103,905 research outputs found

    Distance Constraint Satisfaction Problems

    Full text link
    We study the complexity of constraint satisfaction problems for templates Γ\Gamma that are first-order definable in (Z;succ)(\Bbb Z; succ), the integers with the successor relation. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), we provide a full classification for the case that Gamma is locally finite (i.e., the Gaifman graph of Γ\Gamma has finite degree). We show that one of the following is true: The structure Gamma is homomorphically equivalent to a structure with a d-modular maximum or minimum polymorphism and CSP(Γ)\mathrm{CSP}(\Gamma) can be solved in polynomial time, or Γ\Gamma is homomorphically equivalent to a finite transitive structure, or CSP(Γ)\mathrm{CSP}(\Gamma) is NP-complete.Comment: 35 pages, 2 figure

    Random subcubes as a toy model for constraint satisfaction problems

    Full text link
    We present an exactly solvable random-subcube model inspired by the structure of hard constraint satisfaction and optimization problems. Our model reproduces the structure of the solution space of the random k-satisfiability and k-coloring problems, and undergoes the same phase transitions as these problems. The comparison becomes quantitative in the large-k limit. Distance properties, as well the x-satisfiability threshold, are studied. The model is also generalized to define a continuous energy landscape useful for studying several aspects of glassy dynamics.Comment: 21 pages, 4 figure

    Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings

    Full text link
    Constraint programming is a paradigm wherein relations between variables are stated in the form of constraints. Many real life problems come from uncertain and dynamic environments, where the initial constraints and domains may change during its execution. Thus, the solution found for the problem may become invalid. The search forrobustsolutions for constraint satisfaction problems (CSPs) has become an important issue in the ¿eld of constraint programming. In some cases, there exists knowledge about the uncertain and dynamic environment. In other cases, this information is unknown or hard to obtain. In this paper, we consider CSPs with discrete and ordered domains where changes only involve restrictions or expansions of domains or constraints. To this end, we model CSPs as weighted CSPs (WCSPs) by assigning weights to each valid tuple of the problem constraints and domains. The weight of each valid tuple is based on its distance from the borders of the space of valid tuples in the corresponding constraint/domain. This distance is estimated by a new concept introduced in this paper: coverings. Thus, the best solution for the modeled WCSP can be considered as a most robust solution for the original CSP according to these assumptionsThis work has been partially supported by the research projects TIN2010-20976-C02-01 (Min. de Ciencia e Innovacion, Spain) and P19/08 (Min. de Fomento, Spain-FEDER), and the fellowship program FPU.Climent Aunés, LI.; Wallace, RJ.; Salido Gregorio, MA.; Barber Sanchís, F. (2013). Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings. Artificial Intelligence Review. 1-26. https://doi.org/10.1007/s10462-013-9420-0S126Climent L, Salido M, Barber F (2011) Reformulating dynamic linear constraint satisfaction problems as weighted csps for searching robust solutions. In: Ninth symposium of abstraction, reformulation, and approximation (SARA-11), pp 34–41Dechter R, Dechter A (1988) Belief maintenance in dynamic constraint networks. In: Proceedings of the 7th national conference on, artificial intelligence (AAAI-88), pp 37–42Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell 49(1):61–95Fargier H, Lang J (1993) Uncertainty in constraint satisfaction problems: a probabilistic approach. In: Proceedings of the symbolic and quantitative approaches to reasoning and uncertainty (EC-SQARU-93), pp 97–104Fargier H, Lang J, Schiex T (1996) Mixed constraint satisfaction: a framework for decision problems under incomplete knowledge. In: Proceedings of the 13th national conference on, artificial intelligence, pp 175–180Fowler D, Brown K (2000) Branching constraint satisfaction problems for solutions robust under likely changes. In: Proceedings of the international conference on principles and practice of constraint programming (CP-2000), pp 500–504Goles E, Martínez S (1990) Neural and automata networks: dynamical behavior and applications. Kluwer Academic Publishers, DordrechtHays W (1973) Statistics for the social sciences, vol 410, 2nd edn. Holt, Rinehart and Winston, New YorkHebrard E (2006) Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South WalesHerrmann H, Schneider C, Moreira A, Andrade Jr J, Havlin S (2011) Onion-like network topology enhances robustness against malicious attacks. J Stat Mech Theory Exp 2011(1):P01,027Larrosa J, Schiex T (2004) Solving weighted CSP by maintaining arc consistency. Artif Intell 159:1–26Larrosa J, Meseguer P, Schiex T (1999) Maintaining reversible DAC for Max-CSP. J Artif Intell 107(1):149–163Mackworth A (1977) On reading sketch maps. In: Proceedings of IJCAI’77, pp 598–606Sam J (1995) Constraint consistency techniques for continuous domains. These de doctorat, École polytechnique fédérale de LausanneSchiex T, Fargier H, Verfaillie G (1995) Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the 14th international joint conference on, artificial intelligence (IJCAI-95), pp 631–637Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285Verfaillie G, Jussien N (2005) Constraint solving in uncertain and dynamic environments: a survey. Constraints 10(3):253–281Wallace R, Freuder E (1998) Stable solutions for dynamic constraint satisfaction problems. In: Proceedings of the 4th international conference on principles and practice of constraint programming (CP-98), pp 447–461Wallace RJ, Grimes D (2010) Problem-structure versus solution-based methods for solving dynamic constraint satisfaction problems. In: Proceedings of the 22nd international conference on tools with artificial intelligence (ICTAI-10), IEEEWalsh T (2002) Stochastic constraint programming. In: Proceedings of the 15th European conference on, artificial intelligence (ECAI-02), pp 111–115William F (2006) Topology and its applications. Wiley, New YorkWiner B (1971) Statistical principles in experimental design, 2nd edn. McGraw-Hill, New YorkYorke-Smith N, Gervet C (2009) Certainty closure: reliable constraint reasoning with incomplete or erroneous data. J ACM Trans Comput Log (TOCL) 10(1):

    The complexity of Boolean surjective general-valued CSPs

    Full text link
    Valued constraint satisfaction problems (VCSPs) are discrete optimisation problems with a (Q{})(\mathbb{Q}\cup\{\infty\})-valued objective function given as a sum of fixed-arity functions. In Boolean surjective VCSPs, variables take on labels from D={0,1}D=\{0,1\} and an optimal assignment is required to use both labels from DD. Examples include the classical global Min-Cut problem in graphs and the Minimum Distance problem studied in coding theory. We establish a dichotomy theorem and thus give a complete complexity classification of Boolean surjective VCSPs with respect to exact solvability. Our work generalises the dichotomy for {0,}\{0,\infty\}-valued constraint languages (corresponding to surjective decision CSPs) obtained by Creignou and H\'ebrard. For the maximisation problem of Q0\mathbb{Q}_{\geq 0}-valued surjective VCSPs, we also establish a dichotomy theorem with respect to approximability. Unlike in the case of Boolean surjective (decision) CSPs, there appears a novel tractable class of languages that is trivial in the non-surjective setting. This newly discovered tractable class has an interesting mathematical structure related to downsets and upsets. Our main contribution is identifying this class and proving that it lies on the borderline of tractability. A crucial part of our proof is a polynomial-time algorithm for enumerating all near-optimal solutions to a generalised Min-Cut problem, which might be of independent interest.Comment: v5: small corrections and improved presentatio

    A Decomposition Technique for Solving {Max-CSP}

    Get PDF
    International audienceThe objective of the Maximal Constraint Satisfaction Problem (Max-CSP) is to find an instantiation which minimizes the number of constraint violations in a constraint network. In this paper, inspired from the concept of inferred disjunctive constraints intro- duced by Freuder and Hubbe, we show that it is possible to exploit the arc-inconsistency counts, associated with each value of a net- work, in order to avoid exploring useless portions of the search space. The principle is to reason from the distance between the two best values in the domain of a variable, according to such counts. From this reasoning, we can build a decomposition technique which can be used throughout search in order to decompose the current prob- lem into easier sub-problems. Interestingly, this approach does not depend on the structure of the constraint graph, as it is usually pro- posed. Alternatively, we can dynamically post hard constraints that can be used locally to prune the search space. The practical interest of our approach is illustrated, using this alternative, with an experi- mentation based on a classical branch and bound algorithm, namely PFC-MRDAC

    Solving incidence and tangency constraints in 2D

    Get PDF
    This paper reports on solving geometric constraint satisfaction problems involving incidence and tangency constraints in 2D. A variational geometric constraint solver based on a constructive approach is used: the main goal is to keep the present set of rules as small as possible. Defining tangency conditions as distance and angle constraints allows solving fixed radius configurations. Non-fixed radius schemes are also characterized and a new set of constructive rules is proposed.Postprint (published version

    Quiet Planting in the Locked Constraint Satisfaction Problems

    Full text link
    We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and first and second moment considerations; in particular the connection with the reconstruction on trees appears to be crucial. Our main result is the location of the hard region in the planted ensemble. In a part of that hard region instances have with high probability a single satisfying assignment.Comment: 21 pages, revised versio
    corecore