18 research outputs found

    Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks

    Get PDF
    Local data aggregation is an effective means to save sensor node energy and prolong the lifespan of wireless sensor networks. However, when a sensor network is used to track moving objects, the task of local data aggregation in the network presents a new set of challenges, such as the necessity to estimate, usually in real time, the constantly changing state of the target based on information acquired by the nodes at different time instants. To address these issues, we propose a distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras. When a target is detected, cameras that can observe the same target interact with one another to form a cluster and elect a cluster head. Local measurements of the target acquired by members of the cluster are sent to the cluster head, which then estimates the target position via Kalman filtering and periodically transmits this information to a base station. The underlying clustering protocol allows the current state and uncertainty of the target position to be easily handed off among clusters as the object is being tracked. This allows Kalman filter-based object tracking to be carried out in a distributed manner. An extended Kalman filter is necessary since measurements acquired by the cameras are related to the actual position of the target by nonlinear transformations. In addition, in order to take into consideration the time uncertainty in the measurements acquired by the different cameras, it is necessary to introduce nonlinearity in the system dynamics. Our object tracking protocol requires the transmission of significantly fewer messages than a centralized tracker that naively transmits all of the local measurements to the base station. It is also more accurate than a decentralized tracker that employs linear interpolation for local data aggregation. Besides, the protocol is able to perform real-time estimation because our implementation takes into consideration the sparsit- - y of the matrices involved in the problem. The experimental results show that our distributed object tracking protocol is able to achieve tracking accuracy comparable to the centralized tracking method, while requiring a significantly smaller number of message transmissions in the network

    MINIMAX FILTERING IN WIRELESS SENSOR AND ACTOR NETWORKS

    Get PDF
    In this paper to handle the mobility of actors a hybrid strategy that includes location updating and location prediction is used.The usage of Kalman Filtering in location prediction high power and energy consumptions. To avoid the drawbacks of Kalman Filtering in location prediction, we make use of Minimax filtering (also Known as H∞ filtering). Minimax Filter has been used in WSANs by minimizing the estimation error and maximizing the worst case adversary noise. Minimax filtering will also minimize power and energy consumptions

    PENGEMBANGAN METODE PELACAKAN OBJEK BERBASIS SEGMENTASI MENGGUNAKAN ALGORITMA FCM

    Get PDF
    Detection of object tracking is an important part of object recognition analysis. In object tracking applications, object detection is the first step of video surveillance, where accurate object detection becomes important and difficult because there are still problems that arise like the shadow of the detected object (false detection). To overcome this many object tracking applications are constantly being developed to produce accurate object detection. In this case the clustering method is one of the methods that are considered efficient and able to provide segmentation results in the image better and adaptive to changes in the environment and instantaneous changes quickly. So this research proposes the development of the object-oriented FCM method of object segmentation to obtain accurate object detection results. For the development of FCM method this research will be done by using distance approach. The distance approach used is cambera, chebychef, mahattan, minkowski, and Euclidean to get accurate results

    PELACAKAN DAN SEGMENTASI OBJEK BERGERAK MENGGUNAKAN METODE K-MEANS CLUSTERING BERBASIS VARIASI JARAK

    Get PDF
    In computer vision tracking and object segmentation is one important step in video processing. Accuracy in object tracking is important in video processing, where accurate object tracking is a thing that continues to be done by many researchers. there are still many problems that are often experienced when tracking objects in terms of lighting, noise up to a high level of error. Many methods can be used in research, one of which is clustering method. Clustering method is a method that is widely used in grouping data, one of which is often used is Kmeans clustering. This method is very flexible, and is able to classify large amounts of data. Besides that, Kmeans is also able to work adeptly and segment the image well. For this study using 5 distance approaches (cambera, chebychef, mahattan, minkowski, Euclidean) distance approach which is expected to improve the results of better accuracy. From the results of the research produced a mahatan distance approach has the best accuracy results with a PNSR value of 16,34399 and the lowest MSE value with a value of 1521,793. Compared to the use of standard models with Euclidean, the approach of high distance accuracy increase

    Predictive Duty Cycle Adaptation for Wireless Camera Networks

    Get PDF
    Wireless sensor networks (WSN) typically employ dynamic duty cycle schemes to efficiently handle different patterns of communication traffic in the network. However, existing duty cycling approaches are not suitable for event-driven WSN, in particular, camera-based networks designed to track humans and objects. A characteristic feature of such networks is the spatially-correlated bursty traffic that occurs in the vicinity of potentially highly mobile objects. In this paper, we propose a concept of indirect sensing in the MAC layer of a wireless camera network and an active duty cycle adaptation scheme based on Kalman filter that continuously predicts and updates the location of the object that triggers bursty communication traffic in the network. This prediction allows the camera nodes to alter their communication protocol parameters prior to the actual increase in the communication traffic. Our simulations demonstrate that our active adaptation strategy outperforms TMAC not only in terms of energy efficiency and communication latency, but also in terms of TIBPEA, a QoS metric for event-driven WSN

    Field programmable Gate Array based Real Time Object Tracking using Partial Least Square Analysis

    Get PDF
    In this paper, we proposed an object tracking algorithm in real time implementation of moving object tracking system using Field programmable gate array (FPGA). Object tracking is considered as a binary classification problem and one of the approaches to this problem is that to extract appropriate features from the appearance of the object based on partial least square (PLS) analysis method, which is a low dimension reduction technique in the subspace. In this method, the adaptive appearance model integrated with PLS analysis is used for continuous update of the appearance change of the target over time. For robust and efficient tracking, particle filtering is used in between every two consecutive frames of the video. This has implemented using Cadence and Virtuoso software integrated environment with MATLAB. The experimental results are performed on challenging video sequences to show the performance of the proposed tracking algorithm using FPGA in real time

    Moving Target Positioning Based on a Distributed Camera Network

    Get PDF
    We propose a systematic framework for moving target positioning based on a distributed camera network. In the proposed framework, low-cost static cameras are deployed to cover a large region, moving targets are detected and then tracked using corresponding algorithms, target positions are estimated by making use of the geometrical relationships among those cameras after calibrating those cameras, and finally, for each target, its position estimates obtained from different cameras are unified into the world coordinate system. This system can function as complementary positioning information sources to realize moving target positioning in indoor or outdoor environments when global navigation satellite system (GNSS) signals are unavailable. The experiments are carried out using practical indoor and outdoor environment data, and the experimental results show that the systematic framework and inclusive algorithms are both effective and efficient

    Target Tracking Based on Virtual Grid in Wireless Sensor Networks

    Get PDF
    One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tracking Based on Virtual Grid (TTBVG), which integrates on-demand dynamic clustering into a cluster- based WSN for target tracking. This protocol converts on-demand dynamic clusters to scalable cluster-based WSNs, by using boundary nodes and facilitates sensors’ collaboration around clusters. In this manner, each sensor node has the probability of becoming a cluster head and apperceives the tradeoff between energy consumption and local sensor collaboration in cluster-based sensor networks. The simulation results of this study demonstrated that the efficiency of the proposed protocol in both one-hop and multi-hop cluster-based sensor networks

    Computation-Communication Trade-offs and Sensor Selection in Real-time Estimation for Processing Networks

    Full text link
    Recent advances in electronics are enabling substantial processing to be performed at each node (robots, sensors) of a networked system. Local processing enables data compression and may mitigate measurement noise, but it is still slower compared to a central computer (it entails a larger computational delay). However, while nodes can process the data in parallel, the centralized computational is sequential in nature. On the other hand, if a node sends raw data to a central computer for processing, it incurs communication delay. This leads to a fundamental communication-computation trade-off, where each node has to decide on the optimal amount of preprocessing in order to maximize the network performance. We consider a network in charge of estimating the state of a dynamical system and provide three contributions. First, we provide a rigorous problem formulation for optimal real-time estimation in processing networks in the presence of delays. Second, we show that, in the case of a homogeneous network (where all sensors have the same computation) that monitors a continuous-time scalar linear system, the optimal amount of local preprocessing maximizing the network estimation performance can be computed analytically. Third, we consider the realistic case of a heterogeneous network monitoring a discrete-time multi-variate linear system and provide algorithms to decide on suitable preprocessing at each node, and to select a sensor subset when computational constraints make using all sensors suboptimal. Numerical simulations show that selecting the sensors is crucial. Moreover, we show that if the nodes apply the preprocessing policy suggested by our algorithms, they can largely improve the network estimation performance.Comment: 15 pages, 16 figures. Accepted journal versio

    The costs of fusion in smart camera networks

    Get PDF
    ABSTRACT The choice of the most suitable fusion scheme for smart camera networks depends on the application as well as on the available computational and communication resources. In this paper we discuss and compare the resource requirements of five fusion schemes, namely centralised fusion, flooding, consensus, token passing and dynamic clustering. The Extended Information Filter is applied to each fusion scheme to perform target tracking. Token passing and dynamic clustering involve negotiation among viewing nodes (cameras observing the same target) to decide which node should perform the fusion process whereas flooding and consensus do not include this negotiation. Negotiation helps limiting the number of participating cameras and reduces the required resources for the fusion process itself but requires additional communication. Consensus has the highest communication and computation costs but it is the only scheme that can be applied when not all viewing nodes are connected directly and routing tables are not available
    corecore