6 research outputs found

    Novel Framework for Navigation using Enhanced Fuzzy Approach with Sliding Mode Controller

    Get PDF
    The reliability of any embedded navigator in advanced vehicular system depends upon correct and precise information of navigational data captured and processed to offer trustworthy path. After reviewing the existing system, a significant trade-off is explored between the existing navigational system and present state of controller design on various case studies and applications. The existing design of controller system for navigation using error-prone GPS/INS data doesn‟t emphasize on sliding mode controller. Although, there has been good number of studies in sliding mode controller, it is less attempted to optimize the navigational performance of a vehicle. Therefore, this paper presents a novel optimized design of a sliding mode controller that can be effectively deployed on advanced navigational system. The study outcome was found to offer higher speed, optimal control signal, and lower error occurances to prove that proposed system offers reliable and optimized navigational services in contrast to existing system

    Adaptive fuzzy sliding mode command-filtered backstepping control for islanded PV microgrid with energy storage system

    Get PDF
    This study focuses on the control of islanded photovoltaic (PV) microgrid and design of a controller for PV system. Because the system operates in islanded mode, the reference voltage and frequency of AC bus are provided by the energy storage system. We mainly designed the controller for PV system in this study, and the control objective is to control the DC bus voltage and output current of PV system. First, a mathematical model of the PV system was set up. In the design of PV system controller, command-filtered backstepping control method was used to construct the virtual controller, and the final controller was designed by using sliding mode control. Considering the uncertainty of circuit parameters in the mathematical model and the unmodeled part of PV system, we have integrated adaptive control in the controller to achieve the on-line identification of component parameters of PV system. Moreover, fuzzy control was used to approximate the unmodeled part of the system. In addition, the projection operator guarantees the boundedness of adaptive estimation. Finally, the control effect of designed controller was verified by MATLAB/Simulink software. By comparing with the control results of proportion-integral (PI) and other controllers, the advanced design of controller was verified

    Estimator-based adaptive neural network control of leader-follower high-order nonlinear multiagent systems with actuator faults

    Get PDF
    The problem of distributed cooperative control for networked multiagent systems is investigated in this paper. Each agent is modeled as an uncertain nonlinear high-order system incorporating with model uncertainty, unknown external disturbance, and actuator fault. The communication network between followers can be an undirected or a directed graph, and only some of the follower agents can obtain the commands from the leader. To develop the distributed cooperative control algorithm, a prefilter is designed, which can derive the state-space representation to a newly constructed plant. Then, a set of distributed adaptive neural network controllers are designed by making certain modifications on traditional backstepping techniques with the aid of adaptive control, neural network control, and a second-order sliding mode estimator. Rigorous proving procedures are provided,which show that uniform ultimate boundedness of all the tracking errors can be achieved in a networked multiagent system. Finally, a numerical simulation is carried out to evaluate the theoretical results

    Adaptive fuzzy sliding mode command-filtered backstepping control for islanded PV microgrid with energy storage system

    Get PDF
    This study focuses on the control of islanded photovoltaic (PV) microgrid and design of a controller for PV system. Because the system operates in islanded mode, the reference voltage and frequency of AC bus are provided by the energy storage system. We mainly designed the controller for PV system in this study, and the control objective is to control the DC bus voltage and output current of PV system. First, a mathematical model of the PV system was set up. In the design of PV system controller, command-filtered backstepping control method was used to construct the virtual controller, and the final controller was designed by using sliding mode control. Considering the uncertainty of circuit parameters in the mathematical model and the unmodeled part of PV system, we have integrated adaptive control in the controller to achieve the on-line identification of component parameters of PV system. Moreover, fuzzy control was used to approximate the unmodeled part of the system. In addition, the projection operator guarantees the boundedness of adaptive estimation. Finally, the control effect of designed controller was verified by MATLAB/Simulink software. By comparing with the control results of proportion-integral (PI) and other controllers, the advanced design of controller was verified

    Adaptive fuzzy sliding mode algorithm-based decentralised control for a permanent magnet spherical actuator

    Get PDF
    <p>The dynamic model of multi-degree-of-freedom permanent magnet (PM) spherical actuators is multivariate and nonlinear due to strong inter-axis couplings, which affects the trajectory tracking performance of the system. In this paper, a decentralised control strategy based on adaptive fuzzy sliding mode (AFSM) algorithm is developed for a PM spherical actuator to enhance its trajectory tracking performance. In this algorithm, the coupling terms are separated as subsystems from the entire system. The AFSM algorithm is applied in such a way that the fuzzy logic systems are used to approximate the subsystem with uncertainties. A sliding mode term is introduced to compensate for the effect of coupling terms and fuzzy approximation error. The stability of the proposed method is guaranteed by choosing the appropriate Lyapunov function. Both simulation and experimental results show that the proposed control algorithm can effectively handle various uncertainties and inter-axis couplings, and improve the trajectory tracking precision of the spherical actuator.</p

    Distributed Adaptive Fuzzy Control for Nonlinear Multiagent Systems via Sliding Mode Observers

    No full text
    In this paper, the problem of distributed adaptive fuzzy control is investigated for high-order uncertain nonlinear multiagent systems on directed graph with a fixed topology. It is assumed that only the outputs of each follower and its neighbors are available in the design of its distributed controllers. Equivalent output injection sliding mode observers are proposed for each follower to estimate the states of itself and its neighbors, and an observer-based distributed adaptive controller is designed for each follower to guarantee that it asymptotically synchronizes to a leader with tracking errors being semi-globally uniform ultimate bounded, in which fuzzy logic systems are utilized to approximate unknown functions. Based on algebraic graph theory and Lyapunov function approach, using Filippov-framework, the closed-loop system stability analysis is conducted. Finally, numerical simulations are provided to illustrate the effectiveness and potential of the developed design techniques.Qikun Shen, Peng Shi and Yan Sh
    corecore