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Abstract—Random scale-free overlay topologies provide a
number of properties like for example high resilience against
failures of random nodes, small (average) diameter as well as
good expansion and congestion characteristics that make them
interesting for the use in large-scale distributed systems. A
number of these properties have been shown to be influenced
by the exponent of their power law degree distribution. In
this article, we present a distributed rewiring scheme that is
suitable to effectuate random scale-free overlay topologies with
an adjustable degree distribution exponent. The scheme uses a
biased random walk strategy to sample new endpoints of edges
being rewired and relies on an equilibrium model for scale-free
networks. The bias of the random walk strategy can be tuned
to produce random scale-free networks with arbitrary degree
distribution exponents greater than two. We argue that the
rewiring strategy can be implemented in a distributed fashion
based on a node’s information about its immediate neighbors.
We present both analytical arguments as well as results that
have been obtained in simulations of the proposed protocol.

Keywords-scale-free; overlay networks; adaptation; self-
organization; Peer-to-Peer;

During the last decade, the increasing spread and impor-
tance of large-scale Peer-to-Peer systems has raised signifi-
cant research interest in the design and analysis of robust and
efficient overlay networks. In this research, structured and
unstructured approaches can be distinguished. Mimicking
the use of data structures in traditional computing, highly
structured overlay topologies facilitate the use of efficient
distributed algorithms with deterministic performance. How-
ever, the overhead entailed by the construction and mainte-
nance of such deterministically structured topologies ques-
tions their usability in large-scale scenarios with dynamic
and potentially faulty participants. Constituting a different
approach, unstructured overlay networks do not impose con-
straints about the detailed structure of the emerging network
topology. Rather than using costly and potentially complex
routines for building and maintaining sophisticated network
structures, in such unstructured overlays links can arise in a
seemingly random and uncoordinated fashion. They are thus
particularly suitable for highly dynamic scenarios in which
the operational overhead entailed by structured approaches
can possibly dominate a system’s overall performance.

While the use of unstructured overlays can reduce con-
struction and maintenance overhead, designing efficient dis-

tributed algorithms with predictable performance is hardly
possible when making no assumptions whatsoever about
an overlay’s structure. Interestingly, based on a stochas-
tic model of the system in question and arguments from
random graph theory and complex network science, it is
often possible to reason about structural properties of the
resulting network topology that hold almost surely in the
limit of large systems. Similarly, the performance of a
number of dynamical processes - many of them relevant to
distributed computing systems - has been studied in random
network structures. For sufficiently large systems, based on
randomized overlay topologies one can thus obtain strong,
though probabilistic guarantees about their structure and
performance. Considering the classical taxonomy of deter-
ministically structured and completely unstructured overlay
networks, this suggests an intermediate class of probabilis-
tically structured topologies that promises to combine the
benefits of both.

During the last decade, much of the work in the field
of random networks has been focused around scale-free
networks that are characterized by a power law degree
distribution P (k) ∝ k−γ . The fact that networks with
such scale-free characteristics seem to emerge naturally in
a variety of natural, social and technological contexts has
awakened the interest of researchers in disciplines as diverse
as mathematics, statistical physics, biology, sociology, and
computing. It has since been shown that scale-free networks
provide a number of interesting properties like a remarkable
robustness against random failures [4], [13], small diameter
and average path lengths [8], [11] as well as favorable
expansion and congestion properties [16], [33]. Some of
these properties make them interesting for the design of
large-scale computing systems and - in fact - for certain
networked computing systems it has been observed that
scale-free structures emerge in a seemingly self-organized
way [3], [14], [27], [29].

Based on this observation, during the last couple of
years, the performance of distributed algorithms operating in
scale-free networks has been studied. For the problems of
distributed search [1], [9], [26], information dissemination
and entropy reduction protocols [21] as well as synchro-
nization [31], distributed schemes have been derived that
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seem to work particularly efficiently in scale-free networks.
Considering a scale-free network topology with a degree
distribution P (k) ∝ k−γ , it has further been argued that
the exponent γ has massive influence on network properties
like diameter [11], the vulnerability against targeted attacks
as well as the performance of dynamical processes [7]. The
reason for this can be found in the fact that the exponent γ
determines the skewness of the degree distribution and thus
the frequency and magnitude of highly connected hub nodes.
For the practical design of scale-free overlay topologies,
the degree distribution exponent is thus a critical parameter
which largely influences their robustness, the performance
of distributed algorithms as well as the distribution of load
being imposed on individual machines.

However while these results are clearly important for
the design of networked computing systems, many of them
have been obtained for equilibrium statistical ensembles of
random networks, that is for probability spaces in which
networks with identical degree distribution are equiprobable.
One needs to take care when wanting to apply this rich body
of theoretical findings to practical systems. Even though the
networks created by a certain process may exhibit a scale-
free degree distribution, due to complex correlations that
may be introduced by protocols influencing the structure of
actual overlay topologies, their properties may very well
differ from those of random scale-free networks. When
wanting to rely on stochastic guarantees that hold for random
networks, it is thus crucial to design protocols that recreate
the appropriate statistical ensemble for which the guarantees
have been obtained in the first place.

In this article, we study the question how random scale-
free overlay topologies can be effectuated in practical Peer-
to-Peer systems in a way that allows to reasonably apply the
rich body of theoretical findings on equilibrium statistical
ensembles of uncorrelated scale-free networks. For this, we
study a protocol that creates explicitly randomized scale-
free topologies with tunable degree distribution exponent.
For the networks created by the proposed protocol, all
theoretical findings about the properties of random scale-free
networks as well as about the relation between the degree
distribution exponent and the performance of dynamical
processes operating upon them are immediately applicable.
We further argue that the proposed protocol is suitable to
adapt the degree distribution exponent and thus fine-tune
the heterogeneity of overlay connectivity in a distributed
and directed fashion while maintaining the overall scale-free
characteristics of the topology.

The distributed rewiring mechanism presented in this
article, is based on the equilibrium model of uncorrelated
scale-free networks that has been considered in [18] as well
as [25] and makes use of a biased random walk strategy
in order to sample the endpoints of edges being rewired.
As we shall see later, the efficiency and thus feasibility
of the mechanism is based on the favorable expansion

properties of certain classes of random networks. A detailed
description and derivation of the proposed protocol will
be presented in section I. Here we further present some
analytical arguments on the convergence behavior of the
random walk sampling strategy underlying the protocol
being presented in the subsequent section II. In section III
we present simulation results that have been obtained using
an implementation of the proposed rewiring scheme. Having
briefly reviewed related work, in section V we conclude the
article by summarizing its main contributions and pointing
out a number of open issues and threats to validity that could
not be addressed so far.

I. CREATING AND ADAPTING SCALE-FREE OVERLAYS

As has been argued above, the exponent γ is a macro-
scopic, statistical parameter that influences the structural
properties of random networks with a power law degree
distribution P (k) ∝ k−γ . In the following, we thus in-
tend to derive a distributed protocol that can be used
to effectuate network topologies that are randomly drawn
from the ensemble of scale-free networks with a particular
degree distribution exponent. As initial situation, we assume
an arbitrary, connected overlay topology. While for the
functioning of the scheme no particular initial state of the
overlay is required as long as it is connected, it will later
be argued that the initial topology influences the efficiency
of the scheme in terms of the number of messages that
need to be exchanged. For simplicity, we further assume
that each of the n nodes is uniquely identified by a numeric
identifier i ∈ {1, . . . , n}. However in sufficiently large
systems, per-node quantities i that are chosen uniformly at
random - and thus not necessarily unique - can be used
instead. In order to simplify derivation and analysis, here we
further consider a static situation in which no nodes enter
or leave the system. Clearly, the main motivation to use a
probabilistic overlay topology in the first place is to support
highly dynamic systems in which node joins and exits are
frequent. In sections II-B and III, we will thus consider
dynamic equilibrium situations with fluctuating participants.

In order to derive a distributed scheme that can be used to
influence the structure of scale-free overlays, we first need
a model that is capable of generating uncorrelated network
topologies with tunable degree distribution exponents. Here
we use a simple equilibrium model for scale-free networks
with a fixed number of nodes that has been introduced in
[18] and analyzed in [25]. In this model it is assumed that
each node i ∈ {1, . . . , n} is assigned a weight

wi = i−α

for some parameter α in the range (0, 1). It is then
assumed that m edges are created between pairs of nodes
(i, j) chosen with probabilities pi and pj that are given by
the normalized weights



pi =
wi∑n
k=1 wk

. (1)

As has been argued in [25], this simple model produces
uncorrelated random scale-free networks with a degree dis-
tribution

P (k) ∝ k−(1+ 1
α )

Hence, for α→ 0, the model yields a scale-free network
with the exponent γ → ∞, while for α → 1 the exponent
γ converges to two. Hence, it provides a parameter that can
be adjusted to effectuate random scale-free networks with an
arbitrary degree distribution exponent γ in the range (2,∞).

In order to apply this simple model in practical networked
systems, a distributed scheme is required that creates edges
between two nodes i and j in an overlay network with
probability pipj . For this, we assume that we start with a
random, connected overlay topology consisting of n nodes
and m edges. In practice, this initial topology may emerge
by means of an arbitrary bootstrapping method that connects
joining nodes to existing participants either deterministically
or at random. We can then view the above model as a
rewiring scheme that gradually replaces existing edges so
that edges between node pairs emerge with the desired
node-dependent probabilities. For this, a node initiating the
rewiring of an edge must be able to sample two new
endpoints for the edge being rewired according to the prob-
ability measure given in equation 1. While one can imagine
different mechanisms by which this can be achieved [23], a
simple and well-established method to sample nodes in Peer-
to-Peer systems is by means of random walks [17], [35].
For this we consider that nodes wishing to rewire an edge
sample two new endpoints by means of two independent
random walks through the current network topology. For a
classical, unbiased random walk, the probability πi(t) to find
the walker at an arbitrary time t at node i converges to

πi(t)→
di
N · d̄

(t→∞)

where d̄ is the average node degree of the network.
In order to sample nodes with the probabilities given in
equation 1 we need to introduce a random walk bias that in-
fluences the transition probabilities accordingly. Considering
a random walk in a connected overlay topology G(V,E) as
Markov chain with state space V and stationary distribution
π, the random walk bias can be configured by means of
a Metropolis-Hastings chain in such a way that a desired
stationary distribution π holds [5], [20], [28]. In general,
this can be achieved by introducing a bias as shown in the
following transition matrix T :

Tij =


1
di

min
{
πj
πi

di
dj
, 1
}

(i, j) ∈ E, i 6= j

1− 1
di

∑
(k,i)∈E Pik i = j

0 (i, j) /∈ E
(2)

Here di denotes the current degree of node i ∈ V
and an entry Tij gives the probability that a random walk
residing at node i moves to node j. The fact that this
transition matrix has stationary distribution π follows from
the reversibility of the underlying Markov chain, as well
as from its irreducibility (assuming a connected network
topology) and aperiodicity (self-loops are possible). Under
these restrictions, the Markov chain convergence theorem
ensures that the probability πi(l) to find a random walker
that has been started in an arbitrary node resides at node i
after l steps converges to π as l goes to infinity.

From this, one can easily configure a random walk bias
that results in a stationary distribution suitable to sample
nodes in a way that - after rewiring - a scale-free network
with degree distribution exponent γ emerges. From the
probability pi in equation 1 and the fact that it gives rise
to a scale-free network with degree distribution exponent
1 + 1

α , we obtain the desired stationary distribution

πγi =
i

−1
γ−1∑n

k=1 k
−1
γ−1

(3)

which, with equation 2 and πj
πi

=
(
i
j

) 1
γ−1

, yields the
following transition matrix P :

Pij =


1
di

min
{(

i
j

) 1
γ−1 di

dj
, 1

}
(i, j) ∈ E, i 6= j

1− 1
di

∑
(k,i)∈E Pik i = j

0 (i, j) /∈ E

(4)

Thus, a random walk with the above bias can be used to
sample endpoints of edges and thus perform rewiring oper-
ations that effectuate random scale-free network topologies
with a particular degree distribution exponent.

A. Bounding the Random Walk Length

The goal of this article is to study the practical applica-
bility of the above strategy in a distributed rewiring scheme.
Hence, an important question that needs to be answered is
how many steps a random walk with the above bias needs to
take before the probability πi(l) to find it in a node i after l
steps is sufficiently close to the desired stationary limit πi.
In the rewiring protocol presented in the following section,
this translates to the number of messages that need to be
exchanged for a single rewiring operation. To assess this
convergence behavior analytically, one first needs to give
a formal definition of when two probability distributions π
and π′ shall be considered sufficiently close. For this we use



the usual definition of the total variation distance D which
- for two probability measures π and π′ and a finite state
space V - is defined as follows:

D(π′, π) =
1

2

∑
v∈V
|π′(v)− π(v)|

The configuration of the random walk bias according to
equation 4 and the Markov convergence theorem ensure that
D(π(l), π) → 0 for l → ∞. For an arbitrarily chosen total
variation distance ε > 0 we can then assess the number of
steps l our random walk needs to take until D(π(l), π) ≤ ε.
In order to bound the minimally required number of steps
l, the arguments put forth in [32] can be used. Here it is
argued that an upper bound for l is given by

l ≤
ln
(

1
πsε

)
1− |λ2(P )|

where π is the stationary distribution of the Markov chain,
λ2(P ) is the second smallest eigenvalue of the transition
matrix P and s is the initial state. Thus, finding an upper
bound for the number of random walk steps requires to find
a lower bound for the second smallest eigenvalue λ2(P ) of
the transition matrix. Unfortunately, obtaining good bounds
for the eigenvalues of stochastic matrices is a non-trivial
task. Nevertheless, based on the canonical path approach
introduced in [12], [32], analytical arguments concerning
the convergence behavior of random walks with a Zipf
stationary distribution have been put forth in [35], [36].
In the following we briefly repeat these arguments for the
particular random walk strategy considered in this article.
In [36] it has been argued that, if the stationary distribution
π is highly skewed, a lower bound for the eigenvalue gap
1− |λ2(P )| is given by

1− |λ2(P )| ≥ πmin
D · dmax

.

Here D denotes the diameter of the network topology
upon which the random walk operates, πmin is the mini-
mum probability ascribed to any vertex by the stationary
distribution and dmax is the maximum degree of any vertex
in the network. Thus, for the special case of Zipf stationary
distributions, an asymptotic upper bound for the random
walk length l required to achieve a total variation distance
smaller than ε is given as [32], [36]:

l ≤ ln
(

1

πsε

)
· D · dmax

πmin
(5)

For a random walk strategy configured to eventually ef-
fectuate a degree distribution exponent γ and thus stationary
distribution πγ , for the inverse stationary probability of the
starting node s, the following bound holds:

1

πγs
= s

1
γ−1 ·

n∑
k=1

k
−1
γ−1 ≤ s

1
γ−1 ·

n∑
k=1

1 = n · s
1

γ−1

While this holds for arbitrary γ ∈ [2,∞) and starting
nodes s, for the special case of node n we can give a better
bound by observing that - due to the increasing skewness -
node n is ascribed minimal probability for γ = 2, that is for
γ ∈ [2,∞)

πγmin ≥ π
γ=2
min

holds. With this, we can bound the inverse minimal
probability by considering the logarithmic growth of the
harmonic series, so that

1

πγmin
≤ 1

πγ=2
min

= n ·
n∑
k=1

1

k
= n ·Hn = n · (ln(n) + τ + rn)

where τ denotes the Euler-Mascheroni constant and rn →
0 in the limit of large n. Assuming an initial scale-free
topology with n nodes and degree distribution exponent
γi allows to asymptotically bound diameter and maximum
degree as O(ln(n)) and O(n

1
γi ) respectively [36]. Thus, for

large n and a random walk started in node s, an asymptotic
upper bound for the minimal length l to achieve total
variation distance smaller than ε can be given as follows:

l = O

(
ln

(
n · s

1
γ−1

ε

)
· ln(n)2 · n1+

1
γi

)
(6)

This theoretic bound scales worse than linear with the
network size n. However, as has previously been observed
for example in [36], the underlying bounding technique is
not necessarily tight, that is the actual convergence behavior
of a random walk can be considerably better. Since at
present obtaining tight upper bounds for the convergence
of Markov chains in complex network topologies is an open
research issue, in section III we present simulations that have
been performed to derive practicable random walk lengths
empirically. As will be argued later, the results of these
simulations suggest that the adaptation scheme presented in
this article can be practically implemented with reasonable
random walk lengths. Although these results suggest that
the analytical bounds shown above are not tight and thus
uninformative with respect to the performance of the scheme
in practice, they can nevertheless be used to study by which
parameters the convergence behavior of a random walk is
influenced. From equation 6 one can for example infer
that the upper bound for the minimal random walk length
will generally be higher when wanting to effectuate highly
skewed scale-free networks with exponents close to two.



II. PROTOCOL DEFINITION

The arguments laid out in the previous section suggest a
rewiring protocol that consists of the following three basic
operations: (1) In periodic intervals, a node a selects an edge
to a random neighbor b that has not yet been rewired. (2) A
random walk with the bias presented in equation 4 is started
to sample two nodes x and y with probabilities proportional
to πx and πy respectively. (3) The edge (v, w) is replaced by
the edge (x, y) and the latter is marked as having resulted
from a rewiring operation. After all m edges of the overlay
have been rewired, a scale-free overlay is obtained whose
exponent depends on the particular choice of the random
walk bias defined in equation 4. In the algorithms 1 - 4, we
give a detailed algorithmic description of the protocol. In
these algorithms, dv denotes the degree of node v, iv is the
ID of node v and self denotes the node at which the code
is executed. We further assume that nodes have information
about the IDs and the degrees of their nearest neighbors.

A. Rewiring Procedure

The detailed algorithm of the main program loop that
is responsible for initiating random walks is shown in
algorithm 1. Rewiring operations are initiated by nodes in
regular intervals only for those edges that have not yet been
rewired. By this means, at most m rewirings are performed
where m is the number of edges in the initial random
network topology. We further assume, that the timing of
these intervals is controlled by a delay value, nodes sleeping
for delay milliseconds between two rewiring cycles. While
this is not necessary for the functioning of the protocol,
setting an appropriate delay value allows to adjust the
number of rewiring operations and thus message transfers
taking place within a certain time interval. When a node
with an unmarked edge wakes up, a rewiring operation is
initiated. In order to prevent both endpoints of an edge to
initiate rewiring operations for the same edge, rewirings are
only started by the node with higher degree or - if the degrees
are equal - by the node with the smaller ID. As we shall see
later in section III, the particular choice of letting a rewiring
be initiated by the better connected endpoint is important
since it can improve the performance of the scheme. To
find the endpoints of a new edge by which the previously
unmarked edge shall be replaced, a node initiates a biased
random walk through the overlay (lines 6− 11). In order to
retain connectedness and prevent nodes from being isolated
we further assume that only edges from nodes with degree
greater than 1 are rewired.

When a node v receives a random walk message, it
needs to ensure that the message is forwarded with the
bias given in equation 4. In algorithm 2, this is done in
lines 14− 21. Comparing the algorithm with the stochastic
matrix P defined in equation 4, here we select a neighbor
uniformly at random and draw a random value uniformly
in the interval [0, 1] that indicates whether the random walk

transitions along this edge or whether it stays in the current
node. One can imagine different schemes by which the two
endpoints v and w of the new edge (v, w) are sampled.
The node initiating the rewiring could for example start one
random walk for each endpoint of the new edge, collect the
target nodes of both walks and connect them to each other.
In order to simplify the implementation, in algorithms 1 and
2 we propose to sample both endpoints of the new edge in
a single random walk of length 2l, assuming that after l
steps, the node at which the random walk currently resides
is stored in the field target of the message being forwarded.
By this means, all information related to a rewiring operation
is stored in a single random walk message. Hence the node
at which the random walk arrives after 2l steps has all
information necessary to initiate the rewiring operation. For
this, it creates a connection to the target node stored in the
message while initiating the deletion of the edge between
node a that has started the random walk and its neighbor
b. As can be seen in algorithm 4 a disconnection requires
- apart from removing the edge - no further action at the
side of the node from which the edge is removed. As
shown in algorithm 3, both endpoints of the newly created
edge mutually mark each other in order to prevent it from
being rewired again in future invocations of the protocol.
We emphasize that this is to prevent unnecessary rewiring
operations and thus message exchanges rather than being
required for the functioning of the protocol.

Algorithm 1 Main Loop
1: loop
2: Sleep(delay)
3: if neighbors.Count > marked.Count then
4: n = RandomUnmarkedNeighbor()
5: if dn > 1 and dself > 1 and (dself > dn or (dself = dn

or iself < in)) then
6: {Initiate random walk}
7: msg.Hops← 0
8: msg.a← self
9: msg.b← n

10: msg.target← null
11: Send({walk,msg}, n)
12: end if
13: end if
14: end loop

Concluding the description of the proposed protocol, we
consider the size and number of messages that need to
be sent across the network. Sampling the two endpoints
of the new edge requires at most 2l messages 1, where l
is the number of steps taken by a single random walk to
sample a node with a probability sufficiently close to the
stationary distribution π. Once both endpoints of the new
edge have been found, the rewiring requires two messages
to disconnect nodes a and b and one message to connect to

1At most 2l since self-loops are allowed to ensure aperiodicity of the
underlying Markov chain. While a self-loop is a considered a step of the
random walk, it does not entail a message exchange.



Algorithm 2 Node receives {walk,msg}
1: msg.Hops← msg.Hops+ 1
2: if msg.Hops = l then
3: {Store Endpoint}
4: msg.target← self
5: else if msg.Hops = 2l then
6: {Rewire}
7: if !neighbors.Contains(msg.target) && msg.target 6= self

then
8: Send({disconnect,msg.a},msg.b)
9: Send({disconnect,msg.b},msg.a)

10: Send({connect, self},msg.target)
11: Send({connect,msg.target}, self)
12: end if
13: else
14: n← self.RandomNeighbor

15: if random.Next() ≤ dself
dn

(
iself
in

) 1
γa−1

then
16: {Forward Random Walk}
17: Send({walk,msg}, n)
18: else
19: {Self-Loop}
20: Send({walk,msg}, self)
21: end if
22: end if

Algorithm 3 Node receives {connect, y}
1: neighbors.Add(y)
2: marked.Add(y)

the node target that has been stored in the random walk
message.

Since the IDs of the initial node, its neighbors and the
intermediate target, as well as the current hop count need to
be stored in the random walk message, the required number
of bits for a message is logarithmic in the number n of
nodes in the system. Thus, the number of bits that need to
be transferred per rewiring operation is O(l · log(n)). Since
exactly one rewiring operation is executed for each of the
m edges in the overlay topology, the total number of bits
that need to be transferred in order to create a scale-free
topology with the desired exponent is O(m · l · log(n)). We
further require to store one additional bit per edge, indicating
whether an edge has previously been rewired or not.

B. Join and Leave Procedure in Dynamic Equilibrium States

Above, we have considered a simple distributed protocol
for the gradual rewiring of existing edges by means of the
random walk sampling mechanism discussed theoretically
in section I. So far, we have not discussed the impact
of nodes dynamically joining and leaving the system. In
the following, we present a simple protocol extension that
is suitable to handle the dynamics of nodes in dynamic
equilibrium states, that is in networks of roughly fixed
size with nodes joining and leaving the system at roughly
balanced rates.

In this case, a simple join procedure as shown in al-
gorithms 5 and 6 is sufficient. Upon initialization, a node

Algorithm 4 Node receives {disconnect, b}
1: neighbors.Remove(b)

joining the system assigns a node ID that is drawn uniformly
at random from the range [1, n] with n being the current size
of the network. It then creates k overlay links to arbitrary
bootstrap nodes. We further assume that these newly created
edges are unmarked and thus subject to future rewiring
operations according to the protocol presented above. Nodes
leaving the system do not require any particular handling,
except for the removal of stale links as shown in algorithm
7.

Algorithm 5 Node joins the system
1: {Draw random ID}
2: iself ← Random(1, n)
3: for i← 0; i < k; i← i+ 1 do
4: x← ArbitraryBootstrapNode()
5: {Create link to bootstrap node}
6: Send({join, self}, x)
7: neighbors.Add(x)
8: end for

Algorithm 6 Node receives {join, w}
1: neighbors.Add(w)

Algorithm 7 Node finds that neighbor w left the system
1: neighbors.Remove(w)
2: if marked.Contains(w) then
3: marked.Remove(w)
4: end if

A simple yet instructive way of looking at the interplay
between join and rewiring operations is in terms of how they
change the disorder or entropy present in the overlay topol-
ogy. The dynamics of nodes results in a gradual increase
of disorder since links are created to arbitrary (bootstrap)
nodes. Hence the probabilistic structure of the topology
gradually fades and its entropy increases. In contrary, the
rewiring procedure removes unmarked “high entropy” links
and replaces them by connections according to a statistical
ensemble of random scale-free networks. In this respect,
the stochastic rewiring maintains the topology’s probabilistic
structure and thus decreases the network’s entropy. In order
to maintain a random scale-free network topology, both the
loss of structure that is due to node fluctuations as well as the
maintenance of probabilistic structure in terms of rewiring
operations need to occur at balanced rates.

III. EVALUATION

Having given a description of the rewiring protocol as
well as analytical arguments about its convergence behavior,
in this section we present simulation results that have been



obtained using an implementation of the proposed scheme.
This evaluation is split up in two parts. In a first step,
we seek to establish, by simulation, a practicable lower
bound for the minimally required random walk length l. We
further study the influence of the initiating node’s degree on
the convergence time of a random walk. Based on these
results, in a second step we then simulate the rewiring
protocol and study its influence on a network’s degree
distribution. Apart from considering static topologies, here
we also present preliminary simulation results that have been
obtained for network topologies in dynamic equilibrium
states with fluctuating nodes.

A. Minimum Random Walk Length

While theoretic asymptotic upper bounds for the required
number of steps l of the random walk have been presented
in section I-A, here we empirically study the convergence
behavior for a number of random walk lengths. By this we
intend to derive a practicable random walk length that rep-
resents a reasonable trade-off between the imposed number
of messages and the resulting total variation distance. We
further intend to investigate how the minimum random walk
length changes as the network sizes is varied. The following
results have been obtained as follows. In each simulation run
a number R of random walks was started from a randomly
chosen node in a random network topology. For each simula-
tion of a random walk of length l, a hit counter was increased
in the node at which the random walk resided in the l-th
step. When R random walks had been simulated, the total
variation distance was computed based on the observed hit
frequencies and the stationary distribution expected for the
chosen random walk bias. Depending on network size and
the minimum probability πmin of the stationary distribution,
the number of random walk iterations R was chosen in a
range between 106 and 108. In particular, it was chosen such
that nodes with minimum stationary probability πmin were
expected to be hit reasonably often to argue about the total
variation distance. The above procedure was then repeated
for different random network realizations and starting nodes.
Finally the minimum, maximum and average total variation
distance of a simulation run was computed and the procedure
was repeated for different network sizes, random walk biases
and random walk lengths.

Figure 1a shows the random walk length l minimally
required for the average total variation distance to fall
below ε = 0.05 in scale-free Barabási-Albert (BA) networks
randomly generated by the preferential attachment scheme
presented in [6]. Results are shown for different network
sizes and for random walks configured to effectuate three
different exponents 2.1, 2.5 and 3.5. Rather than the linear
scaling behavior suggested by the theoretical upper bound
presented in section I-A, the observed required length l
rather scales in a sub-linear fashion. The observation that
the actual convergence behavior is significantly better than

the theoretical bound that can be obtained by a canonical
path approach is consistent with the observations presented
in [34] and indicates that the rewiring scheme can be imple-
mented efficiently in practice. Further simulation results that
have been obtained for Erdös/Rényi (ER) random graphs
indicate that the number of steps required to achieve a
total variation distance smaller than 0.05 are in the same
range as those for random power law graphs. Informally,
this observed fast convergence can be attributed to the good
expansion properties and the small diameter of both classical
random graphs and random scale-free networks.

In networks with highly heterogeneous connectivity, a
further interesting question is how the choice of the starting
node of a random walk influences the total variation distance
that can be achieved by a fixed random walk length. To
investigate this, a number of random scale-free BA networks
was created and a large number of random walks was started
from each node of the network2. The frequency with which
nodes were target of random walks was recorded and the
resulting total variation distance to the expected stationary
distribution was computed for each starting node individ-
ually. Figure 1b shows the relation between the degree
of initial nodes and the total variation distance that was
achieved in a representative simulation in random Barabási-
Albert networks with 1000 nodes, l = 5 and a random walk
bias to effectuate γ = 3. These results suggest that random
walks provide on average better convergence behavior when
being started in highly connected nodes. In fact this is a
rather intuitive result since a random walk starting at a high
degree node can potentially reach a large number of nodes
even in a single step. In the protocol presented in II, this
observation justifies the choice that rewiring operations for
an edge are initiated by the node with higher degree.

B. Degree Distribution

We now turn to the question of how the rewiring protocol
described in section II influences the degree distribution of
a network topology. All results presented in the following
figures have been obtained for networks consisting of 5000
nodes and roughly 25000 edges. Initial topologies upon
which the protocol was started were created using the
Barabási-Albert preferential attachment model as well as
the Erdös/Rényi model for classical random graphs. For
the following measurements we used a random walk length
that was long enough to achieve an average total variation
distance smaller than ε = 0.05. Based on the results
presented in the previous section a random walk length
l = 20 was chosen.

In each simulation run, the protocol presented in algorithm
II was applied by all nodes in a network topology with
initially unmarked edges until all edges had been rewired

2Here large again means sufficiently large to reasonably compute the
total variation distance.



(a) Minimum random walk length l required to
achieve D(π(l), π) ≤ 0.05 in Barabási-Albert
networks with random walk biases configured to
effectuate exponents 2.1, 2.5 and 3.5 (Lines are
drawn to guide the eye)

(b) Correlation between degree of starting node and
average D(π(l), π) in 1000 node Barabási-Albert
networks with γ = 3 and l = 5

Figure 1. Results of random walk convergence experiments

(and thus marked). The delay interval between individual
rewiring iterations was chosen such that- on average - a
single rewiring took place per time unit. However, this
choice has been made merely for illustration purposes since
it allows to trace the evolution of a network topology as
links are rewired progressively. Clearly, performing more
than one per rewiring at a time would be more appropriate
in actual applications of the protocol. When using a delay
value so that one rewiring is expected to take place per
unit of simulated time, for the chosen network size an
adaptation cycle is expected to be completed after roughly
25000 time steps. The degree distribution of the network
topology was computed each 200 time units and a fit to
the current degree distribution exponent was performed. For
this, an R implementation of the maximum likelihood power
law fit procedure described in [10] was used. This procedure
yields the fitted degree distribution exponent γf that holds
with maximum likelihood, the minimum network degree
dmin above which the fit holds, as well as the Kolmogorov-
Smirnov (KS) statistic D. In general, better fits result in
smaller values of D, thus allowing to evaluate whether the
“power law nature” of the degree distribution is strengthened
or fades away under the application of the rewiring scheme.
All results are averages of at least 5 independent applications
of our protocol on randomly chosen network realizations
of identical size. Simulation code, data analysis scripts,
datasets, simulation videos as well as some further graphical
representations of results that could not be included in this
article are available on the author’s website3.

3see http://syssoft.uni-trier.de/scholtes

1) Static Topologies: In the following, we consider a
simple static situation in which no nodes enter or leave
the initial network topology. Figures 3a and 3d show the
effect of the proposed protocol on the degree distribution of
a network that was initially created by the BA, respectively
ER model. For BA networks, the average fitted exponent
γf of the initial topology was on average 2.9, while for
ER networks the used fitting procedure yielded 3.5 with
an at least 10-fold value of the KS-statistic D. The results
suggest that the protocol does lead to an adaptation of the
degree distribution exponent of the overlay topology. In
particular, the evolution of the Kolmogorov-Smirnov statistic
D that is shown in Figure 3b demonstrate that the scale-free
characteristic of BA networks is preserved. The increase
of the minimum degree above which the fit holds can be
explained by the exponent-dependent finite-size effects in
scale-free networks. For ER networks, the roughly 10-fold
decrease of the KD-statistic D that can be seen in Figure 3e
indicates the emergence of scale-free characteristics, that is
the power law fit to the degree distribution becomes more
reliable. In Figures 3c and 3f, the evolution of the average
maximum degree is shown. The results are consistent with
the maximum degree expected in networks of the given
size and with different degree distribution exponents. In
Figure 2, the average fit parameters for the network topology
eventually reached after adaptation are shown. The results
demonstrate that - as expected from the underlying theo-
retical model - the protocol can be applied to transform
arbitrary initial topologies into random scale-free networks
whose degree distribution is described by a power law with
an exponent reasonably close to the intended value.

So far, we have only studied simulations using a single



γt 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5
γf 2.24 2.40 2.60 2.82 2.99 3.24 3.44 3.5

BA D 0.012 0.01 0.01 0.01 0.01 0.01 0.012 0.02
dmin 6.6 8.4 8.6 10 10 11.6 13.2 11.6
γf 2.252 2.41 2.61 2.80 3.03 3.25 3.45 3.5

ER D 0.013 0.01 0.01 0.009 0.009 0.01 0.012 0.02
dmin 7.6 8.8 9.2 9.6 11.4 12.6 12.2 12.4

Figure 2. Average fit parameters after adaptation with targeted exponents γt ∈ [2.1, 3.5] for 5000 node Erdös/Rényi (ER) and Barabási/Albert (BA)
networks with roughly 25000 edges

(a) Average fitted exponent γf (b) Average Kolmogorov-Smirnov statistic D (c) Average maximum degree

(d) Average fitted exponent γf (e) Average Kolmogorov-Smirnov statistic D (f) Average maximum degree

Figure 3. Time Evolution of 5000 node Barabási/Albert (a-c) and Erdös/Rényi (d-f) networks during adaptation runs with γt ∈ [2.1, 3.5] and l = 20

“cycle” of the proposed adaption protocol. In Figure 4,
results are shown for a simulation in which three adapta-
tion cycles targeting different exponents were subsequently
initiated in a BA network with 104 nodes and roughly
5 · 104 edges. The chosen random walk length of l = 22
was again consistent with the values found in section III-A.
In Figure 4a-4c, time steps in which adaption cycles were
started are indicated by vertical lines. The targeted degree
distribution exponents were 2.9, 2.1 and 3.5 respectively.
Again the results indicate that the proposed scheme achieves
the desired adaptation. Furthermore, Figure 4b shows how
the “power law nature” of the degree distribution - and thus
the scale-free characteristic of the network - temporarily

fades during the adaptation while being restored near the
ends of adaptation cycles.

2) Dynamic Equilibrium Topologies: So far, only results
for static topologies have been presented, that is the rewiring
protocol executing in different network topologies with no
nodes entering or leaving the topology. In the following, we
present some preliminary results for dynamic topologies in
which nodes join and leave the overlay uniformly at random
at balanced rates, thus forming a dynamic equilibrium state
for a system with roughly fixed size. In the following
experiments, a BA network with 5000 nodes and roughly
25000 edges has been used as initial topology. However
results for ER networks have shown to be identical. In each



(a) Average fitted exponent γf (b) Average Kolmogorov-Smirnov statistic D (c) Average maximum degree

Figure 4. Time Evolution of 10000 node Barabási/Albert network during multiple adaptation cycles with γ0 = 2.9, γ54000 = 2.1 and γ108000 = 3.5.
Start times of adaptation cycles are indicated by vertical lines.

simulated time step, a single node was removed from while
a single other node joined the network. Nodes joining the
network were connected to k = 5 random bootstrap nodes
according to the algorithm depicted in algorithm 5. Stale
links left by failing nodes were removed immediately from
the network. The delay parameter has been set to a value
that was sufficiently small to compensate for the constant
creation of unmarked links by joining nodes. Hence, the
average number of links being rewired (and thus being
marked) within a certain time interval was roughly equal to
the average number of random (unmarked) edges created in
that same time interval by joining nodes. Figure 5 shows the
averaged results of simulations targeting degree distribution
exponents γt ∈ [2.1, 3.5]. In particular, Figure 5a suggests
that the degree distribution exponent quickly approaches the
targeted value as node fluctuations drive the gradual rewiring
of links.

IV. RELATED WORK

During the last couple of years, a number of distributed
approaches to the construction, maintenance and adaptation
of probabilistically structured overlay topologies have been
proposed. Here we briefly summarize a selection of ap-
proaches that are related to the present article. The use of
random walks for the sampling of random participants in
Peer-to-Peer overlays with good expansion (and thus Markov
chain convergence) properties has been proposed in [17]
and [35]. In particular, in [35] the use of biased random
walks for a non-uniform random sampling of Peers is studied
and analytical arguments for their convergence behavior
are given. As argued in section I, a similar random walk
strategy constitutes the foundation for the adaptation scheme
presented in this article. We finally emphasize that different
approaches to a random sampling in Peer-to-Peer networks
have been proposed as well, like for example the gossip-
based topology management scheme considered in [22]. To

date, it is however unclear how such alternative sampling
mechanisms could be used in our particular scenario.

Considering the problem of creating and adapting overlay
networks with scale-free characteristics in a distributed fash-
ion, it has been argued for example in [24] that the degree
distribution exponent of scale-free networks can be tuned
by adjusting the connection preferences of joining nodes.
While this constitutes the basis for an adaptation of growing
networks, it remains unclear how the existing theoretical
models can be implemented efficiently in practice and in
how far theoretical results on random scale-free networks
apply to the networks creates by this process. Considering
practical networked systems, in [19] distributed strategies for
the creation of scale-free overlays with connectivity cutoffs
based on capacity constraints have been considered. Since
the adaptation of the degree distribution exponent does also
change the maximum degree in the network, the schemes
presented in [19] - although different in nature and intention
- can be viewed as being related to the scheme presented
in the present article. Finally, the problem of adapting the
degree distribution exponent in scale-free overlay networks
has been considered in own previous work [30]. However,
in contrast to the protocol presented in the present article,
no analytical arguments for the functioning of the scheme
considered in [30] as well as its precise effects on the
degree distribution exponent as well as on other properties
of the network could be given. As such, the protocol can be
viewed as a companion scheme to the distributed power law
monitoring mechanism presented in [30].

V. CONCLUSION

In this article, a simple distributed protocol has been
presented that can be used to effectuate random scale-free
overlay topologies with tunable degree distribution exponent
and thus a tunable heterogeneity of the connectivity distribu-
tion. The proposed scheme is based on a rewiring strategy



(a) Average fitted exponent γf (b) Average Kolmogorov-Smirnov statistic D (c) Average maximum degree

Figure 5. Time evolution of dynamic 5000 node Barabási/Albert networks with random and uniform churn, γt ∈ [2.1, 3.5] and l = 20

and the sampling of random nodes by means of a biased
random walk. We have shown that the proposed protocol
is suitable to transform arbitrary connected topologies into
sufficiently random scale-free networks given that the ex-
pansion properties of the initial topology provide sufficiently
fast convergence of the random walk strategy. In Barabási-
Albert and Erdös/Rényi networks, the random walk length
required to provide sampling probabilities that are accept-
ably close to the stationary limit are found to be significantly
smaller than suggested by theoretical upper bounds. Based
on the observed superior convergence behavior of random
walks being started in hub nodes, the performance of the
protocol benefits from the fact that rewiring operations are
preferentially started by high degree nodes. In a future
iteration, it thus seems to be reasonable to choose the length
l of each random walk individually based on the degree of
the node initiating it. A further potential improvement is the
use of two-stage random walks which - in a first stage -
preferentially move to hub nodes, and then - in a second
stage - switch their bias to sample nodes according to the
desired stationary distribution.

Apart from creating randomized scale-free overlay topolo-
gies, the proposed protocol can also be used to adapt the
degree distribution exponent of scale-free networks in a
decentralized and directed fashion. Based on analogies to
statistical physics that have been put forth in the study
of complex networks [2], [15] and the fact that - in the
limit of large systems - a number of important network
properties change abruptly when the degree distribution
exponent exceeds certain critical points, such a mechanism
can be used to actively use phase transition phenomena
occurring in statistical ensembles of complex networks for
an adaptation of network characteristics [30]. Based on the
results presented in this article, we thus argue that the
proposed protocol is a simple and practicable approach to
create and adapt probabilistically structured overlays for

large-scale Peer-to-Peer systems.
We conclude this article by summarizing the main threats

to validity and open issues that could not be considered
so far. An important aspect in any practical application of
the proposed scheme is the fact that a sufficiently efficient
implementation of the scheme requires to accept moderate
total variation distances. While this allows to keep the
message overhead in an acceptable range, it also limits the
randomness of the resulting network topology. While small
total variation distances suggest that the resulting deviation
of properties from those of truly random networks are rather
moderate, a further investigation of these effects is an open
issue. Furthermore, although we have argued that simula-
tions are a reasonable approach to establish empirical bounds
on the required random walk length, the range of network
sizes and topologies considered so far is fairly limited. A
study of further topologies must thus be considered future
work.

While some preliminary results on network topologies
with dynamic participants have been presented, a major open
issue of this work is the fact that simulations have only been
performed for the rather special situation of dynamic equi-
librium states with nodes failing uniformly at random. An
evaluation of the impact of further realistic (non-uniform)
churn models and rates is thus crucial. Considering an
application in practical systems, a further potential problem
that could not be considered so far is the impact of message
losses and how to properly handle them in the protocol.

Finally, the rather simple implementation considered in
this article assumes per-node weights that are based on
values chosen uniformly at random from a fixed interval.
As a result, the number of links that any given node will
eventually acquire is determined by mere chance. Clearly,
this is not suitable for practical systems and an important
next step is to extend the proposed scheme in a way
that per-node characteristics like bandwidth capacity, uptime



and stability or processing power are considered in the
random assignment of node weights. In the light of these
limitations, the scheme proposed in this article must be
seen as a mere first step on the road towards stochastic
network membership protocols whose self-organization and
self-adaptation capabilities can be analyzed exactly in the
framework of complex network theory.
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