109,709 research outputs found

    Distance Measures for Embedded Graphs

    Get PDF
    We introduce new distance measures for comparing straight-line embedded graphs based on the Fr\'echet distance and the weak Fr\'echet distance. These graph distances are defined using continuous mappings and thus take the combinatorial structure as well as the geometric embeddings of the graphs into account. We present a general algorithmic approach for computing these graph distances. Although we show that deciding the distances is NP-hard for general embedded graphs, we prove that our approach yields polynomial time algorithms if the graphs are trees, and for the distance based on the weak Fr\'echet distance if the graphs are planar embedded. Moreover, we prove that deciding the distances based on the Fr\'echet distance remains NP-hard for planar embedded graphs and show how our general algorithmic approach yields an exponential time algorithm and a polynomial time approximation algorithm for this case.Comment: 27 pages, 14 Figure

    Unimodular Random Trees

    Full text link
    We consider unimodular random rooted trees (URTs) and invariant forests in Cayley graphs. We show that URTs of bounded degree are the same as the law of the component of the root in an invariant percolation on a regular tree. We use this to give a new proof that URTs are sofic, a result of Elek. We show that ends of invariant forests in the hyperbolic plane converge to ideal boundary points. We also prove that uniform integrability of the degree distribution of a family of finite graphs implies tightness of that family for local convergence, also known as random weak convergence.Comment: 19 pages, 4 figure

    Resolving structural variability in network models and the brain

    Get PDF
    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar diagnostics presented in statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling---in addition to several summary statistics, including the mean clustering coefficient, shortest path length, and network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be embedded in anatomical brain regions tend to produce distributions that are similar to those extracted from the brain. We also find that network models hardcoded to display one network property do not in general also display a second, suggesting that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data.Comment: 24 pages, 11 figures, 1 table, supplementary material

    Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology

    Full text link
    Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into metric spaces, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real world data sets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether persistence-based similarity measure as a graph metric satisfies a set of well-established, desirable properties for graph metrics

    Construction of embedded fMRI resting state functional connectivity networks using manifold learning

    Full text link
    We construct embedded functional connectivity networks (FCN) from benchmark resting-state functional magnetic resonance imaging (rsfMRI) data acquired from patients with schizophrenia and healthy controls based on linear and nonlinear manifold learning algorithms, namely, Multidimensional Scaling (MDS), Isometric Feature Mapping (ISOMAP) and Diffusion Maps. Furthermore, based on key global graph-theoretical properties of the embedded FCN, we compare their classification potential using machine learning techniques. We also assess the performance of two metrics that are widely used for the construction of FCN from fMRI, namely the Euclidean distance and the lagged cross-correlation metric. We show that the FCN constructed with Diffusion Maps and the lagged cross-correlation metric outperform the other combinations

    Random curves on surfaces induced from the Laplacian determinant

    Full text link
    We define natural probability measures on cycle-rooted spanning forests (CRSFs) on graphs embedded on a surface with a Riemannian metric. These measures arise from the Laplacian determinant and depend on the choice of a unitary connection on the tangent bundle to the surface. We show that, for a sequence of graphs (Gn)(G_n) conformally approximating the surface, the measures on CRSFs of GnG_n converge and give a limiting probability measure on finite multicurves (finite collections of pairwise disjoint simple closed curves) on the surface, independent of the approximating sequence. Wilson's algorithm for generating spanning trees on a graph generalizes to a cycle-popping algorithm for generating CRSFs for a general family of weights on the cycles. We use this to sample the above measures. The sampling algorithm, which relates these measures to the loop-erased random walk, is also used to prove tightness of the sequence of measures, a key step in the proof of their convergence. We set the framework for the study of these probability measures and their scaling limits and state some of their properties

    Recurrence-based time series analysis by means of complex network methods

    Full text link
    Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related with the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series analysis and, hence, substantially enrich the knowledge gathered from other existing (linear as well as nonlinear) approaches.Comment: To be published in International Journal of Bifurcation and Chaos (2011
    corecore