10,967 research outputs found

    Distributed Creation and Adaptation of Random Scale-Free Overlay Networks

    Get PDF
    Abstract-Random scale-free overlay topologies provide a number of properties like for example high resilience against failures of random nodes, small (average) diameter as well as good expansion and congestion characteristics that make them interesting for the use in large-scale distributed systems. A number of these properties have been shown to be influenced by the exponent of their power law degree distribution. In this article, we present a distributed rewiring scheme that is suitable to effectuate random scale-free overlay topologies with an adjustable degree distribution exponent. The scheme uses a biased random walk strategy to sample new endpoints of edges being rewired and relies on an equilibrium model for scale-free networks. The bias of the random walk strategy can be tuned to produce random scale-free networks with arbitrary degree distribution exponents greater than two. We argue that the rewiring strategy can be implemented in a distributed fashion based on a node's information about its immediate neighbors. We present both analytical arguments as well as results that have been obtained in simulations of the proposed protocol. Keywords-scale-free; overlay networks; adaptation; selforganization; Peer-to-Peer; During the last decade, the increasing spread and importance of large-scale Peer-to-Peer systems has raised significant research interest in the design and analysis of robust and efficient overlay networks. In this research, structured and unstructured approaches can be distinguished. Mimicking the use of data structures in traditional computing, highly structured overlay topologies facilitate the use of efficient distributed algorithms with deterministic performance. However, the overhead entailed by the construction and maintenance of such deterministically structured topologies questions their usability in large-scale scenarios with dynamic and potentially faulty participants. Constituting a different approach, unstructured overlay networks do not impose constraints about the detailed structure of the emerging network topology. Rather than using costly and potentially complex routines for building and maintaining sophisticated network structures, in such unstructured overlays links can arise in a seemingly random and uncoordinated fashion. They are thus particularly suitable for highly dynamic scenarios in which the operational overhead entailed by structured approaches can possibly dominate a system's overall performance. While the use of unstructured overlays can reduce construction and maintenance overhead, designing efficient distributed algorithms with predictable performance is hardly possible when making no assumptions whatsoever about an overlay's structure. Interestingly, based on a stochastic model of the system in question and arguments from random graph theory and complex network science, it is often possible to reason about structural properties of the resulting network topology that hold almost surely in the limit of large systems. Similarly, the performance of a number of dynamical processes -many of them relevant to distributed computing systems -has been studied in random network structures. For sufficiently large systems, based on randomized overlay topologies one can thus obtain strong, though probabilistic guarantees about their structure and performance. Considering the classical taxonomy of deterministically structured and completely unstructured overlay networks, this suggests an intermediate class of probabilistically structured topologies that promises to combine the benefits of both. During the last decade, much of the work in the field of random networks has been focused around scale-free networks that are characterized by a power law degree distribution P (k) ∝ k −γ . The fact that networks with such scale-free characteristics seem to emerge naturally in a variety of natural, social and technological contexts has awakened the interest of researchers in disciplines as diverse as mathematics, statistical physics, biology, sociology, and computing. It has since been shown that scale-free networks provide a number of interesting properties like a remarkable robustness against random failures Based on this observation, during the last couple of years, the performance of distributed algorithms operating in scale-free networks has been studied

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe

    On the Topology Maintenance of Dynamic P2P Overlays through Self-Healing Local Interactions

    Full text link
    This paper deals with the use of self-organizing protocols to improve the reliability of dynamic Peer-to-Peer (P2P) overlay networks. We present two approaches, that employ local knowledge of the 2nd neighborhood of nodes. The first scheme is a simple protocol requiring interactions among nodes and their direct neighbors. The second scheme extends this approach by resorting to the Edge Clustering Coefficient (ECC), a local measure that allows to identify those edges that connect different clusters in an overlay. A simulation assessment is presented, which evaluates these protocols over uniform networks, clustered networks and scale-free networks. Different failure modes are considered. Results demonstrate the viability of the proposal.Comment: A revised version of the paper appears in Proc. of the IFIP Networking 2014 Conference, IEEE, Trondheim, (Norway), June 201

    Self-Healing Protocols for Connectivity Maintenance in Unstructured Overlays

    Full text link
    In this paper, we discuss on the use of self-organizing protocols to improve the reliability of dynamic Peer-to-Peer (P2P) overlay networks. Two similar approaches are studied, which are based on local knowledge of the nodes' 2nd neighborhood. The first scheme is a simple protocol requiring interactions among nodes and their direct neighbors. The second scheme adds a check on the Edge Clustering Coefficient (ECC), a local measure that allows determining edges connecting different clusters in the network. The performed simulation assessment evaluates these protocols over uniform networks, clustered networks and scale-free networks. Different failure modes are considered. Results demonstrate the effectiveness of the proposal.Comment: The paper has been accepted to the journal Peer-to-Peer Networking and Applications. The final publication is available at Springer via http://dx.doi.org/10.1007/s12083-015-0384-

    Clustering Algorithms for Scale-free Networks and Applications to Cloud Resource Management

    Full text link
    In this paper we introduce algorithms for the construction of scale-free networks and for clustering around the nerve centers, nodes with a high connectivity in a scale-free networks. We argue that such overlay networks could support self-organization in a complex system like a cloud computing infrastructure and allow the implementation of optimal resource management policies.Comment: 14 pages, 8 Figurs, Journa

    Mesmerizer: A Effective Tool for a Complete Peer-to-Peer Software Development Life-cycle

    Get PDF
    In this paper we present what are, in our experience, the best practices in Peer-To-Peer(P2P) application development and how we combined them in a middleware platform called Mesmerizer. We explain how simulation is an integral part of the development process and not just an assessment tool. We then present our component-based event-driven framework for P2P application development, which can be used to execute multiple instances of the same application in a strictly controlled manner over an emulated network layer for simulation/testing, or a single application in a concurrent environment for deployment purpose. We highlight modeling aspects that are of critical importance for designing and testing P2P applications, e.g. the emulation of Network Address Translation and bandwidth dynamics. We show how our simulator scales when emulating low-level bandwidth characteristics of thousands of concurrent peers while preserving a good degree of accuracy compared to a packet-level simulator

    Spectra: Robust Estimation of Distribution Functions in Networks

    Get PDF
    Distributed aggregation allows the derivation of a given global aggregate property from many individual local values in nodes of an interconnected network system. Simple aggregates such as minima/maxima, counts, sums and averages have been thoroughly studied in the past and are important tools for distributed algorithms and network coordination. Nonetheless, this kind of aggregates may not be comprehensive enough to characterize biased data distributions or when in presence of outliers, making the case for richer estimates of the values on the network. This work presents Spectra, a distributed algorithm for the estimation of distribution functions over large scale networks. The estimate is available at all nodes and the technique depicts important properties, namely: robust when exposed to high levels of message loss, fast convergence speed and fine precision in the estimate. It can also dynamically cope with changes of the sampled local property, not requiring algorithm restarts, and is highly resilient to node churn. The proposed approach is experimentally evaluated and contrasted to a competing state of the art distribution aggregation technique.Comment: Full version of the paper published at 12th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS), Stockholm (Sweden), June 201

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Get PDF
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components. The notion organic highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying these characteristics are increasingly being investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic overlay networks with predictable macroscopic propertie
    • 

    corecore