�c constraints. The platform-independent constraints have no concern about
which target code is going to be generated, whereas the platform-speci�c ones are
bound to the target language, in the case of COMDES � the C language.

When modelling a system, a domain expert focuses on obtaining a correct
model without any knowledge of the target code. But if he is going to use a
code generator after the modelling step, he needs to know what kind of code will
be generated from the model, in order to apply di�erent platform-speci�c rules.
For instance: a constraint like �each model has to be named� can be platform-
independent. As long as the constraint is satis�ed, the model is considered to be
correct, which, however, is not su�cient for the code generation process. Usually,
di�erent target code will need di�erent rules for naming variables, if the name of a
model is transformed to a variable name in the generated code. For example, in the
C language, the variable name must start with a letter or an underscore. Name
with a number at the beginning is not allowed. Either lowercase or uppercase
letter are allowed as the beginning of the name. If C variables are generated
from the models, each model's name must satisfy this additional rule so that the
code can be compiled. While in another target language, i.e. Erlang, the rule for
variable names is stricter: all variable names must start with an uppercase letter.
The constraint for C does not �t here anymore. In short, the rules have to be
considered carefully in case a model is used to be transformed to di�erent target
languages.

Each of the introduced approaches can be used for either platform-independent
or platform-speci�c constraints. However, the current COMDES toolset imple-
mentation uses the OCL-based approach to specify the platform-independent rules
(see the constraints in Chapter 4) together with the meta-model. The Java ap-
proach is applied to the platform-speci�c rules while implementing a code gener-
ator, because there is not yet a satisfactory OCL-based solution available. All of

172

these rules need to be satis�ed before starting a code generation process in order
to produce syntactically correct code. The bene�t is that the same valid PIM
can be transformed to di�erent PSMs, in the sense that the COMDES framework
could be realized in programming languages other than C.

7.4.1.3 Graphical modelling support

To be able to create or understand models properly, modelling must be supported
by appropriate user interface that must provide e�cient means of expressing the
domain concepts of the meta-model. COMDES mainly uses a number of diagrams
to specify the embedded software, such as actor diagram, function block diagram,
etc. With these diagrams, the meaning of an embedded system becomes obvious
once the basic elements of the diagram have been understood.

As a graphical component-based DSL, the editors for COMDES are quite com-
plicated, thus the tooling used to build them should not be overlooked. Basically,
the editors have to support a number of features involving multiple kinds of com-
ponents, hierarchical components, component reusability, di�erent speci�cation
diagrams, etc., and that is why the building of all necessary editors involves a
considerable amount of work.

Typically, a number of editors are required in order to cover all the levels of
speci�cation:

� System level: actor diagram

� Actor level: function block diagram (with latches)

� Function block level: composite FB diagram, modal FB diagram, and state
machine FB diagram.

Among them, the editors containing actors, composite FBs or modal FBs
are hierarchical in the sense that these components are compositions of other
components, which should also be shown in a proper way while modelling. These
features must be implemented in the COMDES editors. Most parts of a system
model can be created graphically, but there are some elements that cannot (or not
necessarily) be created using graphical editors. For instance, in COMDES, a signal
contains one or more variables and each variable needs to be speci�ed with a type.
The signal is graphically represented as a line with an arrow in the actor diagram.
However, from the user point of view, it is not usual to add a number of variables,
i.e. symbol strings into a line graphically. In other words, a variable does not
need a graphical representation, so adding variables to a signal does not have to
be done graphically. The Eclipse provides a property sheet as complementary to

173

graphical editors (see Fig. 7.5), with basically two functionalities: set or display
property of a model element; create model element instances. Then the creation,
removal, of modi�cation of variables can be accomplished in the property sheet of
a signal that can display all contained variables as a simple list.

Figure 7.5: The property sheet for a COMDES signal

Another important requirement is that the component repository, as a key part
of a component-based software development environment, should be accessible by
users during the graphical modelling process. In order to support function block
reuse, a function block type stored in the repository must be visible to the users
and be instantiatable in a graphical editor. Thus, a component viewer is necessary
for the graphical modelling environment. As a basic function, it lists all function
block types from which the developers can build instances on an open diagram.

Besides the above mentioned basic requirements, there are additional require-
ments related to graphical user interface design, which will not be discussed in
detail here. For one example, when considering the environment for creating or
editing a domain model, only the ability of drawing the models on a diagram is
not enough. An interactive environment should be provided to users, in order
to make the tool really usable. It needs features like zooming, panning, context
menus or buttons accompanying the diagram. These interactive components of
the environment are an important aspect of editor design and require some e�ort
as well.

The Eclipse Graphical Modelling Framework (GMF) project provides means
to ease and speed up the development of the COMDES editors. It provides a
generative component and run-time infrastructure for developing graphical edi-
tors, and can be used for the rapid development of standardized Eclipse graphical
modelling editors. When using the GMF, a graphical model �rstly needs to be
de�ned. It contains information related to the graphical elements that will appear
in the editor for modelling (see an example in Fig. 7.6). But this model does not
have direct connection to the domain models for which they will provide repre-

174

sentation and editing. Secondly, a tooling de�nition model is used to design the
palette and buttons that will be used for creation or deletion of the model (see
an example in Fig. 7.7). Thirdly, a separate mapping model is used to link the
graphical and tooling de�nitions to the selected domain model (see an example
in Fig. 7.8). (All concrete de�nitions of the COMDES graphical representation
models, tooling models and mapping models can be found in [93].)

Figure 7.6: An actor graphical representation model

Figure 7.7: A tooling model for the system editor

Once the appropriate mappings are de�ned, the mapping model will be �nally
transformed into a generator model where implementation details can be added
as needed for an editor plug-in generation. The generated editor depends on the
GMF Runtime component to produce an extensible graphical editor. The run-
time bridges the notation and domain model (i.e. connects the GMF generated
graph and tooling code to the EMF generated meta-model implementation and

175

Figure 7.8: A mapping model for the system editor

adapter code), and also provides for features like diagram persistence, context
menu, diagram assistants, animated zoom and layout, etc. Furthermore, these
features provide a look and feel consistent with other Eclipse-based editors.

With the help of the GMF, a number of COMDES editors supporting hierar-
chical components and multiple levels of speci�cation are not so hard to create as
programming them from scratch, because a baseline of the editors can be gener-
ated. However, they have to be customized in order to �t all COMDES features
and provide a better usability. Manual coding for the property sheet and the
repository view is still required due to the fact that they cannot be modelled and
generated. The complexity depends largely on the requirements of the whole user
interface.

In brief, from a modelling perspective, a carefully designed combination of
modelling editors, property sheets and repository viewer would o�er the best so-
lution for modelling a component-based application. Rapid development of these
components can be achieved with the support of the Eclipse GMF generation
ability.

7.4.1.4 Programming and building environment

An embedded development environment should not only integrate tools for mod-
elling and generation, but also contain tools for application building, so that de-
velopers do not need to look for another programming environment to compile
and build the application code. Furthermore, COMDES requires a reusable com-
ponent as a compiled object that is derived from a C code; thus a C editor as well
as a C development environment is needed to support the component creation.

On the other hand, from the MDSD point of view, the experiences and ob-
servations have shown [94] that many developers who master the conventional
code-centric methods do not embrace the value of modelling an application; they
still want the visual modelling to be integrated inside their integrated development

176

environment that is used to perform their daily development tasks. Developers
are reluctant to leave their environment and move to a totally new modelling
environment without a traditional coding and building functionality.

Therefore, a programming and building environment is useful when the domain-
speci�c models are used to generate code in general-purpose programming lan-
guages. The Eclipse platform can satisfy such requirements via the Eclipse C/C++
Development Tool (CDT), which is a popular open source project for C/C++
development. By packaging the CDT as a part, the COMDES development en-
vironment will not only include the capabilities of modelling and generation of a
COMDES application, but also support developers in viewing, editing, building
and debugging the generated code.

7.4.2 Model-to-Model transformation tools

The COMDES framework is meant to give a solution to the software design of real-
time embedded control systems; however it is quite complicated to use one single
meta-model covering all the aspects of the domain where the system model typi-
cally encompasses a variety of aspects, i.e. functional behaviour, timing behaviour,
etc. Moreover, making one big meta-model covering everything is conceivable but
not practical when it becomes more complicated. To avoid such problems each
aspect can be modelled using a DSL suited for the corresponding purpose.

The COMDES design employs �separation of concerns� as a design philosophy,
where the timing is considered only at the actor level, whereas the functionality is
modelled inside the actor. The HARTEXµ kernel is mainly used to implement the
timing aspect of the system, but not for the functional behaviour of the actors.
The HARTEXµ model is actually at a lower level of abstraction than COMDES,
and can be considered as a separate DSL for modelling real-time systems. It plays
the role of a platform for the COMDES model by focusing on when and how to run
actor tasks and drivers using a set of kernel facilities such as timers, events, etc.,
without o�ering any modelling means to describe what a task does. The latter
is modelled as a function block diagram involving a number of function block
instances. Therefore transformation between the two kinds of models is required.

Theoretically, model transformation plays a critical role in bridging abstrac-
tions, such as PIM and PSM in the MDSD approach. Figure 7.9 gives an overview
of the concepts involved in model-to-model transformation. It shows a scenario
with the source model used as an input, and the target model produced as a
transformation result. These two models conform to the source meta-model and
the target meta-model respectively. The execution of the transformation program
results in automatic creation of the target model from the source model.

177

Figure 7.9: Model transformation

The transformation program, written with respect to the source and target
meta-models, is executed by a transformation engine. A transformation program
should implement a transformation speci�cation, which de�nes the mapping be-
tween the source model and the target model. A speci�cation contains several
transformation rules. Each rule implements a small transformation step when
creating the target model from the source model. The rules can be expressed
either formally or informally. (An example of a transformation speci�cation from
a COMDES model to a HARTEXµ model is presented in Chapter 5.)

As a key aspect of model-driven development, the model-to-model transforma-
tion languages are provided in the Eclipse M2M project. ATL (Atlas Transforma-
tion Language) [95] is one of the components of the modelling framework. It is a
model transformation language and toolkit developed by the ATLAS Group. ATL
o�ers a language capable of expressing queries and transformations over models in
the context of the MOF meta-modelling architecture. ATL provides its own meta-
models de�ning the abstract syntaxes conforming to the MOF 2.0 meta-model.
OCL is used for querying models when writing a transformation program. An
execution engine and development tools are available on the Eclipse platform.

Alternatively, a general-purpose programming language like Java is su�cient
to write a model-to-model transformation program, too (Fig. 7.10). A transfor-
mation tool written in Java usually depends on the implementation classes of the
input and output meta-models. The meta-model implementation classes can be
used to manage the input and output models. In this case, the tool has to be
designed carefully, so as to manage the transformation trace.

Model-to-model transformation is still a hot topic of research. There is no or
little prior experience accumulated in the �rst place. However, both academia and
industry are investing e�ort into this area, and as a result, there are a number of

178

Figure 7.10: Java based transformation

approaches and tools for choice. The work [96] lists more than ten approaches with
tools concerning model-to-model transformation. Trying them one by one will take
a considerable amount of time. But the following paragraphs present issues that
have to be considered before choosing an existing approach (i.e. ATL) or writing
one on our own (i.e. Java), to perform the model transformation, in order to
e�ciently implement the tools of the COMDES development environment.

Firstly, in a transformation program, each rule usually addresses only one small
aspect of the entire transformation. However, sometimes, a rule needs to reference
certain models created by other rules. Therefore, it is necessary that the trans-
formation engine has the ability to record the run-time footprint of a transforma-
tion execution, i.e. a transformation trace. Traceability links can be established
by recoding the transformation rule and the source elements that were involved
in creating a target element. The ATL provides dedicated support for tracing
by creating and managing traceability links automatically. However, the Java
approach requires developers to manually record information like which target
model instances are mapped from which source model instances when executing
a transformation rule.

Secondly, it is important for a transformation language to provide a rich set
of functions or APIs for operating with the input and output models. At least,
a language should provide su�cient means to navigate the source model, even
though sometimes there is no explicit association between elements in the model.
For example, in some cases, there is not a direct �child to parent� association
de�ned between a child class and a parent class in a meta-model. However, special
support from the language is needed in order to obtain the parent from the child,
e.g. a re�ective operation �refImmediateComposite()� can be used to return the

179

immediate container of the child in ATL; whereas a function call �eContainer()�
does the same when using EMF. It may not be possible to implement some of the
transformations without the support of such kind of functions.

Thirdly, in general, a complicated transformation may involve multiple source
models or multiple target models, i.e. a source model could be stored in several
resources, or a source model could to be linked to a number of other models. A
M2M solution should be able to process all the input models regardless of their
physical locations. This is especially signi�cant for a component-based framework
where typically a number of components used in an application are physically
located at di�erent repositories. The ATL is capable to deal with multiple inputs
and outputs. With the help of the meta-model implementation classes generated
by EMF, it is also easy to deal with such requirement in a Java-based solution.

Next, in certain scenarios, it might not be possible to construct a target model
in one operation. Likewise, if there is neither a rich collection of APIs available
in the transformation language, nor the capability to deal with multiple inputs
and outputs, it may be necessary to transform the source model in multiple steps.
In this way, a target model is constructed incrementally. Then, a number of
intermediate models between the source and the target models are needed, and
meta-models of these intermediate models are also required.

Finally, always bear in mind that learning a new language and tools takes
time. Model transformation is a relatively young area. Although well-established
standards for creating meta-models exist, there is currently no mature standard
for specifying transformations. The QVT (Query/View/Transformation) standard
of MDA might be a starting point. The situation is worsened by the fact that
di�erent groups are trying to develop such techniques having di�erent views of
the subject area, as a result of lack of standards. Moreover, available approaches
are changing over time as they are matured. Therefore, a transformation imple-
mented in a general-purpose language could be a better solution for the COMDES
development environment, at the moment.

7.4.3 Model-to-Text transformation tools

Code generation, in the context of MDSD, is also referred to as model-to-text

transformation, as it is a special case of model transformation. Such a name em-
phasizes models as the inputs of a code generation process, whereas the term �code
generation� does not reveal the source of the generated code. Like code genera-
tion, the target of model-to-text transformation is just text or string. The string
can be any textual artefacts, involving either code or non-code ones. Conversely, a
target of model-to-model transformation is an instance of the target meta-model.

180

There are satisfactory solutions for code generation (not necessarily for model-
to-text transformation), as well as tools available on the market. The majority
of current available tools support template-based generation, where a language is
specially designed to write the templates and is referred to as a template language.
A template language usually provides basic elements for writing the generation
program, such as condition, iteration, and expression. Practically, using templates
helps to reduce the complexity and increase the readability of the code generation
program; otherwise the program can quickly become very complex and hard to
understand.

The templates that realize the transformation from platform-independent model
to platform-speci�c model are usually derived from a reference implementation,
in order to make sure that the generated source code would be compiled. As
code generation is a key step when applying the MDSD approach, an existing
implementation is useful as a reference for getting knowledge about what the gen-
erated code looks like and what kind of generators are needed to support this step.
The Production Cell case study that was developed in the COMDES framework
[97] has been used as a reference implementation during the development of the
generators and the con�gurator within the COMDES development environment.

A template usually consists of dynamic code, which is executed at run-time
to iterate over the model instances, fetch information from the source model and
do computation, and static text, which is output directly to the generated target.
The static code does not depend on the model and normally, it has just to be
copied into the templates obtained from the reference implementation.

Some template languages are hybrid in that parts of the generation program
are implemented in the speci�c template language, and other parts � in a general-
purpose programming language. This feature is extremely useful when the tem-
plate language is not su�cient to perform complicated computational tasks. The
developer can use the not-so-expressive template language to navigate the model,
get information from the model and then pass it to a general-purpose programming
language to make complicated computation.

An advantage using the template-based approach is that during the develop-
ment stage of a generator, the correction of errors found in the generated code is
much easier and can be carried out more e�ciently. Provided that the target code
written for the reference implementation is correct, a bug in the generated code
needs only to be �xed in the meta-model, the transformation rules or the genera-
tion templates. Once bugs are �xed in these places, all �awed code fragments are
replaced with corrected ones after regeneration.

There are some choices for a model-to-text transformation solution from either

181

an Eclipse-based project (i.e. JET, Acceleo) or a non-Eclipse-based project (i.e.
CodeWorker), which have been tried out during the Ph.D. project. All of the
mentioned tools are template-based and consequently, can be used to develop the
tools for generative purposes, i.e. FB code generation and con�guration scripts
generation, etc. CodeWorker is a free tool, which has been used for generation
purposes in several projects executed in the MCI. As a component of the Eclipse
M2T project, JET has inherent superiority over the other tools. Acceleo is an
implementation of the model-centred approach, which is also able to operate on
the Eclipse platform.

In addition to the above mentioned template-based tools, other similar code
generation tools could be used to develop generative tools for COMDES as well.
However, something worth noticing is that in the context of the COMDES frame-
work, the code generation is very complicated and time consuming, although theo-
retically it looks very simple. The generation involves several kinds of components,
therefore requires dozens of templates developed for all components. The compu-
tation, such as the generation of the sequence table for a composite FB, or the
binary decision diagram table for a state machine FB, etc., is not trivial. Also, the
generation of con�guration scripts involves access to a number of component type
models through the component repository model, which increases the complexity
of the generation program.

Therefore, selecting the right tool to develop the COMDES code generators
and the con�gurator would help save a considerable amount of time. Practically,
the tool should provide an easy way to retrieve useful information from the source
models. Textually parsing a source model based on its concrete syntax is not
a good idea in the context of model-driven development. Furthermore, the tool
should provide comprehensive functions to facilitate complicated computations.
Otherwise, it should have the ability to integrate a general-purpose language into
its template language, such that it would be possible to pass models between the
general-purpose language and the template language.

In fact, the JET and the CodeWorker tools are devoted to the generative
programming approach, which is not a strong model-centred approach, since it
does not require a meta-model as the baseline. An XML �le can be used as input
for these tools and does not have to be the serialization of a model. However,
even though the �le could be the representation of any model, the model itself
cannot be seen by the tools, which increasingly complicates the parsing part of
a generator. For instance, a model could be physically stored in multiple XML
�les with cross-reference, which usually occurs in a system model using a number
of reusable component types. The tools can only read the reference as a string,

182

and �nd the location of the referenced model or �le after some operations on the
strings.

As a model-centred solution Acceleo is more appropriate for COMDES, because
the COMDES meta-model in Ecore is fully supported by the Acceleo. Navigation
and gathering information from di�erent places of the model is quite convenient,
with the support of the meta-model. Though the model is exported as an XML
�le, a parser of the �le in not necessary because the Acceleo can parse any model
that conforms to Ecore. In this way, writing a template is totally based on the
consideration of a meta-model and a model, e.g. the physical location of the model
is not important, it could be in one �le, in multiple �les, or even could be created
during run-time. This will reduce a lot of implementation time. Furthermore,
the Acceleo can call services within the template language. Services are public
methods de�ned in Java classes providing complex operations, without which it
would be very complicated to realize such operations using only the limited num-
ber of template syntax elements. Integration with the Java language makes the
template more powerful, as a number of prede�ned Java libraries, APIs of EMF
and meta-model implementation classes, etc., are available for operating on source
models. The services can take any model or a collection of models as parameters
and return any kind of model object or a collection of model objects after cer-
tain processing. Moreover, the template language is able to process the models
returned by the services, and print them with the static text. Therefore, it allows
for seamless Java services and template language integration, which speeds up the
development of a code generator.

The Listing 7.1 demonstrates a piece of template program used for generating
all basic type FB interfaces, based on the design pattern listed in Listing 6.1,
Chapter 6. The template is a part of the COMDES FB code generator. The
template is written using the Acceleo template language, and it can be seen that
the access to models is based on the COMDES basic FB meta-model (Fig. 4.7 and
Fig. 4.9, Chapter 4), which makes the parsing of a model simple. Additionally
a service getTypeName() is called to compute a valid name from a model, which
keeps the template clean.

Listing 7.1: A basic FB interface generation template

<%script type=" BasicType" name=" basic_type_h"

file="<% bfbtypename %>.h"%>

<%if (output_signals.nSize () > 0){%>

typedef struct {

<%for (output_signals) {%>

<%type%> <%name%>;

<%}%>

183

} T<%self.getTypeName ()%> Output;

<%}else{%>

//this fb has no outputs

<%}%>

typedef struct {

<%-- input --%>

<%if (input_signals.nSize () > 0){%>

struct {

<%for (input_signals) {%>

<%type%>* <%name%>;

<%}%>

} input;

<%}else{%>

//this fb has no inputs

<%}%>

<%-- parameter --%>

<%if (parameters.nSize() > 0){%>

struct {

<%for (parameters) {%>

<%type%>* <%name%>;

<%}%>

} parameter;

<%}else{%>

//this fb has no parameter

<%}%>

<%-- output --%>

<%if (output_signals.nSize () > 0){%>

T<%self.getTypeName ()%> Output *output;

<%}else{%>

//this fb has no outputs

<%}%>

} T<%self.getTypeName ()%>;

7.4.4 Tool integration

After each individual tool in the COMDES development environment has been
identi�ed and developed, another challenge would be to coordinate their opera-
tion, so as to make the tools work properly together as an integrated toolset. The
tools in consideration include not only those used for modelling, model transfor-
mation and code generation that are speci�c for COMDES development, but also
� external tools that are instrumental for the development process, i.e. analysis
tools, compilers, linkers, etc.

A development environment can be divided into three parts: tools that do

184

the computational tasks; a coordinator that controls tool interaction; and data
or models exchanged among tools. All the tools of the environment interact with
other tools under certain control. The interaction could be coordinated by means
of speci�c middleware, which carries out the data sharing and controls the execu-
tion of processes in the environment. This kind of middleware usually provides a
clear separation between the computational part and the coordination part of an
environment [98]. The coordination part is about the way in which tools inter-
act (using e.g. procedure calls, remote method invocation, middleware functions,
and others), while the computation part is related to tools that carry out special-
ized tasks. The separation of coordination and computation leads to �exible and
reusable tools and environment.

Considering the MDSD approach where models are the essential elements that
all tools operate on, the aim of a tool integration solution is to achieve the collab-
orative work between heterogeneous tools based on a variety of models. In such
an environment, one source tool can send its data in the form of model to one or
more other destination tools for speci�c service or execution. So, a proper solution
for tool integration should manage tool interoperability on top of models.

Out of several aspects of an integration solution mentioned in [99], there are
two that should be considered at least for the COMDES development environ-
ment: data integration and process integration. Data integration is related to
enable heterogeneous tools manipulating common data, and ensures that all the
information in the environment is managed as a consistent way. The data passed
among tools should have a structure that could be understood by all tools in the
environment. Exchange of arbitrary data is not allowed. In the COMDES develop-
ment environment, each tool should operate on models, regardless of what format
the data is stored in. Exchanged models could be based on di�erent meta-models.
In case the source model is not understandable for a successor, transformation
facilities are used to transform the data to make it compatible with the requesting
application. The shared models must be saved in the repositories.

Process integration is about the coordination among tools in the environment.
It ensures that tools interact e�ectively in support of a de�ned process [99]. Dif-
ferent development tools are invoked such that the de�ned sequence of execution
is automatically enacted within the integrated development environment; thus,
the manual work of calling each individual tool in the development process is
eliminated or reduced.

Nowadays, tool integration has become a very important issue for software
development. In order to solve this problem, a number of frameworks (not nec-
essarily speci�c to Eclipse) have been developed, such as ToolBus [100][98] in

185

Meta-Environment, ModelBus [53] in Eclipse, OTIF [101] in Model-Integrated
Computing Toolsuite, etc.

ToolBus is developed by Centrum voor Wiskunde en Informatica (CWI), and
has been applied in a language development framework called Meta-Environment.
The goal of the ToolBus is to integrate tools written in di�erent languages running
on di�erent machines, which is achieved by means of a programmable software
bus. The ToolBus uses data representation based on term structures, and does
not allow the exchange of arbitrary data. It coordinates the cooperation of a
number of tools. This cooperation is described by a script that runs inside the
ToolBus. The result is a set of concurrent processes inside the ToolBus that
can communicate with each other and with the tools. Tools can be written in
any language and can run on di�erent machines. ToolBus forbids direct inter-
tool communication. Instead, all interactions are controlled by the script that
formalizes all the desired interactions among tools. Therefore, each individual tool
can be replaced by another one, provided that it implements that same protocol,
as expected by other tools. Thus, complete control over tool communication can
be achieved. Each tool in this architecture needs to be encapsulated in a small
layer of software that acts as an �adapter� between the tool's internal data formats
and conventions and those of the ToolBus.

Open Tool Integration Framework (OTIF) developed by Vanderbilt University
is a framework for constructing integrated tool chains. It can be used in an en-
vironment where each design tool has its own format for storing models. Models
exchanged between tools can be translated from the format of one tool to the
format of another tool, which makes possible to integrate external tools in an en-
vironment. Tools can be distributed across multiple machines. In the framework,
an intermediate canonical model is used as a bridge between source model and
target model, so that the syntactical and semantic transformations are decoupled,
and moreover, the transformation process can be isolated from the details of the
model representations. In the framework, work�ow models are used to de�ne tool
invocation sequences. Also, a backplane incorporates a work�ow engine playing
the role of coordinator that enacts the work�ow model and routes the messages be-
tween other components in the framework. Additionally, tool adaptors are used to
couple tools to the framework by submitting/receiving the data to/from the back-
plane and converting the data between the canonical form and the tool-speci�c
format.

ModelBus is a model-driven tool integration framework, which allows for build-
ing a seamlessly integrated tool environment for a system engineering process. It is
dedicated to the realization of a platform o�ering the integration facilities needed

186

for applying a model-driven development approach. It provides the ability to in-
tegrate modelling tools, languages and methodologies to create fully customizable
model-driven development environments. ModelBus provides a standard approach
to exchange models and to execute remote modelling services. It supports a de-
�ned software engineering process that involves several tools operating on models.
It enables transparent interaction between tools, and allows end users to easily
assemble heterogeneous tools that interoperate without having any direct knowl-
edge of other tools. To that end, tools use so-called adapters. The adapter is a
sub-component de�ned in ModelBus. To communicate with other tools, a tool has
to interact with its corresponding adapter plugged in the bus. When using the
ModelBus, a modelling service description should be provided. The description
conforms to the ModelBus meta-model [102] that contains all relevant concepts
for describing modelling service interface, modelling service, model-related events
and model types whose instances are de�ned in the description. Tool adapters
are generated through the Adapter Creation Tool, based on the modelling service
description. An adapter connects a tool with the ModelBus. It can register a
tool to the ModelBus, lookup for available tools and respond to service invoca-
tions. Once a tool has been successfully plugged in, its functionality becomes
immediately available to others as a service.

Figure 7.11: COMDES generator tool description

The above mentioned technologies deal mainly with process integration. These
architectures can provide a clear separation between the computational part and
the coordination part of an environment. The capability of integrating external

187

tools into an environment is achieved through adapters. A tool adapter interface
can normally be generated automatically, given a description of tools and their
interactions. OTIF and ModelBus are model-based solutions, so the model-driven
development tools can exchange models through the architecture, instead of raw
data.

The ModelBus is an Eclipse-based project and its meta-model is de�ned using
the EMF project, which gives a good reason to be adopted in the COMDES
development environment, since COMDES employs the EMF as a meta-modelling
language. Based on the COMDES meta-model, [103] presents a ModelBus-based
solution to execute all the tools in accordance with the process de�ned in the
COMDES development environment. The description model for each of its tools
has been de�ned (see Fig. 7.11. for an example for code generator). However,
as a relatively new technology, the available ModelBus tool is not yet stable and
mature enough at the moment, as of this writing. Further progress has to be made,
in order to incorporate the ModelBus in the COMDES development environment.

7.5 Summary

The fundamental challenge for software technologies of the future is to provide an
integrated development environment support for achieving software development
automation, using an appropriate collection of tools.

This chapter presents the architecture of the COMDES development environ-
ment consisting of tools that have been speci�cally designed to automate embed-
ded control system development in a model-driven fashion. The toolset supports a
software development process featuring prefabricated executable components that
are used to con�gure the executables of the target embedded system, in accordance
with design models specifying its structure and behaviour.

The chapter is continued by investigating related issues and technologies used
to build the environment on the Eclipse platform, concerning meta-modelling and
modelling, model-to-model transformation, model-to-text transformation and tool
integration. There is a broad spectrum of solutions that o�er a variety of capabil-
ities on the Eclipse. Therefore, choosing a proper one will considerably facilitate
the real implementation when taking models into account.

This chapter does not contain sophisticated theoretical knowledge, but it
attempts to cover the important aspects of the methodology and technology
needed to implement the COMDES development environment, with respect to
both model-driven and component-based development of embedded software. The
technological issues discussed come largely from the experience gained during the

188

execution of the Ph.D. project, while implementing the COMDES development
environment.

Although the discussion in this chapter is mostly related to the Eclipse plat-
form, the issues investigated and problems discovered will hopefully o�er hints to
other research and development e�orts dealing with software development environ-
ments based on models and components. On the other hand, some requirements
concerning tool development, arising from the COMDES framework, will hopefully
provoke further research and improvement of tools for model-driven development
of embedded software.

189

Chapter 8

Demonstrations

The COMDES modelling techniques presented in Chapters 3 and 4 have been ex-
perimentally investigated using the well-known Production Cell Case Study [104].
This chapter will brie�y present the software design of the Production Cell con-
trol system, based on the COMDES framework and its components, and will then
discuss tool support provided by the developed toolset.

The Production Cell control system was designed and implemented in 2006 at
an earlier stage of the Ph.D. project. At that time, the design was implemented
mostly manually due to the lack of tool support: models and diagrams had to be
drawn by hand; function blocks source code and con�guration scripts were written
manually. Particularly, during the coding, one had to be very careful to make sure
that the code conformed to the design drawn on papers. There was tool support
only for the HARTEXµ kernel, where a kernel instance could be con�gured in
a GME-based tool used also to generate the code of kernel objects. However,
automatic transformation from COMDES to HARTEXµ did not exist.

Anyway, the case study has been successfully developed using COMDES mod-
elling and implementation techniques [97]. Throughout the Ph.D. project, it has
been employed as a reference implementation when applying the MDSD approach.
The reference implementation is very important when it comes to the creation
of the COMDES meta-model as well as tools. It also serves a more signi�cant
purpose: it demonstrates the application and realization of the COMDES DSL.
Although the reference implementation has been created manually, it exempli�es
the transition from model to implementation on the respective platform. Later
on, the transformations performed by tools are derived from it. For instance, a
number of templates required by model-to-text transformation show great similar-
ity to the implemented code, and can thus be extracted easily from the reference
implementation.

The second part of the chapter will demonstrate how to use the COMDES

190

toolset to support the development of the case study, where essential features
supporting component-based and model-driven software development, such as
component reuse, system modelling, transformation and code generation, will be
illustrated.

The last section of this chapter will present industrial experience related to a
case study developed in the Zone Controller Development Division of Motorola
A/S. It is about a modi�ed version of the state machine modelling and code
generation tool developed in this project, which has been re�ned and extended
with a new code generator in accordance with industrial requirements.

8.1 Production cell case study in COMDES

8.1.1 Introduction to the case study

The Production Cell case study is a realistic industrial application, which aims to
show the usefulness of formal methods for critical software systems and to prove
their applicability to real-world examples. The problem addressed in the case
study belongs to the area of safety-critical systems, as a number of properties
must be enforced by the control software in order to avoid injury to people and
damage of machines. It is a reactive system, as the control software has to react
permanently to changes of the environment. A reduced version of the Production
Cell plant has been adopted for this project (see Fig. 8.1 and Fig. 8.2). It has
been implemented as an animated computer model controlled by a distributed
control system whose design and implementation are presented in the following
sections.

The simpli�ed Production Cell consists of �ve machines: a feed belt, an ele-
vating rotary table, a robot with two orthogonal arms, a press, and a deposit belt.
All of these machines work jointly to process metal bricks, which are conveyed to
a press by the feed belt.

The feed belt transports metal bricks to the elevating rotary table. An electric
motor drives the feed belt to move or stop. There is a photoelectric sensor installed
at the end of the belt, which is used to indicate if a brick has entered or left the
�nal part of the belt.

The elevating rotary table passes the bricks from the feed belt to the arm1 of
the robot. It rotates about 45 degrees and lifts to a level where the arm1 is able
to pick up the brick, since the robot arm1 is located at a di�erent level than the
feed belt. There are two sensors installed on the table. The �rst one measures the
vertical position of the rotary table, and another one measures how far the table

191

Figure 8.1: Top view of the production cell model

Figure 8.2: 3D view of the production cell model

has rotated. Table rotation and motion are e�ected by two electric motors.

The robot comprises two orthogonal arms and they are set at two di�erent
levels. Each arm can retract or extend horizontally so that it can reach the table,

192

press and the deposit belt. Both arms rotate jointly. To grip the bricks, each arm
has an electromagnet at the end. The arm1 is responsible for taking bricks from
the elevating rotary table to the press, while the arm2 is used for transporting
forged bricks from the press to the deposit belt. By default, the arm2 points
towards the press and the arm1 is positioned between the table and the press.

There is one sensor on the robot to measure how far the robot has rotated,
and an electric motor to rotate the robot. Each arm has a sensor to indicate how
long the arm has been extended, a motor to extend and retract the arm and an
electromagnet to pick up and drop a brick.

The task of the press is to forge metal bricks. A plate is movable along a
vertical axis. Because the robot arms are placed on di�erent horizontal planes,
the press plate has three positions. In the lower position, the press is unloaded by
arm2, while in the middle position it is loaded by arm1. The brick is processed in
the upper position. A sensor is used to measure the vertical position of the press
plate, and an electric motor can move the press plate up and down.

The deposit belt transports the bricks unloaded by the robot arm2 out of the
production cell. The belt is powered by an electric motor, which can be started up
or stopped by the control program. In this simpli�ed version, there is no sensor
at the beginning and at the end of the deposit belt to indicate the coming and
leaving of the bricks.

Two types of property � safety and liveness properties are considered in this
system. The safety requirements are most important: if a safety requirement
is violated, this might result in damage of machines, or, even worse, injury of
people. A very strong liveness property for this system is satis�ed, if the following
requirement is ful�lled: Every brick introduced into the system via the feed belt
will have been forged and will eventually be deposited out by the deposit belt.

Flexibility is another requirement taken into consideration; namely, the control
software has to be open and �exible. The e�ort for changing the control software
and proving its correctness must be as small as possible, when the control system
requirements or cell con�guration are changed. Obviously, a component-based
design will satisfy this requirement, as shown in the next section.

8.1.2 System design speci�cation

According to the COMDES framework, the control system speci�cation is devel-
oped in a top-down fashion. The top level is de�ned in terms of actors and their
interaction with each other, as well as with their environment. The structural view
of the control system provides static information about the interactions between
the constituent actors, as well between the actors and the environment. This view

193

is described by an Actor Diagram, such as the one shown in Fig. 8.3.

Figure 8.3: Actor diagram of control system

The Production Cell control system consists of �ve actors: Feed Belt Actor,
Table Actor, Robot Actor, Press Actor and Deposit Belt Actor. An actor is as-
signed to a speci�c object of control in the physical environment. The internal
structure of an actor is speci�ed with a function block diagram involving con-
stituent function blocks and signal drivers, e.g. the Table actor shown in Fig.
8.4.

194

Figure 8.4: Table actor and its internal function blocks

The input signal drivers acquire the corresponding input signals from either
plant or communication bus. Communicated signals (messages) are received by
signal drivers and decomposed into local variables, whereas sensor signals are read
by the physical input drivers. Local signals are further processed by preprocessing
function blocks that are either basic or composite function blocks. Other function
blocks are used to generate control signals. Output signal drivers compose signal
messages and broadcast them to other actors, whereas physical output drivers

195

generate control signals for the plant actuators (see Fig. 8.4).
The core control part of the Table actor is a hierarchical control unit. It is com-

posed from two controllers: top-level supervisory state machine (SSM) and modal
function block (MFB), and second-level SSM and MFB. The top-level state ma-
chine has two states, which respond to the manual switch that puts the controller
into either On state or O� state. It is executed when the actor is triggered by a
periodic timing event. However, a transition will take place only when an on/o�
event is present.

The top-level MFB has two modes for both On (mode 1) and O� (mode 0).
The motors of the table are switched o� in mode 0. In mode 1, the MFB executes
the actual control actions by invoking a sequence of function blocks, as shown also
in Fig. 8.4.

The second-level state machine (SSM2) is the �rst function block to execute
in mode 1. It performs the main control function of the Table controller. SSM2

determines the current state using the variables provided by the input drivers as
well as preprocessing function blocks, and controls the execution of the second-
level modal function block (MFB2). The latter executes control actions based on
the state indication it receives from the state machine and supplies information
to the output drivers, which are then used to generate the output signals of the
actor.

The Table actor model has been designed as a pattern, which has been also
used with the other actors of the Production Cell control system. As a result, code
manually derived from the rest of the actor models is also similar to the code of
the Table actor in terms of the function block patterns used. We have experienced
that this method saves a lot of development time; for instance, the time needed
to implement the other four actors has been roughly half of the time spent on the
�rst actor. On the other hand, using the framework and prede�ned components
makes it easy to locate implementation errors. It is only necessary to check the
system design model, since the implementation follows the principle: �What you
design is exactly what you implement�. (For the detailed design of each actor in
this production cell case study, please refer to [105][106].)

8.1.3 Run-time environment and platforms

The �ve actors are grouped into three subsystems: Load subsystem, Robot sub-
system and Unload subsystem. Each of them is set onto one physical node of the
network, where these physical nodes are connected by the CAN bus.

The HARTEXµ is con�gured for each subsystem allocated onto one physical
network node. The actors communicate inside a node and across nodes through

196

signal-carrying messages, using content-oriented message addressing. In this de-
sign, each actor just sends to others its own state as message contents. Fig. 8.5
shows a kernel con�guration for the load subsystem developed in a GME-based
kernel con�guration tool, where two tasks are triggered by the same timer peri-
odically every 30ms. Tasks exchange messages and also access resources in the
hardware platform.

Figure 8.5: Load subsystem con�guration

The microcontroller AVR ATmega128 and the STK300 Development kit (Fig.
8.6) have been used to implement the physical node. Physical nodes are connected
to a Controller Area Network (CAN). The latter is characterized by a communica-
tion protocol, which provides e�cient support for real-time communication with
a very high level of security. That is why it has been used as a communication
bus for the distributed control system of the Production Cell. Unfortunately, the
Atmega128 and the STK300 do not have a CAN communication interface. There-
fore it was necessary to use a locally designed extension board providing a CAN
controller, as well as other peripheral devices such as local keyboard and LCD
display.

WinAVR is an open-source cross-development tool-chain for the Atmel AVR
series of microcontrollers, which is hosted on the Windows platform. It includes
the GNU GCC compiler for the C language. It also contains all the tools for
developing software for the AVR family.

197

Figure 8.6: StarterKit STK300

8.1.4 Hardware-in-the-loop simulation and related experi-

ments

The developed control system design has been ultimately tested via hardware-in-
the-loop simulation involving a real-time control network and an animated com-
puter model of the plant running in a PC. Hardware-in-the-loop simulation can
be used to develop and test embedded control systems. It is particularly e�-
cient with complex systems, whenever it is very costly or impossible to use the
plant itself in the process of software development [107]. The Production Cell
has been simulated on a PC, which performs the same function as the real plant:
it responds to the motor controlling signals and sends out sensor signals to the
distributed embedded controller, using a dedicated interface implemented with
National Semiconductor process I/O boards (Fig. 8.7). The experiments have
validated the developed Production Cell control system and have demonstrated
the feasibility of the COMDES software design method.

8.2 Case study evolution: a tool demonstration

This section presents the tools and the process of building COMDES applications
in the context of the developed Production Cell case study. It assumes that
some reusable FB models, prebuilt objects and platform models have been already
created with the tools and the process used for component development.

The COMDES toolset is implemented in Eclipse as a number of plug-ins inte-
grated into the Eclipse workbench. The toolset provides an environment support-
ing model-driven and component-based development of embedded software using
the COMDES approach. The spectrum of functionalities supported by the toolset
includes:

� Design of the real-time embedded system using graphical modelling tech-

198

Figure 8.7: Implementation of the Production Cell case study

niques

� Reuse of prede�ned components

� Detection of syntax and static semantics errors

� Generation of deployable and executable code

This section introduces brie�y the basic features of the development tools, and
then shows how to create a model and how to get the �nal executable, using the
main functionalities of the toolset.

In Fig. 8.8, the panel in the upper left part of the screen shows a hierar-
chical representation of the COMDES repository implementation and all types
of resources contained in the repository, such as system model �les, source code,
function block objects, etc. It is the starting point for creating a COMDES system
model and working with the rest of the toolset.

Another panel on the left-hand side is a repository root model viewer, which
is useful for viewing all types of reusable component, whereby a type can be
a function block or a platform. When modelling a COMDES system, function

199

Figure 8.8: Modelling environment

block types listed in the viewer can be instantiated in the editor area, so that
corresponding FB instances can be created in the model. One can invoke the
action of instantiation from a popup menu when selecting a FB type model, as
shown in Fig. 8.9. Alternatively, one can directly drag the type model to an
open diagram, in order to create an instance from the type model. If a created
instance in an application is a composite FB or a modal FB type, its constituent
FB instances will also be created into the application automatically, by means of
a underlying algorithm resolving the dependencies.

Just as there are di�erent types of diagrams in COMDES, there are di�erent
types of editors. When a model is selected or created, the most appropriate editor
will be used to open the model (if it is able of opening). If it is a COMDES system
model, the model will be opened using a COMDES system editor (Fig. 8.8). If it
is an actor model, it will be opened using an actor editor (Fig. 8.10), which has
special features such as the ability to create function block instances.

At the bottom of the editor area is a view called property sheet. The content
of this view depends on the model element selected in the corresponding editor.
It displays attributes of a model element and allows for their modi�cation. Thus,
values of the attributes can be set or reset in the sheet. Additionally, there could
be also buttons that provide convenient ways of viewing and modifying values.

200

Figure 8.9: Instantiation of a reusable FB model in a repository viewer

Figure 8.10: Actor editor

For instance, Fig. 8.11 lists all the network instances used in the case study as
well as their attributes, when a system model is selected in the system editor,
from which one can see how the �ve actors are allocated.

In addition to the property sheet, repository viewer and editors, the palette in

201

Figure 8.11: Property sheet

the right-hand side of Fig. 8.8 is also important when modelling. Buttons listed in
the palette are used to create models (i.e. actor, input, basic FB instance, etc.) in
a COMDES system model. The palette can be changed depending on the diagram
opened in the current editor.

In addition to creating FB instances from prede�ned types, another feature is
worth mentioning: creating FBs at design-time. When design a system model,
one could occasionally �nd that all the prede�ned FB types are not the right ones
for the application. Thanks to the reuse pattern presented in Chapter 4, during
the system modelling stage, the buttons in the palette can be used to create
a FB instance directly on an open diagram if a required FB model has not been
prede�ned in the repository. The FB instance is constructed with inputs, outputs,
parameters and functions. Furthermore, it can be exported as a prede�ned type
for future reuse.

As shown in Fig. 8.8, the model of the Production Cell control system contains
�ve actors that are interconnected through signals. The model of the Production
Cell plant is neglected in order to keep the diagram clean (the plant model is used

Figure 8.12: Model validation

202

Figure 8.13: Transformed HARTEXµ model

only for the purpose of analysis of the control system model). Fig. 8.10 shows the
table actor in detail. This diagram is opened by double clicking the table actor in
the former �gure. Function blocks or drivers used in this diagram are instantiated
from prede�ned types listed in the repository model viewer shown in Fig. 8.9.

Once a system model has been created, it has to be validated against con-
straints. In case there is invalid data in the model, the validation fails resulting
in the generation of a diagnostic message. Any error must be corrected in order
to proceed. Fig. 8.12 illustrates a validation result with two errors found in the
system model.

Next, the RTE translator can be invoked on the validated COMDES system
model, in order to obtain the corresponding HARTEXµ model. In this case study,
each actor is triggered periodically and has no deadline; hence each transformed
task is triggered by a timer with a 30 ms period, as illustrated in Fig. 8.13. The
tool for manipulating transformed HARTEXµ models has been incorporated in
the COMDES development environment, since the meta-model of HARTEXµ has
been de�ned using EMF in the Eclipse. Consequently, developers do not need to
switch between di�erent modelling tools during application development.

Finally, it is possible to generate code from the validated system models using
the generators and con�gurator tools. As shown in Fig. 8.14, the COMDESI-

ICGenerator is mainly intended to generate glue code (instances) from function
blocks. In case there is a FB instance model without a prede�ned type, code for
the type must be generated from the instance as well, based on the FB design

203

Figure 8.14: Generation tools

Figure 8.15: Generated executable in the application repository

patterns. The HARTEXµCGenerator generates code for kernel objects from the
HARTEXµmodel. The COMDESIICCon�gurator takes all models (including also

204

a repository root model) as input to produce con�guration scripts, i.e. make�les.
The scripts must specify what prebuilt FB objects from the repository need to
be linked with the generated glue code. Also, they have to specify how to build
a binary executable out of the generated source code as well as prebuilt objects,
using a compiler and a linker that are speci�c to a hardware platform.

In the COMDES toolset, GNU Make is an external tool, which controls the
generation of program executables from source �les. Make gets its knowledge of
how to build the program from the make�les. In addition to source �les, the
make�le also contains commands that can instruct the compiler to produce an
object �le and the linker to produce an executable. As shown in Fig. 8.15, the �le
LoadNode.hex is the �nal executable for the Feed Belt actor and the Table actor.
It is speci�c for the Atmega128 microcontroller and can be directly downloaded
into a hardware platform, i.e. the STK300 board.

8.3 Model-driven development tools from indus-

trial perspective

An essential part of the COMDES development environment � the state machine
component development tool, has been re�ned and extended with a new code
generator in a case study developed in Motorola A/S, in accordance with industrial
requirements. The objective of this case study was to validate the Eclipsed-based
technologies for model-driven tool development, and meanwhile provide a method
for automatic code generation from a state machine model, o�ering bene�ts to
Erlang developers in the Zone Controller Development Department of Motorola
[108].

In Motorola, developers have been working with Erlang/OTP for a while now,
and the need for a higher level of abstraction rather than code has surfaced on a
number of occasions. The Erlang/OTP code is very clean, but sometimes it is a lot
easier to communicate using pictures and models. It is always a practical problem
to keep the pictures and models in sync with the code, so any tool support which
can help out with that would be appreciated. Even though writing Erlang/OTP
code is a lot faster than doing the same code in other languages, developers still
have to write some boilerplate code to implement a component using Erlang/OTP.
As a �rst step, a state machine model is typically conceptualized in some form
before this is done. So, a method that could auto-generate code from a state
machine model o�ers some bene�ts to an Erlang developer. This poses a tough
requirement on any modelling tool: using the tool has to be more useful than
writing the code by hand.

205

The design and implementation of the tool have been done in Motorola during
a research visit to its Copenhagen division. It follows the concepts and technolo-
gies presented in Chapter 7, such as meta-modelling, constraints speci�cation,
graphical modelling, model-to-text transformation, etc. The meta-model of the
COMDES state machine has been modi�ed and extended in order to �t the re-
quirements of the developer's side. For instance, they would like to add new code
manually after code generation from a model, and keep the code after regener-
ation. Furthermore, to make auto-coding feasible, the programming of a �nite
state machine needs to be normalized, and developers are only allowed to put
code in a number of de�ned sections. The result of the normalization plays the
role of a generation template. In addition, a number of constraints speci�c to
the Erlang/OTP language have been speci�ed and implemented, substituting the
original ones developed for COMDES and the C language.

From the point of view of the Ph.D. project, the implementation of the case
study has resulted in validation of the presented technologies and approaches
concerning model-driven development on the Eclipse platform, as well as a number
of feedbacks regarding the application of the model-driven software development
approach in industry.

From the point of view of Motorola, the case study is an initial step towards
developing tools for model-driven development of applications in Erlang/OTP.
It can be continued in several possible directions to further improve developer
productivity by introducing more features. These features could also enlighten
further development of the COMDES tools.

For example, one of the biggest practical problems Motorola has experienced
with various model-driven approaches has been the management of di�erent ver-
sions of a component model. Being a large organization with many development
centres in the world, Motorola is challenged to share common tools and code with
other teams that are not necessarily located in the same region. Typically, these
teams have their own additions and changes, sharing a common code base. One
problem deals with the task of being able to integrate individually created func-
tionality, as well as that created by separate development centres, into a common
code base. This is a fundamental problem, which becomes an issue of potential
rework and many headaches when the same code is changed by di�erent people.
Working at the source code level, this is a merging problem which requires a
signi�cant amount of labour in order to do it consistently.

When adopting a model-driven approach, the problem does not go away � it
is merely lifted to a higher level of abstraction, where models and model changes
need to be merged. So far, this problem has not been solved well enough to be of

206

practical use. That has resulted in a situation where models are used to generate
the �rst version of a component, and then all additions and changes are done at
the source code level.

Clearly, there are two basic problems that need to be solved in order to make
the model-driven approach a good �t for Motorola:

� Integration of manual changes back into the model.

� Merging a new version of a model with the source code based on a previous
model plus some manual changes.

When these two problems are solved, it will become possible to solve the general
problem of merging changes with the original model.

For another example, sometimes a model-driven approach has to be introduced
so as to be combined with an existing code base � more often than not, this is a
major practical issue since most freely written code does not easily �t within a
model framework. In order to overcome this obstacle, it would be interesting to
investigate the use of refactoring tools that assist the programmer in transforming
a legacy code base to a format that allows for easy reverse engineering of the
code into a model. For instance, Wrangler [109] is a refactoring tool providing
a collection of basic refactorings to the program. With the help of the tool, the
legacy code can be refactored as close as possible to the generation template.
Subsequently, a text-to-model transformation engine can be applied to take the
refactored program as input and produce the corresponding model.

8.4 Summary

This chapter has presented the Production Cell case study, which has been system-
atically developed using the COMDES framework and its toolset. The developed
control system has been originally created manually using the COMDES DSL as
well as reusable components. The run-time environment and platform used in the
case study, including hardware and software aspects, have also been presented.

With the help of meta-models, each part of the designed system can be mod-
elled using appropriate modelling tools, as described in the second part of the
chapter. Automatic model transformations are also supported by the correspond-
ing tools. Thus, the implementation of the case study is reduced to manual domain
modelling. The rest of the application can then be generated from the models.
Thus, developers can concentrate on high-level issues, such as designing domain
applications, rather than manually developing the necessary code.

207

In another case study, an essential part of the COMDES development envi-
ronment � the state machine component development tool � has been re�ned and
extended with a new code generator, according to requirements speci�ed by Mo-
torola A/S, in an attempt to provide a method for the automatic generation of
code from a state machine model, o�ering bene�ts to Erlang developers in Mo-
rotola. The implementation of the case study has resulted in validation of the
presented technologies and approaches concerning model-driven development on
the Eclipse platform, as well as a number of feedbacks regarding the application
of the model-driven software development approach in industry.

208

Chapter 9

Conclusion and Future Work

9.1 Conclusion

Building embedded real-time control software systems with components and mod-
els has many advantages. It promises a reduction of development costs by enabling
rapid development of highly �exible and easily maintainable software systems due
to the inherently reusable nature of components. It also provides application de-
velopers with a fundamentally di�erent and higher-level methodology that makes
it possible to increase software reuse, accommodate embedded applications re-
quirements and reduce the number of errors in the resulting software.

These considerations have motivated the development of a framework � Comp-
onent-Based Design of Software for Distributed Embedded Systems (COMDES),
which is intuitive and easy to use by application experts, because the adopted
modelling techniques re�ect the true nature of embedded systems, which are pre-
dominantly real-time control and monitoring systems.

The framework provides a domain-speci�c modelling language specifying rele-
vant aspects of system structure and behaviour within the domain of distributed
embedded control systems operating under hard real-time constraints. In this
framework, the embedded system is composed from actors, which are con�gured
from trusted prefabricated components, such as basic, composite, state machine
and modal function blocks. Actors interact by exchanging labelled messages (sig-
nals), which provides for transparent communication that is independent of the
allocation of actors on network nodes. Signal-based communication is also used
for internal interactions involving constituent function blocks. Consequently, ac-
tor behaviour is represented as a composition of component functions, and system
behaviour � as a composition of actor functions. Di�erent kinds of functional
behaviour are treated in separation, i.e. reactive and transformational behaviour,
which are delegated to separate components � supervisory state machine and

209

modal function blocks.

COMDES treats separately functional and timing behaviour, whereby a clocked
synchronous model of execution is applied at actor and system levels, i.e. Dis-
tributed Timed Multitasking. With this model, input and output signals are
latched at task (transaction) start and deadline instants, respectively, resulting
in the elimination of I/O jitter at both actor task and transaction levels. The
timing aspect of a COMDES system is managed by the underlying run-time en-
vironment � the real-time kernel HARTEXµ , which implements the distributed
timed multitasking model of computation in the context of COMDES.

COMDES de�nes components as function blocks. A function block is a com-
ponent class that may have multiple instances within a given con�guration. Reuse
of components is realized through three aspects: kind, type and instance. Func-
tion blocks are implemented following carefully developed design patterns, and are
ultimately implemented as prebuilt executable objects, which are linked to build
an application. Objects are physically stored in component repositories in binary
format created for a speci�c platform. The �nal application implementation thus
consists of prebuilt reusable components in the form of data structures and exe-
cutable algorithms. The former represent component instances and the latter �
component types.

This thesis presents a complete meta-model that implements the COMDES
framework, including the DSL, function blocks, run-time environment, platform
and repositories, in order to provide a detailed and unambiguous description of
COMDES models, allowing for an automatic synthesis of systems directly from
the models. The meta-model describes formally the COMDES models using class
diagrams and constraint speci�cations, whereby various system aspects are illus-
trated using graphical notations that model system structure and behaviour in
a natural and comprehensive way. Reusable components are formally de�ned in
the meta-model, and the reuse of a component follows a Kind-Type-Instance pat-
tern at the meta-model level, allowing for the treatment of all kinds of reusable
components in a uniform way. The timing behaviour of a COMDES system is
implemented through transformation from a COMDES model to a HARTEXµ
model. A meta-model for HARTEXµ is speci�ed, and the transformation rules
based on source and target meta-models are de�ned.

COMDES development is supported by the associated engineering environ-
ment (toolset), which consists of a number of tools, such as editor, con�gurator
and generator, etc., as well as various repositories. During operation, models
are exchanged among tools, and the �nal output is executable code for a speci�c
platform. The toolset can support a range of embedded targets with di�erent

210

compilers, as a result of modelling the hardware and software aspects of a target
platform. As long as target platforms are modelled appropriately and low-level
functions are wrapped into physical drivers as prede�ned components, the toolset
can generate complete code without requiring any manual coding work.

The toolset supports basic software development functionalities including dis-
tributed embedded control system modelling and target executable code genera-
tion. From the viewpoint of the classical waterfall development process, the toolset
can be used for the design and implementation phases. However, the design and
the implementation steps are actually tightly integrated because the implementa-
tion is generated directly from models constructed in the design phase.

As a component-based framework, the development in COMDES encompasses
two processes: developing reusable components and assembling software systems
from software components. Speci�cally, the toolset supports both the de�nition of
components and the usage of prede�ned components. The model of a component
can be de�ned with component development tools prior to an application develop-
ment process. Next, the source code of the component can be generated from the
models based on design patterns. Finally, a prebuilt object is derived and stored
in the component repository, which is thus available for application development.

With tool support, system modelling is performed in the following sequence:
de�ning the system structure by specifying constituent actors and signals; de�ning
timing behaviour by setting the corresponding attributes of system actors; de�ning
functional behaviour (reactive and transformational) by adding FB models i.e.
state machine FB, Modal FB, etc., into actors; de�ning deployment by allocating
the actors to physical platforms. Then the complete system can be implemented
by transforming models into code and integrating di�erent reusable component
objects into one executable system.

Developing such an engineering environment and the associated tools is a
highly complex engineering task. The main challenge is to �nd a proper solution
that is su�cient to implement the COMDES engineering environment. Therefore,
this study has been accomplished by performing a survey of the use of di�er-
ent existing model-driven development platforms and tools that can be used as a
foundation for building specialized tools for component-based development of em-
bedded software, in order to develop a viable toolset for the COMDES framework.
During the survey, a number of key design issues have been identi�ed, which has
been instrumental for the development of the COMDES toolset.

As a result, the Eclipse platform has been chosen to implement the software
engineering environment, due to its open source property and strong support
by constituent model-driven development frameworks, such as Eclipse Modelling

211

Framework (EMF), Graphical Modelling Framework, etc. It provides a language
for meta-modelling, �exible constraint de�nition and supports strong GUI de�-
nition. Parsing models is quite easy using either tailored API or re�ective API
under the EMF framework. There are also a number of tools available for code
generation. Although model reuse is not supported by default, this feature can
be implemented in the meta-model following the reuse pattern. Tools can be eas-
ily built and integrated into the Eclipse platform through its plug-in mechanism.
Moreover, it allows for collaboration between heterogeneous development tools by
providing a tool integration solution. Therefore, it is possible to build a seamlessly
integrated tool environment for a given development process.

The Eclipse world provides a broad spectrum of model-driven solutions that
o�er a variety of capabilities. During the study, various solutions have been tried
out in order to rapidly implement all the COMDES tools. This thesis presents
some of these solutions from the viewpoint of modelling tools, model-to-model
transformation tools, model-to-text transformation tools and integration tools. It
focuses on a number of possible technologies concerning both model-driven and
component-based development, based on the hands-on experience gained during
the project.

A prototype implementation of the COMDES engineering environment has
been presented in the thesis. Hopefully, it will be useful for both research and
industry, and it will serve to advance awareness about the state of the art and
provide insights on possible avenues of research and development, regarding em-
bedded software development tools and environments operating on models and
components.

9.2 Summary of the Ph.D. project

Component-based design methods for embedded software development usually
follow a generative approach, which was originally investigated in the context of
executable models and rapid prototyping systems. It is also widely used with
industrial automation systems supporting standards like IEC 61131-3 and IEC
61499. This approach can be characterized as computer-aided generation of em-
bedded software out of application models speci�ed in terms of components that
are de�ned at the conceptual modelling and source code levels. This approach
requires the complete generation and compilation of executable code, which has
to be subsequently downloaded into the target system [12].

Conversely, COMDES emphasizes the use of prefabricated and validated (or
trusted) components during the development of embedded systems. In particular,

212

the components are implemented as prebuilt binary objects saved in the com-
ponent repository, which makes it possible to con�gure applications using only
glue code, i.e. instance data. This approach requires no generation of executable
code from applications. Furthermore, it supports system recon�guration, which
is achieved by updating data structures, whereas executable codes remain un-
changed.

The main results obtained during the Ph.D. project are summarized below:

� Meta-models of COMDES-II (a component-based software framework for
embedded real-time control systems) have been developed, concerning the
de�nition of a domain-speci�c language, components, platform, repository,
etc., which can be used to specify the structure and behaviour of real-time
embedded control systems. The meta-models are complete with respect to
the information needed to systematically translate domain-speci�c models
into source code (Chapter 4).

� Meta-models of the runtime environment of COMDES-II applications � the
HARTEXµ kernel � have been de�ned as well. Rules specifying the transfor-
mation from a COMDES-II model to a HARTEXµ model have been spec-
i�ed, which makes it possible to transform a platform-independent appli-
cation model into a platform-speci�c run-time model with appropriate tool
support (Chapter 5).

� Generic design patterns for COMDES-II executable components have been
speci�ed at the source-code level, which provide for reusability and re-
con�gurability of components and component-based applications, and sup-
port automatic code generation out of COMDES-II models (Chapter 6, [60]).

� The COMDES-II software design method has been experimentally validated
via a case study � the Production Cell Case Study, including modelling,
component development, con�guration and experimental validation of a dis-
tributed real-time control system, as well as formal veri�cation of the devel-
oped system using Uppaal (Chapter 8, [97]).

� Tools supporting the COMDES software development process have been
identi�ed and the functionalities of each tool have been de�ned, including
system speci�cation, component speci�cation, component code generation,
run-time model transformation, application con�guration, etc. (Chapter 7,
[90], [86], [110]).

213

� A number of platforms supporting model-driven software development have
been investigated in view of the tool support needed to build the COMDES-
II software development environment, covering all aspects of the envisioned
software development process. As a result, the Eclipse platform has been
chosen to host the COMDES-II toolset (Chapter 2, [111]).

� A number of model-driven tool development issues and technologies based on
the Eclipse platform have been investigated, concerning the requirements of
COMDES-II toolset. A �nal solution to the development of the COMDES-II
development environment has been given based on the selected technologies
(Chapter 2, Chapter 7, [111], [86], [108], [110]).

� A prototype version of a software engineering environment integrating soft-
ware development tools has been implemented as exchangeable modules
within the Eclipse platform supporting embedded software development un-
der the COMDES-II framework (Chapter 7, Chapter 8).

9.3 Future work

Unsurprisingly, all tools have some potential for improvement. Obviously, the us-
ability of the toolset is coupled with the complexity of the o�ered functionality.
As a research work, the current prototype implementation naturally demonstrated
some weaknesses concerning user friendliness, documentation, and stability. How-
ever, the toolset has some potential for improvement with respect to e.g. stability,
speed, window management, integrated help features, etc. Additionally, for e�-
cient support of industrial software development using COMDES, it is important
to have more practical functionalities, i.e. generation of documentation, version
control, refactoring, model debugging, etc. An industrial version of the COMDES
development environment is being developed at the Mads Clausen Institute, Uni-
versity of Southern Denmark, based on the results of this project.

The application models should be proven correct with respect to the required
functional and timing behaviour. Accordingly, system behaviour can be analysed
using appropriate techniques and tools, e.g. Uppaal and Simulink, following
semantics-preserving transformations from system design models to the corre-
sponding analysis models. Research on transformation from COMDES design
models to Uppaal analysis models has been carried out jointly by the Centre for
Embedded Software Systems, Aalborg University and the Mads Clausen Institute,
University of Southern Denmark, as a part of the MoDES project. However, more
time is needed to develop a translation tool that performs such a transformation,

214

so as to preserve the semantics of the original COMDES design model [112]. In the
foreseeable future, a tool-chain integrating analysis technologies into the current
development environment will make it possible to fully support both modelling
and analysis of component-based real-time systems. This will lead to a higher
level of software quality, especially if analysis is carried out at an earlier stage of
development, which will ultimately result in design methodology for embedded
systems that are correct by construction.

This project is about developing tools supporting a DSL that can be used
for a formal and unambiguous description of embedded applications and for au-
tomation of embedded software development, by generating executable code from
models. However, as software itself, the structure and behaviour of each tool in
the environment should also be speci�ed precisely using some kind of specialized
modelling language, taking advantage of the technology of domain-speci�c mod-
elling. Unfortunately, such a domain-speci�c language for tool development has
not been found during the project. A lot of related research publications just
depict tools that support a certain modelling and generation technique in some
kind of graphical notation like rectangular boxes and arrows accompanied by ex-
planation in human language (unfortunately, this thesis did the same). Such kind
of description, no matter how carefully written, is subject to interpretation and
occasional misunderstanding. So, it would be nice to �nd a way of describing the
tools used in the area of MDSD intuitively and unambiguously. At least, as a
popular modelling language, UML is a better choice than human language, i.e.
component diagram for structure, activity for behaviour, etc., although it is not
a language dedicated to tool development. Then, the models of tools can be as-
sociated with the meta-models of the supported DSL, so as to enable automatic
generation.

Furthermore, the purpose of the toolset is to eventually generate software.
But the toolset itself is software that has to be coded manually, due to lack of a
proper tool modelling technique. Thanks to the Eclipse platform employed in this
work, part of the toolset can be generated from COMDES meta-models resulting
in some reduction of the development e�ort, but a fully automated solution does
not exist yet. Hopefully, when modelling techniques for di�erent application do-
mains come to maturity, more research e�orts will be launched for model-driven
tool development, which constitutes a speci�c domain as well. At that time, it
would be nice to have a technology that uni�es both the development of domain
applications and associated tool development, where all necessary tools can be
generated automatically once a DSL is de�ned, leading to further improvement of
productivity.

215

Glossary

ADC Analog-Digital Converter, 102
API Application-Programming Interface, 49
ATL ATLAS Transformation Language, 50

BDD Binary Decision Diagram, 141
BFB Basic Function Block, 89
BON Builder Object Network, 41

CALM Cadena Architecture Language with Meta-
modelling, 42

CAN Controller Area Network, 102
CBD Component-Based Development, 6
CCM CORBA Component Model, 42
CDT C/C++ Development Tool, 177
CFB Composite Function Block, 68
COMDES Component-based Design of Software for Dis-

tributed Embedded Systems, 21
CWI Centrum voor Wiskunde en Informatica, 186

DSL Domain-Speci�c Language, 16
DSM Domain-Speci�c Modelling, 16
DSML Domain-Speci�c Modelling Language, 39
DTM Distributed Timed Multitasking, 66

EET Extended Event Trace, 34
ELF Executable and Linking Format, 152
EMF Eclipse Modelling Framework, 43
eMOF essential MOF, 50

216

FB Function Block, 57
FBD Function Block Diagram, 91

GME Generic Modelling Environment, 39
GMF Graphical Modelling Framework, 50
GReAT Graph Rewriting and Transformation, 40

HAL Hardware Adaptation Layer, 82

IE Integrated Event, 123
ISIS Institute for Software Integrated Systems, 39

JDT Java Development Tools, 51
JET Java Emitter Templates, 51
JMI Java Metadata Interface, 46

M2M Model-to-Model, 50
M2T Model-to-Text, 51
MDA Model-Driven Architecture, 14
MDSD Model-Driven Software Development, 14
MFB Modal Function Block, 60
MIC Model-Integrated Computing, 39
MOF Meta-Object Facility, 14
MSC Message Sequence Chart, 34

OCL Object Constraint Language, 38
OMG Object Management Group, 14
OS Operating System, 31
OTIF Open Tool Integration Framework, 186

PDE Plug-in Development Environment, 51
PECT Prediction-Enabled Component Technology,

11
PIM Platform Independent Model, 15
PLC Programmable Logic Controller, 10
POU Programming Object, 28
PSM Platform Speci�c Model, 15
PWM Pulse-Width Modulator, 102

217

QVT Query/View/Transformation, 38

RTE run-time environment, 163
RTOS real-time operating system, 159

SAnToS The Laboratory for Speci�cation, Analysis,
and Transformation of Software, 42

SDM Story Driven Modelling, 45
SDU University of Southern Denmark, 112
SLC State Logic Controller, 138
SMFB State Machine Function Block, 94
SSD System Structure Diagram, 33
SSM Supervisory State Machine, 60
STD State Transition Diagram, 34

TGG Triple Graph Grammars, 46

UML Uni�ed Modelling Language, 14

XMI XML Metadata Interchange, 38
XML Extensible Markup Language, 49, 182

218

Bibliography

[1] Thomas A. Henzinger and Joseph Sifakis. The Embedded Systems Design
Challenge. In Proceedings of the 14th International Symposium on Formal

Methods (FM), volume 4085 of Lecture Notes in Computer Science, pages
1�15. Springer, August 2006.

[2] Radu Cornea, Nikil Dutt, Rajesh Gupta, Ingolf Krueger, Alex Nicolau, Doug
Schmidt, Sandeep Shukla, and Eep Shukla. FORGE: A Framework for
Optimization of Distributed Embedded Systems Software. In Proceedings

of the International Parallel and Distributed Processing Symposium. IEEE
Computer Society, 2003.

[3] Colin Atkinson, Christian Bunse, Hans-Gerhard Gross, and Christian Peper.
Component-Based Software Development, volume 3778 of Lecture Notes in

Computer Science. Springer Berlin / Heidelberg, 2005.

[4] D. Mcilroy. Mass-Produced Software Components. In Peter Naur and Brian
Randell, editors, Proceedings of the NATO Conference on Software Engi-

neering, pages 138�155, Garmish, Germany, October 1968.

[5] Clemens Szyperski, Dominik Gruntz, and Stephan Mure. Component Soft-
ware: Beyond Object-Oriented Programming. Addison-Wesley Professional,
2nd edition, December 2002.

[6] Katharine Whitehead. Component-Based Development: Principles and

Planning for Business Systems. Addison-Wesley Professional, May 2002.

[7] Karl-Heinz John and Michael Tiegelkamp. IEC 61131-3: Programming In-

dustrial Automation Systems. Springer, 1st edition, April 2001.

[8] Rob van Ommering, Frank van der Linden, Je� Kramer, and Je� Magee.
The Koala Component Model for Consumer Electronics Software. Computer,
33(3):78�85, March 2000.

219

[9] Rob van Ommering. Koala, a Component Model for Consumer Electronics
Product Software. In Development and Evolution of Software Architectures

for Product Families, volume 1429/1998 of Lecture Notes in Computer Sci-

ence, pages 76�86. Springer Berlin/Heidelberg, January 1998.

[10] Bruno Bouyssounouse and Joseph Sifakis. Embedded Systems Design: The

ARTIST Roadmap for Research and Development, volume 3436 of Lecture
Notes in Computer Science. Springer, 2005.

[11] Anders Möller, Mikael Åkerholm, Johan Fredriksson, and Mikael Nolin.
Software Component Technologies for Real-Time Systems - An Industrial
Perspective. In WiP Session of Real-Time Systems Symposium (RTSS),
December 2003.

[12] Christo Angelov, Krzysztof Sierszecki, and Nicolae Marian. Component-
Based Design of Embedded Software: An Analysis of Design Issues. In Nico-
las Guel�, Gianna Reggio, and Alexander B. Romanovsky, editors, Scienti�c
Engineering of Distributed Java Applications, 4th InternationalWorkshop

(FIDJI 2004), volume 3409 of Lecture Notes in Computer Science, pages
1�11, Luxembourg-Kirchberg, Luxembourg, November 2004. Springer.

[13] Kurt C. Wallnau. Volume III: A Technology for Predictable Assembly from
Certi�able Components (PACC). Technical Report CMU/SEI-2003-TR-009,
Carnegie Mellon University, April 2003.

[14] Damir Isovic and Christer Norström. Components in Real-Time Systems. In
Proceedings of the The 8th International Conference on Real-Time Comput-

ing Systems and Applications (RTCSA 2002), pages 135�139, March 2002.

[15] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel Wuyts, An-
drew Black, Peter Müller, Christian Zeidler, Thomas Genssler, and Reinier
Van Den Born. A Component Model for Field Devices. In Proceedings

of the IFIP/ACM Working Conference on Component Deployment, volume
2370 of Lecture Notes in Computer Science, pages 200�209. Springer-Verlag,
July/August 2002.

[16] Andree Blotz, Franz Huber, Heiko Loetzbeyer, Alexander Pretschner, Oscar
Slotosch, and Hans-Peter Zaengerl. Model-Based Software Engineering and
Ada: Synergy for the Development of Safety-Critical Systems. In ADA

Deutschland Tagung, Jena, Germany, March 2002.

220

[17] Franz Huber Sascha, Franz Huber, Sascha Molterer, Andreas Rausch, Bern-
hard Schätz, Marc Sihling, and Oscar Slotosch. Tool Supported Speci�cation
and Simulation of Distributed Systems. In Proceedings of the International

Symposium on Software Engineering for Parallel and Distributed Systems,
pages 155�164. IEEE Computer Society, 1998.

[18] Franz Huber, Bernhard Schätz, Alexander Schmidt, Er Schmidt, and Katha-
rina Spies. AutoFocus - A Tool for Distributed Systems Speci�cation. In Pro-
ceedings FTRTFT96 - Formal Techniques in Real-Time and Fault-Tolerant

Systems, pages 467�470. Springer Verlag, 1996.

[19] Christo Angelov and Krzysztof Sierszecki. A Software Framework for
Component-Based Embedded Applications. In Proceedings of the 11th Asia-
Paci�c Software Engineering Conference (APSEC 2004), pages 655�662,
Busan, Korea, November/December 2004.

[20] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. COMDES-II: A
Component-Based Framework for Generative Development of Distributed
Real-Time Control Systems. In Proceedings of the 13th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA 2007), pages 199�208, Daegu, Korea, August 2007. IEEE
Computer Society.

[21] Markus Völter and Thomas Stahl. Model-Driven Software Development:

Technology, Engineering, Management. Wiley, 1st edition, May 2006.

[22] Mark Dalgarno. Model-Driven Software Development - Ready for Prime
Time? MSDN architecture newsletter, 2, April 2007.

[23] The Object Management Group. MDA Guide Version 1.0.1, June 2003.

[24] The Object Management Group. A Proposal for an MDA Foundation Model,
V00-02, ormsc/05-04-01.

[25] Steve Cook. Domain-Speci�c Modeling and Model Driven Architecture.
MDA Journal, pages 2�10, January 2004.

[26] D. Djuric, D. Ga²evic, and V. Devedºic. The Tao of Modeling Spaces.
Journal of Object Technology, 5:125�147, November-December 2006.

[27] The Object Management Group. Meta Object Facility(MOF) Speci�cation,
Version 1.4, Aprial 2002.

221

[28] S. Gérard, D. Petriu, and J. Medina. MARTE: A New Standard for Modeling
and Analysis of Real-Time and Embedded Systems. In 19th Euromicro

Conference on Real-Time Systems (ECRTS 2007), Pisa, Italy, July 2007.

[29] Krzysztof Sierszecki. Component-Based Design of Software for Embedded

Systems. PhD thesis, University of Southern Denmark, Soenderborg, Den-
mark, 2007.

[30] Xu Ke. Model-Based Design and Analysis of Embedded Software. PhD thesis,
University of Southern Denmark, Soenderborg, Denmark, 2008.

[31] Christo Angelov, Xu Ke, and Krzysztof Sierszecki. A Component-Based
Framework for Distributed Control Systems. In Proceedings of the 32nd

EUROMICRO Conference on Software Engineering and Advanced Applica-

tions (EUROMICRO-SEAA 2006), pages 20�27, Dubrovnik, Croatia, Au-
gust/September 2006. IEEE Computer Society.

[32] Bernhard Schätz, Tobias Hain, Frank Houdek, Wolfgang Prenninger, Mar-
tin Rappl, Jan Romberg, Oscar Slotosch, Martin Strecker, and Alexander
Wisspeintner. CASE Tools for Embedded Systems. Technical Report TUM-
I0309, Technische Universität München, July 2003.

[33] Hanne R. Nielson and Flemming Nielson. Semantics with Applications: A

Formal Introduction. Wiley, 1992.

[34] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett,
Charles Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi.
The Generic Modeling Environment. In Proceedings of the Workshop on

Intelligent Signal Processing (WISP 2001), 2001.

[35] Gabor Karsai, Miklos Maroti, Akos Ledeczi, Je� Gray, and Janos Szti-
panovits. Composition and Cloning in Modeling and Meta-Modeling. IEEE
Transactions on Control System Technology (special issue on Computer Au-

tomated Multi-Paradigm Modeling), 12:263�278, 2004.

[36] Aniruddha Gokhale, Douglas C. Schmidt, Balachandran Natarajan, and
Nanbor Wang. Applying Model-Integrated Computing to Component
Middleware and Enterprise Applications. Communications of the ACM,
45(10):65�70, 2002.

[37] Daniel Balasubramanian, Anantha Narayanan, Christopher van Buskirk,
and Gabor Karsai. The Graph Rewriting and Transformation Language:
GReAT. Electronic Communications of the EASST, 1, 2006.

222

[38] Jonathan Sprinkle, Aditya Agrawal, Tihamer Levendovszky, Feng Shi, and
Gabor Karsai. Domain Translation Using Graph Transformations. In
Tenth IEEE International Conference and Workshop on the Engineering

of Computer-Based Systems, pages 159�168, Huntsville, AL, April 2003.

[39] Georg Jung and John Hatcli�. A Type-centric Framework for Specifying
Heterogeneous, Large-scale, Component-oriented, Architectures. In Pro-

ceedings of the 6th international conference on Generative programming and

component engineering (GPCE 2007), pages 33�42, Salzburg, Austria, 2007.
ACM.

[40] Georg Jung, John Hatcli�, Adam Childs, Matt Hoosier, Jesse Greenwald,
and Alley Stoughton. Overview of Cadena's Architecture De�nition Lan-

guage and Meta-modeling Framework. International Summer School on Tool-
based Rigorous Engineering of Software Systems (STRESS 2006) Lecture
Slide, 2006.

[41] Adam Childs, Jesse Greenwald, Georg Jung, Matthew Hoosier, and John
Hatcli�. CALM and Cadena: Metamodeling for Component-Based Product-
Line Development. Computer, 39(2):42�50, 2006.

[42] Carsten Amelunxen, Alexander Königs, Tobias Rötschke, and Andy Schürr.
MOFLON: A Standard-Compliant Metamodeling Framework with Graph
Transformations. In A. Rensink and J. Warmer, editors, Model Driven Ar-

chitecture - Foundations and Applications: Second European Conference,
volume 4066 of Lecture Notes in Computer Science, pages 361�375. Springer
Verlag, 2006.

[43] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story
Diagrams: A New Graph Rewrite Language Based on the Uni�ed Modeling
Language and Java. Theory and Application of Graph Transformations,
1764:296�309, 2000.

[44] Felix Klar, Alexander Königs, and Andy Schürr. Model Transformation
in the Large. In Proceedings of the the 6th joint meeting of the Euro-

pean software engineering conference and the ACM SIGSOFT symposium

on the foundations of software engineering (ESEC-FSE 2007), pages 285�
294, Dubrovnik, Croatia, 2007. ACM.

[45] Carsten Amelunxen, Alexander Königs, and Tobias Rötschke. MOSL: Com-
posing a Visual Language for a Metamodeling Framework. In J. Howse

223

J. Grundy, editor, IEEE Symposium on Visual Languages and Human-

Centric Computing (VLHCC 2006), pages 81�84. IEEE Computer Society,
2006.

[46] MetaCase. Upgrading a DSM and code generation tool. Embedded Systems

Europe, October 2006.

[47] Juha pekka Tolvanen, Risto Pohjonen, and Steven Kelly. Advanced Tooling
for Domain-Speci�c Modeling: MetaEdit+. In J. Sprinkle, J. Gray, M. Rossi,
Tolvanen, and J.-P., editors, Proceedings of the 7th OOPSLA Workshop on

Domain-Speci�c Modeling (DSM 2007), Technical Reports, TR-38. Univer-
sity of Jyväskylä, Finland, 2007.

[48] MetaCase. The Graphical Metamodeling Example, in MetaCase document
no. GE-4.5, 2nd edition, February 2008.

[49] MetaCase. http://www.metacase.com/, 2009.

[50] MetaCase. Integrating with other environments. MetaCase, 2009.

[51] Sanna Sivonen. Domain-speci�c modelling language and code generator
for developing repository-based Eclipse plug-ins. Technical Report VTT
PUBLICATIONS 680, VTT Technical Research Centre of Finland, 2008.

[52] Xu Ke and Krzysztof Sierszecki. Generative Programming for a Component-
based Framework of Distributed Embedded Systems. In Proceedings of the

6th OOPSLA Workshop on Domain Speci�c Modeling, Portland, Oregon,
USA, October 2006.

[53] Aitor Aldazabal, Terry Baily, Felix Nanclares, Andrey Sadovykh, Christian
Hein, and Tom Ritter. Automated Model Driven Development Processes.
In Proceedings of the ECMDA workshop on Model Driven Tool and Process

Integration, pages 361�375. Fraunhofer IRB Verlag, June 2008.

[54] David B. Stewart, Richard A. Volpe, and Pradeep K. Khosla. Design
of Dynamically Recon�gurable Real-Time Software Using Port-Based Ob-
jects. IEEE Transactions on Software Engineering, 23(12):759�776, Decem-
ber 1997.

[55] Jie Liu and Edward Lee. Timed Multitasking for Real-Time Embedded
Software. IEEE Control Systems Magazine, 23:65�75, 2002.

224

[56] Arkadeb Ghosal, Thomas A. Henzinger, Christoph M. Kirsch, and Marco
A. A. Sanvido. Event-driven Programming with Logical Execution Times.
In Hybrid Systems: Computation and Control, 7th International Workshop

(HSCC 2004), volume 2993 of Lecture Notes in Computer Science, pages
357�371, Philadelphia, PA, USA, March 2004. Springer.

[57] Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin Törngren.
SaveCCM � A Component Model for Safety-Critical Real-Time Systems. In
Proceedings of the 30th EUROMICRO Conference (EUROMICRO 2004),
pages 627�635. IEEE Computer Society, 2004.

[58] R. W. Lewis. Modelling Control Systems Using IEC 61499: Applying Func-

tion Blocks to Distributed Systems. The Institution of Engineering and Tech-
nology, July 2001.

[59] Paul Caspi. Some Issues in Model-Based Development for Embedded Con-
trol Systems. In From Model-Driven Design to Resource Management for

Distributed Embedded Systems, IFIP TC 10 Working Conference on Dis-

tributed and Parallel Embedded Systems (DIPES 2006), volume 225 of IFIP,
pages 9�13, Braga, Portugal, 2006. Springer.

[60] Christo Angelov, Xu Ke, Yu Guo, and Krzysztof Sierszecki. Recon�gurable
State Machine Components for Embedded Applications. In Proceedings of

the 34th EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA 2008), pages 51�58, Parma, Italy, September 2008.
IEEE Computer Society.

[61] Xu Ke, Paul Pettersson, Krzysztof Sierszecki, and Christo Angelov. Veri�-
cation of COMDES-II Systems Using UPPAAL with Model Transformation.
In Proceedings of the 14th IEEE Internationl Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA 2008), pages 153�
160, Kaohisung, China, August 2008. IEEE Computer Society.

[62] Krzysztof Sierszecki, Christo Angelov, and Xu Ke. A Run-Time Environ-
ment Supporting Real-Time Execution of Embedded Control Applications.
In Proceedings of the 2008 14th IEEE International Conference on Embed-

ded and Real-Time Computing Systems and Applications (RTCSA 2008),
pages 61�68, Kaohsiung, China, August 2008. IEEE Computer Society.

[63] Christo Angelov, Krzysztof Sierszecki, Nicolae Marian, and Jinpeng Ma.
A Formal Component Framework for Distributed Embedded Systems. In

225

Proceedings of CBSE 2006, volume 4063/2006 of Lecture Notes in Computer

Science, pages 206�221, 2006.

[64] Christo Angelov, Krzysztof Sierszecki, and Yu Guo. Formal Design Mod-
els for Distributed Embedded Control Systems. In Proceedings of the 2nd

International Workshop on Model Based Architecting and Construction of

Embedded Systems (ACES-MB 2009), pages 43�57, Denver, Colorado, USA,
2009.

[65] Axel Jantsch. Modeling Embedded Systems and SoC's: Concurrency and

Time in Models of Computation. Morgan Kaufmann, 1st edition, June 2003.

[66] William Henderson, David Kendall, and Adrian Robson. Improving the
Accuracy of Scheduling Analysis Applied to Distributed Systems Computing
Minimal Response Times and Reducing Jitter. Real-Time Systems, 20(1):5�
25, January 2001.

[67] Søren Top, Hans Jørgen Nørgaard, Brian Krogsgaard, and Bo Nørregaard
Jørgensen. The Sandwich Code File Structure: An architectural support for
software engineering in simulation based development of embedded control
applications. In Proceedings of IASTED International Conference on Soft-

ware Engineering (SE 2004), pages 196�201, Innsbruck, Austria, February
2004.

[68] Søren Top, Hans Jørgen Nørgaard, Brian Krogsgaard, and Bo Nørregaard
Jørgensen. Object Oriented C++ Programming in SIMULINK(r): A reengi-
neered simulation architecture for the control algorithm code view. In Pro-

ceedings of Nordic MATLAB Conference 2003, pages 79�84, 2003.

[69] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
Uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal Meth-

ods for the Design of Real-Time Systems: 4th International School on For-

mal Methods for the Design of Computer, Communication, and Software

Systems, SFM-RT 2004, number 3185 in LNCS, pages 200�236. Springer�
Verlag, September 2004.

[70] Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms
and Tools. In Lecture Notes on Concurrency and Petri Nets, number 3098
in LNCS, pages 87�124, 2004.

226

[71] Franck Budinsky, David Steinberg, and Raymond Ellersick. Eclipse Modeling

Framework : A Developer's Guide. Addison-Wesley Professional, August
2003.

[72] Kleanthis Thramboulidis, G. Doukas, and A. Frantzis. Towards an Imple-
mentation Model for FB-Based Recon�gurable Distributed Control Applica-
tions. In 7th IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC 2004), pages 193�200, Vienna, Austria, May
2004. IEEE Computer Society.

[73] Axel Jantsch and Ingo Sander. Models of Computation and Languages
for Embedded System Design. IEE Proceedings on Computers and Digital

Techniques, 152(2):114�129, March 2005.

[74] Mo YongTeng. Design Pattern (C#/Java). TsingHua University Press,
2006.

[75] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, September
2001.

[76] Christo Angelov, Ivan Ivanov, and Alan Burns. HARTEX - a Safe Real-
Time Kernel for Distributed Computer Control Systems. Software: Practice
and Experience, 32(3):209�232, March 2002.

[77] Christo Angelov and Jesper Berthing. A Jitter-Free Kernel for Hard Real-
Time Systems. In Zhaohui Wu, Chun Chen, Minyi Guo, and Jiajun Bu,
editors, Embedded Software and Systems, First International Conference

(ICESS 2004), volume 3605 of Lecture Notes in Computer Science, pages
388�394, Hangzhou, China, December 2004. Springer Berlin / Heidelberg.

[78] Christo Angelov and Jesper Berthing. Distributed Timed Multitasking -
A Model of Computation for Hard Real-Time Distributed Systems. In
Bernd Kleinjohann, Lisa Kleinjohann, Ricardo Jorge Machado, Carlos Ed-
uardo Pereira, and P. S. Thiagarajan, editors, Proceedings of the 5th IFIP

Working Conference on Distributed and Parallel Embedded Systems (DIPES

2006), volume 225 of IFIP, pages 145�154, Braga, Portugal, October 2006.
Springer.

[79] Christo Angelov and Jesper Berthing. A Timed Multitasking Architecture
for Distributed Embedded Systems. In Proceedings of the IEEE Second In-

227

ternational Symposium on Industrial Embedded Systems (SIES 2007), pages
102�109, Lisbon, Portugal, July 2007.

[80] Jesper Berthing. Component-Based Design of Safe Real-Time Kernels for

Embedded Systems. PhD thesis, University of Southern Denmark, Soender-
borg, Denmark, 2008.

[81] Arnold S. Berger. Embedded Systems Design: An Introduction to Processes,

Tools and Techniques. CMP Books, 1st edition, December 2001.

[82] Christo Angelov, Krzysztof Sierszecki, and Nicolae Marian. Design Models
for Reusable and Recon�gurable State Machines. In Laurence Tianruo Yang,
Makoto Amamiya, Zhen Liu, Minyi Guo, and Franz J. Rammig, editors, Em-
bedded and Ubiquitous Computing, volume 3824 of Lecture Notes in Com-

puter Science, pages 152�163, Nagasaki, Japan, December 2005. Springer
Berlin / Heidelberg.

[83] Rolf Drechsler and Jochen Römmler. Implementation and Visualization
of a BDD Package in JAVA. Technical report, GI/ITG/GMM Workshop:
Methoden und Beschreibungssprachen zur Modellierung und Veri�kation
von Schaltungen und Systemen, 2002.

[84] Tool Interface Standard (TIS). Executable and Linking Format (ELF) Spec-
i�cation Version 1.2, May 1995.

[85] John R. Levine. Linkers and Loaders. Morgan Kau�man, 1st edition, Oc-
tober 1999.

[86] Yu Guo, Krzysztof Sierszecki, and Christo Angelov. COMDES Development
Toolset. In Proceedings of the 5th International Workshop on Formal As-

pects of Component Software (FACS 2008), pages 233�238, Malaga, Spain,
September 2008.

[87] Magnus Larsson. Applying Con�guration Management Techniques to

Component-Based Systems. PhD thesis, Uppsala University, Uppsala, Swe-
den, 2000.

[88] Bixin Li. Managing Dependencies in Component-Based Systems Based on
Matrix Model. In Proceedings of Net.Object.Days 2003, pages 22�25, 2003.

[89] Yu Guo. COMDES Function Blocks Design and Con�guration. Master's
thesis, University of Southern Denmark, Soenderborg, Denmark, June 2005.

228

[90] Yu Guo, Krzysztof Sierszecki, and Christo Angelov. A (Re)Con�guration
Mechanism for Resource-Constrained Embedded Systems. In Proceedings of

the 32nd Annual IEEE International Computer Software and Applications

Conference (COMPSAC 2008), pages 1315�1320, Turku, Finland, July/Au-
gust 2008. IEEE Computer Society.

[91] Jos Warmer and Anneke Kleppe. Object Constraint Language, The: Getting
Your Models Ready for MDA. Addison Wesley, 2nd edition, September 2003.

[92] Christian W. Damus. Implementing Model Integrity in EMF with MDT
OCL. Eclipse Corner Articles, February 2007.

[93] Fangjian Hu. COMDES-II Development Editing and Repository Environ-
ment. Master's thesis, University of Southern Denmark, Soenderborg, Den-
mark, June 2008.

[94] Gary Cernosek. Next-generation model-driven development. IBM Software
Group, 2004.

[95] ATLAS group. ATL:Atlas Transformation Language ATL Starter Guide

version 0.1, December 2005.

[96] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model trans-
formation approaches. IBM Systems Journal, 45(3):621�645, 2006.

[97] Yu Guo, Feng Zhou, Nicolae Marian, and Cristo Angelov. Hardware-in-the-
Loop Simulation of Component-Based Embedded Systems. In Proceedings of
the 8th International Workshop on Research and Education in Mechatronics

(REM 2007), Tallinn,Estonia, June 2007.

[98] Jan A. Bergstra and Paul Klint:. The Discrete Time ToolBus � A Software
Coordination Architecture. Science of Computer Programming, 31(2-3):205�
229, 1998.

[99] Ian Thomas and Brian A. Nejmeh. De�nitions of Tool Integration for En-
vironments. IEEE Software, 9(2):29�35, 1992.

[100] Hayco de Jong and Paul Klint. ToolBus: The Next Generation. In Formal

Methods for Components and Objects, First International Symposium, vol-
ume 2852 of Lecture Notes in Computer Science, pages 220�241. Springer,
2003.

229

[101] Gabor Karsai, Andras Lang, and Sandeep Neema. Design Patterns for Open
Tool Integration. Journal of Software and System Modeling, 4(2), May 2005.

[102] Prawee Sriplakich. ModelBus � An Open and Distributed Environment for

Model Driven Engineering. PhD thesis, University Pierre and Marie Curie,
France, 2007.

[103] Shen Wei. Tool Integration for COMDES Development Environment. Mas-
ter's thesis, University of Southern Denmark, Soenderborg, Denmark, June
2008.

[104] A. Burns. How to Verify a Safe Real-Time System The Application of Model
Checking and a Timed Automata to the Production Cell Case Study. Tech-
nical report, Real-Time Systems Research Group, Department of Computer
Science, University of York, 1998.

[105] Xu Ke and Yu Guo. Case Studies of Component-based Design for Dis-
tributed Embedded Systems. Technical report, Mads Clausen Institute,
University of Southern Denmark, Soenderborg, Denmark, June 2006.

[106] Feng Zhou. Component-based Design of Embedded System � Production
Cell Case Study. Master's thesis, University of Southern Denmark, Soen-
derborg, Denmark, June 2006.

[107] Martin Gomez. Hardware-in-the-Loop Simulation. Embedded Systems De-

sign, 14(13), December 2001.

[108] Yu Guo, Torben Ho�mann, and Nicholas Gunder. Autocoding State Ma-
chine in Erlang. In Proceedings of the 14th International Erlang/OTP User

Conference, Stockholm, Sweden, November 2008.

[109] Huiqing Li, Simon Thompson, George Orosz, and Melinda Toth. Refactoring
withWrangler, updated: Data and process refactorings, and integration with
Eclipse. In Proceedings of the Seventh ACMSIGPLAN Erlang Workshop,
September 2008.

[110] Kebin Zeng, Yu Guo, and Christo Angelov. Graphical Model Debugger
Framework for Embedded Systems. In Accepted for presentation to the 13th

DATE Conference and Exhibition: Design, Automation and Test in Europe

(DATE2010), Dresden, Germany, March 2010.

[111] Yu Guo, Krzysztof Sierszecki, and Christo Angelov. Model-Driven Devel-
opment of Domain-Speci�c Applications: Tool Support. In Proceedings of

230

11th Symposium on Programming Languages and Software Tools and 7th

Nordic Workshop on Model Driven Software Engineering (SPLST 2009 and

NW-MODE 2009), pages 225�239, Tampere, Finland, August 2009.

[112] István Knoll, Anders P. Ravn, and Arne Skou. Semantics for communi-
cating actors with interdependent real-time deadlines. 2009 Third IEEE

International Symposium on Theoretical Aspects of Software Engineering,
pages 29�35, 2009.

231

Appendix: Model-Driven Software

Development in Industry

Question

Is the Model-Driven Development approach company-widely used to

develop software products?

Say, given a business domain, �rst model the system using UML or some
domain-speci�c language. Then generate part or all of code from the model. If
bugs are found, �x the model instead of �x the code, as the new code will be
generated again. Is this approach popular? Why?

Answers

The answers are not ordered. The appendix only shows the answers that have
been approved by the people who answered the question. They have agreed that
their answers with their names, and professional headlines can be listed here.

Probal DasGupta, Software Engineering, Enterprise Systems, Busi-

ness Agility Executive: The goal of MDA (Model Driven Architecture) is to
enable the solution design to occur in a PIM (Platform Independent Model) where
your ideas are not constrained by hardware/software considerations; therefore, a
pure business person, equipped with and trained on the right BPM tool, can pro-
duce the required business model of the target solution. After a complete and
fully validated business model is saved in the BPM world, tools can be used for
converting the PIM (Platform Independent Model) into a PSM (Platform Speci�c
Model) that deals with hard implementation details like the target hardware/-
software platform and generates the source code. Instead of maintainable source
code, you get a maintainable business model. The biggest bene�t of this approach
is BUSINESS AGILITY. An organization will be able to react much faster to

232

internal and external changes because I.T. will be closely aligned with Business,
and not perpetually 6 months behind it. This is the goal (and the dream?) of the
MDA world, which is closely aligned with the goal and the dream of the business
process management world � which is why, in recent years, omg.org (the proponent
of MDA technology) and bmpi.org have merged and become one organization. I
do agree with previous answers (a) that the toolset is in most cases not there
yet; and (b) that it is better used in Europe than in the United States. Full and
complete implementations of MDA do exist, as I discovered during my visit to
CeBIT 2006 - the world's largest ICT fair held in Hannover, Germany every year
in March. The Gartner Group has called MDA an "outsourcing buster" solution.
One of its reports states that while outsourcing to o�shore organizations typically
saved companies 35% in ultimate costs, a full-�edged adoption of MDA should save
organizations 45% or more, because they would not require companies to main-
tain large armies of programmers anywhere (whether in the U.S. Or o�shore). So
MDA/MDD is the technology of the future that will come into its own and has a
good chance of becoming the prevalent software engineering paradigm. New IDEs,
Agile methodologies (SCRUM/XP) cannot compete with MDA, because they tie
the organization down to PSMs (platform speci�c models) that require I.T. ex-
perts, and makes organizations more dependent on technologists. MDA proposes
make organizations depend only on "technology", not "technologists". In an ideal
MDA world, software talent will be used for developing wonderful new tools that
made the MDA concept more and more viable, but they will not be involved in
business programming. Only be eliminating the "technologists" from the chain
of delivery and replacing them with the proper "technology" that is handled by
the business persons themselves, can true business agility be achieved � which
is extremely important for companies to maintain market leadership and general
excellence. I strongly suspect we shall see greater adoption of MDA concepts in
the immediate future.

Brian Shannon, Software Engineer and Architect: This approach is
generally not used because of several reasons. The �rst is that while UML models
can express the structure of classes, interfaces, etc., the implementations and algo-
rithms or business logic of those classes are, generally speaking, not represented in
UML. Some basic implementations can be generated (e.g. Plain Old Java Object
[POJO] classes), and in DSLs this can be expanded, but ultimately in non-trivial
applications, there will be custom code that has to be written.

So, after generating the skeletons of each entity in the model, developer still
needs to �ll those skeletons with implementations. This leads to making changes

233

to the model in the code, because when writing code, as we all know, the reality
of the situation and/or design sets in and changes need to be made. This leads to
the need to maintain and keep in sync both a code base and a UML model, which
is quite a chore without too many advantages.

Also, as you mention with regard to maintaining the code, unless the code is
only and always generated from the model, and the model completely represents
the business logic and implementation needed, you will not be able to do this
without some creative thinking. There are techniques such as Aspect Oriented
Programming (AOP) that one could use and even some great frameworks out
there than allow for loosely coupled components that can be swapped out easily,
but it seems that the e�ort required to keep the model in sync with the code
and generate the proper code would probably be more e�ort than just updating
the code itself especially with modern IDEs and their ability to refactor existing
code/design quickly.

If using MDD, a balanced approach might be best. Consider the parts of the
application that would bene�t from this (POJOs and well-de�ned DSL implemen-
tations), but also perhaps generate the initial code base from the model and then
just start from there. It can save some of the initial tediousness of translating the
model to code.

Dennis Andrews, VP of Sales, Artisan Software Tools - Mission and

Safety Critical Engineering Solutions: Model Driven Development is most
widely used within: Aerospace, Automobile, Defence, Medical, Network Commu-
nications industries.

An MDD solution should generate bug free code, if you �nd a bug, then it may
be several things. Most MDD tools will not allow you to perform a build without
doing a series of static checks.

Even when using MDD, some code is still hand written. The hand written
code come from any legacy code that has been integrated into the model or the
transition code within a state chart.

Some MDD solutions do allow users to modify portions of the generated code.
These changes can automatically be re�ected back into the model.

Every MMD solution o�ers varying degrees of control over code generation.
This control allows users to set properties or apply rules, which will ensure that
the generated code adheres to speci�c guidelines.

UML has evolved to provide a baseline for many domain speci�c languages:
Business Processes, Systems Engineering and Defence. Supporting a broader spec-
trum of Domain Speci�c Languages using one base language supports a more

234

seamless �ow from Requirements to Business Processes to System Architectures
to Software Designs to Code.

MDD is most popular among people who know the technology and have used
it e�ectively to increase quality and productivity. This number is growing.

There are many reasons for con�icting responses to your question, however.
There is a broad spectrum of solutions which o�er a variety of capabilities. In
addition, the deployment of MDD is often uneven within industries and even
companies. All these factors can lead to misconceptions.

Dan Rosanova, Principal Consultant at Nova Enterprise Systems:

To a certain extent I think it is. I generally start with a domain analysis and
eventually create my business objects from that. I actually like to use Use Cases
and then circle the nouns.

I like to keep my generated code separated from my manual code. Since I work
in C# I bene�t from partial classes, but there are other techniques you can use
as well. The big problem with generation is that you often become tied to it and
it can hold back development. I certainly think that for a large portion of your
development this is a great idea. I think a lot of developers don't really get UML
so it's harder for them to work that way.

Niresh Agarwal, Principal Software Engineer/Tech Lead at Tera-

dyne: I agree with Vasilij and Dan. And I do think that though the technology
is not there yet, it is going to be tomorrow's high level language (not necessarily
UML, but some modelling approach), where future programmers will program
their designs into models and auto code generation tools will generate e�cient
and custom code particular to the needs of that application.

Todd Hansen, Software Development Consultant: If you're working
in the Microsoft side of the development world, then there actually is a tool that
works quite well for doing exactly as you suggested. As of Visual Studio 2005 (and
2008), you can create class diagrams within Visual Studio � as part of the project
� and any changes made to the diagram will be re�ected in the code . . . and vice
versa. It actually works really well, and I've used it on several projects.

Mark Meyer, Principle/Real-time Embedded Software Engineering

Consultant at Di�erential Designs, Inc.: MDD (or Model Based Develop-
ment) is currently being used in the automotive industry in designing and devel-
oping electronic modules for use in vehicles. You �rst model it then autocode it

235

(generate code). In this environment, timing and memory constraints are critical.
Yet, its meeting those constraints while use is increasing.

Venkat Pula, Modeling Tools Sales Specialist: It depends on the nature
of the bug. If you are referring to a design or model bug, it makes sense to �x the
model, and regenerate the code. If the bug is computational in nature, then, it
makes sense to �x the bug in code itself.

The other aspect to think about is your UML tool's capability to update its
model when the code is changed. If your tool supports such a capability, then, you
can �x the problem in either side. For example, Telelogic's UML tool, Rhapsody,
supports DMCA (Dynamic Model Code Associativity) where any changes occur
in model are automatically updated in generated code, and vice versa. Hope this
info helps.

Chris Lema, Software product development professional (VP/CTO):

Is this approach popular? It depends on the computing sector. In the embedded
software space, companies have been using technology products to produce code
generated solutions like you are describing. Products like those from MetaCase
allow users to do exactly that. In the enterprise software space however, there
are fewer tools that have gone the whole distance. Many prefer to stop before
real logic is generated � because describing that logic is di�cult in languages like
UML. That said, a few companies have built complete tools that use formal logic
languages and a visual model compiler to do the very thing described in your
question, though predominantly in Europe rather than in the US. In the end, as
others have shared, the popularity of this approach is limited by the maturity of
the toolsets available. Further, the requirement to think and design at a higher
level of abstraction is a harder skill to manage/train and this may also be a factor.

Richard Tabor Greene, Professor of Knowledge and Creativity Man-

agement at Kwansei Gakuin University: The problem is UML just models
the mess that is there now in the world as present business processes � automating
a mess in software form is immensely wasteful and problematic over the long term.

In my old book Global Quality (at amazon.com) the chapter on Taguchi shows
my approach at Xerox PARC � namely:

1. �nd what in the business process causes its outputs to displease customers
receiving them

2. improve the process to reduce or eliminate those displeasers

236

3. rigorously eliminate all wastes in the process, that is, all steps that do not
directly contribute value to end users of the outputs of the process

4. develop software to automate those parts of the process not better do-able
by persons

5. measure to make sure that the �nal customers sat with the new version
software enabled is higher than the customers sat with the old version of the
process.

By directing software at a version of a business process �rst cleaned up in total
quality ways, a much more cogent, lean, and focussed-on-customer version of the
business process gets automated into software form.

Vilas Prabhu, Consultant Chief Architect: I am aware of `elabora-
tionist' MDD (generating part of code) being put in practice, by many a or-
ganisation for their product development. This is mainly because of economy of
scale provided by this approach. For product companies it makes sense to use
this approach because its easy to churn out various product versions (targeted at
di�erent technologies), which are only slightly di�erent than other versions, while
maintaining the standardisation across versions.

My observation is that it is not a very popular approach for general purpose
software development in a non-product scenario. When you are doing bespoke
software development, economy of scale is of no use. However you may still want to
use MDD for quality reasons. But current tooling is esoteric and not standardised,
so decision makers deem it to be risky and don't allow it to be used. They rely
on good resources to provide good quality, instead.

Prashant Hegde, Systems Architect at Honeywell: Theoretically, it
should work �ne. Practically, there are issues. From the UML point of view, it
uses three main diagrams for the code generation. Object diagrams, class diagrams
and StateCharts/Diagrams. Other UML constructs are not very useful from code
generation perspective.

Now, if you want to generate 100% code generation, you need to model ev-
erything(to the lowest level detail) in the modelling tool. With this approach
you get into the same issues as the code maintenance. Take, for example, the
case of Rhapsody, it allows writing code within the model to achieve 100% code
generation! Frequently the code generated from the model will be ugly and not
readable. The other concern you may have is - performance of the generated code.

237

My take is use the modelling tool for what they are - as a vehicle for conveying
design and architecture. And may be for generating the skeleton code.

Guilherme Vieira, Consultant: Actually MDD represents the current
generation of best practices and tools to delivery a fully IT solution.

The team should use Model Driven Development since the beginning when the
primary target is to identify and track down the needs and potential issues.

A domain model(using UML) must be build by businesses analysts and users/-
customers in a collaborative way on the early stages of the whole process focusing
in delivering a strong and well done artefact to guide the team to build (from
ground up sometimes) a solution which will achieve all the expectations.

After that model construction phase the team will be able to start the develop-
ment stage which can be or be not supported by automatic generated code. But
as you may know must obey the given model rules.

In my humble opinion UML 2 already go through. Really nice by the way.
But I guess it's time to another language take over and start a new era in the
development process. I really think it is a open window! And that new standard
could come up from anywhere.

There is a very large number of active technologies nowadays in Java commu-
nity and they deserve a more dynamic and reliable �way� of MODEL and BUILD
applications.

Just my 2 cents.

238

