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Abstract: Wireless sensor networks (WSN) typically employ dynamic duty cycle schemes to efficiently 
handle different patterns of communication traffic in the network. However, existing duty cycling 
approaches are not suitable for event-driven WSN, in particular, camera-based networks designed to 
track humans and objects. A characteristic feature of such networks is the spatially-correlated bursty 
traffic that occurs in the vicinity of potentially highly mobile objects. In this paper, we propose a concept 
of indirect sensing in the MAC layer of a wireless camera network and an active duty cycle adaptation 
scheme based on Kalman filter that continuously predicts and updates the location of the object that 
triggers bursty communication traffic in the network. This prediction allows the camera nodes to alter 
their communication protocol parameters prior to the actual increase in the communication traffic. Our 
simulations demonstrate that our active adaptation strategy outperforms TMAC not only in terms of 
energy efficiency and communication latency, but also in terms of TIBPEA, a QoS metric for event-driven 
WSN. 
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SECTION I. 

Introduction 

In designing a wireless sensor network, one attempts to maximize both the lifetime 
of the nodes and the network performance. Duty cycling the radio at the nodes is 
considered to be one of the most effective ways to conserve energy, and obviously such 
energy conservation directly increases the lifetime of the network. However, changing the 
duty cycle also affects the communication latency at the nodes. As a result, trying to 
minimize both the latency and the energy expenditure involves a fundamental tradeoff. 

Various approaches have been proposed to improve this tradeoff. In addition to a 
class of static duty cycling schemes,1,2,3,4,5 there are several approaches that employ 
adaptive or dynamic duty cycling mechanisms, such as TMAC,6 AMAC,7 DSMAC,8 and 
CMAC.9 In such schemes, the dynamic duty cycle adaptation of a node is predicated by the 
detection of changes in the current traffic conditions at the node. Although there exist 
event-driven MAC protocols that try to minimize the latency of either a subset or all of the 
event-triggered messages by removing redundancy among packets10 or by exploiting 
multiple channels,11 these efforts are still made after an event of interest actually occurs. 

Passive duty cycle adaptation schemes mentioned above are not suitable for event-
driven WSNs, such as wireless camera networks (WCNs) intended for tracking humans and 
objects in motion. In such networks, the events spawned by moving targets continuously 
trigger the initiation of new communication links between new pairs of nodes and new 
routing paths. The passive schemes for duty cycle adaptation perform poorly under such 
conditions due to the inherent delay between the detection of a new event and the reaction 
to the event in terms of communication. Those methods work best when the same 
communication links or the same routing paths are reused repeatedly even in the vicinity 
of an event. 

In this paper, we propose the predictive duty cycle adaptation (PDCA) scheme 
specifically designed for event-driven WSNs. Whereas the existing approaches passively 
adapt the duty cycle according to the current network conditions, the proposed PDCA 
scheme actively adapts the duty cycle in a predictive fashion according to the probability 
that an event of interest will occur within a node's sensing field in the near future. This 
probability will be referred to as the future event detection probability (FEDP) at a node 
and computed based on the spatio-temporal event probability (STEP) predicted by using a 
Kalman filter in the MAC layer. To enable the predictive adaptation, each node marks 
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outgoing packets if it detects an event. Neighboring nodes receiving/overhearing these 
packets can be briefly informed about the event by looking at their MAC header, resulting 
in the indirect sensing from an augmented sensing region, which will be explained later. 

In the rest of the paper, we first briefly survey some unique features of event-driven 
WSNs in Section 2. Section 3 then presents our predictive approach to the reconfiguration 
of the MAC protocol parameters in such networks. The performance evaluation of the 
proposed approach, carried out in a realistic simulation environment in the context of 
target tracking, is presented in Section 4. We present the results obtained with our 
approach vis-a-vis TMAC. Section 5 concludes the paper. 

SECTION II. 

Event-Driven Wireless Sensor Networks 

Event-driven WSNs that can be typified by a WCN differ from the more traditional 
WSNs in the sense that the events occurring in the environment are likely to cause the 
radio broadcast traffic to become bursty among the nodes nearby the event. Due to limited 
computational power and sensing capability, the sensor nodes in an event-driven WSN 
usually collaborate with one another in order to detect events and to estimate their various 
attributes. For tasks such as object detection and tracking, an event-driven WSN may 
involve computations beyond the capabilities of the processor at any single node. Such 
tasks would require cluster-based distributed implementations of the algorithms.12,13 The 
collaborative processing required by such algorithms is usually carried out with the help of 
clusters that consist of nodes that can capture some sensory information related to the 
event. Such collaborative computations typically require intensive message exchanges 
within a cluster, resulting in highly bursty communications that, unless the communication 
protocol parameters are changed in a timely manner, may be characterized by frequent 
packet collisions that may result in waste of energy and failure in transmitting critical data. 

The purpose of an event-driven WSN is to detect an event and perform event-
specific tasks in a timely manner. Considering a WCN deployed in a large area for 
surveillance purposes, it is critical that the event information be updated and transmitted 
to the end user in a timely manner. This obviously requires a high quality of service (QoS) 
with regard to the communications in the network. A network must also rate high on 
appropriate QoS metrics from the standpoint of the communications requirement for 
collaborative problem solving by the nodes in a cluster. 
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SECTION III. 

Predictive Duty Cycle Adaptation 

The proposed approach, which we refer to as Predictive Duty Cycle Adaptation 
(PDCA) scheme, actively adjusts the duty cycle of the nodes that are about to experience an 
event that may provoke high communication traffic. In other words, the PDCA scheme 
increases the duty cycle at a node if it is likely that the node will soon experience an event 
and decreases the duty cycle otherwise. This is contrast to existing approaches that adapt 
the duty cycle of nodes in a passive manner by reacting to the current event. PDCA 
attempts to meet two important yet conflicting objectives-high energy efficiency and low 
communication latency-by actively adapting the duty cycle according to the probability 
that a node will experience an event in the near future. We estimate this probability in 
terms of the Spatio-Temporal Event Probability (STEP), which will be described in detail in 
Section III-B  

An event could be defined in various ways depending on applications. In the context 
of object detection and tracking-the primary application we are interested in―we can 
define an event as an object of interest. In this sense, therefore, when an event occurs at a 
node, it implies that an object of interest is present within the sensing field of a node. 

A. Indirect Sensing in MAC Layer 

When an event occurs at a node, its communication neighbors must be notified so 
that they can get ready to handle the imminent increase in radio traffic. The occurrence of 
an event at a node is made known to its communication neighbors by setting a dedicated 
bit in the MAC header of packets. We define this dedicated bit as the Explicit Event 
Notification (EEN) bit. Since a node experiencing an event is most likely to generate traffic, 
embedding event information in the outgoing packet header is enough to notify 
neighboring nodes of the current event without incurring any additional communication 
traffic. Since MAC layer protocols are not responsible for acquiring direct sensor 
measurements, the proposed PDCA scheme provides an interface that allows the 
application layer to notify the MAC layer that the EEN bit of all outgoing packets should be 
set when an event is within the sensing field of the node. 

When a node directly receives or overhears a packet for which the EEN bit is set, 
this can be construed as the node indirectly sensing the event. The receiving node may 
assume that the event is located somewhere in the sensing field of the transmitting node. 
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This manner of localizing an event can be interpreted as constituting an augmented sensing 
field for the node receiving or overhearing the packets. Therefore, the augmented sensing 
field of a node is the union of the sensing field of its one-hop neighbors. 

In order to carry out indirect sensing, a node should be aware of the sensing fields of 
its communication neighbors. For that purpose, our system encompasses an initialization 
stage during which the node receives this information. Since it is beyond the scope of a 
MAC protocol to compute the sensing parameters of the node, we assume that after an 
initial sensor localization (or calibration for cameras) procedure, this information is 
available to the application layer. The application layer then delivers this information to the 
MAC layer in the form of a 3-tuple (𝑖𝑖, 𝐳𝐳, 𝑅𝑅), where 𝑖𝑖 identifies the node ((𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠is the local 
node address), 𝒛𝒛 corresponds to the center of the sensing field of the node, and 𝑅𝑅 is an 
ellipsoid that approximates its sensing range. When the node receives the initialization 
messages from its neighbors, then it simply stores them in a list within the MAC layer. 

B. Spatio-Temporal Event Probabilities 

Given an event 𝑗𝑗 at a time instant 𝑡𝑡𝑘𝑘, the corresponding spatio-temporal event 
probability (STEP) distribution at a particular position 𝒖𝒖, denoted as 𝑆𝑆𝑘𝑘+1|𝑘𝑘

𝑗𝑗 (𝐮𝐮), is given by 
the probability of the predicted position oj the event j at time 𝑡𝑡𝑘𝑘+1 = 𝑡𝑡𝑘𝑘 + 𝛿𝛿𝑘𝑘, where 𝛿𝛿𝑘𝑘 is a 
constant larger than the time needed to change the duty cycle. That is, let 𝐩𝐩𝑘𝑘+1|𝑘𝑘

𝑗𝑗  be the 
predicted position of the event, then the STEP at a position 𝒖𝒖 at a time instant 𝑡𝑡𝑘𝑘+1 is given 
by 𝑆𝑆𝑘𝑘+1|𝑘𝑘

𝑗𝑗 (𝐮𝐮) = 𝑃𝑃𝑃𝑃(𝐩𝐩𝑘𝑘+1|𝑘𝑘
𝑗𝑗 = 𝐮𝐮). Note that 𝑆𝑆𝑘𝑘+1|𝑘𝑘

𝑗𝑗 (𝐮𝐮) and 𝐩𝐩𝑘𝑘+1|𝑘𝑘
𝑗𝑗  correspond to the 

prediction to a future time Instant 𝑡𝑡𝑘𝑘+1. The time interval 𝛿𝛿𝑘𝑘 may be determined based on 
the next possible time instant that a node can actually adopt a new schedule. The STEP 
distribution is updated whenever a new measurement is obtained by indirect sensing. In 
the following sections we will describe how the detection of an event is used to estimate 
the most likely position of the event and to predict its future position from which the STEP 
distribution is obtained. 

It is reasonable to assume that as an object is being tracked, each node will acquire 
multiple observations of the object. The goal of the discussion that follows is to show how 
all the measurements acquired sequentially as the object is being tracked can be used in a 
recursive framework to predict as to what nodes are likely to see the object next with what 
probability. There are several recursive estimation methods that could be used for such 
purpose, such as the Particle filter,14,15 but we chose to use the Kalman filter16 because of its 
low computational requirements. 
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1) System Model and Kalman Filter Equations 

Each node that is currently engaged in observing and tracking the object of interest 
will create a state vector for the object. When a new object is detected within the 
augmented sensing field of a node, the state vector of the object is initialized with the initial 
event observation. Subsequently, the node uses the Kalman filter equations to update the 
state vector. This updated state vector is then used to make a prediction about where the 
event will appear next as it moves. 

We - model the event state as a 4-D vector that consists of the event position (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) 

at a discrete time instant 𝑘𝑘 and its velocity (𝑥𝑥
˙

𝑘𝑘, 𝑦𝑦
˙

𝑘𝑘). That is, the state vector is given by 𝐱𝐱𝑘𝑘 =
[𝑥𝑥𝑘𝑘 𝑦𝑦𝑘𝑘 𝑥𝑥

˙
𝑘𝑘 𝑦𝑦

˙
𝑘𝑘]𝑇𝑇. The system dynamics are modeled by  

𝐱𝐱𝑘𝑘+1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑥𝑥𝑘𝑘 + 𝛿𝛿𝑘𝑘𝑥𝑥

˙
𝑘𝑘 +

𝑎𝑎𝑥𝑥

2
𝛿𝛿𝑘𝑘

2

𝑦𝑦𝑘𝑘 + 𝛿𝛿𝑘𝑘𝑦𝑦
˙

𝑘𝑘 +
𝑎𝑎𝑦𝑦

2
𝛿𝛿𝑘𝑘

2

𝑥𝑥
˙

𝑘𝑘 + 𝑎𝑎𝑥𝑥𝛿𝛿𝑘𝑘

𝑦𝑦
˙

𝑘𝑘 + 𝑎𝑎𝑦𝑦𝛿𝛿𝑘𝑘 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
where 𝛿𝛿𝑘𝑘 is the time elapsed between two observations. That is, if the kth sample was 
taken at time 𝑡𝑡𝑘𝑘, the sample 𝑘𝑘 + 1 is acquired at time 𝑡𝑡𝑘𝑘+1 = 𝑡𝑡𝑘𝑘 + 𝛿𝛿𝑘𝑘. The event acceleration 
(𝑎𝑎𝑥𝑥, 𝑎𝑎𝑦𝑦) is modeled as white Gaussian noise with covariance matrix 𝑄𝑄𝑘𝑘. Then, the system 
dynamics can be represented as 𝐱𝐱𝑘𝑘+1 = 𝐹𝐹𝑘𝑘𝐱𝐱𝑘𝑘 + 𝑊𝑊𝑘𝑘𝐰𝐰𝑘𝑘, where 𝐰𝐰𝑘𝑘 is the process noise 
vector with covariance matrix 𝑄𝑄𝑘𝑘. 

The measurements are given by the approximated position of the event. Since a 
single bit is used to describe the event in the MAC header, we approximate the position of 
the event as a Gaussian distribution −(𝜇𝜇(𝑖𝑖), Σ(𝑖𝑖)), where 𝑖𝑖 indicates the ID of a packet 
sender with EEN set, 𝜇𝜇(𝑖𝑖) the center of the sensing field of Node 𝑖𝑖, and Σ(𝑖𝑖) the ellipsoidal 
approximation of the sensing field. The measurement model can then be described by 
𝐳𝐳𝑘𝑘+1 = 𝐻𝐻𝑘𝑘+1𝐱𝐱𝑘𝑘+1 + 𝐯𝐯𝑘𝑘+1, where 𝐯𝐯𝑘𝑘+1 is the measurement noise, assumed white Gaussian 
with covariance matrix 𝑅𝑅𝑘𝑘+1. If a measurement is received along with its corresponding 
time stamp and a time synchronization is maintained among nodes, we can easily obtain a 

reasonably precise measurement time and accurately compute 𝛿𝛿𝑘𝑘.17 Let 𝐱𝐱
^

𝑘𝑘+1|𝑘𝑘 and 𝐱𝐱
^

𝑘𝑘|𝑘𝑘 be 
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the predicted and the previously estimated state vectors, and similarly, 𝑃𝑃𝑘𝑘+1|𝑘𝑘 and 𝑃𝑃𝑘𝑘|𝑘𝑘 be 
the predicted and the previously estimated covanance matrices, Then, the time update 
equations of the Kalman filter are given by  

𝐱𝐱
^

𝑘𝑘+1|𝑘𝑘 = 𝐹𝐹𝑘𝑘𝐱𝐱
^

𝑘𝑘|𝑘𝑘

𝑃𝑃𝑘𝑘+1|𝑘𝑘 = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘𝐹𝐹𝑘𝑘
𝑇𝑇 + 𝑊𝑊𝑘𝑘𝑄𝑄𝑘𝑘𝑊𝑊𝑘𝑘

𝑇𝑇 .
 

(1)(2) 

The measurement update equations for the filter are given by  

𝐾𝐾𝑘𝑘+1 = 𝑃𝑃𝑘𝑘+1|𝑘𝑘𝐻𝐻𝑘𝑘+1
𝑇𝑇 (𝐻𝐻𝑘𝑘+1𝑃𝑃𝑘𝑘+1|𝑘𝑘𝐻𝐻𝑘𝑘+1

𝑇𝑇 + 𝑅𝑅𝑘𝑘+1)−1

𝐱𝐱
^

𝑘𝑘+1|𝑘𝑘+1 = 𝐱𝐱
^

𝑘𝑘+1|𝑘𝑘 + 𝐾𝐾𝑘𝑘+1(𝐳𝐳𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝐱𝐱
^

𝑘𝑘+1|𝑘𝑘)
𝑃𝑃𝑘𝑘+1|𝑘𝑘+1 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘+1𝐻𝐻𝑘𝑘+1)𝑃𝑃𝑘𝑘+1|𝑘𝑘 ,

 

(3)(4)(5) 
 
where 𝐾𝐾𝑘𝑘+1 denotes the Kalman gain. 

C. Duty Cycle Adaptation 

While updating the Kalman filter state as new measurements are available, each 
node also predicts the probability that an event will occur at a particular position and time 
instant using the prediction step in the Kalman filter framework. Given this predicted STEP 
distribution, we first compute how much the STEP overlaps with the sensing field of each 
node. Next, we show how a node determines its proper duty cycle based on this overlap 
and how the duty cycle adaptation actually takes place.  

 
Figure 1: A depiction of a WCN engaged in tracking a moving object at two subsequent time instants. The 
dotted rectangles represent the sensing field of nodes. The red star indicates the object of interest and 
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the black solid arrows its moving direction. The regions divided by black solid ellipsoids indicate 
examples of a contour map of the STEP of the event predicted by a node. 

1) Future Event Detection Probability 

Given the STEP of an event 𝑗𝑗 at time 𝑡𝑡𝑘𝑘, each node estimates how likely the event 
will occur within its sensing field at time 𝑡𝑡𝑘𝑘+1. The probability that an event 𝑗𝑗 will occur 
within the sensing field of a node 𝑖𝑖 at time 𝑡𝑡𝑘𝑘+1, 𝑆𝑆𝑘𝑘+1|𝑘𝑘

(𝑗𝑗,𝑖𝑖) , is computed by 𝑆𝑆𝑘𝑘+1|𝑘𝑘
(𝑗𝑗,𝑖𝑖) =

� 𝑃𝑃𝑃𝑃(𝐩𝐩𝑘𝑘+1|𝑘𝑘
𝑗𝑗 = 𝐮𝐮)

𝐮𝐮∈𝐺𝐺(𝑖𝑖)
𝑑𝑑𝐮𝐮 = ∫  𝐮𝐮∈𝐺𝐺(𝑖𝑖) 𝑆𝑆𝑘𝑘+1|𝑘𝑘

𝑗𝑗 (𝐮𝐮)𝑑𝑑𝐮𝐮, where 𝐺𝐺(𝑖𝑖) denotes the sensing field of 

the node 𝑖𝑖. This probability is computed as the integration of STEP over the sensing field of 
a node. Since it represents the probability that a node will detect an event in a future time 
instant, we call it the Future Event Detection Probability (FEDP) at a node. The FEDP then 
plays a role of the metric for determining a proper duty cycle. Computing the exact 
integration of STEP over the entire sensing field of a node entails a large amount of 
computation which may not be feasible for real-time operation. Thus, we can use instead an 
approximation scheme such as the Euclidean distance from the predicted event position to 
the center of the sensing field or the Mahalanobis distance between them. 

2) Determining a Proper Duty cycle 

Once an event is detected and its corresponding FEDP value at a node is computed, 
each node decides its appropriate level of duty cycle: the higher the FEDP, the higher the 
duty cycle the node adopts. Suppose we have 𝑁𝑁 levels of duty cycle―d1, d2,…, dN —with 𝑑𝑑𝑁𝑁 
being the highest. Let 𝑑𝑑𝑐𝑐 be the current duty cycle level, where 𝑐𝑐 ∈ {1, … , 𝑁𝑁}. Whenever a 
STEP update occurs, a node will compute its new FEDP and accordingly a new duty cycle 
level 𝑑𝑑𝑚𝑚, and schedule a change of duty cycle to be executed at time 𝑡𝑡𝑘𝑘+1 = 𝑡𝑡𝑘𝑘 + 𝛿𝛿𝑘𝑘. At time 
𝑡𝑡𝑘𝑘+1, the node then adopts the new schedule corresponding to the duty cycle level 𝑑𝑑𝑚𝑚 and 
broadcasts it to its neighbors so that they can be aware of the new communication 
schedule. 

Consider an example illustrated in Figure 1 where an event is being tracked and its 
future position is predicted. The ellipsoids represent the equiprobable contours of the 
STEP distribution, which is assumed Gaussian for computational convenience. If the event, 
which was initially detected by Node F, moves to the sensing field of Node B thereby 
triggering packet transmissions from Node B, as shown in Figure 1(a), then the EEN field 
will be set for all the packets transmitted by Node B, informing nodes A and H the 
occurrence of the event. Upon the reception of a packet from B, a Kalman filter in both 
nodes A and H will be created, initialized, and updated due to this indirectly sensed 
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measurement. Nodes in the neighborhood of B will then compute the current STEP 
𝑆𝑆𝑘𝑘+1|𝑘𝑘

𝑗𝑗 (𝐮𝐮) and FEDP 𝑆𝑆𝑘𝑘+1|𝑘𝑘
(𝑗𝑗,𝑖𝑖)  with respect to their sensing nelds. Based on these values, the 

nodes will decide their appropriate duty cycle levels. 

Unlike the occurrence of an event, we do not expect the disappearance of an event to 
trigger immediate communication traffic among nearby nodes in case of indirect sensing. 
Therefore, the disappearance of an event can only be inferred by the absence of packets 
with EEN set for a period of time. Thus, duty cycle adaptation is carried out using a soft 
state approach with a timeout. Note that since each node computes its own STEP 
independently based on not only its own measurements but also the messages received by 
its neighbors, the STEP estimated at each node will be slightly different. 

3) Exponential Frame Length Adjustment 

Once an event is detected and a new duty cycle level is determined, the length of a 
frame is incremented or decremented exponentially. Let 𝑇𝑇𝑐𝑐 be the current frame length 
corresponding to the duty cycle level 𝑑𝑑𝑐𝑐, 𝑇𝑇1 the frame length of the lowest duty cycle level 
corresponding to 𝑑𝑑1, and 𝑀𝑀 the base of an exponentially varying frame length. Then, 𝑇𝑇𝑐𝑐 is 
one of 𝑇𝑇𝑛𝑛 = 𝑇𝑇1

𝑀𝑀𝑛𝑛, where 𝑛𝑛 ∈ {1, … , 𝑁𝑁}, and 𝑀𝑀 ∈ ℕ∗. Note that in DSMAC and AMAC, 𝑀𝑀 is 
always set to two, whereas in the proposed PDCA scheme it could be any number. If 𝑀𝑀 is 
two or three, for example, then the frame length changes by doubling or tripling. This 
exponentially varying adaptive frame method guarantees that any pair of nodes is able to 
communicate by an algorithm that finds which time slots are shared by a pair of 
neighboring nodes, even if the nodes operate at different duty cycles. Details of this 
algorithm are omitted due to space constraints. 

Note that the proposed PDCA scheme allows different nodes in the network to 
operate under various duty cycles, resulting in heterogeneous schedules in a network. As a 
consequence, the active periods of neighboring nodes may not overlap, meaning that the 
period during which a given node needs to transmit a message to its neighbor may not 
coincide with the period the neighbor is listening to the wireless medium. To overcome this 
problem, we developed a mechanism that allows nodes to calculate the moments when 
they are allowed to transmit messages to their neighbors based solely on the knowledge of 
their respective schedules, that is, without resorting to additional message exchanges. Due 
to space constraints, however, we do not describe this mechanism in details in this paper. 
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D. Fast Delivery of Event-related Packets 

To reduce the latency in the delivery of information about an event to the base 
station, we explicitly distinguish the intermediate nodes along the routing path used to 
deliver this information. As we previously discussed, event-detecting nodes are identified 
by setting the EEN bit in the MAC header of outgoing packets. To indicate that a node is 
routing event-related information to the base station, on the other hand, we define the 
Explicit Event-Routing Notification (EERN) bit in the MAC header. When a node is the 
intended recipient of a packet in which the EEN or EERN bit is set, it implies that a 
prioritized flow that contains information about an event is being routed through the node. 
Thus, upon the reception of this packet, the node sets the EERN bit for all packets to be 
transmitted in the future. As long as a node is part of a routing path, it increases its duty 
cycle to a pre-defined level 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟to minimize the end-to-end latency. For example, 
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟could be set to the maximum duty cycle 𝑑𝑑𝑁𝑁. Membership of a node to a routing path 
is also maintained as a soft state with a timeout. 

SECTION IV. 

Performance Evaluation 

In this section we demonstrate the effectiveness of the proposed PDCA scheme by 
evaluating the performance of the state-of-the-art MAC protocol and comparing with the 
performance of a new MAC protocol which includes the proposed PDCA scheme. We chose 
TMAC [6] as the base MAC protocol for our evaluation, since it is known to be a well-
performing synchronous MAC protocol that allows active time adaptation. However, TMAC 
does not allow for frame length adaptation, and more importantly, no prediction is 
involved in the adaptation. Rather, TMAC reacts to the current network condition. By 
applying the PDCA scheme to TMAC, the frame length also becomes dynamic and duty cycle 
adjustments become predictive, resulting in better adaptivity without any design conflict. 
This modified TMAC will be called P-TMAC. 

Before going into details, we would like to make a note that our proposed approach 
may not perform well in extreme cases in which the Kalman filter-based estimation is not 
reasonably accurate because of severely low sensing resolution. Such conditions can be 
found in extremely sparse networks. In addition to the spatial sensing resolution, the 
estimation accuracy would be low if the sampling frequency is too low compared to the 
mobility of an event. 

http://dx.doi.org/10.1109/ICDSC.2011.6042908
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the 
link in the citation at the bottom of the page. 

Fifth ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), August 22-25, 2011, (August 2011): 1-6. DOI. This article is © 
Institute of Electrical and Electronics Engineers (IEEE) and permission has been granted for this version to appear in e-Publications@Marquette. 
Institute of Electrical and Electronics Engineers (IEEE) does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from Institute of Electrical and Electronics Engineers (IEEE). 

11 
 

The mobility of typical events must be taken into consideration when choosing 
proper PDCA parameters such as the motion model uncertainty and the STEP prediction 
interval. In this paper, motion uncertainty is empirically determined and the time period 
for STEP prediction is set to be identical to the base frame length. Optimizing these 
parameters according to the mobility of particular event types is part of future 
investigation. 

We evaluate P-TMAC in the context of target tracking using the Castalia simulator18 
which is based on OMNeT++. We simulate a network consisting of 200 TelosB nodes 
equipped with cameras deployed randomly under the ceiling viewing downwards in a 
200m×200m area. The sensing range of each camera is a circle with a radius of 40m. A 
randomly moving object is assumed to exist in the network during one third of the total 
simulation time.  

 
Figure 2: Simulation results of network performance in terms of (a) latency, (b) throughput, and (c) 
energy consumption of P-TMAC and TMAC with four different duty cycles. 
 
Table I: Summary of simulation parameters. 
Tx range ∼ 100meters SYNC 22Bytes 

Tx power 42.24mW RTS/CTS 14Bytes 
Rx power 38mW ACK 14Bytes 

Sleep power 15 μW DATA 44Bytes 

Idle power 3mW Sim. time 2400Sec. 

We compare the performance of P-TMAC with that of TMAC. The base frame length 
of P-TMAC is set to 𝑇𝑇 =  1000𝑚𝑚𝑚𝑚, its active period to 30ms, and its frame length is allowed 
to vary among 𝑁𝑁 = 4 levels, corresponding to 𝑇𝑇, 𝑇𝑇/2, 𝑇𝑇/4, and 𝑇𝑇/8, that is, 𝑀𝑀 = 2. Since the 
active period remains constant, these frame lengths correspond to duty cycles of 3%, 6%, 
12%, and 24% respectively. To provide a fair comparison, we evaluate T-MAC operating at 
the same four duty cycles. In our experimental results, these different TMAC instances are 
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identified as TMAC-3, TMAC-6, TMAC-12, and TMAC-24. The detailed parameters used in 
our evaluation are summarized in Table I. 

Energy efficiency is evaluated based on the energy consumed only by the radio. To 
capture the performance characteristics of the MAC protocols in a collaborative processing 
scenario, we employ a QoS metric specifically designed for performance evaluation in 
event-driven WSNs, called time-bounded parameter-estimation accuracy (TIBPEA).19 TIB-
PEA is a QoS evaluation metric designed based on the fact that the greater the time-
bounded reliability with which the neighboring nodes can communicate with each other, 
the greater the accuracy of any parameter that must be computed collaboratively. TIBPEA 
corresponds to the average percentage of neighbors that successfully reply to a broadcast 
message within a certain timeout period.19 

A. Individual Processing & Reporting Scenario 

In this scenario, each node continuously senses the environment according to its 
own sensing interval. Since the nodes have sensing fields overlapped with others, the event 
may trigger multiple flows to the sink in the vicinity of the event, each flow being directed 
by a simple tree-based routing protocol. 

Because of the adaptive frame length design, P-TMAC is expected to show 
performances in between TMAC-3 and TMAC-24. Fig. 2(a) shows that the latency of P-
TMAC is very low, being comparable to that of TMAC-24 at different sampling intervals. Fig. 
2(b) shows the throughput evaluation results. Obviously, shorter sampling intervals entail 
higher packet rates. To interpret this result, let us define the period from when an event 
enters the sensing field of a node to when it leaves it as the sensing round. Let us also 
define the first packet transmitted during each sensing round as the link initializing packet. 
With the same object motion, higher sampling rate causes more packet generation per 
sensing round, resulting in a low proportion of link initializing packets to the overall 
number of packets. TMAC is designed to work best when the rate of link initializing packets 
is low because of low sampling interval or slow object movement. As we can see in Fig. 
2(a), the average per-hop latency of TMAC-3 increases as the sampling interval increases 
while P-TMAC retains its performance similar to that of TMAC-24. Providing performance 
comparable to TMAC-24 in terms of latency and throughput, P-TMAC still achieves energy 
efficiency between TMAC-3 and TMAC-6, as shown in Fig. 2(c). It implies that P-TMAC 
substantially improves the tradeoff between energy and latency when compared to TMAC. 
For less common event types in which the event duration is less than one third of the entire 
simulation time, this improvement would be more evident. 
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B. Collaborative Processing & Reporting Scenario 

When a node detects an event in this scenario, it first broadcasts a request message 
to its neighbors and collects their measurements to obtain more in-depth understanding of 
the event by collaborative data processing, which is usually involved in distributed 
algorithms. We conduct two sets of simulations with average target speeds of 6m/s and 
24m/s. In each set, TIBPEA is measured with different timeout bounds. In all simulations, 
when the timeout bound is tight, the performance of P-TMAC is comparable to that of 
TMAC-24, as shown in Fig. 3. When the timeout bound is loose, P-TMAC still shows better 
performance than TMAC-3 but worse than TMAC-24.This is caused by inherent additional 
communication overhead of P-TMAC for broadcasting SYNC messages whenever a duty 
cycle adaptation occurs. Nonetheless, the superior performance of P-TMAC for delay-
critical applications satisfies our design goal. 

 
Figure 3: Simulation results of TIBPEA with different average target speeds: (a) 6m/s and (b) 24m/s. 
 
SECTION V. 

Conclusion 

We have presented a predictive duty cycle adaptation scheme (PDCA) suitable for 
event-driven WSNs that actively adapts the duty cycle of nodes by predicting the 
probability that an event will occur at a node in the future. This probability is estimated 
from the future state of an event predicted by a Kalman filter by taking measurements from 
direct/indirect sensing. We proved using simulations of object tracking scenarios in 
realistic environments that our approach outperforms TMAC in terms of TIBPEA and 
presents a better tradeoff between energy efficiency and throughput or latency. We found 
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that our approach is superior to others especially when the mobility of an event is large 
and when the latency requirement is strict. Predictive adaptation of other system 
parameters such as the camera sensing rate would be another future improvement since 
image capturing and processing is another major energy consuming operation in WCNs. 
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