2,988 research outputs found

    Locating-total dominating sets in twin-free graphs: a conjecture

    Full text link
    A total dominating set of a graph GG is a set DD of vertices of GG such that every vertex of GG has a neighbor in DD. A locating-total dominating set of GG is a total dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)DN(v)DN(u) \cap D \ne N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-total domination number of GG, denoted LT(G)LT(G), is the minimum cardinality of a locating-total dominating set in GG. It is well-known that every connected graph of order n3n \geq 3 has a total dominating set of size at most 23n\frac{2}{3}n. We conjecture that if GG is a twin-free graph of order nn with no isolated vertex, then LT(G)23nLT(G) \leq \frac{2}{3}n. We prove the conjecture for graphs without 44-cycles as a subgraph. We also prove that if GG is a twin-free graph of order nn, then LT(G)34nLT(G) \le \frac{3}{4}n.Comment: 18 pages, 1 figur

    Maker-Breaker total domination game

    Full text link
    Maker-Breaker total domination game in graphs is introduced as a natural counterpart to the Maker-Breaker domination game recently studied by Duch\^ene, Gledel, Parreau, and Renault. Both games are instances of the combinatorial Maker-Breaker games. The Maker-Breaker total domination game is played on a graph GG by two players who alternately take turns choosing vertices of GG. The first player, Dominator, selects a vertex in order to totally dominate GG while the other player, Staller, forbids a vertex to Dominator in order to prevent him to reach his goal. It is shown that there are infinitely many connected cubic graphs in which Staller wins and that no minimum degree condition is sufficient to guarantee that Dominator wins when Staller starts the game. An amalgamation lemma is established and used to determine the outcome of the game played on grids. Cacti are also classified with respect to the outcome of the game. A connection between the game and hypergraphs is established. It is proved that the game is PSPACE-complete on split and bipartite graphs. Several problems and questions are also posed.Comment: 21 pages, 5 figure

    Location-domination in line graphs

    Full text link
    A set DD of vertices of a graph GG is locating if every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)DN(v)DN(u) \cap D \neq N(v) \cap D, where N(u)N(u) denotes the open neighborhood of uu. If DD is also a dominating set (total dominating set), it is called a locating-dominating set (respectively, locating-total dominating set) of GG. A graph GG is twin-free if every two distinct vertices of GG have distinct open and closed neighborhoods. It is conjectured [D. Garijo, A. Gonzalez and A. Marquez, The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] and [F. Foucaud and M. A. Henning. Locating-total dominating sets in twin-free graphs: a conjecture. The Electronic Journal of Combinatorics 23 (2016), P3.9] respectively, that any twin-free graph GG without isolated vertices has a locating-dominating set of size at most one-half its order and a locating-total dominating set of size at most two-thirds its order. In this paper, we prove these two conjectures for the class of line graphs. Both bounds are tight for this class, in the sense that there are infinitely many connected line graphs for which equality holds in the bounds.Comment: 23 pages, 2 figure

    On the size of identifying codes in triangle-free graphs

    Get PDF
    In an undirected graph GG, a subset CV(G)C\subseteq V(G) such that CC is a dominating set of GG, and each vertex in V(G)V(G) is dominated by a distinct subset of vertices from CC, is called an identifying code of GG. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph GG, let \M(G) be the minimum cardinality of an identifying code in GG. In this paper, we show that for any connected identifiable triangle-free graph GG on nn vertices having maximum degree Δ3\Delta\geq 3, \M(G)\le n-\tfrac{n}{\Delta+o(\Delta)}. This bound is asymptotically tight up to constants due to various classes of graphs including (Δ1)(\Delta-1)-ary trees, which are known to have their minimum identifying code of size nnΔ1+o(1)n-\tfrac{n}{\Delta-1+o(1)}. We also provide improved bounds for restricted subfamilies of triangle-free graphs, and conjecture that there exists some constant cc such that the bound \M(G)\le n-\tfrac{n}{\Delta}+c holds for any nontrivial connected identifiable graph GG

    Partitioning the vertex set of GG to make GHG\,\Box\, H an efficient open domination graph

    Full text link
    A graph is an efficient open domination graph if there exists a subset of vertices whose open neighborhoods partition its vertex set. We characterize those graphs GG for which the Cartesian product GHG \Box H is an efficient open domination graph when HH is a complete graph of order at least 3 or a complete bipartite graph. The characterization is based on the existence of a certain type of weak partition of V(G)V(G). For the class of trees when HH is complete of order at least 3, the characterization is constructive. In addition, a special type of efficient open domination graph is characterized among Cartesian products GHG \Box H when HH is a 5-cycle or a 4-cycle.Comment: 16 pages, 2 figure
    corecore