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Abstract
We introduce new distance measures for comparing straight-line embedded graphs based on the
Fréchet distance and the weak Fréchet distance. These graph distances are defined using continuous
mappings and thus take the combinatorial structure as well as the geometric embeddings of the
graphs into account. We present a general algorithmic approach for computing these graph distances.
Although we show that deciding the distances is NP-hard for general embedded graphs, we prove that
our approach yields polynomial time algorithms if the graphs are trees, and for the distance based
on the weak Fréchet distance if the graphs are planar embedded. Moreover, we prove that deciding
the distances based on the Fréchet distance remains NP-hard for planar embedded graphs and show
how our general algorithmic approach yields an exponential time algorithm and a polynomial time
approximation algorithm for this case. Our work combines and extends the work of Buchin et al. [13]
and Akitaya et al. [7] presented at EuroCG.
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1 Introduction

There are many applications that work with graphs that are embedded in Euclidean space.
One task that arises in such applications is comparing two embedded graphs. For instance,
the two graphs to be compared could be two different representations of a geographic network
(e.g., roads or rivers). Oftentimes these networks are not isomorphic, nor is one interested
in subgraph isomorphism, but one would like to have a mapping of one graph to the other,
and ideally such a mapping would be continuous. For instance, this occurs when we have a
ground truth of a road network and a simplification or reconstruction of the same network
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and we would like to measure the error of the latter. In this case, a mapping would identify
the parts of the ground truth that are reconstructed/simplified and would allow to study the
local error.

We present new graph distance measures that are well-suited for comparing such graphs.
Our distance measures are natural generalizations of the Fréchet distance [10] to graphs
and require a continuous mapping, but they don’t require graphs to be homeomorphic. One
graph is mapped continuously to a portion of the other, in such a way that edges are mapped
to paths in the other graph. The graph distance is then defined as the maximum of the
strong (or weak) Fréchet distances between the edges and the paths they are mapped to.
This results in a directed or asymmetric notion of distance, and we define the corresponding
undirected distances as the maximum of both directed distances. The directed distances
naturally arise when seeking to measure subgraph similarity, which requires mapping one
graph to a subgraph of the other.

For comparing two not necessarily isomorphic graphs only few measures were known
previously. One such measure is the traversal distance suggested by Alt et al. [9] and another
is the geometric edit distance suggested by Cheong et al. [14]. The traversal distance converts
graphs into curves by traversing the graphs continuously and comparing the resulting curves
using the Fréchet distance. It is also a directed distance that compares the traversal of one
graph with the traversal of a part of the other graph. However, an explicit mapping between
the two graphs is not established, and part of the connectivity information of the graphs
is lost due to the conversion to curves. The geometric edit distance minimizes the cost of
edit operations from one graph to another, where cost is measured by Euclidean lengths and
distances. But again, connectivity is not well maintained. Figure 1 shows some examples of
graphs where our graph distances, the traversal distance, and the geometric edit distance
differ. In particular, only our graph distances capture the difference in connectivity between
graphs G1 and G2, as well as between H1 and H2.

Our graph distances map one graph onto a subgraph of the other and they measure the
Fréchet distance between the mapped parts (see Section 2.1 for a formal definition). Hence
connectivity information is preserved and an explicit mapping between the two (sub-)graphs
is established. One possible application of these new graph distances is the comparison
of geographic networks, for instance evaluating the quality of map reconstructions and
map simplification. In Section 5, we show first experimental results on graphs of map
reconstructions that illustrate that our approach considers both, geometry and connectivity.

(a) (b) (c)

G1 G2 H2H1 I1 I2

Figure 1 Examples where our graph distances, the traversal distance, and the geometric edit
distance differ. For clarity the graphs are shown side-by-side, but in the embedding they lie on top
of each other. (a): Graphs G1 and G2 have large graph distance (because G1 needs to mapped to
one side of G2), large edit distance (because a long edge needs to be added), but small traversal
distance. (b): Graphs H1 and H2 have large graph distance (because all of H1 needs to mapped to
only one side of H2), but small traversal distance and small edit distance. (c): Graphs I1 and I2

have small graph distance and small traversal distance, but a large edit distance (because a long
edge needs to be added).
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Related work

A few approaches have been proposed in the literature for comparing geometric embedded
graphs. Subgraph-isomorphism considers only the combinatorial structure of the graphs
and not its geometric embedding. It is NP-hard to compute in general, although it can be
computed in linear time if both graphs are planar and the pattern graph has constant size [17].
If we consider the graphs as metric spaces, the Gromov-Hausdorff distance (GH) between two
graphs is the minimum Hausdorff distance between isometric embeddings of the graphs into a
common metric space. While it is unknown how to compute GH for general graphs, recently
Agarwal et al. [1] gave a polynomial time approximation algorithm for the GH between a
pair of metric trees. We are however interested in measuring the similarity between two
specific embeddings of the graphs. Armiti et al. [11] suggest a probabilistic approach for
comparing graphs that are not required to be isomorphic, using spatial properties of the
vertices and their neighbors. However, they require vertices to be matched to vertices, which
can result in a large graph distance when an edge in one graph is subdived in the other graph.
Furthermore, the spatial properties used are invariant to translation and rotation, whereas
we consider a fixed embedding. Cheong et al. [14] proposed the geometric edit distance for
comparing embedded graphs, however it is NP-hard to compute. Alt et al. [9] defined the
traversal distance, which is most similar to our graph distance measures, but it does not
preserve connectivity. comparison with the traversal distance.

For assessing the quality of map construction algorithms, several approaches have been
proposed. One approach is to compare all paths [2] or random samples of shortest paths [18].
However, these measures ignore the local structure of the graphs. In order to capture more
topological information, Biagioni and Eriksson developed a sampling-based distance [12]
and Ahmed et al. introduced the local persistent homology distance [3]. The latter distance
measure focuses on comparing the topology and does not encode geometric distances between
the graphs. The sampling-based distance is not a formally defined distance measure, and it
crucially depends on parameters (in particular matched_distance, to decide if points are
sufficiently close to be matched); in practice it is unclear how these parameters should be
chosen. However, it captures the number of matched edges, which is useful when comparing
reconstructed road networks. In contrast to these measures, our graph distances capture
more topology than the path-based distance [2], and capture differences in geometry better
than the local persistent homology distance [3]. Also our graph distances are well-defined
distance measures that do not require specific parameters to be set, unlike [12].

Contributions

We present new graph distance measures that compare graphs based on their geometric
embeddings while respecting their combinatorial structure. To the best of our knowledge,
our graph distances are the first to establish a continuous mapping between the embedded
graphs. In Section 2 we define several variants of our graph distances (weak, strong, directed,
undirected) and study their properties. In Section 3 we develop an algorithmic approach
for computing the graph distances. On the one hand, we prove that for general embedded
graphs, deciding these distances is NP-hard. On the other hand, we also show that our
algorithmic approach gives polynomial time algorithms in several cases, e.g., when one graph
is a tree. The most interesting case is when both graphs are plane. Here, we show that our
algorithmic approach yields a quadratic time algorithm for the weak Fréchet distance. In
Section 4 we focus on plane graphs and the strong Fréchet distance. For this case, we show
that the problem is NP-hard, even though it is polynomial time solvable for the weak Fréchet
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distance. Furthermore, we show how to obtain an approximation, that depends on the angle
between incident edges, in polynomial time and an exact result in exponential time. For this
version, we omit some of the proofs or present only proof sketches. Detailed proofs can be
found within the version published on arXiv [8].

2 Graph Distance Definition and Properties

Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs with vertices embedded as
points in Rd (typically R2) that are connected by straight-line edges. We refer to such graphs
as (straight-line) embedded graphs. Generally, we do not require the graphs to be planar. We
denote a crossing free embedding of a planar graph shortly as a plane graph. Note that for
plane graphs G1 and G2, crossings between edges of G1 and edges of G2 are still allowed.

2.1 Strong and Weak Graph Distance
We define distance measures between embedded graphs that are based on mapping one graph
to the other. We consider a particular type of graph mappings, as defined below:

I Definition 1 (Graph Mapping). We call a mapping s : G1 → G2 a graph mapping if
1. it maps each vertex v ∈ V1 to a point s(v) on an edge of G2, and
2. it maps each edge {u, v} ∈ E1 to a simple path from s(u) to s(v) in the embedding of G2.

Note that a graph mapping results in a continuous map if we consider the graphs as
topological spaces. To measure similarity between edges and mapped paths, our graph
distances use the Fréchet distance or the weak Fréchet distance, which are popular distance
measures for curves [10]. For two curves f, g : [0, 1]→ Rd their Fréchet distance is defined as

δF (f, g) = inf
σ : [0,1]→[0,1]

max
t∈[0,1]

||f(t)− g(σ(t))||,

where σ ranges over orientation preserving homeomorphisms. The weak Fréchet distance is

δwF (f, g) = inf
α,β : [0,1]→[0,1]

max
t∈[0,1]

||f(α(t))− g(β(t))|| ,

where α, β range over all continuous onto functions that keep the endpoints fixed.
Typically, the Fréchet distance is illustrated by a man walking his dog. Here, the Fréchet

distance equals the shortest length of a leash that allows the man and the dog to walk on
their curves from beginning to end. For the weak Fréchet distance man and dog may walk
backwards on their curves, for the Fréchet distance they may not. The Fréchet distance and
weak Fréchet distance between two polygonal curves of complexity n can be computed in
O(n2 logn) time [10]. Now, we are ready to define our graph distance measures.

I Definition 2 (Graph Distances). We define the directed (strong) graph distance ~δG as
~δG(G1, G2) = inf

s:G1→G2
max
e∈E1

δF (e, s(e))

and the directed weak graph distance ~δwG as
~δwG(G1, G2) = inf

s:G1→G2
max
e∈E1

δwF (e, s(e)) ,

where s ranges over graph mappings from G1 to G2, and e and its image s(e) are interpreted
as curves in the plane. The undirected graph distances are

δG(G1, G2) = max(~δG(G1, G2), ~δG(G2, G1)) and

δwG(G1, G2) = max(~δwG(G1, G2), ~δwG(G2, G1)).
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According to Definition 1, a graph mapping s maps each edge of G1 to a simple path s(e)
in G2. This is justified by the following observation: Mapping e to a non-simple path s′(e),
where s(e) and s′(e) have the same endpoints and s(e) ⊂ s′(e), does not decrease the (weak)
graph distance because δ(w)F (e, s(e)) ≤ δ(w)F (e, s′(e)). From this observation also follows
that we cannot decrease ~δG(G1, G2) by adding additional vertices to subdivide an edge e of
G1: While the concatenation of the resulting mapped paths in G2 may not be simple, it can
be replaced by the image of the entire edge e, which by the observation has to be simple.

We state a first important property of the graph distances:

I Lemma 3. For embedded graphs, the strong graph distances and the weak graph distances
fulfill the triangle inequality. The undirected distances are pseudo-metrics. For plane graphs
they are metrics.

Proof. Symmetry follows immediately for the undirected distances. The directed distances
fulfill the triangle inequality because we can concatenate two maps and use the triangle
inequality of Rd: Let G1, G2 and G3 be three embedded graphs. An edge e of G1 is mapped
to a simple path p in G2. The segments of p are again mapped to a sequence of simple
paths in G3. Thus, when concatenating two maps, one possible mapping maps each edge e
of G1 to a sequence S of simple paths in G3. Note, that S need not be simple. However,
in that case we can instead map e to a shortest path p̂ in S from beginning to end. As
δ(w)F (e, p̂) ≤ δ(w)F (e, S) for each edge of G1, we have ~δG(G1, G2) +~δG(G2, G3) ≥ ~δG(G1, G3)
and ~δwG(G1, G2) + ~δwG(G2, G3) ≥ ~δG(G1, G3) by definition of the directed (weak) graph
distance as the maximum Fréchet distance of an edge and its mapping. Analogously, the
undirected distances fulfill the triangle inequality as well.

For plane graphs, their (weak) graph distance is zero iff their embeddings are the same,
hence the distances are metrics. If the (weak) graph distance is zero, every edge needs to be
mapped to itself, hence the embeddings are the same. If on the other hand, the embeddings
are the same, a graph mapping may map every edge to itself in the embedding. Since there
are no intersections or overlapping vertices, this mapping is continuous in the target graph,
and the distance is zero. J

Note that for non-plane graphs the (weak) graph distance does not fulfill the identity of
indiscernibles. For example, if G1 consists of two crossing line segment edges, and G2 has
visually the same embedding but consists of four edges and includes the intersection point as
a vertex, then both, ~δG(G1, G2) = ~δwG(G1, G2) = 0 and ~δG(G2, G1) = ~δwG(G2, G1) = 0, and
therefore δG(G1, G2) = δwG(G1, G2) = 0. Also note that we do not require graph mappings
to be injective or surjective. And an optimal graph mapping from G1 to G2 may be very
different from an optimal graph mapping from G2 to G1. See Figure 2 for examples of graphs
and their graph distances.

In [8], we show that the traversal distance between a graph G1 and a graph G2 is a
lower bound for ~δwG(G1, G2), which follows from the observation that the traversal distance
captures the combinatorial structure of the graphs to a lesser extent than our graph distances.
Furthermore, we apply the graph distances to measure the similarity between two polygonal
paths to examine how these new definitions are generalizations of the (weak) Fréchet distance
for curves to graphs.

3 Algorithms and Hardness for Embedded Graphs

Throughout this paper, let G1 = (V1, E1) and G2 = (V2, E2) be two straight-line embedded
graphs, and let n1 = |V1|, m1 = |E1|, n2 = |V2| and m2 = |E2|.

ISAAC 2019
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G2
G1

G2G1

u2 u′2

u1
v1

(a) (b)

u2 v2u1
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v2

ε1ε1

G1G2

(c)

u1 v1

u3 u2

v2v3
u1

u2
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u4

v1

u′2

v2

u′3

(d)

ε3

ε5
v3

ε2

G1
G2

v4

ε6

ε4 u′

Figure 2 Examples of graph mappings s1 : G1 → G2 and s2 : G2 → G1, and the resulting graph
distances. Mapped vertices are drawn with crosses and are not graph vertices. (a) ~δG(G1, G2) =
~δG(G2, G1) = ε1. s1(u1) = v1, s1(u2) = u′2, s1(u3) = v2 and s2 = s−1

1 . (b) ~δG(G1, G2) = ε1 < ε2 =
~δG(G2, G1). The mapping s1(u1) = v1 and s1(u2) = v2 is not surjective, and s2(v1) = s2(v3) = u1

and s2(v2) = u2 is not injective. (c) ~δG(G1, G2) = ε3 > ε4 = ~δG(G2, G1). s1(ui) = vi and s2(vi) = ui

for i = 1, 2, 3; s2(v4) = u1. (a)-(c) The weak graph distances equal the strong graph distances.
(d) ~δG(G1, G2) = ~δwG(G1, G2) = ~δwG(G2, G1) = ε5 < ε6 = ~δG(G2, G1). Here, the mappings that
attain the strong graph distances are s1(u1) = v1, s1(u2) = u′2, s1(u3) = u′3, s1(u4) = v2 and
s2(v1) = u1, s2(v2) = u4, where s2 in the limit maps u′ to all points on the edge from u2 to u3. The
mappings attaining the weak graph distances are sw

1 = s1 and sw
2 = s−1

1 .

First, we consider the decision variants for the different graph distances defined in
Definition 2. Given G1 and G2 and a value ε > 0, the decision problem for the graph
distances is to determine whether ~δG(G1, G2) ≤ ε (resp., ~δwG(G1, G2) ≤ ε). Equivalently,
this amounts to determining whether there exists a graph mapping from G1 to G2 realizing
~δG(G1, G2) ≤ ε (resp., ~δwG(G1, G2) ≤ ε). Note that the undirected distances can be decided
by answering two directed distance decision problems. As we show in Section 3.3, the value
of ε can be optimized by parametric search.

In Section 3.1 we describe a general algorithmic approach for solving the decision problems
by computing valid ε-placements for vertices. We show that for general embedded graphs
the decision problems for the strong and weak directed graph distances are NP-hard, see
Section 3.2. However, we prove in Section 3.3 that our algorithmic approach yields polynomial-
time algorithms for the strong graph distance if G1 is a tree, and for the weak graph distance
if G1 is a tree or if both are plane graphs. In the latter scenario (G1 and G2 plane graphs),
deciding if ~δG(G1, G2) ≤ ε remains NP-hard, see Section 4.1.

3.1 Algorithmic Approach
Recall, that a (directional) graph mapping that realizes a given distance ε maps each vertex
of G1 to a point in G2 and each edge of G1 to a simple path in G2 within this distance. In
order to determine whether such a graph mapping exists, we define the notion of ε-placements
of vertices and edges; see Figures 3 and 4 (a).

I Definition 4 (ε-Placement). An ε-placement of a vertex v is a maximally connected part
of G2 restricted to the ε-ball Bε(v) around v. An ε-placement of an edge e = {u, v} ∈ E1 is a
path P in G2 connecting placements of u and v such that δF (e, P ) ≤ ε. In that case, we say
that Cu and Cv are reachable from each other. An ε-placement of G1 is a graph mapping
s : G1 → G2 such that s maps each edge e of G1 to an ε-placement.

A weak ε-placement of an edge e = {u, v} is a path P in G2 connecting placements of u
and v such that δwF (e, P ) ≤ ε. A weak ε-placement of G1 is a graph mapping s : G1 → G2
such that s maps each edge e of G1 to a weak ε-placement.
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ε ε
u v

e

(a) An ε-placement of e.

ε ε
u v

e

(b) Not an ε-placement.

ε ε
u v

e

(c) A weak ε-placement.

Figure 3 (a) Illustration of ε-placements of an edge e. (b) Not an ε-placement because the path
leaves the ε-tube around e. (c) The Fréchet distance is too large, but e can be mapped to the path
if backtracking is allowed. Thus, it is a weak ε-placement.

ε ε
u v
u1

u2
u3

v1

v2 v3
e(a)

ε ε
u v
u1 v1

e(b)

Figure 4 Illustration of valid and invalid vertex placements. (a) Placements u3 (resp. v3) are
invalid because they are not connected to a placement of v (resp. u) by an ε-placement of the edge
e. Placement v2 is valid when considering e in isolation, but it cannot connect to a placement for
the edge that leaves v to the right. Thus, it is also invalid. As a result of pruning v2 (right), u2

becomes invalid as well, leaving only u1 and v1 as potentially valid placements of u and v (b).

Note that an ε-placement of a vertex v consists of edges and portions of edges of G2,
depending whether Bε(v) contains both, one or zero endpoint(s) of the edge, see Figure 4.
Also note that each vertex has O(m2) ε-placements, since an ε-placement is defined as a
connected part of G2 of maximal size inside Bε(v). Furthermore, we consider two graph
mappings s1 and s2 from G1 to G2 to be equivalent in terms of the directed (weak) graph
distance if for each vertex v ∈ V1, s1(v) and s2(v) are points on the same ε-placement of v.

General Decision Algorithm

Our algorithm consists of the following four steps, which we describe in more detail below.
We assume ε is fixed and use the term placement for an ε-placement.

Observe that each connected component of G1 needs to be mapped to a connected
component of G2, and each connected component of G1 can be mapped independently of the
other components of G1. Hence we can first determine the connected components of both
graphs, and then consider mappings between connected components only. In the following
we present an algorithm for determining if a mapping from G1 to G2, that realizes a given
distance ε, exists, where both G1 and G2 are connected graphs.

Algorithm 1 General Decision Algorithm.

1: Compute vertex placements.
2: Compute reachability information for vertex placements.
3: Prune invalid placements.
4: Decide if there exists a placement for the whole graph G1.

1. Compute vertex placements

We iterate over all vertices v ∈ V1 and compute all their placements. Each vertex has O(m2)
placements, so the total number of vertex-placements is O(n1 ·m2), and they can be computed
in O(n1 ·m2) time using standard algorithms for computing connected components.

ISAAC 2019
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2. Compute reachability information of vertex placements

Next, we iterate over all edges e = {u, v} ∈ E1 to determine all placements of its vertices
that allow a placement of the edge. That is, we search for all pairs of vertex-placements
Cu, Cv that are reachable from each other according to Definition 4.

For the weak graph distance, we need to find all pairs of placements of u and placements
of v that can reach one another using paths contained in the ε-tube Tε(e) around e, i.e., the
set of all points with distance ≤ ε to a point on e, see Figure 3 (c). If we restrict G2 to its
intersection with the ε-tube, all placements in the same connected component are mutually
reachable. Thus, each edge is processed in time linear in the size of G2 using linear space per
edge: For each connected component a pair of lists containing the placements of u and v in
that component, respectively, is computed. So, all reachability information can be computed
in O(m1 ·m2) time and space. Note that the weak Fréchet distance between a straight line
edge e ∈ E1 and a simple path s(e) in G2 is the maximum of the Hausdorff distance between
e and s(e) and the distances of the endpoints of e and s(e).

For the strong graph distance, existence of a path inside the ε-tube is not sufficient to
describe the connectivity between placements. We must ensure that the Fréchet distance
between e and P is at most ε, i.e., a continuous and monotone map s must exist from
e to P such that δF (t, s(t)) ≤ ε for all t ∈ e. This can be decided in O(|P |) time using
the original dynamic programming algorithm for computing the Fréchet distance [10]. In
order to determine whether such a path P exists, every placement of u stores a list of all
placements of v that are reachable. The connectivity information can be computed by
running a graph exploration, starting from each placement, which prunes a branch if the
search leaves the ε-tube or backtracking on e is required to map it. This method runs a
search for every placement of the start vertex and thus needs O(m2

2) time per edge of G1.
Since the connectivity is explicitly stored as pairs of placements that are mutually reachable,
it also needs O(m2

2) space per edge. Hence, in total over all edges, O(m1 ·m2
2) time and

space are needed. Summing up, we have:

I Lemma 5. To run step 1 and step 2 of Algorithm 1, we need O(m1 ·m2) time and space
for the weak graph distance and O(m1 ·m2

2) time and space for the strong graph distance.

3. Prune invalid placements

Now, after having processed all vertices and edges, it still needs to be decided whether G1 as
a whole can be mapped to G2. To this end, we delete invalid placements of vertices.

I Definition 6 (Valid Placement). An ε-placement Cv of a vertex v is (weakly) valid if for
every neighbor u of v there exists an ε-placement Cu of u such that Cv and Cu are connected
by a (weak) ε-placement of the edge {u, v}. Otherwise, Cv is (weakly) invalid.

See Figure 4 for an illustration of (in)valid placements. As shown in the Figure, deleting
an invalid placement possibly sets former valid placements to be invalid. Thus, we need to
process all placements recursively until all invalid placements are deleted and no new invalid
placements occur. Note that the ordering of processing the placements does not affect the
final result. To decide which placements of vertices u and v incident to an edge e are valid,
we use the reachability information computed in Step 2.

Initially there are O(n1 ·m2) vertex-placements, each of which may be deleted once. For
the weak graph distance, connectivity is stored using connected components inside the ε-tube
surrounding an edge {u, v}. On deleting a placement Cv of v, it is removed from the list
containing placements of v. If a component no longer contains placements of v (i.e. its list
becomes empty), then all placements of u in that component become invalid. A placement
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Cv is deleted at most once and upon deletion it must be removed from one list for every edge
incident to v. Thus, the time for pruning Cv is O(deg(v)). Since the sum of all degrees is
2m1, all invalid placements can be pruned in O(m1 ·m2) time. For the strong graph distance,
every placement has a list of placements to which it is connected. On deleting Cv, it must be
removed from the lists of all placements Cu to which Cv is connected. Each vertex has O(m2)
placements which have to be removed from a list for each neighbor of v. Thus, pruning a
placement runs in O(deg(v) ·m2) time and pruning all invalid placements in O(m1 ·m2

2) time.

I Lemma 7. Pruning all invalid placements takes O(m1 · m2) time for the weak graph
distance and O(m1 ·m2

2) time for the strong graph distance.

Note that after the pruning step all remaining vertex placements are (weakly) valid.
However, the existence of a (weakly) valid placement for each vertex is not a sufficient
criterion for ~δG(G1, G2) (~δwG(G1, G2)) in general, see Figure 6.

4. Decide if there exists a placement for the whole graph G1

After pruning all invalid placements, we want to decide if the remaining valid vertex-
placements allow a placement of the whole graph G1. The complexity of this step depends
on the graph and the distance measure: for plane graphs we show that we can concatenate
weakly valid placements of two adjacent faces (Lemma 12), whereas this is not possible for
the directed strong graph distance in this setting (Theorem 15) or for general graphs for both
distances (Theorem 10). Although deciding the directed (weak) graph distance is NP-hard for
general graphs, there are two settings which may occur after running steps 1-3 of Algorithm 1,
making step 4 of the algorithm trivial. Clearly ~δG(G1, G2) > ε (~δwG(G1, G2) > ε) if there is
a vertex that has no (weakly) valid ε-placement. Furthermore, we have the following:

I Lemma 8. If, after running steps 1-3 of Algorithm 1, each internal vertex (degree at least
two) has exactly one valid ε-placement (resp., weakly valid ε-placement) and each vertex of
degree one has at least one valid ε-placement (resp., weakly valid ε-placement), then G1 has
an ε-placement (resp., weak ε-placement). Thus, ~δG(G1, G2) ≤ ε (resp., ~δwG(G1, G2) ≤ ε).

Lemma 5, Lemma 7 and Lemma 8 imply the following Theorem.

I Theorem 9. If there is a vertex that has no valid ε-placement or if each vertex has exactly
one valid ε-placement after running steps 1-3 of Algorithm 1, the directed strong graph
distance can be decided in O(m1 ·m2

2) time and space. Analogously, if there is a vertex that
has no weakly valid ε-placement or if each vertex has exactly one weakly valid ε-placement
after running steps 1-3 of Algorithm 1, the directed weak graph distance can be decided in
O(m1 ·m2) time and space.

3.2 NP-Hardness for the General Case
Notwithstanding the special cases in Theorem 9, deciding the (weak) graph distance is not
tractable for general graphs.

I Theorem 10. Deciding whether ~δG(G1, G2) ≤ ε and deciding whether ~δwG(G1, G2) ≤ ε

for two graphs G1 and G2 embedded in R2 is NP-hard.

Proof Sketch. We show NP-hardness reducing from binary constraint satisfaction problem
(CSP) by identifying each variable xi with a vertex vi of G1 and each constraint on two
variables xi, xj with an edge incident to vi and vj . Furthermore, for every possible value
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for a variable, we add one vertex to G2 and embed the vertex inside an ε-ball around the
variable. We connect two of such vertices corresponding to two different variables with an
edge iff the two values satisfy the constraint. Now, deciding the CSP is equivalent to decide
if every edge of G1 can be mapped to a path of G2 consisting of a single edge. J

3.3 Efficient Algorithms for Plane Graphs and Trees
Here, we show that that Algorithm 1 yields polynomial-time algorithms for deciding the
strong graph distance if G1 is a tree (Theorem 14), and the weak graph distance if G1 is a tree
or if both are plane graphs (Theorem 13). More precisely, we show that the existence of at
least one (weakly) valid placement for each vertex is a sufficient condition for ~δG(G1, G2) ≤ ε
or ~δwG(G1, G2) ≤ ε.

I Lemma 11. If G1 is a tree and every vertex of G1 has at least one (weakly) valid ε-
placement after running steps 1-3 of Algorithm 1, then G1 has a (weak) ε-placement. Thus,
~δG(G1, G2) ≤ ε (or ~δwG(G1, G2) ≤ ε).

Proof Sketch. We view G1 as a rooted tree, selecting an arbitrary vertex as the root. Now
we can greedily map all vertices of G1 from the root outwards because all placements are
valid and no cycle exists where we need to ensure that we start and end in the same valid
placement when traversing the cycle. J

I Lemma 12. If G1 and G2 are plane graphs and every vertex of G1 has at least one weakly
valid ε-placement after running steps 1-3 of Algorithm 1, then G1 has a weak ε-placement.
Thus, ~δwG(G1, G2) ≤ ε.

Proof. A tree-substructure of G1 is a tree T = (VT , ET ) induced by the vertex set VT ⊂ V1
with a root vertex r ∈ VT , such that for all vertices v ∈ VT , v 6= r, v is not an endpoint of an
edge e ∈ E1\ET and such that T is maximal, in the sense that when adding one additional
vertex, T contains a cycle. We first remove all tree-substructures of G1 and map these as in
the proof of Lemma 11. Next, we consider all faces of the remainder of G1 and show how to
iteratively map them.

Consider a cycle C bounding a face F and let e1 and e2 be two edges of C incident to
a vertex v. Let b be the line segment of the bisector of e1 and e2 inside Bε(v). We define
the outermost placement of v as the placement which intersects b at maximum distance to
the endpoint of b inside F , see Figure 5 (a). Furthermore, we define an outermost path in
G2 of an edge e = {u, v} of G1 as the path Pout with maximum distance to F connecting
the outermost placements of u and v. That is, no subpath Q of Pout can be replaced by a
path R such that δH(R,B) ≤ δH(Q,B), where δH is the Hausdorff distance and B is the
boundary of the tube Tε(e) which lies inside the face F . Note that if an edge is shorter than
2ε, and hence the ε-balls around the vertices overlap, then so possibly do the placements. In
particular, in this case the outer placements may overlap, in which case the edge placements
degenerate, see Figure 5 (a). Finally, we define an outer placement O of C in G2 as the
concatenation of all outermost paths of edges of C.

Note that if C is sufficiently convex the outer placement is simply the cycle that bounds
H. See Figure 5 (b) for an example, where the red outer placement bounds the outer face
of G2 restricted to red and pink vertices and edges. The outer placement of C is a weak
ε-placement of C.

Now, consider two cycles C1 and C2 bounding adjacent faces of G1, which share a
single (possibly degenerate) path P between vertices u and v. Let O1 and O2 be the outer
placements of C1 and C2, respectively. By definition of an outermost placement, O1 and O2
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(a) A vertex with its
placement.

(b) A cycle with its outer placement.
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(c) Merging two outer placements.

Figure 5 Illustration of outer placements and how to merge them. In (c) the outer placements of
cycles C1 and C2 can be merged by mapping the shared path P through o1.

must intersect inside the intersection of the ε-tubes of C1 and C2. Let o1 and o2 of O1 and
O2 be the parts between the intersections of O1 and O2 containing the respective images of
P . Again, by definition of an outermost placement, it holds that o1 is completely inside O2
and o2 is completely inside O1.

This is illustrated in Figure 5 (c). By planarity there must be a vertex at the intersections
of O1 and O2. Thus, we can construct a mapping O′2 of C2 that consists of o1 and O2 \ o2.
This is a weak ε-placement of C2 for which the image of the shared path P is identical to
its image in O1. Thus, we can merge O1 and O′2 to obtain a weak ε-placement of these
two adjacent cycles. Note that the mapping of C1 is not modified in this construction.
Additionally, the image of the cycle bounding the outer face is its outer placement. The
same argument can be applied iteratively when C1 and C2 share multiple paths.

If there are two cycles C1 and C2 which are connected by a path P such that one endpoint
u of P lies on C1, the other endpoint v of P lies on C2 and all other vertices of P are no
vertices of C1 or C2, we can still construct a common placement for C1, C2 and P : Let Cu,
Cv be the outermost placements of u and v, respectively and let Dv be a vaild placement of
v which is connected by a path Q in G2 to Cu such that δwF (Q,P ) ≤ ε. Such a placement
Dv must exist as Cu is a valid placement. If Dv = Cv we have found a common valid
placement for C1, C2 and P . If Dv 6= Cv, by definition of an outermost placement, the path
Q must intersect the outermost placement O of C2 inside the intersection of the tubes Tε(P )
and Tε(C2). As G2 is plane, there is a vertex w at the intersection and the resulting path
R = QCu→w +Ow→Cv

with δwF (R,P ) ≤ ε connects Cu and Cv.
Now, we iteratively map the cycles bounding faces of G1 until G1 is completely mapped.

Let 〈F1, F2, . . . , Fk〉 be an ordering of the faces of G1 such that each Fi, for i ≥ 2 is on
the outer face of the subgraph Gi−1 := C1 ∪ C2 ∪ . . . ∪ Ci−1 of G1, where Cj is the cycle
bounding face Fj . Thus, let F1 be an arbitrary face of G1 and subsequently choose faces
adjacent to what has already been mapped. Hence when adding a cycle Ci, we have already
mapped Gi−1 such that the cycle bounding its outer face is mapped to its outer placement.
Thus, we can treat Gi−1 as a cycle, ignoring the part of it inside this cycle, and merge its
mapping with Ci using the procedure described above. This leaves the mapping of Gi−1
unchanged, hence this is still a weak ε-placement of Gi−1. However, the mapping of Ci is
now modified to be identical to that of Gi−1 in the parts where they overlap. Thus, we
can merge these mappings to obtain a weak ε-placement of Gi. After mapping Fk we have
completely mapped G1. J
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Lemma 5 and Lemma 7 together with Lemma 11 and Lemma 12 directly imply the
following theorems. Note, that m1 = O(n1) for plane graphs and trees, in particular.

I Theorem 13 (Decision Algorithm for Weak Graph Distance). Let ε > 0. If G1 is a tree,
or if G1 and G2 are plane graphs, then Algorithm 1 decides whether ~δwG(G1, G2) ≤ ε in
O(n1 ·m2) time and space.

I Theorem 14 (Decision Algorithm for Graph Distance). Let ε > 0. If G1 is a tree, then
Algorithm 1 decides whether ~δG(G1, G2) ≤ ε in O(n1 ·m2

2) time and space.

Computing the Distance

To compute the graph distance, we proceed as for computing the Fréchet distance between
two curves: We search over a set of critical values and employ the decision algorithm in each
step. The following types of critical values can occur:
1. A new vertex-placement emerges: An edge in G2 is at distance ε from a vertex in G1.
2. Two vertex-placements merge: The vertex in G2 where they connect is at distance ε from

a vertex in G1.
3. The (weak) Fréchet distance between a path and an edge is ε: these are described in [10].

There are exponentially many paths in G2, but each value the Fréchet distance may
attain is defined by either a vertex and an edge, or two vertices and an edge.

There are O(n1 · m2) critical values of the first two types, and O(m1 · n2
2) of type three.

Parametric search can be used to find the distance as described in [10], using the decision
algorithms from Theorems 13 and 14. This leads to a running time of O(n1 ·m2 · log(n1 +n2))
for computing the weak graph distance if G1 is a tree or both are plane graphs. And the total
running time for computing the graph distance if G1 is a tree is O(n1 ·m2

2 · log(n1 + n2)).

4 Hardness Results and Algorithms for Plane Graphs

Lemma 12 does not hold for plane graphs and the directed strong graph distance because in
general outer placements of cycles cannot be combined to a placement of G1 as shown in the
proof of Lemma 12 , see Figure 6 for a counterexample. In fact we show that deciding the
directed strong graph distance for plane graphs is NP-hard.

4.1 NP-Hardness for the Strong Distance for Plane Graphs
I Theorem 15. For plane graphs G1 and G2, deciding whether ~δG(G1, G2) ≤ ε is NP-hard.

Proof Sketch. We prove the NP-hardness by a reduction from Monotone-Planar-3-Sat.
In this 3-Sat variant, the associated graph with edges between variables and clauses is planar
and each clause contains only positive or only negative literals. We construct two graphs
G1 and G2 where each vertex of G1 has at least two valid placements. The equivalence of a
Monotone-Planar-3-Sat solution and a valid mapping is obtained by zig-zag shapes of
G2 inside the ε-Ball of some of the vertices of G1. See Figure 6 for an illustration. J

The following stronger result follows from the observation that characteristics of the
subgraphs we constructed in the proof of Theorem 15 still hold for a slightly larger ε value.

I Theorem 16. It is NP-hard to approximate ~δG(G1, G2) within a 1.10566 factor.
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ee1 e2F1 F2

Figure 6 An example of plane graphs G1 (blue) and G2 (red) where every vertex of G1 has two
valid placements, but there is no ε-placement of G1: If the central edge e is mapped to a path
through e1, there is no way to map the cycle bounding face F2 on the right, and if e is mapped to a
path through e2, the cycle bounding F1 cannot be mapped.

4.2 Deciding the Strong Graph Distance in Exponential Time
A brute-force method to decide the directed strong graph distance is to iterate over all
possible combinations of valid vertex placements, which takes O(m1 ·mn1

2 ). time. Another
approach is to decompose G1 into faces and merge the substructures bottom-up. This
approach is exponential in the number of faces. For more details, see [8].

I Theorem 17. For plane graphs, the strong graph distance can be decided in O(Fm2F−1
2 )

time and O(m2F−1
2 ) space, where F is the number of faces of G1.

Thus, this method is superior to the brute-force method if 2F − 1 ≤ n1.

4.3 Approximation for Plane Graphs
For plane graphs, Algorithm 1 yields an approximation depending on the angle between the
edges for deciding the strong graph distance. The decision is based on the existence of valid
placements. Therefore, the runtime is the same as stated in Theorem 14.

I Theorem 18. Let G1 := (V1, E1) and G2 := (V2, E2) be plane graphs. Assume that for all
adjacent vertices v1, v2 ∈ V1, Bε(v1) and Bε(v2) are disjoint. Let αv be the smallest angle
between two edges of G1 incident to vertex v with deg(v) ≥ 3, and let α := 1

2 minv∈V1(αv). If
there exists at least one valid ε-placement for each vertex of G1, then ~δG(G1, G2) ≤ 1

sin(α)ε.

Proof Sketch. For ε̂ := 1
sin(α)ε the union of all ε-placements of a vertex v with deg(v) ≥ 3

form a single connected component of G2 inside Bε̂. Thus, when mapping two adjacent
cycles separated by a path P , we ensure that for both mappings the same ε̂-placements of
the start and endpoints of P are used. J

5 Experiments on Road Networks

In the last decade several algorithms have been developed for reconstructing maps from
the trajectories of entities moving on the network [4, 5]. This naturally asks to assess the
quality of such reconstruction algorithms. Recently, Duran et al [16] compared several of
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these algorithms on hiking data, and found that inconsistencies often arise due to noise and
low sampling of the input data, for example unmerged parallel roads or the addition of short
off-roads.

When assessing the quality of a network reconstruction from trajectory data, several
aspects have to be taken into account. Two important aspects are the geometric and
topological error of the reconstruction. Another important aspect is the coverage, i.e., how
much of the network is reconstructed from the data. We believe our measures to be well
suited for assessing the geometric error while still maintaining connectivity information.

We have used the weak graph distance for measuring the distance between different
reconstructions and a ground truth of a part of the road network of Chicago. Figure 7 (a)
shows two reconstructed road map graphs R (red) and B (blue), overlayed on the underlying
ground truth road map G from OpenStreetMap. The reconstruction R in red resulted from
Ahmed et al.’s algorithm [6], whereas the reconstruction B in blue from Davies et al.’s [15]
algorithm. Our directed graph distance from B to G is 25 meters, and from R to G it is 90
meters. This reflects the local geometric error of the reconstructions (note that it does not
evaluate the difference in coverage). Figure 7 (b) shows an example where the topology of R
and G differs (blue circle), affecting for instance navigation significantly. This is captured
by our distance. Although the reconstruction approximates the geometry well, our measure
computes a directed distance of 200 m from G (restricted to the part covered by R) to R.

(a) Two partial map reconstructions of Chicago. (b) Different topology.

Figure 7 Two reconstructed road map graphs R (red) and B (blue), overlayed on the underlying
ground truth road map G from OpenStreetMap.

6 Conclusion

We developed new distances for comparing straight-line embedded graphs and presented
efficient algorithms for computing these distances for several variants of the problem, as well
as proving NP-hardness for other variants. Our distance measures are natural generalizations
of the Fréchet distance and the weak Fréchet distance to graphs, without requiring the
graphs to be homeomorphic. Although graphs are more complicated objects than curves,
the runtimes of our algorithms are comparable to those for computing the Fréchet distance
between polygonal curves. A large-scale comparison of our approach with existing graph
similarity measures is left for future work.



H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk 55:15

References
1 Pankaj K. Agarwal, Kyle Fox, Abhinandan Nath, Anastasios Sidiropoulos, and Yusu Wang.

Computing the Gromov-Hausdorff Distance for Metric Trees. ACM Trans. Algorithms,
14(2):24:1–24:20, April 2018. doi:10.1145/3185466.

2 Mahmuda Ahmed, Brittany T. Fasy, Kyle S. Hickmann, and Carola Wenk. Path-based distance
for street map comparison. ACM Transactions on Spatial Algorithms and Systems, 28 pages,
2015.

3 Mahmuda Ahmed, Brittany Terese Fasy, and Carola Wenk. Local Persistent Homology Based
Distance Between Maps. In 22nd ACM SIGSPATIAL GIS, pages 43–52, 2014.

4 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. A comparison
and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica,
19(3):601–632, 2015.

5 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. Map Construction
Algorithms. Springer, 2015.

6 Mahmuda Ahmed and Carola Wenk. Constructing Street Networks from GPS Trajectories.
In Proceedings of the 20th Annual European Conference on Algorithms, ESA’12, pages 60–71,
Berlin, Heidelberg, 2012. Springer-Verlag.

7 Hugo Akitaya, Maike Buchin, and Bernhard Kilgus. Distance Measures for Embedded Graphs
- Revisited. In 35th European Workshop on Computational Geometry (EuroCG), 2019.

8 Hugo A. Akitaya, Maike Buchin, Bernhard Kilgus, Stef Sijben, and Carola Wenk. Distance
Measures for Embedded Graphs. CoRR, abs/1812.09095, 2018. arXiv:1812.09095.

9 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal of
Algorithms, 49(2):262–283, 2003.

10 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(1&2):75–91, 1995.

11 Ayser Armiti and Michael Gertz. Geometric graph matching and similarity: A probabilistic
approach. ACM International Conference Proceeding Series, June 2014.

12 James Biagioni and Jakob Eriksson. Inferring Road Maps from Global Positioning System
Traces: Survey and Comparative Evaluation. Transportation Research Record: Journal of the
Transportation Research Board, 2291:61–71, 2012.

13 Maike Buchin, Stef Sijben, and Carola Wenk. Distance Measures for Embedded Graphs. In
Proc. 33rd European Workshop on Computational Geometry (EuroCG), pages 37–40, 2017.

14 Otfried Cheong, Joachim Gudmundsson, Hyo-Sil Kim, Daria Schymura, and Fabian Stehn.
Measuring the similarity of geometric graphs. In International Symposium on Experimental
Algorithms, pages 101–112, 2009.

15 Jonathan J. Davies, Alastair R. Beresford, and Andy Hopper. Scalable, Distributed, Real-Time
Map Generation. IEEE Pervasive Computing, 5(4):47–54, 2006.

16 David Duran, Vera Sacristán, and Rodrigo I. Silveira. Map Construction Algorithms: An
Evaluation Through Hiking Data. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Mobile Geographic Information Systems, MobiGIS ’16, pages 74–83, 2016.

17 David Eppstein. Subgraph Isomorphism in Planar Graphs and Related Problems. In Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95, pages 632–640,
Philadelphia, PA, USA, 1995. Society for Industrial and Applied Mathematics.

18 Sophia Karagiorgou and Dieter Pfoser. On vehicle tracking data-based road network generation.
In 20th ACM SIGSPATIAL GIS, pages 89–98, 2012.

ISAAC 2019

https://doi.org/10.1145/3185466
http://arxiv.org/abs/1812.09095

	Introduction
	Graph Distance Definition and Properties
	Strong and Weak Graph Distance

	Algorithms and Hardness for Embedded Graphs
	Algorithmic Approach
	NP-Hardness for the General Case
	Efficient Algorithms for Plane Graphs and Trees

	Hardness Results and Algorithms for Plane Graphs
	NP-Hardness for the Strong Distance for Plane Graphs
	Deciding the Strong Graph Distance in Exponential Time
	Approximation for Plane Graphs

	Experiments on Road Networks
	Conclusion

