22 research outputs found

    Distributed, Private, and Derandomized Allocation of Subsidized Goods

    Get PDF
    Efficient resource allocation is challenging when privacy of users is important. Distributed solution approaches have recently been used extensively to find a solution for such problems. In this work, we study the efficiency of distributed AIMD algorithm for allocation of subsidized goods. To this end, we assign each user a suitable utility function describing the amount of satisfaction that it has from allocated resource. We define the resource allocation as a \emph{total utilitarianism} problem that is an optimization problem of sum of users utility functions subjected to capacity constraint. Recently, a stochastic state-dependent variant of AIMD algorithm is used for allocation of common goods among users with strictly increasing and concave utility functions. We improve this algorithm to allocate subsidized goods to users with concave and nonmonotonous utility functions as well as users with quasi-concave utility functions. We also derandomize the AIMD algorithm and compare its efficiency with the stochastic version. We then model resource allocation problem as a competition game to evaluate the efficiency properties of unique equilibrium when network parameters change. To illustrate the effectiveness of the proposed solutions, we present simulation results for a public renewable-energy powered charging station in which the electric vehicles (EV) compete to be recharged

    Computing with strategic agents

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 179-189).This dissertation studies mechanism design for various combinatorial problems in the presence of strategic agents. A mechanism is an algorithm for allocating a resource among a group of participants, each of which has a privately-known value for any particular allocation. A mechanism is truthful if it is in each participant's best interest to reveal his private information truthfully regardless of the strategies of the other participants. First, we explore a competitive auction framework for truthful mechanism design in the setting of multi-unit auctions, or auctions which sell multiple identical copies of a good. In this framework, the goal is to design a truthful auction whose revenue approximates that of an omniscient auction for any set of bids. We focus on two natural settings - the limited demand setting where bidders desire at most a fixed number of copies and the limited budget setting where bidders can spend at most a fixed amount of money. In the limit demand setting, all prior auctions employed the use of randomization in the computation of the allocation and prices.(cont.) Randomization in truthful mechanism design is undesirable because, in arguing the truthfulness of the mechanism, we employ an underlying assumption that the bidders trust the random coin flips of the auctioneer. Despite conjectures to the contrary, we are able to design a technique to derandomize any multi-unit auction in the limited demand case without losing much of the revenue guarantees. We then consider the limited budget case and provide the first competitive auction for this setting, although our auction is randomized. Next, we consider abandoning truthfulness in order to improve the revenue properties of procurement auctions, or auctions that are used to hire a team of agents to complete a task. We study first-price procurement auctions and their variants and argue that in certain settings the payment is never significantly more than, and sometimes much less than, truthful mechanisms. Then we consider the setting of cost-sharing auctions. In a cost-sharing auction, agents bid to receive some service, such as connectivity to the Internet. A subset of agents is then selected for service and charged prices to approximately recover the cost of servicing them.(cont.) We ask what can be achieved by cost -sharing auctions satisfying a strengthening of truthfulness called group-strategyproofness. Group-strategyproofness requires that even coalitions of agents do not have an incentive to report bids other than their true values in the absence of side-payments. For a particular class of such mechanisms, we develop a novel technique based on the probabilistic method for proving bounds on their revenue and use this technique to derive tight or nearly-tight bounds for several combinatorial optimization games. Our results are quite pessimistic, suggesting that for many problems group-strategyproofness is incompatible with revenue goals. Finally, we study centralized two-sided markets, or markets that form a matching between participants based on preference lists. We consider mechanisms that output matching which are stable with respect to the submitted preferences. A matching is stable if no two participants can jointly benefit by breaking away from the assigned matching to form a pair.(cont.) For such mechanisms, we are able to prove that in a certain probabilistic setting each participant's best strategy is truthfulness with high probability (assuming other participants are truthful as well) even though in such markets in general there are provably no truthful mechanisms.by Nicole Immorlica.Ph.D

    Peer-to-Peer energy trading in micro/mini-grids for local energy communities: A review and case study of Nepal

    Get PDF
    Distributed Energy Resources (DERs) are being integrated into the power market by customers rather than large scale energy suppliers, thereby slowly transforming the centralized, unidirectional market to a decentralized, bidirectional market and transitioning customers into prosumers. Various system architectures are used in the real field to coordinate the energy distribution in the micro/ mini-grids integrated with DERs, all of which have their strengths, weaknesses and challenges. Peer-to-peer (P2P) is an emerging architecture in the field of electrical energy trading and Distributed Generation (DG) management that can be applied in local energy markets. This paper focuses on P2P energy trading, with an in-depth discussion on its various operating algorithms, their principles, characteristics, features and scope through state of art review on P2P. Furthermore, the energy system of Nepal is used as a case study in this paper, and the micro/mini-grids of Nepal and their associated challenges, constraints and opportunities for improvement are discussed. Finally, an energy trading model is proposed to address the problems occurring in the specific case of Nepalese energy market

    Journal of Telecommunications and Information Technology, 2009, nr 4

    Get PDF
    kwartalni

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore