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Abstract

This paper focuses on the control of islanded photovoltaic (PV) microgrid and designs a controller for PV system. Because of the
system operates in islanded mode, the reference voltage andfrequency of the AC bus are provided by the energy storage system.
We mainly designed the controller for the PV system in this paper, and the control objective is to control the DC bus voltage
and the output current of the PV system. Firstly, we set up a mathematical model of the PV system. In the design process of
PV system controller, we use command-filtered backsteppingcontrol method to construct the virtual controller, and design the
final controller by using sliding mode control. Consideringthe uncertainty of the circuit parameters in the mathematical model
and the unmodeled part of the PV system, we have integrated adaptive control in the controller to realize on-line identification
of component parameters of PV system. Meanwhile, we use fuzzy control to approximate the unmodeled part of the system. In
addition, the projection operator guarantees the boundedness of adaptive estimation. Finally, the control effect of the designed
controller is verified by MATLAB/Simulink software environment. By comparing with the control results of proportion-integral
(PI) and other controllers, the advanced design of the controller is verified.

c© 2011 Published by Elsevier Ltd.

Keywords: Fuzzy control, command-filter backstepping, parameter adaptive, sliding mode, photovoltaic (PV), islanded operation
mode.

1. Introduction

At present, the traditional fossil energy has dried up gradually, and renewable energy source has played an impor-
tant role increasingly [1-2]. Photovoltaic (PV), as a kind of renewable energy source, has been widely applied [3-5].
PV power generation system can improve energy efficiency and power quality effectively, reduce carbon emissions
and energy consumption, and enhance power system reliability [6-7]. Fig.1 shows the topology of the islanded mi-
crogrid we adopted. A PV power generation system can be composed of PV panels, maximum power point tracking
(MPPT) equipment, DC/DC converter, voltage source converter (VSC), LC filter and transformer [8]. PV microgrid
has two operation modes: grid connected and islanded mode [9]. This paper mainly focuses on the control of islanded
PV microgrid. The PV microgrid operation in islanded mode can provide power for the load which away from the
large power grid [10]. However, due to the islanded PV microgrid lacks of reference voltage and frequency provided
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by external power grid, therefor, we need to add the main power source in the system to generate voltage and frequen-
cy reference in AC bus [11-12]. For the selection of the main power source, it can not be a kind of unstable power
supply, such as PV panels or wind turbines. Thus, this paper selects energy storage system (ESS) as the main power
source of islanded PV microgrid, providing reference voltage and frequency for AC bus. Due to the output power of
the system is supplied to the load directly in islanded PV microgrid, it is worth noting that the output power of the PV
system and the rated power of the load can not be exactly the same [13-14]. Therefore, the energy storage device not
only provides the reference voltage and frequency for the system, but also can absorb the excess power generated by
the PV system, and compensates the load power to achieve the rated power when the output power of the PV system
is less than the rated power of the load [15]. In the control ofESS, we useV/ f control strategy to stabilize the voltage
and frequency of AC bus. This paper mainly designs a controller for the VSC in PV system to control the stability DC
side bus voltage of VSC and the output active and reactive power of the system.
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Batt
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Filter and

transformer
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Figure 1: Topology of the islanded microgrid.

Many scholars have done some related work in improving the control effect of islanded microgrid. Reference [16]
establishes the mathematical model for VSC in islanded microgrid, and a fractional-order sliding mode controller is
designed for VSC. The designed controller realizes the tracking of the three-phase voltage to reference voltage at the
end of the islanded microgrid. Therefore, the problem of no reference voltage and frequency in the islanded microgrid
is solved. However, the article uses DC source instead of distributed energy resource, and the model established in
this article is only suitable for some stable power sources.In addition, reference [16] also lacks consideration for
the ESS. The work in [17] discusses the application of islanded PV system in cluster of house. In the article, the
interconnection of multiple islanded microgrid is discussed, realizes the transmission of energy in multiple systems,
and the energy storage system is connected to the AC side to achieve energy storage and release. But the author chose
proportion-integral (PI) controller to control VSC. When the system is disturbed, it is difficult for the PI controller
to show high robustness. Meanwhile, there is a lack of comparison with other control methods in this article. In
reference [18], droop control is applied to the islanded AC-DC microgrid. AC bus and DC bus are supplied power
to AC and DC loads respectively, and connected by interlinking converter. However, as in reference [17], the article
also fails to compare the proposed control method with othercontrol methods to demonstrate the advanced nature
of the proposed control method. In reference [19], the voltage and frequency in the islanded system are controlled
by fully decentralised control framework. This control method proposed is different from centralized and distributed
control. The authors establish a sliding mode observer to estimate the information of other distributed generator units
and verify the reliability of the method. However, this method must model the control object accurately, so the control
strategy still needs improvement.

In recent years, advanced control has been applied in many engineering practices [20-22]. Advanced control in-
cludes predictive control, fuzzy control, neural control,nonlinear control and robust control et al, and it has better
control effect than the traditional PI controller. From the section II,we know that the mathematical model we estab-
lished is a second-order model. Thus, we construct the virtual controller by using backstepping control. Backstepping
control is a kind of nonlinear control, and it is widely used in the control of higher-order models [23]. In order to
reduce the differential process of the controller, we introduce the command-filter in the controller [24]. The work
in [25] applies command-filtered backstepping control to nonlinear multi-agent tracking problems. The controller is
designed and the stability of the system is verified based on Lyapunov stability theory. It can be seen from simulation
that the designed controller has satisfactory control performance. In the model established for the PV system, the pa-
rameters of the resistance, inductance, and capacitance inthe circuit are included. However, the measurement of these

2



Author / Journal of The Franklin Institute 00 (2018) 1–17 3

parameters can not be very precise. Therefore, we consider the adaptive estimation of circuit parameters in the con-
troller. In reference [26], a command-filtered backstepping controller is designed for compliant actuators robot arms
with parameters estimation. The controller adaptively estimates the parameters while realizing the control objectives.
From the simulation, it can be seen that the controller with the parameter adaptive controller reduces the chattering
of the control torque compared with PI and sliding mode controller. Therefore, the performance of the controller is
improved. In addition, we also take into account the incompleteness of the PV system model, the chattering can easily
stimulate the unmodeled characteristics in the system. To solve this problem, we use fuzzy control to approximate the
unmodeled part of the system and improve the performance of the controller [27-28]. We also introduce sliding mode
control in the controller, which further increases the robustness of the controller [29].

In brief, this paper mainly design a adaptive fuzzy sliding mode command-filtered backstepping (DFSCB) con-
troller for the PV system, which control the DC bus voltage and output power of the PV system. The chapters of this
article are arranged as follows. In section II and III, we describe the topology of the whole system and derive the
mathematical model of the PV system. In section IV, we elaborate the design flow of DFSCB controller. In section
V, we build the simulation model and give the output waveformof the system. We summarized the full text and gave
some conclusions in section VI.

2. Structure of the islanded microgrid with PV array and ESS

The structure of islanded microgrid with PV array and ESS is shown in Fig.2. The PV system and ESS are
connected to the AC bus directly and supply the power to the load. In the PV system, we use PV array instead of DC
source to simulate the actual operation of PV system. The whole system is in the islanded operation mode and it not
connected to the external power grid.
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Figure 2: Structure of islanded microgrid with PV array and ESS.

2.1. The structure of ESS

As shown in Fig.2, in the design of the ESS topology of this article, we choose the battery as the energy storage
equipment, and we define the ESS as the main power source of thewhole system to provide reference voltage and
frequency for the AC bus. In the DC side of the ESS, the batteryis connected to the VSC through a two-way buck-
boost circuit. The buck-boost circuit is controlled by PI control, the control objective is to increase the output voltage
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of the battery and realize constant voltage charging and discharging. The flow chart of the control of the buck-boost
circuit is included in Fig.2.

In the AC side of ESS, we use VSC to turn direct current into three-phase alternating current. ResistanceR2

represents the on state resistance of VSC, and inductanceL2, capacitanceC2 constitute the LC filter. The VSC in
ESS is controlled byV/ f controller. The reason why we choose theV/ f controller is that we need to provide stable
voltage and frequency for the AC bus in islanded microgrid. We specify the reference voltage and frequency for the
V/ f controller, and the controller realizes the tracking of theESS output voltage and frequency to the given values. It
is different from the PV system that the rotation angleρ in ESS is provided by voltage controlled oscillator (VCO).

2.2. The structure of PV system

The controller of ESS is not what we want to discuss emphatically. We only use PI controller to realize the function
of ESS. This article mainly discusses the design and performance improvement of PV system controller.

2.2.1. Structure of PV array
In our simulation, the equivalent circuit of PV cell is used to simulate the output characteristics of PV cell. The

equivalent circuit of PV cell is shown in Fig.3. PV cell can beconsidered as a current source. According to Fig.3, the
output currentI of the PV cell has the following relations [30]:

I = Iph − Is

(

exp
q (U + IRs)

AkT
− 1

)

−
U + IRs

Rsh
, (1)

whereIph is photo-generated current.q, k are the constants whichq = 1.602× 10−19C andk = 1.381× 10−23J/K. A
andT are the characteristic coefficient of the diode and ambient temperature. It needs to be explained that the output
current of a single PV cell is very small, so we make a number ofPV cells in the simulation to make up the 100kW
PV array to provide power for the system.

phI D shR

sR I

+

-

U

Figure 3: Equivalent circuit of PV cell.

2.2.2. Incremental conductance maximum power point tracking
As shown in Fig.4, the output voltage and power of the PV arrayare not linear when irradiance and temperature

remain constant. Therefore, under fixed irradiance and temperature, there exists an output voltageUmp corresponding
to the maximum powerPmp output of PV array. For this point, we call the maximum power point (MPP). The
MPP changes with the change of irradiance and temperature, and to tracking for the MPP is realized by incremental
conductance maximum power point tracking (MPPT) controller.

From Fig.4, we know that the derivative of P-U curve is 0 at MPP. The incremental conductance MPPT algorithm
is calculated as follows [30]. The output powerP of the PV array in Fig.3 can be expressed as:

P = UI . (2)

Find the derivative of equation (2), one obtains:

dP
dU
= I + U

dI
dU

. (3)

4



Author / Journal of The Franklin Institute 00 (2018) 1–17 5
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Figure 4: P-U curve of PV cell.

When (3) is equal to 0, theU at this time is the voltage corresponding to MPP, which expressed as:

I + U
∆I
∆U
= 0. (4)

2.2.3. AC side
Similarly, we use VSC to connect the DC side and the AC side.R1 represents the turn-on resistance of VSC,L1

andC1 constitute the LC filter.utabc, uabc andiabc are the three-phase terminal voltage of VSC and PV system andthe
three-phase output current, respectively. The DFSCB controller is designed indq-frame, therefore, we converted the
three-phase variablesusabcandisabcto thedq-frame and provide to the controller. Because of the voltageand frequency
of the AC bus is controlled by ESS, thus the rotation angleϕ is provided by phase locked loop (PLL), which is the
same as the rotation angle in AC bus. Modulation signalsτd andτq in dq-frame is produced by DFSCB controller,
then, the signalsτd andτq are converted to theabc-frame to form three-phase modulation waveτabc. Finally, we use
10kHz triangular wave and three-phase modulation waveτabc to generate six-pulse signals to control VSC, so as to
achieve control objectives.

3. Dynamic mode of PV system and fuzzy algorithm

3.1. Dynamic mode of PV system

The dynamic model of PV system is established in this section. From PV system in Fig.2, by using Kirchhoff’s
voltage law, the three-phase voltage and current in the system has the following relationship:

L1
d
−→
is

dt
= −R1

−→
is −
−→us+
−→ut ,

(5)

where vector
−→
is, −→ut and−→us are the space vector of the three phase variableisabc, utabc and usabc.Furthermore, the

terminal voltage of the VSC−→ut can be expressed as−→ut = (udc/2)−→τ , where−→τ is the three-phase PWM modulating
wave. So equation (5) can be rewritten as:

L1
d
−→
is

dt
= −R1

−→
is −
−→us+

udc

2
−→
τ . (6)

Then, convert equation (6) todq-frame fromabc-frame, one obtains:

disd

dt
= −

R1

L1
isd+ ωisd−

usd

L1
+

udc

2L1
τd, (7)

disq

dt
= −

R1

L1
isq− ωisq−

usq

L1
+

udc

2L1
τq. (8)
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According to the power conservation theorem (ignoring the impedance ofCdc, VSC, and LC filter), the power in
the system has the following relation[31]:

udcipvout=
3
2

(usdisd+ usqisq), (9)

whereipvout in Fig.2 represents the output current of the buck-boost circuit. Then, the calculation of the current relation
at the capacitanceCdc is calculated as:

Cdc
dudc

dt
= ipvout− idc. (10)

As a result, by combining (9) and (10), we can get the following relation:

dudc

dt
=

3(usdisd+ usqisq)

2Cdcudc
−

idc

Cdc
. (11)

Integrating the equation (11), (7), and (Cq), we get the basic mathematical model of PV system. In the design of
controller, we consider the adaptive estimation of unmodeled part and parameter. Therefore, the mathematical model
of PV system is rewritten as follows:

dudc

dt
= η1

(

3(usdisd+ usqisq)

2udc
− idc

)

+ δ1,

disd

dt
= −η2isd+ ωisq− η3usd+ η3

udc

2
τd + δ2,

disq

dt
= −η2isq− ωisd− η3usq+ η3

udc

2
τq + δ3,

(12)

whereη1 = 1/Cdc, η2 = R1/L1, η3 = 1/L1, andδ1, δ2, δ3 represent the unmodeled nonlinear parts of the dynamic
model of PV system.

3.2. Fuzzy algorithm

Fuzzy algorithm is applied in this paper to deal with the unmodeled part of PV system. Using the following fuzzy
rules to construct a fuzzy system [32]:

IF x1 is Al1
1 and. . .and xn is Aln

n , Then ud is Sl1...ln, (13)

wherel1 = 1, 2, . . . ,m, i = 1, 2, . . . , n. The fuzzy controller can be calculated as:

f (x) =

N
∑

i=1
θi

n
∏

j=1
µi

j(x j)

N
∑

i=1

n
∏

j=1
µi

j(x j)
= θTξ(x), (14)

whereξ(x) =
[

ξ1(x), ξ2(x), . . . , ξN(x)
]T , in whicnξi(x) =

n
∏

j=1
µi

j (x j )

N
∑

i=1

n
∏

j=1
µi

j (x j )
, µi

j(x j) is the membership degree of fuzzy system,

andθ = [θ1, θ2, . . . , θN]T is the ideal constant weight vector.
According to the fuzzy universal approximation theorem, ify(x) is defined as a function of compact setΩ, for any

constantµ > 0, there exists a fuzzy system satisfying sup
f (x)∈Ω

= |y(x) − f (x)| ≤ µ.
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4. Design process of DFSCB controller

4.1. Controller design

In this section, we design the DFSCB controllermd and mq for the PV system indq-frame. First of all, we
approximate the unmodeled part by fuzzy function:

δ1 = θ
T
1 ξ1(x), δ2 = θ

T
2 ξ2(x), δ3 = θ

T
3 ξ3(x). (15)

We defineθ̃b = θ̂b − θb (b = 1, 2, 3) as an estimated error, whereθ̂b are the adaptive estimated value ofθb, and
δ̂b = θ̂

T
b ξb(x) are the fuzzy approximation value ofδb.

For parametersηa, (a = 1, 2, 3), we define adaptive estimation error as ˜ηa = η̂a − ηa , whereη̂a are the estimate of
ηa.

Then, the tracking error of DC voltage is defined as:

e1 = udc− udcre f, (16)

We choose the Lyapunov function as:

V1 =
1
2

e2
1, (17)

and the derivative ofV1 can be calculated as:

V̇1 = e1ė1 = e1

(

u̇dc− u̇dcre f

)

= −c1e2
1 + e1

















η1

















3
(

udid + uqiq
)

2udc
− idc

















+ θT
1 ξ1(x) − u̇dcre f + c1e1

















(18)

wherec1 > 0 is a designed constant. To stabilizeV1, and consider adaptive parameter estimation and fuzzy approxi-
mation, we choose the virtual controller as:

îdsd =
2udc

3usdη̂1

(

−c1e1 − θ̂
T
1 ξ1(x) + u̇dcre f + η̂1idc

)

−
usqisq

usd
. (19)

In order to reduce the computational complexity of the controller, we introduce an instruction filter in the con-
troller, and the structure of the command-filter is shown in Fig.5.

2

ni

i

s

z
2 i niz s

1

s

1

s
- -

dy cy

cyc

Magnitude

limiter

Rate limiter

Figure 5: Structure of the command-filter.

The state equation of the command-filter can be written as [33]:
[

ẏc

ÿc

]

=

[

ẏc

2ζi

[

SR

(

σni
2ζi

(

SM(yd) − yc
))

− ẏc
]

]

(20)

whereyd andyc are the input and output signal of command-filter respectively, the waveform of the two signals should
be the same. Theσni andζi are the bandwidth and damping in the filter. If we design the virtual controlleridsd as the
input of the command-filter, then we can get the derivative ofvirtual controller i̇csd through integral part, thereby
reducing the computation of the controller. The filtering error is defined as:

ε̇ = −c1ε +
3usdη̂1

2udc

(

icsd− idsd

)

. (21)
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Then, we redefine the DC voltage tracking error and the current tracking error in the system as:

ē1 = e1 − ε, e2 = isd− icsd, e3 = isq− idsq, (22)

and we need to redefine Lyapunov function to stabilize ¯e1 simultaneously:

V2 =
1
2

ē2
1. (23)

According to (18), (19), (21) and (22), the derivative ofV2 can be calculated as:

V̇2 = ē1 ˙̄e1 = ē1 (ė1 − ε̇)

= −c1ē2
1 +

3usdη̂1

2udc
ē1e2 − θ̃

Tξ(x) + η̃1

(

idc−
3(usdisd+ usqisq)

2udc

)

.
(24)

We define the sliding mode surfaces ind-frame andq-frame as:

S1 = k1ē1 + e2, S2 = k2e2. (25)

In order to facilitate the computation, we first seek the derivatives ofS1 andSs as:

Ṡ1 = k1 ˙̄e1 + ė2

= k1 ˙̄e1 + (η̃2 − η̂2) isd+ ωisq+ (η̃3 − η̂3) usd+ (η̂3 − η̃3)
udc

2
τd +

(

θ̂T
2 − θ̃

T
2

)

ξ2(x) − i̇csd,
(26)

Ṡ2 = k2ė3

= k2

(

(η̃2 − η̂2) isq− ωisd+ (η̃3 − η̂3) usq+ (η̂3 − η̃3)
udc

2
τq +

(

θ̂T
3 − θ̃

T
3

)

ξ3(x) − i̇csq

)

,
(27)

wherek1 > 0, k2 > 0 are the gains of the sliding mode surfaces.
In order to stabilize the entire system, we select the Lyapunov function once again as:

V3 = V2 +
1
2

S2
1 +

1
2

S2
2 +

η̃2
1

2r1
+
η̃2

2

2r2
+
η̃2

3

2r3
+
θ̃T

1 θ̃1

2λ1
+
θ̃T

2 θ̃2

2λ2
+
θ̃T

3 θ̃3

2λ3
, (28)

wherera > 0, λb > 0, (a, b = 1, 2, 3) are the designed gains of adaptive law. Combination equation (24), (26) and (27),
the derivative ofV3 can be calculated as:

V̇3 =ē1 ˙̄e1 + S1Ṡ1 + S2Ṡ2 +
η̃1 ˙̂η1

r1
+
η̃2 ˙̂η2

r2
+
η̃3 ˙̂η3

r3
+
θ̃T

1
˙̂θ1

λ1
+
θ̃T

2
˙̂θ2

λ2
+
θ̃T

2
˙̂θ3

λ3

= − c1ē2
1 +

3usdη̂1

2udc
ē1e2 − c2S2

1 − c3S1sat(S1) − c4S2
2 − c5S2sat(S2)

+ S1

(

k1 ˙̄e1 − η̂2isd+ ωisq− η̂3usd+ η̂3
udc

2
τd + θ̂

T
2 ξ2(x) − i̇csd+ c2S1 + c3sat(S1)

)

+ k2S2

(

−η̂2isq− ωisd− η̂3usq+ η̂3
udc

2
τq + θ̂

T
3 ξ3(x) − i̇dsq+

1
k2

c4S2 +
1
k2

c5sat(S2)

)

+
η̃1

r1

(

˙̂η1 − r1ē1

(

3(usdisd+ usqisq)

2udc
− idc

))

+
η̃2

r2

(

˙̂η2 − r2

(

−isdS1 − k2isqS2

))

+
η̃3

r3

(

˙̂η3 − r3

(

S1

(

−usd+
udc

2
τd

)

+ k2S2

(

−usq+
udc

2
τq

)))

+
θ̃T

1

λ1

( ˙̂θ1 − λ1 (ē1ξ1(x))
)

+
θ̃T

2

λ2

( ˙̂θ2 − λ2 (S1ξ2(x))
)

+
θ̃T

3

λ3

( ˙̂θ3 − λ3 (k2S2ξ3(x))
)

,

(29)
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wherec2, c3, c4, c5 > 0 are the designed controller parameters. According to equation (29), in order to ensure the
convergence of the system, we design the controllers ind-frame andq-frame as:

τd =
2

η̂3udc

(

−k1 ˙̄e1 + η̂2isd− ωisq+ η̂3usd−θ̂
T
2 ξ2(x)+i̇csd− c2S1 − c3sat(S1)

)

, (30)

τq =
2

k2η̂3udc

(

k2

(

η̂2isq+ ωisd+ η̂3usq− θ̂
T
3 ξ3(x) +i̇dsq

)

− c4S2 − c5sat(S2)
)

. (31)

The function sat(.) is the saturation function which expressed as:

sat(S) =



















1, S > ψ

S/ϕ, |S| ≤ ψ
−1, S < −ψ

(32)

where 0< ψ ≤ 0.5 is the layer of the sliding surface.
Still according to equation (29), the adaptive laws of entire system are designed as follows:

˙̂η1 = r1Proj

(

η̂1, ē1

(

3(usdisd+ usqisq)

2udc
− idc

)

−m1η̂1

)

,

˙̂η2 = r2Proj
(

η̂2, − isdS1 − k2isqS2 −m2η̂2

)

,

˙̂η3 = r3proj
(

η̂3, S1

(

−usd+
udc

2
τd

)

+k2S2

(

−usq+
udc

2
τq

)

−m3η̂3

)

,

˙̂θ1 = λ1Proj
(

θ̂1, ē1ξ1(x) − n1θ̂1

)

˙̂θ2 = λ2Proj
(

θ̂2, S1ξ2(x) − n2θ̂2

)

˙̂θ3 = λ3Proj
(

θ̂3, k2S2ξ3(x) − n3θ̂3

)

(33)

wherema > 0, nb > 0(a, b = 1, 2, 3) are the designed parameters. The function Proj(.) in (33) represents the projection
operator (see in reference [34]), which guarantees that theadaptive parameter estimation is bounded.

dq

dt
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τ
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dcu

-
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Figure 6: Signal flow diagram of the DFSCB controller.

4.2. Stability proof
Substituting (30), (31) and (33) into (29), theV̇3 is computed as:

V̇3 = −c1ē2
1 +

3usdη̂1

2udc
ē1e2 − c2S2

1 − c3S1sat(S1) − c4S2
2

− c5S2sat(S2) −
3

∑

a=1

ma
η̃T

a η̂a

ra
−

3
∑

b=1

nb
θ̃T

b θ̂b

λb
.

(34)

9
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Define 0< µ < 1, then from (34) we can obtain that−c1ē2
1 +

3usdη̂1

2udc
ē1e2 ≤ −c1(1− µ)ē2

1 − c1µ|ē1|
2 +

3usdη̂1

2udc
|ē1| |e2|.

If we make3usdη̂1

2udc
|ē1| |e2| − c1µ|ē1|

2 ≤ 0, that is|ē1| ≥
3usdη̂1|e2|

2c1µudc
. then we can get the conclusion that−c1ē2

1 +
3usdη̂1

2udc
ē1e2 ≤

−c1(1− µ)ē2
1. Moreover, we can know thatc3S1sat(S1) ≥ 0, c5S2sat(S2) ≥ 0 according to the definition in this article.

Therefore, combining with the above conclusions,V̇3 has the following inequalities relationship:

V̇3 ≤ −c1(1− µ)ē2
1 − c2S2

1 − c4S2
2 −

3
∑

a=1

ma
η̃T

a η̂a

ra
−

3
∑

b=1

nb
θ̃T

b θ̂b

λb
. (35)

Furthermore, according to the Young’s inequality, we can obtain that:

−θ̃T
b θ̂b = −θ̃

T
b

(

θ̃b + θb

)

≤ −θ̃T
b θ̃b +

θ̃T
b θ̃b

2
+
θT

b θb

2

≤ −
θ̃T

b θ̃b

2
+
θT

b θb

2
, (b = 1, 2, 3),

(36)

similarly:

−η̃T
a η̂a ≤ −

η̃T
a η̃a

2
+
ηT

aηa

2
, (a = 1, 2, 3), (37)

Substituting equation (36) and (37) in (35), one obtains:

V̇3 ≤ −c1(1− µ)ē2
1 − c2S2

1 − c4S2
2

−

3
∑

a=1

(

maη̃
T
a η̃a

2ra
−

maη
T
aηa

2ra

)

−

3
∑

b=1













nbθ̃
T
b θ̃b

2λb
−

nbθ
T
b θb

2λb













≤ −αV3 + β

(38)

whereα = min {2c1(1− µ), 2c2, 2c4,ma, nb}, a, b = 1, 2, 3,β =
3
∑

a=1

maη
T
a ηa

2ra
+

a
∑

b=1

nbθ
T
b θb

2λb
.

As a result, we get the following conclusion from (38):

V3(t) ≤
(

V3(t0) −
β

α

)

e−α(t−t0) +
β

α

≤ V3(t0) +
β

α
, ∀t ≥ t0.

(39)

In conclusion, it is proved that the system is bounded and stable. The signal flow diagram of the DFSCB controller
is shown in Fig.6.

5. Simulation results and studies

In this section, we built the 100kW islanded PV power generation system with ESS in MATLAB/Simulink, see in
Fig.7, and the whole simulation lasts 2s.

The circuit parameters in PV system and ESS are shown in TableI and II, the parameters of designed control laws

are shown in Table III. The membership function of the fuzzy system is defined as:µi
j = exp

[

−
(

x j + l × 2
)2
/3

]

, where

l = −5,−4, · · ·0, · · · , 5, see in Fig.8.
In ESS, we make the output voltage of ESS to tracking the reference voltage (450V), and then raise the voltage

through the transformer to stabilize the AC bus voltage at 20kV. In PV system, in order to observe the change of output
power of PV system under different irradiance and temperature, the irradiance and temperature curves are given as
shown in Fig.9. Att = 1.6s, irradiance and temperature remain stable.

Fig.10 illustrates the parameters adaptive estimation curves. As we can see from the Fig.10, the estimated curve
fluctuates near the real value and presents a convergent trend. Fig.11 shows the fuzzy adaptive estimation curves. The
estimation of the fuzzy system actually compensates for thedynamic changes of the system. It can be seen that the

10
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Figure 7: Simulation model of islanded PV microgrid with ESS.
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Figure 8: Membership function of fuzzy system.

Table 1: Parameters of PV system

Parameters Value Description
Lpv 5 mH PV inductor
Cpv 100µF PV capacitance
Cdc 6 mF DC-link capacitance
R1 2 mΩ Filter resistance
L1 250µH Filter inductor
C1 500µF Filter capacitance
Tr1 0.26/25kV/kV Transformer ratio

fuzzy system has estimated the unmodeled part of the system,and has improved the performance of the system by
matching with parameter adaptive.

Fig.12 illustrates the output active power waveform of PV system under different control methods. The controller
in PV system intervened att=0.05s. Whent=0.4s, MPPT controller starts to work, and the system works atthe MPP.
When t=0.6s-1.6s, the output power varies with irradiation and temperature, and att=1.6s-2s, the output power of
the system is stable at 100kW. Att=0s-1.8s, the load is 42kW, att=1.8s-2s, the load mutation to 128kW. It can be
seen from Fig.12(a) that the output power under PI controller has large chattering, in addition, the load mutation has
an impact on output power att=1.8s. From Fig.12(b) we can see that the sliding mode command-filtered backstep-
ping (SCB) controller has better performance than the PI controller, the output power curve under SCB controller is
smoother than that under PI controller, but there is still chattering, moreover, when load mutated att=1.8s, the impact

11
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Table 2: Parameters of ESS

Parameters Value Description
Lb 1 mH Battery inductor
Cb 150µF Battery capacitance

Cedc 6 mF DC-link capacitance
R2 3 mΩ Filter resistance
L2 300µH Filter inductor
C2 500µF Filter capacitance
ω 100π rad/s Nominal angular frequency

Tr2 0.45/20kV/kV Transformer ratio

Table 3: Parameters of designed control laws

Parameters Value Description
c1, c2, c3, c4, c5 1, 300, 360, 1200, 1000 Gains of DFSCB controller

r1, r2, r3 30, 20, 5 Gains of adaptive laws
m1, m2, m3 0.01, 0.01, 0.01 Gains of adaptive laws
λ1, λ2, λ3 50, 100, 100 Gains of adaptive fuzzy laws

m4, m5, m6 0.01, 0.01, 0.01 Gains of adaptive fuzzy laws
k1, k2 1.2, 1.2 Gains of sliding mode surface
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Figure 9: The curves of irradiance and temperature.

still exists. Fig.12(c) shows the output power curve under DFSCB controller. It can be seen that DFSCB has the best
dynamic characteristics compared with PI and SCB controller. It is worth noting that parameters adaptive and fuzzy
system further weaken the chattering of output power, and eliminate the effect of load switching on output power.

Fig.13(a) shows the load absorbed power, and Fig.13(b) shows the output power of ESS. The battery is absorbing
excess power from the PV system whenPbat is negative, and whenPbat is positive, it represents that the PV system
can not supply the rated power what load needed, and ESS discharge to compensates the power shortage. Fig.13(c)
represents the state of charge (SOC) of the battery.

Fig.14 illustrates the DC bus voltage of PV system under DFSCB controller. Under the influence of the DFSCB
controller,udc realizes the tracking of the given reference voltageudcre f = 500V regardless of changes in irradiance
and temperature. Fig.15 shows the three-phase voltage and current of AC bus att=1.85-1.95 under DFSCB controller,
under the control of the controller, the voltage and currentare stabilized. Fig.16 shows the total harmonic distortion
(THD) of AC bus current under PI, SCB and DFSCB controller. Itcan be seen that the current controlled by DFSCB
controller has the minimum THD, which further verifies the control performance of the DFSCB controller.
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Figure 10: Parameters adaptive estimation curves.
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Figure 11: Fuzzy adaptive estimation curves.

6. Conclusion

In this paper, a 100kW PV system with ESS has been establishedin MATLAB /Simulink environment software.
In the VSC in ESS, we adopted traditional PI basedV/ f controller to stabilize AC bus voltage, and provide reference
voltage and frequency for PV system. Meanwhile, ESS implements the storage and release of energy. We mainly
designed the DFSCB controller for PV system. DFSCB controller based on backstepping control method, and we
introduce the command-filter to eliminate the differential expansion of traditional backstepping control. In order to
increase the robustness of the system, we also introduce sliding mode control in the controller. In addition, to increase
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Figure 12: Output active power curve of PV system (a) under PIcontrol, (b) under SCB control, (c) under DFSCB
control.
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Figure 13: (a) The power absorbed by the load, (b) output power of ESS, (c) the SOC of battery.

the dynamic characteristics of the system, we consider the adaptive estimation of the parameters. Furthermore, to
reduce the influence of the unmodeled part of the system on thecontrol effect, we use fuzzy function to approximate
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the unmodeled part of the system. The simulation results show that the system under DFSCB controller has better
dynamic characteristics and higher power quality comparedwith PI and SCB controller.
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