13,446 research outputs found

    Anomalous transport in the crowded world of biological cells

    Full text link
    A ubiquitous observation in cell biology is that diffusion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarising their densely packed and heterogeneous structures. The most familiar phenomenon is a power-law increase of the MSD, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations, non-gaussian distributions of the displacements, heterogeneous diffusion, and immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarise some widely used theoretical models: gaussian models like FBM and Langevin equations for visco-elastic media, the CTRW model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Emphasis is put on the spatio-temporal properties of the transport in terms of 2-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even for identical MSDs. Then, we review the theory underlying common experimental techniques in the presence of anomalous transport: single-particle tracking, FCS, and FRAP. We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where model systems mimic physiological crowding conditions. Finally, computer simulations play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.Comment: review article, to appear in Rep. Prog. Phy

    Affine formation maneuver control of multi-agent systems

    Get PDF
    A multi-agent formation control task usually consists of two subtasks. The first is to steer the agents to form a desired geometric pattern and the second is to achieve desired collective maneuvers so that the centroid, orientation, scale, and other geometric parameters of the formation can be changed continuously. This paper proposes a novel affine formation maneuver control approach to achieve the two subtasks simultaneously. The proposed approach relies on stress matrices, which can be viewed as generalized graph Laplacian matrices with positive, negative, and zero edge weights. The proposed control laws can track any target formation that is a time-varying affine transformation of a nominal configuration. The centroid, orientation, scales in different directions, and even geometric pattern of the formation can all be changed continuously. The desired formation maneuvers are only known by a small number of agents called leaders, and the rest agents called followers only need to follow the leaders. The proposed control laws are globally stable and do not require global reference frames if the required measurements can be measured in each agent's local reference frame

    Understanding the complexity of the L\'evy-walk nature of human mobility with a multi-scale cost/benefit model

    Full text link
    Probability distributions of human displacements has been fit with exponentially truncated L\'evy flights or fat tailed Pareto inverse power law probability distributions. Thus, people usually stay within a given location (for example, the city of residence), but with a non-vanishing frequency they visit nearby or far locations too. Herein, we show that an important empirical distribution of human displacements (range: from 1 to 1000 km) can be well fit by three consecutive Pareto distributions with simple integer exponents equal to 1, 2 and (\gtrapprox) 3. These three exponents correspond to three displacement range zones of about 1 km Δr\lesssim \Delta r \lesssim 10 km, 10 km Δr\lesssim \Delta r \lesssim 300 km and 300 km Δr\lesssim \Delta r \lesssim 1000 km, respectively. These three zones can be geographically and physically well determined as displacements within a city, visits to nearby cities that may occur within just one-day trips, and visit to far locations that may require multi-days trips. The incremental integer values of the three exponents can be easily explained with a three-scale mobility cost/benefit model for human displacements based on simple geometrical constrains. Essentially, people would divide the space into three major regions (close, medium and far distances) and would assume that the travel benefits are randomly/uniformly distributed mostly only within specific urban-like areas

    LABORATORY SIMULATION OF TURBULENT-LIKE FLOWS

    Get PDF
    Most turbulence studies up to the present are based on statistical modeling, however, the spatio-temporal flow structure of the turbulence is still largely unexplored. Tur- bulence has been established to have a multi-scale instantaneous streamline structure which influences the energy spectrum and other properties such as dissipation and mixing. In an attempt to further understand the fundamental nature of turbulence and its consequences for efficient mixing, a new class of flows, so called “turbulent-like”, is in- troduced and its spatio-temporal structure of the flows characterised. These flows are generated in the laboratory using a shallow layer of brine and controlled by multi-scale electromagnetic forces resulting from a combination of electric current and a magnetic field created by a fractal permanent magnet distribution. These flows are laminar, yet turbulent-like, in that they have multi-scale streamline topology in the shape of “cat’s eyes” within “cat’s eyes” (or 8’s within 8’s) similar to the known schematic streamline structure of two-dimensional turbulence. Unsteadiness is introduced to the flows by means of time-dependent electrical current. Particle Tracking Velocimetry (PTV) measurements are performed. The technique developed provides highly resolved Eulerian velocity fields in space and time. The analysis focuses on the impact of the forcing frequency, mean intensity and amplitude on various Eulerian and Lagrangian properties of the flows e.g. energy spectrum and fluid element dispersion statistics. Other statistics such as the integral length and time scales are also extracted to characterise the unsteady multi-scale flows. The research outcome provides the analysis of laboratory generated unsteady multi- scale flows which are a tool for the controlled study of complex flow properties related to turbulence and mixing with potential applications as efficient mixers as well as in geophysical, environmental and industrial fields

    Transformer Networks for Trajectory Forecasting

    Full text link
    Most recent successes on forecasting the people motion are based on LSTM models and all most recent progress has been achieved by modelling the social interaction among people and the people interaction with the scene. We question the use of the LSTM models and propose the novel use of Transformer Networks for trajectory forecasting. This is a fundamental switch from the sequential step-by-step processing of LSTMs to the only-attention-based memory mechanisms of Transformers. In particular, we consider both the original Transformer Network (TF) and the larger Bidirectional Transformer (BERT), state-of-the-art on all natural language processing tasks. Our proposed Transformers predict the trajectories of the individual people in the scene. These are "simple" model because each person is modelled separately without any complex human-human nor scene interaction terms. In particular, the TF model without bells and whistles yields the best score on the largest and most challenging trajectory forecasting benchmark of TrajNet. Additionally, its extension which predicts multiple plausible future trajectories performs on par with more engineered techniques on the 5 datasets of ETH + UCY. Finally, we show that Transformers may deal with missing observations, as it may be the case with real sensor data. Code is available at https://github.com/FGiuliari/Trajectory-Transformer.Comment: 18 pages, 3 figure

    Body swarm interface (BOSI) : controlling robotic swarms using human bio-signals

    Get PDF
    Traditionally robots are controlled using devices like joysticks, keyboards, mice and other similar human computer interface (HCI) devices. Although this approach is effective and practical for some cases, it is restrictive only to healthy individuals without disabilities, and it also requires the user to master the device before its usage. It becomes complicated and non-intuitive when multiple robots need to be controlled simultaneously with these traditional devices, as in the case of Human Swarm Interfaces (HSI). This work presents a novel concept of using human bio-signals to control swarms of robots. With this concept there are two major advantages: Firstly, it gives amputees and people with certain disabilities the ability to control robotic swarms, which has previously not been possible. Secondly, it also gives the user a more intuitive interface to control swarms of robots by using gestures, thoughts, and eye movement. We measure different bio-signals from the human body including Electroencephalography (EEG), Electromyography (EMG), Electrooculography (EOG), using off the shelf products. After minimal signal processing, we then decode the intended control action using machine learning techniques like Hidden Markov Models (HMM) and K-Nearest Neighbors (K-NN). We employ formation controllers based on distance and displacement to control the shape and motion of the robotic swarm. Comparison for ground truth for thoughts and gesture classifications are done, and the resulting pipelines are evaluated with both simulations and hardware experiments with swarms of ground robots and aerial vehicles

    Robust Distributed Formation Control of UAVs with Higher-Order Dynamics

    Get PDF
    In this thesis, we introduce distributed formation control strategies to reach an intended linear formation for agents with a diverse array of dynamics. The suggested technique is distributed entirely, does not include inter-agent cooperation or a barrier of orientation, and can be applied using relative location information gained by agents in their local cooperation frames. We illustrate how the control optimized for agents with the simpler dynamic model, i.e., the dynamics of the single integrator, can be expanded to holonomic agents with higher dynamics such as quadrotors and non-holonomic agents such as unicycles and cars. Our suggested approach makes feedback saturations, unmodelled dynamics, and switches stable in the sensing topology. We also indicate that the control is relaxed as agents will travel along with a rotated and scaled control direction without disrupting the convergence to the desired formation. We can implement this observation to design a distributed strategy for preventing collisions. In simulations, we explain the suggested solution and further introduce a distributed robotic framework to experimentally validate the technique. Our experimental platform is made up of off-the-shelf devices that can be used to evaluate other multi-agent algorithms and verify them
    corecore