168 research outputs found

    Joint Congestion Control and Scheduling in Wireless Networks with Network Coding

    Get PDF
    published_or_final_versio

    Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    Get PDF
    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Adaptive Distributed Fair Scheduling for Multiple Channels in Wireless Sensor Networks

    Get PDF
    A novel adaptive and distributed fair scheduling (ADFS) scheme for wireless sensor networks (WSN) in the presence of multiple channels (MC-ADFS) is developed. The proposed MC-ADFS increases available network capacity and focuses on quality-of-service (QoS) issues. when nodes access a shared channel, the proposed MC-ADFS allocates the channel bandwidth proportionally to the packet\u27s weight which indicates the priority of the packet\u27s flow. The packets are dynamically assigned to channels based on the packet weight and current channel utilization. The dynamic assignment of channels is facilitated by use of receiver-based allocation and alternative routes. Moreover, MC-ADFS allows the dynamic allocation of network resources with little added overhead. Packet weights are initially assigned using user specified QoS criteria, and subsequently updated as a function of delay and queued packets. The back-off interval is also altered using the weight adaptation. The weight update and back-off interval selection ensure global fairness is attained even with variable service rates

    ActMesh- A Cognitive Resource Management paradigm for dynamic mobile Internet Access with Reliability Guarantees

    Get PDF
    Wireless Mesh Networks (WMNs) are going increasing attention as a flexible low-cost networking architecture to provide media Internet access over metropolitan areas to mobile clients requiring multimedia services. In WMNs, Mesh Routers (MRs) from the mesh backbone and accomplish the twofold task of traffic forwarding, as well as providing multimedia access to mobile Mesh Clients (MCs). Due to the intensive bandwidth-resource requested for supporting QoS-demanding multimedia services, performance of the current WMNs is mainly limited by spectrum-crowding and traffic-congestion, as only scarce spectrum-resources is currently licensed for the MCs' access. In principle, this problem could be mitigated by exploiting in a media-friendly (e.g., content-aware) way the context-aware capabilities offered by the Cognitive Radio (CR) paradigm. As integrated exploitation of both content and context-aware system's capabilities is at the basis of our proposed Active Mesh (ActMesh) networking paradigm. This last aims at defining a network-wide architecture for realizing media-friendly Cognitive Mesh nets (e.g., context aware Cognitive Mesh nets). Hence, main contribution of this work is four fold: 1. After introducing main functional blocks of our ActMesh architecture, suitable self-adaptive Belief Propagation and Soft Data Fusion algorithms are designed to provide context-awareness. This is done under both cooperative and noncooperative sensing frameworks. 2. The resulting network-wide resource management problem is modelled as a constrained stochastic Network Utility Maximization (NUM) problem, with the dual (contrasting) objective to maximize spectrum efficiency at the network level, while accounting for the perceived quality of the delivered media flows at the client level. 3. A fully distributed, scalable and self-adaptive implementation of the resulting Active Resource Manager (ARM) is deployed, that explicitly accounts for the energy limits of the battery powered MCs and the effects induced by both fading and client mobility. Due to informationally decentralized architecture of the ActMesh net, the complexity of (possibly, optimal) centralized solutions for resource management becomes prohibitive when number of MCs accessing ActMesh net grow. Furthermore, centralized resource management solutions could required large amounts of time to collect and process the required network information, which, in turn, induce delay that can be unacceptable for delay sensitive media applications, e.g., multimedia streaming. Hence, it is important to develop network-wide ARM policies that are both distributed and scalable by exploiting the radio MCs capabilities to sense, adapt and coordinate themselves. We validate our analytical models via simulation based numerical tests, that support actual effectiveness of the overall ActMesh paradigm, both in terms of objective and subjective performance metrics. In particular, the basic tradeoff among backbone traffic-vs-access traffic arising in the ActMesh net from the bandwidth-efficient opportunistic resource allocation policy pursued by the deployed ARM is numerically characterized. The standardization framework we inspire to is the emerging IEEE 802.16h one

    ActMesh- A Cognitive Resource Management paradigm for dynamic mobile Internet Access with Reliability Guarantees

    Get PDF
    Wireless Mesh Networks (WMNs) are going increasing attention as a flexible low-cost networking architecture to provide media Internet access over metropolitan areas to mobile clients requiring multimedia services. In WMNs, Mesh Routers (MRs) from the mesh backbone and accomplish the twofold task of traffic forwarding, as well as providing multimedia access to mobile Mesh Clients (MCs). Due to the intensive bandwidth-resource requested for supporting QoS-demanding multimedia services, performance of the current WMNs is mainly limited by spectrum-crowding and traffic-congestion, as only scarce spectrum-resources is currently licensed for the MCs' access. In principle, this problem could be mitigated by exploiting in a media-friendly (e.g., content-aware) way the context-aware capabilities offered by the Cognitive Radio (CR) paradigm. As integrated exploitation of both content and context-aware system's capabilities is at the basis of our proposed Active Mesh (ActMesh) networking paradigm. This last aims at defining a network-wide architecture for realizing media-friendly Cognitive Mesh nets (e.g., context aware Cognitive Mesh nets). Hence, main contribution of this work is four fold: 1. After introducing main functional blocks of our ActMesh architecture, suitable self-adaptive Belief Propagation and Soft Data Fusion algorithms are designed to provide context-awareness. This is done under both cooperative and noncooperative sensing frameworks. 2. The resulting network-wide resource management problem is modelled as a constrained stochastic Network Utility Maximization (NUM) problem, with the dual (contrasting) objective to maximize spectrum efficiency at the network level, while accounting for the perceived quality of the delivered media flows at the client level. 3. A fully distributed, scalable and self-adaptive implementation of the resulting Active Resource Manager (ARM) is deployed, that explicitly accounts for the energy limits of the battery powered MCs and the effects induced by both fading and client mobility. Due to informationally decentralized architecture of the ActMesh net, the complexity of (possibly, optimal) centralized solutions for resource management becomes prohibitive when number of MCs accessing ActMesh net grow. Furthermore, centralized resource management solutions could required large amounts of time to collect and process the required network information, which, in turn, induce delay that can be unacceptable for delay sensitive media applications, e.g., multimedia streaming. Hence, it is important to develop network-wide ARM policies that are both distributed and scalable by exploiting the radio MCs capabilities to sense, adapt and coordinate themselves. We validate our analytical models via simulation based numerical tests, that support actual effectiveness of the overall ActMesh paradigm, both in terms of objective and subjective performance metrics. In particular, the basic tradeoff among backbone traffic-vs-access traffic arising in the ActMesh net from the bandwidth-efficient opportunistic resource allocation policy pursued by the deployed ARM is numerically characterized. The standardization framework we inspire to is the emerging IEEE 802.16h one
    • …
    corecore