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1 IntroductionIn Geometric Constraint Satisfaction Problems (GCSP), modelling tasks are per-formed by giving dimensions and geometric especi�cations, or constraints, to roughsketches.Several approaches to the geometric constraint satisfaction have been reported inthe literature. Most constraint solvers translate constraint relations into a system ofequations that are solved using iterative techniques, in numerical constraint solvers,or symbolic algebraic methods, in symbolic constraint solvers. Other approaches arebased on constraint propagation on graphs representing systems of constraint equa-tions. In constructive solvers, constraints are satis�ed by placing subsets of well-constrained geometric elements in a �nite number of construction steps. They arebased on the fact that most con�gurations in an engineering drawing are solvable us-ing a rather small set of tools like ruler, compass and protractor. Constructive solverscan be based either on rewriting rules [2, 13] or on constraint graph analysis [1, 12, 10].Our group has built a variational geometric constraint solver based on a construc-tive approach [7]. It computes a solution in two phases. First, using rewriting rules,the solver builds a sequence of construction steps without the need of arranging theset of constraints in a prede�ned order. Then, the construction steps are carried outto generate an instance of the geometric object for the current dimension values.Sketches are composed from geometric elements and constraints. At present, pointsand segments are the only geometric elements allowed in the solver. Constraints thatcan be de�ned on these objects include distance between two points, perpendiculardistance between a point and a segment, and angle between two segments. The possiblegeometric elements that can be de�ned using tangency constraints are circles, arcsand segments. This paper describes how to extend the present sets of geometries andconstraints, by including arcs, circles, incidence and 2D tangency constraints, whilekeeping the set of rules as small as possible.In the next section, the constructive geometric constraint solver used in the presentwork is introduced. In section 3, we will discuss about constraints involving arcs andcircles. In section 4, incidence and tangency constraints in 2D will be characterized:�xed and variable radii con�gurations will be introduced and a new set of construc-tive rules will be proposed. Finally, in section 5, our conclusions will focus on theconvenience of extending the present set of rules in the geometric constraint solver.2 The Constructive Geometric Constraint SolverThe geometric constraint solving system has two major components, the analyser andthe constructor.The analyser deals with the problem of determining symbolically whether or nota geometric sketch is solvable. It is based on a constructive technique which exhibitsproperties of both rule and graph constructive approaches. The solver is fed witha topologically correct sketch properly annotated with constraints. Then, if the setof constraints consistently de�nes the object, the analyser generates a sequence ofconstructive steps that determine each geometric element such that the constraintsare satis�ed.The constructor responds to the problem of building an instance of the geomet-ric object. The instantiation is carried out by applying the sequence of constructionsteps generated by the analyser to the actual parameters values. Whenever no numer-ical incompatibilities arise in the computation, an instance of the geometric object isgenerated.The solver considers only well-constrained, two-dimensional sketches.In the next sections, we discuss some issues concerning the data representation andthe rules used. 2



2.1 Data representation in GCSPA GCSP can be modelled using a constraint graph to represent both, geometric com-ponents and constraints de�ned on these elements. Each node represents the degreesof freedom of the underlying geometry in the graph. Edges constraint the possiblemovements of these geometries: the more edges in a graph, the more likely to be rigid.A constraint graph is a simple, undirected and �nite graph consisting of nodesrepresenting geometries and pairwise edges corresponding to the equations betweeneach two constraint geometries [12]. In GCSP, the primary interest is not in graphs,but rather in their concrete realizations in some Euclidean space. The graph realiza-tion problem is that of computing the relative locations of a set of vertices placed inEuclidean space, relying only upon some set of inter-vertex constraints.By Laman's theorem [11], the relative positions of n given points are totally deter-mined by 2n� 3 independent relations de�ned between them. In 2D Euclidean space,independent relations mean, using a graph approach, that a graph G with n geometricelements and 2n� 3 constraints is rigid if and only if no subgraph G0 has more than2n0 � 3 edges, n0 � n.2.2 RulesRules are applied on subsets of points and constraints. These subsets are known asconstraint sets, CX sets in short, and they are classi�ed in CA, CD and CH sets.An angle constraint set, CA set, is a pair of oriented segments which are mutuallyconstrained by an angle.A distance constraint set, CD set, is a set of points with mutually constraineddistances.A CH set is a point and a segment constrained by a perpendicular distance fromthe point to the segment.A sketch is solved when all the points belong to the same CD set. Dependingon the functionality of the rules, the following types are considered: creation rules,merging rules or construction rules.� Creation rulesCreation rules generate elementary CD, CA and CH sets as an interpretationof the dimensioning scheme de�ned by the user.� Merging rulesMerging rules allow to compute operations between constrained sets.� Construction rulesModels are built incrementally using locally solvable geometric constructions.CD, CA and CH sets are combined into larger CD sets if they pairwise sharea single geometric element. Merging CX sets require rigid body motions.All these rules are explained with detail in [8].3 Constraints involving arcs and circles2D tangency constraints are de�ned on arcs, circles and segments. Considering thatarcs are partial visualizations of circles between the two arc endpoints, only the twofollowing basic con�gurations need to be de�ned:� 2D tangency constraints between a segment and a circle� 2D tangency constraints between two circlesBesides tangency constraints, incidence on circles and constraints on the radiusmay also exist.GCSP are solved when all points are positioned in a CD set. By Laman's theorem,2n� 3 well-distributed constraints are enough to determine the relative position of n3
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Figure 1: Solver representation of 2D tangency constraints in a �xed radii con�guration.given points. Using a kinematical analysis approach, the total number of allowedmotions is the number of degrees of freedom, 2n (in two-dimensional space, a pointhas 2 traslational degrees of freedom), minus the rigid body motions (two traslationaland one rotational rigid body motion on the plane).When circles are included in the geometries set, a dimensionality problem arises.A point on a circle, (x�cx)2+(y�cy)2 = r2, has 3 degrees of freedom: two degrees offreedom to position the center, C = (cx; cy), and one more for the radius, r. Therefore,some care must be taken when determining the number of constraints that consistentlyde�ne GCSP's when arcs and circles are involved. More general than Laman's theorem,although not su�cient, is Gr�ubler's condition [3].The relative position of n given geometric elements in the two-dimensionalEuclidean space is determined by Pni=1 di � 3 well-distributed constraints,di the number of degrees of freedom of geometry i.4 Characterization of incidence and tangency con-straints in 2DIn this section, incidence and tangency constraints will be characterized in terms ofconstraint sets, CD CA and CH sets, considering both, �xed radii (section 4.1) andvariable radii con�gurations (section 4.2).4.1 Fixed radii con�gurationsIn �xed radii con�gurations, points on a circle are determined once the position of thecenter point is known. The two remaining traslational degrees of freedom of the circleneed to be constrained to consistently de�ne a sketch.With an appropiate representation and some preprocessing, we may restrict our-selves to points and segments, with pairwise distance and angle constraints. The circleplacement problem is reduced to positioning the center point. Constraints on circles,4
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Figure 2: Solver representation of 2D tangency between to circles with known radiusdimensions.incidence and tangency constraints, are transformed into an equivalent representationin which only distance constraints appear. Let Q(C; r) be the circle centered in C andgiven radius r. Three new creation rules are de�ned:1. point P on circle Q(C; r)This constraint is translated into a distance constraint between the point P andthe center C of circle Q(C; r), d(P;C) = r. As shown in �gure 1, A and E arepoints on1 the circle Q and, therefore, incidence is translated into the followingdistance constraints: d(C;A) = r and d(C;B) = r.2. segment s tangent to circle Q(C; r)A tangency constraint between a segment s and a circle Q is expressed by aperpendicular distance constraint set between the center of the circle and thetangent segment. In the example shown in �gure 1, Q is tangent2 to segmentsABandDE. Tangency constraints are translated into d(C;AB) = r and d(C;DE) =r. Since the distance from a point to a segment is the usual minimal distance,this constraint implicitly represent the usual information derived from tangencyconstraints between a segment and a circle: the radius and the segment areconstrained by a right-angle through the tangency point.3. circle Q1(C1; r1) tangent to circle Q2(C2; r2)A tangency constraint between two circles, Q1 and Q2, is expressed by a distanceconstraint between the two center points, C1 and C2, equal to j r1 � r2 j. Thetwo possible solutions are illustrated in �gure 2.4.2 Variable radii con�gurationsCircles can also be used even if values for the radii are not explicitly given. In thiscase, the solver not only has to determine the position of the center point, but alsothe value of the radius which satis�es the set of constraints on the circle. Circles withvariable radius have three degrees of freedom. Therefore, at least three constraints onthe circle need to be de�ned in order to cancel the two traslational degrees of freedomand a radial allowed motion.Constraints on the circle may be referred either to the center point or to the circum-ference (incidence or 2D tangency constraints). Depending on whether the center point1Incidence is represented by an on annotation in the sketch.2In the sketch, tangency constraints are denoted by t.5
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computing the value for the radii does not entail adding any geometric element toan existent CD set, this operation cannot be considered a construction rule, either.In fact, these three rules operate on elements belonging to the same CD set and notbetween constraint sets as it would be performed by merging rules.At this stage, two di�erent solutions have been considered: creating a new type ofrules or using a geometric constraint solver based on a hybrid approach.A new class of rules to deal with symbolic constraints -considering their function-ality, we have named them propagation rules- can be de�ned. Some tangency andincidence constraints introduce symbolic dimensions that may be determined by com-puting geometric relations from a partially completed construction.A solver based on a hybrid approach is a combination of several methods mentionedin section 1. A hybrid geometric constraint solver supporting symbolic constraints isdescribed in [6]. This work reports on a technique to enhance constructive geometricconstraint solvers with the capability of managing functional relationships between di-mension variables. Essentially, it is a purely geometric constraint solver communicatedbi-directionally with an equational solver.In the next section, con�gurations using circles with variable center and radii willbe analysed. Using the results obtained in sections 4.2.1 and 4.2.2, we will adopt themost suitable approach for variable radii con�gurations in section 4.2.3.4.2.2 Computing the radius and the center pointIn the previous sections, constraints on circles were transformed into an equivalentrepresentation in which only distance between two points and perpendicular distancebetween a point and a segment appeared. In �xed radii con�gurations and in variableradii circles with known center position, the points of the circle have up to two degreesof freedom. Therefore, solving constraints on circles -expressed in terms of points,segments and distance constraints- can be done using the present set of rules de�nedon sets of points, distance, perpendicular distance and angle constraints.In well-constrained sketches, when the radius dimension and the center point areunknown, all constraints on the circle must be expressed as a function of the radii.Incidence and tangency constraints must be translated into symbolic constraints usingthe relationships given in section 4.2.1:� point P on circle Q(C; r) d(C;P ) = r� segment s tangent to circle Q(C; r)d(C; s) = r� circle Q1(C1; r1) tangent to circle Q2(C2; r2)d(C1; C2) =j r1 � r2 jA combination of these three basic constraints gives ten di�erent ways of de�ningcircles using incidence and tangency constraints. The resulting con�gurations aresummarized in table 1 and a more detailed information is provided below, as well asexamples on each con�guration.1. Circle de�ned by three incident pointsSet of constraints:point P1 on circle Q(C; r) ! d(C;P1) = rpoint P2 on circle Q(C; r) ! d(C;P2) = rpoint P3 on circle Q(C; r) ! d(C;P3) = r8



Table 1: Di�erent ways to de�ne a circle using incidence and tangency constraints.Case points segments circles Con�guration1 P1; P2; P3 P
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6. Circle de�ned by an incident point and two tangency constraints be-tween circlesSet of constraints:point P1 on circle Q(C; r) ! d(C;P1) = rcircle Q1(C1; r1) tangent to circle Q(C; r) ! d(C;C1) =j r � r1 jcircle Q2(C2; r2) tangent to circle Q(C; r) ! d(C;C2) =j r � r2 jAny real solution of the followin system of equations would verify a variableradii con�guration with an incident point on the circumference and two tangencyconstraints between circles:(P1x � Cx)2 + (P1y � Cy)2 = r2(C1x � Cx)2 + (C1y � Cy)2 = (r � r1)2(C2x � Cx)2 + (C2y � Cy)2 = (r � r2)2A concrete realization of two tangency constraints between circles is shown in�gure 11. Since circles Q1 and Q2 both are lying outside the solution circle,the instantiation of the distances between the center points is r+ r1 and r+ r2,respectively.7. Circle de�ned by three tangency conditions on two segments and onecircleSet of constraints:segment s1 tangent to circle Q(C; r) ! d(C; s1) = rsegment s2 tangent to circle Q(C; r) ! d(C; s2) = rcircle Q1(C1; r1) tangent to circle Q(C; r) ! d(C;C1) =j r � r1 jIn �gure 12, a circle Q tangent to segments s23 and s34 and to circle Q1 is de�ned.The solution circle is obtained as follows:a23 �Cx + b23 �Cy + c23 = ra34 �Cx + b34 �Cy + c34 = r(C1x � Cx)2 + (C1y � Cy)2 = (r � r1)2In the example shown in �gure 12, the solution circle lies outside the tangentcircle. In this con�guration, the distance between the center points is d(C;C1) =r + r1.8. Circle de�ned by tangency constraints between the circle and threesegmentsSet of constraints:segment s1 tangent to circle Q(C; r) ! d(C; s1) = rsegment s2 tangent to circle Q(C; r) ! d(C; s2) = rsegment s3 tangent to circle Q(C; r) ! d(C; s3) = rThe following system of equations translates the constraints between circle Qand segments s1, s2 and s3 (see �gure 13). The center position and the value forthe radii are computed by solving this system of linear equations.a1 �Cx + b1 �Cy + c1 = ra2 �Cx + b2 �Cy + c2 = ra3 �Cx + b3 �Cy + c3 = r9. Circle de�ned by one tangency constraint on a segment and two tan-gency constraints between circlesSet of constraints:segment s1 tangent to circle Q(C; r) ! d(C; s1) = rcircle Q1(C1; r1) tangent to circle Q(C; r) ! d(C;C1) =j r � r1 jcircle Q2(C2; r2) tangent to circle Q(C; r) ! d(C;C2) =j r � r2 j14
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Thirteen propagation rules need to be de�ned to solve any variable radii circlecon�guration. Since the solver already has 18 construction rules, that means to nearlydouble the number of rules in the geometric constraint solver.The hybrid solver described in [6] considers 2D geometric constraint problemsinvolving constraints with �xed value as well as constraints with symbolic value. Thetechnique used deals with two sets of data: the geometric constraint data, representedby a set of clusters, and the symbolic equation data, described by a bigraph.The constructor builds an instance of the solution by executing a sequence ofconstruction steps generated by the analyser. Since all values needed must be availablewhen a construction step is carried out, the analyser classi�es each symbolic constraintaccording to the way by which its value will be computed. A symbolic constraint iscomputable when its value is to be found by solving a subset of constraint equations.A symbolic constraint is propagatable when its value can be derived from geometricelements already placed with respect to each other. When a constraint can be bothcomputable and propagatable, it is considered to be propagatable by the analyser.The relations derived from incidence and 2D tangency constraints in variable radiicircles become propagatable or computable depending on whether the center pointposition is known or not. As it has been introduced in section 4.2.1, when the centerpoint position is known, all geometric elements involved in the valuation of the radiusbelong to the same CD set. In this con�guration, the dimension of the radius is apropagatable constraint. Otherwise, the radius is a computable constraint becauseits dimension has to be valuated along with the coordinates of the center point (seecon�gurations de�ned in section 4.2.2).Propagation rules, of course, enlarge the scope of the solver, but further extensionswould require including even more rules. On the contrary, using a suitable translationof new geometries and constraints, these may be included to the hybrid solver with-out much e�ort. Besides, the hybrid solver supports other kind of relations such asengineering constraints.The correctness of the analyser for the currently available set of rules has beenestablished in [7]. Adding propagation rules to the constructive solver would implyproving termination again. The correctness of the analyser in the hybrid solver hasbeen shown in [6].All these considerations lead us to choose the geometric constraint solver based ona hybrid approach to solve variable radii con�gurations involving arcs or circles on theplane.5 ConclusionsThis work has reported on the use of circles in geometric constraint satisfaction prob-lems. Incidence and 2D tangency constraints on circles either with �xed or variableradii have been studied.Considering circles in 2D geometric constraint solving entails three new geomet-ric constraints: point incident to a circle, straigth segment tangent to a circle, andtangency between two circles.We have shown that geometric objects including circles with �xed radius can besolved without extending the set of construction rules available in our rule-based solver.This has been achieved by including three new creation rules which translate the newgeometric constraints into the already existing point to point distance constraint andpoint to segment distance constraint.Some constraint driven variational CAD systems cannot solve models where circleshave variable radius. We have characterized variable radii con�gurations and twodiferent approaches have been presented: adding a new set of rules to the solver,propagations rules, or using a hybrid solver. The hybrid solver extends the capabilitiesof the constructive solver to constraints on variable radii circles without increasing the19
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