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ABSTRACT 

Md Nur-A-Adam, Dony, Robust Distributed Formation Control of UAVs with Higher-Order 

Dynamics. Master of Science in Engineering (MSE); May 2021, 57 pp., 13 figures, 22references. 

In this thesis, we introduce distributed formation control strategies to reach an intended 

linear formation for agents with a diverse array of dynamics. The suggested technique is 

distributed entirely, does not include inter-agent cooperation or a barrier of orientation, and can 

be applied using relative location information gained by agents in their local cooperation frames. 

We illustrate how the control optimized for agents with the simpler dynamic model, i.e., the 

dynamics of the single integrator, can be expanded to holonomic agents with higher dynamics 

such as quadrotors and non-holonomic agents such as unicycles and cars. Our suggested 

approach makes feedback saturations, unmodelled dynamics, and switches stable in the sensing 

topology. We also indicate that the control is relaxed as agents will travel along with a rotated 

and scaled control direction without disrupting the convergence to the desired formation. We can 

implement this observation to design a distributed strategy for preventing collisions. In 

simulations, we explain the suggested solution and further introduce a distributed robotic 

framework to experimentally validate the technique. Our experimental platform is made up of 

off-the-shelf devices that can be used to evaluate other multi-agent algorithms and verify them. 
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CHAPTER I  

INTRODUCTION 

1.1 General Introduction 

In recent years, technological innovations have found it incredibly feasible to mobilize a 

vast number of agents to conduct activities cooperatively, such as environmental mapping and 

monitoring (Keller et al., 2017; Thomas et al.2001;Tanner et al.,2001) distribution of goods, and 

manipulation of objects. The ability to get the agents to a desired geometric form in this 

implementation is a fundamental component (Leonard and Fiorelli,2001) By using this ability, 

we will be able to design more advanced strategies for maneuvering and navigation. Distributed 

formation control strategies guarantee that a desired geometric shape emerges from agents' 

collective actions by appointing local control laws to individual agents. Distributed techniques 

provide greater scalability relative to clustered approaches. They also arrange automatically 

parallelized computing, tolerance to connectivity interruption and hardware malfunction, 

robustness to instability, absence of global measurements. 

We propose a coherent distributed control strategy for planar agent formations with a 

range of dynamics in this work. In specific, we consider agents with linear or linearizable rigid-

body dynamics such as quadrotors. Then the control is further applied to agents with non - 

holonomic dynamics such as Cars and unicycles. To evaluate control gains for agents with the 

single-integrator model, we begin by constructing a semidefinite programming (SDP) problem.
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We demonstrate robustness characteristics in this design approach such as Robustness to 

input saturation, topology switching in the sensing, and disruptions in the direction of control. 

Control of single-integrator agents is gradually added to agents. For higher-order holonomic 

dynamics, it is possible to explicitly use the collection of control gains determined from the SDP 

problem to accomplish the formation without having to reinvent the control. Several models are 

presented to validate the theoretical findings. Quadrotors, differential drive robots with single-

cycle mechanics, and vehicles, where it is shown that the agents obtain the desired outcomes. 

1.2 Literature Review 

There exists a large body of work on formation control of multi-agent systems (J. C. 

Barca and Y. A. Sekercioglu,2013) however, depending on the restrictions and assumptions 

considered in the problem, existing literature can be divided into smaller categories. Examples 

are classes of methods that require position measurements in a global coordinate frame (Michael 

et al., 2008; Hyun et al.,2016) a common heading direction Montijano et al., 2014; Zhou et 

al.,2015) inter-agent communication (Park et al., 2017; Weinstein et al.,2018), or a complete 

inter-agent sensing graph (Aranda et al., 2015) Unlike the aforementioned methods, a certain 

class of formation control strategies do not require these assumptions, and a desired formation 

can be achieved without global measurements or communication. Distance-based (Saber et al., 

2017; Krick et al.,2009; Taian et al.,2013) bearing-based (Wang et al., 2014; Fathian et al.,2016; 

Wang et al.,2016) formation control strategies are among the methods that fall in the latter class. 

In a barycentric coordinate-based formation control strategy, in contrast to distance- and bearing-

based formations, the desired formation is defined in terms of both distances and bearing angles 

that are subtended from agents to their neighbors. Since common sensors such as laser scanners, 



3 

 

radars, sonars, and stereo cameras can provide both angle and distance measurements, the focus 

of this work is such desired formations. 

1.3 Motivation and Applications 

1.3.1 Unmanned Aerial Vehicles 

An Unmanned Aerial Vehicle (UAV) is known as a powered flying vehicle that does not 

carry a human operator, that can be operated remotely or autonomously and that can carry a 

payload. The UAVs can be used in both military and civilian applications. UAVs can carry out 

tasks without placing human pilots in jeopardy. Additionally, UAVs can operate in hazardous 

conditions or require tedious or onerous piloting during lengthy operations. Different types of 

Unmanned Aerial Vehicles (UAVs) have become available in recent years, namely, fixed-wing 

UAVs and rotary-wing UAVs. Compared with fixed-wing UAVs, the rotary-wing UAVs have 

advantages such as Vertical Taking Off and Landing (VTOL) ability. The rotary-wing UAVs 

cover helicopters and multirotors. A multirotor is a rotorcraft with more than two rotors. 

Compared to helicopters, a multirotor has the simplicity of rotor mechanics required for flight 

control. Unlike conventional helicopters, which are mechanically very complex, the multirotor 

usually uses fixed-pitch blades. The control of vehicle motion is achieved by varying the relative 

speed of each rotor in order to change the thrust and torques. VTOL, Quadrotors also have 

advantages such as maneuverability, low-cost, small size, and easy handling. These advantages 

motivate researchers to pay attentions on quadrotors. Other advantages of quadrotors are 

reliability and compactness, which are essential for a system that will be portable and useful in 

close proximity to people and structures for commercial applications. 
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1.4 Formation Control & Related Work 

The formation control of a multi-UAV system is an important category of networked 

systems due to their commercial and military applications. The control objective of the formation 

of multiple quadrotors contains the consensus and the formation pattern of the quadrotors. 

According to the different requirements on the patterns, the formation can be divided into two 

types, which are the rigid and flexible formations. 

1.4.1 Consensus 

A general definition of consensus is given in the literature such as the one in Olfati-Saber 

al., et 2007 ∣ Olfati-Saber and Murray, 2004 |Saber and Murray, 2003a :“In networks of agents 

or dynamic systems, consensus means to reach an agreement regarding a certain quantity of 

interest that depends on the state of all agents”. The consensus problems can be classified by 

“unconstrained consensus problems” and “constrained consensus problems”. an objective 

function exists such that the state of all agents has to asymptotically become equal to this 

function, while in an unconstrained consensus problem, it is sufficient that the state of all agents 

asymptotically be the same without computing any objective function. For example, in a multi-

vehicle system, an unconstrained consensus is achieved, if the goal of each vehicle is to 

minimize its local cost as follows 

                                      𝑈𝑖(𝑥) = Σ𝑗∈𝒩𝑖∥∥𝑥𝑗 − 𝑥𝑖 − 𝑑𝑖𝑗∥∥
2
                             (1.1) 

where 𝑥𝑖 is the position of vehicle 𝑖 and 𝑑𝑖𝑗 is a desired inter-vehicle relative-position vector. 

Vehicle 𝑗 is the neighbor of vehicle 𝑖. 
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1.4.2 Leader-Follower formation configuration 

The leader-follower, virtual leader and behavior-based configurations are seen in the 

literature. The formation control of multi-agent systems using the Leader Follower (L-F) 

configuration is particularly attractive due to its simplicity and scalability ∣ Roldao et al., 

2014.Within the L-F configuration, some agents are designated as leaders while others are 

treated as followers. The states of the leader constitute the coordination variable, since the 

actions of the other in the formation are completely specified once the leader states are known 

Montenegro et al., 2014, ||Ren et al., 2005. The L-F configuration has the advantage of 

simplicity, since the moving trajectory of the flock is clearly given to the leader(s) |Fax and 

Murray, 2004.Then, the followers follow the leader(s) to keep the formation. Compared to the 

“behavior-based” approach, the L-F configuration is efficient and simple for applications in 

practice ∣ Hou and Fantoni, 2015a. In the “behavior-based” approach without leader, the agent 

in the flock usually has random behaviors to overcome local maxima or minima ∣ Balch and 

Arkin, 1998.In the standard L − F formation configuration, the leader can affect the followers 

whenever it is in their neighboring set but there is no feedback from the followers to the leader. 

Such works can be found in papers ∣ Ni and Cheng, 2010,∣ Hong et al., 2006 ∣, Ji et al., 2009, 

where the leader is treated as a special agent whose motion is independent on other agents. 

  The first advantage is the efficiency. the searching trajectory is clearly specified by the 

leader(s), while the followers keep around the leader(s) for the purpose of extending the 

searching scope of the leader(s). Furthermore, the L-F configuration is considered as an energy 

saving mechanism | Ni and Cheng, 2010 and ||Hummel, 1995. Additionally, the L-F formation 

configuration can avoid “information-based instability” according to John Baillieul and Panos J. 

Antsaklis |Baillieul and Antsaklis, 2007. 
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1.5 Contributions of This Dissertation 

In this work, we present a unified distributed control strategy for planar formations of 

agents with a variety of dynamics. In particular, we consider agents with linear or linearizable 

holonomic dynamics, such as quadrotors, and further extend the control to agents with 

nonholonomic dynamics such as unicycles and cars. We start by formulating a semidefinite 

programming (SDP) problem to determine control gains for agents with the single-integrator 

model. We show that this design strategy enjoys several robustness properties such as robustness 

to saturations in the input, switching in the sensing topology, and disturbances in the control 

direction. We show that if agents move along a control direction that is scaled by an arbitrary 

positive value, and rotated by, an arbitrary amount up to ±90∘, convergence to the desired 

formation is still guaranteed. This observation is exploited later to design a fully distributed 

collision avoidance strategy. The control for single-integrator agents is extended subsequently to 

agents with higher-order holonomic dynamics, where we show the set of control gains computed 

from the SDP problem can be used directly to achieve the formation without having to redesign 

the control. As an example, we use the gains designed for single-integrator agents to achieve a 

planar formation of quadrotors. Following the same philosophy, we show that the control gains 

can be used directly for agents with nonholonomic dynamics such as unicycles and cars.

 Furthermore, the proposed nonholonomic control remains robust to input saturations and 

unmodeled/unknown dynamics. To vet the theoretical results, several simulations are presented 

for quadrotors, differential drive robots with unicycle dynamics, and cars, where it is shown that 

agents achieve a desired formation without collision. To typify the results further, the proposed 

control strategy is tested experimentally on a distributed differential-drive wheeled robotic 

platform with different numbers of robots and desired formations. 
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In summary, the main contributions are 

• A distributed planar formation control for vehicles with a large variety of holonomic and 

nonholonomic dynamics. 

• Eliminating the need for global position measurements, common heading direction, inter-

agent communication, or complete sensing graph. 

• Guaranteed global convergence to the desired formation with provable robustness to 

saturated input, unmodeled dynamics, and disturbances. 

• A fully distributed and heuristic collision avoidance algorithm incorporated in the 

formation control strategy. 

• A low-cost distributed robotic platform with off-the shelf components for validation of 

distributed control algorithms. 
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CHAPTER II 

FORMATION CONTROL AND GUIDANCE OF UAVS AT CONSISTENT ELEVATION 

In this work, we propose a distributed guidance strategy to navigate a team of fixed-wing 

UAVs at a constant altitude toward a desired waypoint. Our strategy is based on using the 

unicycle kinematic model for UAVs’ motion, where the airspeed and turning rate of UAVs must 

satisfy practical bounds known as the Dubins constraints as one in Fathian et al., 2016. Given a 

set of control gains and a desired destination, which can be communicated to the agents before 

the mission, onboard sensor measurements of each UAV can be used to compute a control 

direction. This control is well-suited as a high-level motion planning input to a low-level UAV 

autopilot, which can compensate for the aerodynamics, wind effects, disturbances, etc., that are 

not accounted for in the unicycle model. Advantages of the proposed strategy over centralized 

methods include better scalability, naturally parallelized computation, resilience to 

communication loss and hardware failure, and robustness to uncertainty and lack of global 

knowledge. In particular, the UAVs can achieve the formation using only the local relative 

position measurements of their neighbors, and without communicating with each other. This 

increases the stealth and robustness of the team to jamming. Simulations are presented to typify 

the performance of the proposed strategy. 
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2.1 Problem statement 

In recent years, the Unmanned Aerial Vehicle (UAV) technology has reached a level of 

maturity that it is now possible to deploy hundreds of UAVs in a mission. The large number of 

deployed vehicles allows a team of small, inexpensive UAVs to efficiently execute missions 

such as search and rescue inspection and surveillance. As the number of deployed UAVs 

increases, controlling agents from a command center becomes less practical. This is due to the 

limited communication bandwidth, which becomes saturated as the number of agents increases. 

Furthermore, the centralized control  lacks  resilience  to  communication  loss,  hardware failure,  

and malicious attacks such as jamming or spoofing of the communication signal. Hence, UAVs 

in large teams should have a level of autonomy to individually plan their motion in accordance 

with the team to perform the desired task. To navigate the UAVs between waypoints, distributed 

formation -control techniques can be employed, where the UAVs autonomously achieve a 

desired formation and travel toward the desired destination. We present a distributed control 

strategy for a team of fixed-wing Unmanned Aerial Vehicles  (UAVs),  such  that  they  achieve  

a  desired  formation  and  travel  along  a desired direction at a constant altitude. We describe 

the motion of UAVs with the kinematic unicycle model. Based on this model, a control strategy 

is proposed, and local convergence of the team to the desired formation and travel direction is 

proved. The control direction returned by our strategy is well-suited, which can compensate for 

the aerodynamics, wind effects, disturbances, etc., that are not accounted for in the unicycle 

model.  

The proposed strategy is fully distributed and can be implemented using relative position 

measurements acquired by UAVs in their local coordinate frames. Furthermore, UAVs do not 

need to communicate. Simulations are provided to typify the proposed strategy. 
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2.2 Formation Control for Single-Integrator Dynamics 

In this section, we present the distributed formation control strategy introduced in (Lin et 

al.,2014), for agents with single-integrator dynamics. We then propose a novel design approach 

for finding stabilizing control gains by formulating a convex optimization problem. The results 

of this section are a cornerstone for formation control of agents with more complicated dynamic 

models that are discussed in the subsequent sections. 

2.2.1 Control strategy 

The single-integrator dynamics can be described as 

                                                          �̇�𝑖 = 𝑢𝑖                                                                                  (2.1) 

where 𝑞𝑖: = [𝑥𝑖 , 𝑦𝑖]
⊤ ∈ ℝ2 is the coordinate of agent 𝑖 ∈ {1,2 … , 𝑛} in a common global 

coordinate frame (unknown to the agent), and 𝑢𝑖 ∈ ℝ2 is the control law. To bring the agents to a 

desired formation, the control law for each agent can be chosen as 

                                                             𝑢𝑖: = ∑  𝑗∈𝒩𝑖
𝐴𝑖𝑗(𝑞𝑗 − 𝑞𝑖)                                                     (2.2) 

where 𝐴𝑖𝑗 ∈ ℝ2×2 are constant control gain matrices that will be designed later, and each has the 

form 

                                        𝐴𝑖𝑗: = [
𝑎𝑖𝑗 𝑏𝑖𝑗

−𝑏𝑖𝑗 𝑎𝑖𝑗
] ,  𝑎𝑖𝑗, 𝑏𝑖𝑗 ∈ ℝ                                                        (2.3) 

Thanks to the commutativity property of the 𝐴𝑖𝑗 matrices, the closed-loop dynamics with 

coordinates 𝑞𝑖 and 𝑞𝑗 expressed in agents’ local coordinate frames is identical to the case that 

coordinates are expressed in a global coordinate frame . The geometric intuition behind the 

control strategy (3.2) is explained in the following example. 
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Example 1 .Consider three agents in Fig. 2, where agents 2 and 3 are neighbors of agent 1 

.Let 𝑞2 = [2,3]⊤ and 𝑞3 = [3,1]⊤ denote the position of neighbors in agent 1’s local coordinate 

frame, and assume that control gains for agent 1 are given as 

                                             𝐴12 = [
2 −1
1 2

] ,  𝐴13 = [
−1 3
−3 −1

]                                       (2.4) 

From (2), the control vector for agent 1 is computed as 

                                                  𝑢1 = 𝐴12𝑞2 + 𝐴13𝑞3 = [
1

−2
]                                          (2.5) 

which is shown in the figure and can be interpreted geometrically as follows. At any instance of 

time, agent 1 moves along the control vector with the speed equal to the vector’s magnitude. 

Note that due to the special structure of gain matrices 𝐴12, 𝐴13, they can be interpreted as scaled 

rotation matrices that rotate and scale vectors connecting agent 1 to its neighbors. One can see 

that this action is independent of agent 1’s local coordinate frame position and orientation, hence, 

𝑞1 and 𝑞2 can replaced by their coordinates in a global coordinate frame for analysis.  

Let 𝑞: = [𝑞1
⊤, 𝑞2

⊤, … , 𝑞𝑛
⊤]⊤ ∈ ℝ2𝑛 and 𝑢: = [𝑢1

⊤, 𝑢2
⊤, … , 𝑢𝑛

⊤]⊤ ∈ ℝ2𝑛 denote the aggregate state and 

control vectors of all agents, respectively. he closed-loop dynamics under the control strategy 

(2.2) can be expressed as,         �̀� = 𝐴𝑞 

                       𝐴 =

[
 
 
 
 
 
−∑

𝑗=2
𝑛  𝐴1𝑗 𝐴12 ⋯ 𝐴1𝑛

𝐴21 −∑
𝑗=1
𝑛  𝐴2𝑗 ⋯ 𝐴2𝑛

𝑗 ≠ 2

⋮ ⋱ ⋮

𝐴𝑛1 𝐴𝑛2 ⋯ −∑
𝑗=1
𝑛−1  𝐴𝑛𝑗]

 
 
 
 
 

                                                                                   (2.6) 
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where for 𝑗 ∉ 𝒩𝑖 the 𝐴𝑖𝑗 block is defined as a zero matrix. Note that the 2 × 2 diagonal blocks of 

𝐴 are the negative sum of the rest of the blocks on the same row. Hence, 𝐴 has block Laplacian 

structure, and it follows that vectors 

                                          
𝟏: = [1,0,1,0, … ,1,0]⊤ ∈ ℝ2𝑛

�̅�: = [0,1,0,1, … ,0,1]⊤ ∈ ℝ2𝑛                                         (2.7) 

are in the kernel  1 of 𝐴. Let 𝑞∗ ∈ ℝ2𝑛 denote the coordinates of agents at the desired formation 

(the orientation, translation, and scale of the desired formation can be chosen arbitrarily). 

Further, let �⃐�∗ ∈ ℝ2𝑛 denote the coordinates of agents when the desired formation is rotated by 

90 degrees about the origin. The following theorem states the conditions that guarantee the 

convergence of agents to the desired formation. 

Theorem 1. Fathian et al., 2016 Considered agents with single-integrator dynamics (2.1) and 

control (2.2). If the A 𝑖𝑗 's are chosen such that, 

(i) 𝐴 has null vectors 𝟏, �̅�, 𝑞∗ and �⃐�∗, 

(ii) Other than the four zero eigenvalues associated with these null vectors, all eigenvalues of A 

have negative real parts, then, agents globally converge to the desired formation. 

Note that in Theorem 1 convergence to the desired formation implies that the formation is 

achieved up to a rotation and translation in the global coordinate frame, and a non-negative scale 

factor. As we will discuss in Section VII, in applications where the scale is important, the control 

can be augmented to attain the desired scale. We should point out that null vectors 𝟏, �̅� 

correspond to the case where all agents coincide, which can be interpreted as the desired 

formation achieved with the zero scale. It can be shown that the set of initial conditions that 

converge to this coinciding equilibrium is measure zero. Notice that in practice, trajectories of 
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agents cannot remain on a measure zero set (due to noise, disturbances, etc.), thus, coinciding 

agents are not of practical concern. 

Remark 1. The topological conditions that guarantee the existence of a symmetric matrix A 

satisfying the conditions of Theorem 1 are studied in (Z. Lin et al.2016), which presents the 

necessary and sufficient condition that the sensing graph is undirected and universally rigid. 

Throughout this paper, we assume that this condition is met. 

2.2.2 Control Gain Design  

Given a desired formation for agents with a universally rigid sensing topology, we 

present a novel algorithm to find control gain matrices that meet the conditions of Theorem 1. 

Let 𝑁: = [𝑞∗, �⃐�∗, 𝟏, �̅�] ∈ ℝ2𝑛×4 be the set of bases for the kernel of 𝐴, where 1, 1̅ are given in 

(7), 𝑞∗ ∈ ℝ2𝑛 is the coordinates of agents at the desired formation, and �⃐�∗ℝ2𝑛 is the 90∘ rotated 

coordinates about the origin. Let 𝑈𝑆𝑉⊤ = 𝑁 be the (full) singular value decomposition (SVD) of 

𝑁, where 

                                                   𝑈 = [�⃐� , 𝑄] ∈ ℝ2𝑛×2𝑛                                       (2.8) 

with 𝑄 ∈ ℝ2𝑛×(2𝑛−4) defined as the last 2𝑛 − 4 columns of 𝑈. 

Lemma 1. Using 𝑄 in (8), define 

                                      �⃐�: = 𝑄⊤𝐴𝑄 ∈ ℝ(2𝑛−4)×(2𝑛−4)                                      (2.9) 

Matrices 𝐴 and �⃐� have the same set of nonzero eigenvalues. 

Proof of Lemma 1 follows by observing that 𝑈 is an orthogonal matrix, and range (�⃐� ) =

range (𝑁). Therefore �⃐� is the projection of 𝐴 onto the orthogonal complement of range (𝑁). 

Effectively, the projection operation in (9) removes the zero eigenvalues of 𝐴. 
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For an undirected sensing topology, by imposing the constraints 𝑎𝑖𝑗 = 𝑎𝑗𝑖 , 𝑏𝑖𝑗 = −𝑏𝑗𝑖 in (3) 

matrix 𝐴 can be designed to be symmetric. Note that from Remark 1 existence of such matrix is 

guaranteed. In this case, �⃐� is symmetric, and its eigen values are real and can be ordered. Hence, 

𝐴 can be computed by solving the optimization problem 

                                             
𝐴 = argmax

𝑎𝑖𝑗,𝑏𝑖𝑗

𝜆1(−�⃐�)

 subject to 𝐴𝑁 = 0
                                               (2.10) 

Algorithm 1: Formation control gain design. 

input: Desired formation coordinates 𝑞∗ 

output: Gain matrix A. 

step 1: Let N: =[𝑞∗, �⃐�∗, 𝟏, �̅�] 

step 2: Compute SVD of N=𝑈𝑆𝑉⊤. 

step 3: Define Q as the last 2n-4 columns of U. 

step 4: Solve (2.10) using SDP solver. 

 

where 𝜆1(⋅) denote the smallest eigenvalue of a matrix. Note that (10) is a concave maximization 

problem and can be formulated as the SDP problem 

                             

𝐴 = argmax 𝛾

𝑎𝑖𝑗 , 𝑏𝑖𝑗, 𝛾

 subject to �⃐� + 𝛾𝐼 ⪯ 0

𝐴𝑁 = 0

                                     (2.11) 
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where the first constraint is a linear matrix inequality. In recent years, effective algorithms for 

numerically solving SDPs have been developed and are now available (R. H. Tütüncü et 

al.2003). The proposed approach for finding stabilizing gain matrix 𝐴 is summarized in 

Algorithm 1. 

We point out that the optimization approach used here relies on a centralized paradigm 

and knowledge of the sensing topology. Once gains are computed, they can be transmitted to 

agents before the mission.If agents can communicate, distributed optimization techniques can be 

used to solve (2.11) without relying on the complete knowledge of the sensing topology.  

2.3 Formation Control for UAVS 

In this section, we introduce the unicycle kinematic model with Dubins constraints, 

which provides a good description of the UAV’s motion that is well suited for a high-level path 

planning autopilot control input. Based on this model, we develop a guidance strategy for UAVs 

such that they autonomously achieve a desired formation and travel along a straight line toward a 

desired destination. 

We first propose a strategy without enforcing the Dubins constraints on the speed and 

rate of turn of aircrafts. We then extend the control to include the Dubins constraints. 

Throughout this section, we assume that the sensing graph is undirected, and a symmetric 

negative semi-definite control gain matrix 𝐴 is designed for the desired formation by solving the 

optimization problem. 

2.3.1. Unicycle Kinematic Model with Dubins Constraints 

Under the assumption that the autopilot is tuned to set the airspeed and heading angle of a 

UAV to desired commanded values, the unicycle kinematic model provides a good description of 

the UAV’s motion at a constant altitude. In (2.12), 𝑥𝑖 , 𝑦𝑖 ∈ ℝ are coordinates of agent 𝑖. 
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                                                                              �̀�𝑖 = 𝑣𝑖cos (휃𝑖)                                                       (2.12) 

                                                                                 �̀�𝑖 = 𝑣𝑖sin (휃𝑖) 

휃̀𝑖 = 𝜔𝑖 

 휃𝑖 ∈ [0,2𝜋)is the heading (or yaw) angle with respect to a global coordinate frame. Scalars 𝑣𝑖 ∈

ℝ and 𝜔𝑖 ∈ ℝ are respectively the linear and angular velocities of the UAV.  

Physical capabilities of the UAV limit the achievable airspeed and heading angles that can be 

commanded. These physical limits can be represented by the constraints 

                                                             
𝑣min ≤ 𝑣𝑖 ≤ 𝑣max

|𝜔𝑖| ≤ 𝜔mat
                                    (2.13) 

where 𝑣max > 𝑣min > 0 and 𝜔max > 0 are positive real scalars. Note that under theses 

constraints, the minimum tum radius of UAV is given by 𝑅min =
𝑣min

𝛼tn
. 

Input constraints (2.13), together with the kinematic model (2.12), are referred to as the Dubins 

unicycle kinematic model [Chitsaz and LaValle, 2007]. Note that this model does not include 

aerodynamics, wind effects, disturbances, etc., and is not sufficiently accurate for low-level 

autopilot design, however, it is well suited for a high-level path planning and path following 

control design. A comprehensive discussion of aircraft dynamic models can be found in 

[Stevens, 2015] 

To derive an alternative formulation for (2.12) that is more suitable for the formation control 

design, we define the heading vector ℎ𝑖 ∈ ℝ2 and its perpendicular vector ℎ𝑗
⊥ ∈ ℝ2 as 

                                                   ℎ𝑖: = [
cos (휃𝑖)

sin (휃𝑖)
] ,  ℎ𝑖

⊥: = [
−sin (휃𝑖)

cos (휃𝑖)
]                                (2.14) 

Seeing that ℎ𝑖 = ℎ𝑖
⊥휃̀𝑖 , we can describe the dynamics (14) equivalently by 
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                                                                �̀�𝑖 = ℎ𝑖𝑣𝑖                                                        (2.15)                                                                                               

ℎ̀𝑖 = ℎ𝑖
⊥𝜔𝑖   

Let 𝑞: = [𝑞1
⊤, 𝑞2

⊤, … , 𝑞𝑛
⊤]⊤ ∈ ℝ2𝑛 be the aggregate position vector of all UAVs, and similarly let 

ℎ ∈ ℝ2𝑛, 𝑣 ∈ ℝ𝑛, 𝜔 ∈ ℝ𝑛 be the aggregate heading, linear velocity, and angular velocity vectors, 

respectively. Using this notation, the motion of UAVs can be collectively expressed as 

 

                                                                        �̀� = 𝐻𝑣                                                         (2.16) 

ℎ = 𝐻⊥𝜔,                                            

where matrices 𝐻, 𝐻⊥ ∈ ℝ2𝑛×𝑛 are defined as 

                𝐻 = [

ℎ1 0 ⋯ 0

0 ℎ2 0

⋮ ⋱ ⋮
0 0 ⋯ ℎ𝑛

] ,  𝐻⊥ =

[
 
 
 
ℎ1

⊥ 0 ⋯ 0

0 ℎ2
1 0

⋮ ⋱ ⋮
0 0 ⋯ ℎ𝑛

⊥]
 
 
 

                                 (2.17) 

2.4 Formation Control Without Input Constraints 

Consider a team of UAVs with dynamics (2.16). We seek to assign guidance strategies 𝑣 

and 𝜔 to the UAVs such that they autonomously achieve a desired formation and travel toward a 

desired destination. To simplify the analysis, which can help with understanding the underlying 

idea of the formation control design, we ignore Dubins constraints (2.13). These constraints will 

be taken into account in the following subsection. 

Let 𝑝𝑖 ∈ ℝ2 be a constant unit vector that the 𝑖 'th UAV should travel along to reach the desired 

destination. Further, let 𝐴 ∈ ℝ2𝑛×2𝑛 be a symmetric gain matrix designed in Section III-C for 

agents with single-integrator model to achieve the desired formation. Denote by 𝑢𝑖 =

∑𝑗∈𝒩𝑖
 𝐴𝑖𝑗(𝑞𝑗 − 𝑞𝑖) the desired holonomic control direction for agent 𝑖. The proposed control 

strategy for UAVs is as follows. Each UAV computes the control vector 𝑢𝑖 + 𝑐𝑝𝑖, where 𝑐 > 0 

is a constant desired speed. The projections of this vector along the heading direction ℎ𝑖 and its 
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perpendicular vector ℎ𝑖
⊥ are then calculated and used as the linear and angular velocity 

commands, respectively. Specifically, the linear and angular velocity control are given by 

                             
𝑣𝑖 ∶= ℎ𝑖

⊤(𝑢𝑖 + 𝑐𝑝𝑖)

𝜔𝑖 ∶= ℎ𝑖
⊥⊤(𝑢𝑖 + 𝑐𝑝𝑖)

                                          (2.18) 

2.5 Formation Control with Input Constraints 

We now present a modified guidance strategy for UAVs that incorporates the Dubins 

constraints (2.13). Given the unconstrained control (2.18), we define the saturated control as 

                              
𝑣𝑖 ∶= �⃐�𝑖(𝑠𝑖(ℎ𝑖

⊤𝑢𝑖) + 𝑐ℎ𝑖
⊤𝑝𝑖)

𝜔𝑖 ∶= 𝑟𝑖(𝑟𝑖(ℎ𝑖
⊥⊤𝑢𝑖) + 𝑐ℎ𝑖

⊥⊤𝑝𝑖)
                              (2.19) 

with saturation functions �⃐�𝑖, 𝑠𝑖, 𝑟𝑖: ℝ → ℝ defined as 

                              𝑠𝑖(𝑥) = {
𝑥  if |𝑥| ≤ 𝑢max
𝑢max

|𝑥|
 if |𝑥| > 𝑢max

                             (2.20)         

                            �⃐�𝑖(𝑥) = {

𝑣min  if 𝑥 ≤ 𝑣min

𝑥  if 𝑣min ≤ 𝑥 ≤ 𝑣max

𝑣max  if 𝑣max ≤ 𝑥
                   (2.21) 

and 

                             𝑟𝑖(𝑥) = {
𝑥  if |𝑥| ≤ 𝜔max
𝜔max

|𝑥|
 if |𝑥| > 𝜔max

                        (2.22) 

2.5 Simulation 

To validate the proposed strategy, simulations with desired formations defined as a 

triangle and a square are performed.  
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2.5.1 Square Formation 

 

                                    (a)                                                                (b) 

 

                                    (c)                                                              (d) 

Fig 2.1: Simulation of 9 UAVs starting from a random initial pose and achieving a square 

formation while traveling along toward the positive x-axis. (a)Initial pose at (a)t = 0s. (b) t = 52s. 

(c) t = 100s. (d) t = 192s. 
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                                         (a)                                                                (b) 

 

               (c)                                                              (d) 

Fig 2.2: Simulation of 9 UAVs starting from a random initial pose and achieving a square 

formation with fixed scale while traveling along toward the positive x-axis. (a)Initial pose at 

(a)t= 0s. (b) t = 52s. (c) t = 100s. (d) t = 192s. 
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2.5.2 Triangle Formation 

 

(a)                                                               (b) 

 

(c)                                                              (d) 

Fig. 2.3: Simulation of 6 UAVs starting from a random initial pose and achieving a triangle 

formation while traveling along toward the positive x-axis. Initial pose at (a) t = 0s. (b) t = 31s. 

(c) t = 63s. (d) t = 102s. 
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                                (a)                                                             (b) 

 

 

      (c)                                                                                (d) 

Fig 2.4: Simulation of 6 UAVs starting from a random initial pose and achieving a triangle 

formation while traveling along toward the positive x-axis. Initial pose at (a)t = 0s. (b) t = 31s. 

(c) t = 63s. (d) t = 102s. 

 



 

23 

 

2.6 Concluding Remarks and Future Work 

We presented a distributed formation control strategy for a team of UAVs to 

autonomously achieve and maintain a desired formation while traveling toward a desired 

destination. Given a desired formation, we showed how stabilizing control gains can be found 

from solving a convex optimization problem. These gains, which can be communicated to the 

agents before start of the mission, were used to calculate linear and angular velocity control 

commands for the UAVs under the Dubins constraint. Simulations were provided to show that 

under the proposed control the UAVs achieve the desired formation and travel along the assigned 

direction. Proof of convergence for the saturated UAV control is a topic of future work. 

To preserve connectivity, avoid obstacles, or prevent collision among UAVs, distributed 

techniques such as potential field traffic circle or control barrier function approach can be 

employed. Another strategy is a temporary change of altitude, i.e., UAVs passing over or under 

each other to avoid collision. This strategy can preserve the stability properties, however, the 

low-level altitude controller can become more complicated. Incorporating collision/obstacle 

avoidance strategies with the proposed formation control and analyzing the stability properties of 

the resulting system will be a topic of future work.Lastly, we assumed that the inter-agent 

sensing topology is fixed through all time. Strategies such as can be deployed when the sensing 

topology is time-varying or switching. 
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CHAPTER III 

PLANAR FORMATION CONTROL FOR HIGHER-ORDER HOLONOMIC AND 

NONHOLONOMIC AGENTS 

In this Chapter, we present a unified control strategy for agents with linear (or 

linearizable) holonomic dynamics. This strategy is distributed, only local relative position 

measurements are needed, and convergence to the desired formation is global. These advantages 

distinguish our approach from many existing works, such as the position-based or displacement-

based methods (K.K. Oh et al. 2015), in which know ledge of a global coordinate frame or a 

common sense of orientation is required. By formulating a semidefinite programming (SDP) 

problem, formation control gains are initially designed for agents with the single-integrator 

model. We show that this design enjoys a robustness property, where if the agents move in the 

desired direction perturbed by a rotation up to ±90∘, convergence to the desired formation is still 

guaranteed. Furthermore, the control can be augmented by an integrator term to reject constant 

input/output disturbances. Our analysis follows by considering agents with higher order 

holonomic dynamics, where we show how the set of previously designed control gains can be 

used directly to achieve the formation. As an example, we use the proposed method for a team of 

quadrotors and present simulations to typify the theoretical results. 
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In this work, we present a unified distributed control strategy for planar formations of 

agents with a variety of dynamics. In particular, we consider agents with linear or linearizable 

holonomic dynamics, such as quadrotors, and further extend the control to agents with 

nonholonomic dynamics such as unicycles and cars. We start by formulating a semidefinite 

programming (SDP) problem to determine control gains for agents with the single-integrator 

model. We show that this design strategy enjoys several robustness properties such as robustness 

to saturations in the input, switching in the sensing topology, and disturbances in the control 

direction. We show that if agents move along a control direction that is scaled by an arbitrary 

positive value and rotated by an arbitrary amount up to ±90∘, corvergence to the desired 

formation is still guaranteed. This observation is exploited later to design a fully distributed 

collision avoidance strategy. The control for single-integrator agents is extended subsequently to 

agents with higher-order holonomic dynamics, where we show the set of control gains computed 

from the SDP problem can be used directly to achieve the formation without having to redesign 

the control. As an example, we use the gains designed for single-integrator agents to achieve a 

planar formation of quadrotors. Following the same philosophy, we show that the control gains 

can be used directly for agents with nonholonomic dynamics such as unicycles and cars. 

Furthermore, the proposed nonholonomic control remains robust to input saturations and 

unmodeled/unknown dynamics. To vet the theoretical results, several simulations are presented 

for quadrotors, differential drive robots with unicycle dynamics, and cars, where it is shown that 

agents achieve a desired formation without collision. To simplify the results further, the 

proposed control strategy is tested experimentally on a distributed differential-drive wheeled 

robotic platform with different numbers of robots and desired formations. 
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3.1 Notation and Assumptions 

We consider a team of 𝑛 ∈ ℕ agents with the inter-agent sensing topology described by 

an undirected graph 𝒮 = (𝒱, ℰ), where 𝒱: = ℕ𝑛 is the set of vertices, and 휀 ⊂ 𝑣 × 𝑣 is the set of 

edges. Each vertex of the graph represents an agent. An edge from vertex 𝑖 ∈ 𝒱 to 𝑗 ∈ 𝒱 

indicates that agents 𝑖 and 𝑗 can measure the relative position of each other in their local 

coordinate frames. In such a case, agents 𝑖 and 𝑗 are called neighbors. The set of neighbors of 

agent 𝑖 is denoted by 𝒩𝑖: = {𝑗 ∈ 𝒱 ∣ (𝑖, 𝑗) ∈ ℰ}. We denote by eig (𝐴) ⊂ ℂ the set of eigenvalues 

of matrix 𝐴. Throughout this paper we assume that the desired formation and the sensing 

topology are such that achieving the formation is physically feasible. In particular, we assume 

that the sensing topology is undirected and universally rigid. This assumption is both necessary 

and sufficient (Z. Lin et al.2016), for guaranteeing the existence of control gains that are 

computed from the proposed SDP approach. We further point out that by “formation” we imply a 

desired geometric shape up to a positive scale factor. 

3.2 Problem statement 

In the distributed formation control literature, Agents often have, more complicated 

dynamics which makes control to agents with higher-order models is difficult. It lessens stability 

of the desired formation. Due to noise, disturbances, unmodeled dynamics, etc., often agents do 

not perfectly move along the desired control direction. Because of this Steady state errors 

induced by the friction. As a result, the convergence to the desired formation is affected for 

which collision between agents can happen. We present a distributed formation control strategy 

for agents with a variety of dynamics to achieve a desired planar formation. The proposed 

strategy is fully distributed, does not require inter-agent communication or a common sense of 

Orientation. 
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We show how the control designed for agents with the simplest dynamical model, i.e., the 

single-integrator dynamics, can be extended to holonomic agents with higher-order dynamics 

such as quadrotors, and nonholonomic agents such as unicycles. 

We further show that the control is relaxed in the sense that agents can move along a 

rotated and scaled control direction without affecting the convergence to the desired formation. 

This observation is used to design a distributed collision avoidance strategy. 

3.3 Robustness to Perturbations 

An important characteristic of the proposed design approach is that the gains found via 

(3.10) lead to significant robustness to perturbations. For instance, noise and disturbances can 

cause an agent to move in a direction that is different from the desired control vector. The 

following theorem shows that by using the gains computed from (3.10) positive scaling and 

rotation of the control vectors (up to ±90∘ ) does not affect the convergence. 

Theorem 2. let 𝑅𝑖 ∈ SO(2) denote a rotation matrix of 𝛼𝑖 radians, and 𝑐𝑖 ∈ ℝ be a scalar. If 𝛼𝑖 ∈

(−
𝜋

2
,
𝜋

2
) and 𝑐𝑖 > 0, under the perturbed control 

                                       𝑢𝑖: = 𝑐𝑖𝑅𝑖 ∑  𝑗∈𝒩𝑖
𝐴𝑖𝑗(𝑞𝑗 − 𝑞𝑖)                            (3.1) 

single-integrator agents achieve the desired formation. 

Proof. We will use Definition 1 and Lemmas 2,3,4 that are given in the Appendix. Under the 

perturbed control (3.1), the aggregate dynamics can be represented by �̀� = 𝑅𝐴𝑞, where 𝑅: =

diag (𝑐1𝑅1, 𝑐2𝑅2, … , 𝑐𝑛𝑅𝑛) ∈ ℝ2𝑛×2𝑛 is a block diagonal matrix that contains the perturbation 

terms. Due to the special block structure of 𝐴 and 𝑅, they can equivalently be represented in 

complex notation by denoting the 2 × 2 blocks [
𝑎 −𝑏
𝑏 𝑎

] as a complex number 𝑎 + 𝚤𝑏 ∈ ℂ. In 
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this notation, diagonal entries of 𝑅 ∈ ℂ𝑛×𝑛 are cos (𝛼𝑖) + 𝚤sin (𝛼𝑖),and since 𝛼𝑖 ∈ (−
𝜋

2
,
𝜋

2
), have 

positive real parts. This, together with Lemma 3, implies that ℱ(𝑅) is contained in the right-hand 

plane (RHP). By design, the complex representation of 𝐴 ∈ ℂ𝑛×𝑛 is Hermitian and negative 

semidefinite. Thus, −𝐴 is positive semidefinite, and from Lemma 4 we conclude that eig (−𝑅𝐴) 

is contained in the union of the RHP and the imaginary axis. Thus, 𝑅𝐴 is a stable matrix, and 

trajectories of �̀� = 𝑅𝐴𝑞 converge to the kernel of 𝑅𝐴. Since 𝑅 is full-rank, null space of 𝐴 and 

𝑅𝐴 are identical, which shows that the desired formation is achieved. 

3.4 Formation Control for Agents with Higher-Order Dynamics 

In this section, we extend the single-integrator control strategy to agents with higher-

order dynamics. We show how the control gains designed for single-integrator agents in Section 

3.2.2 can be used directly to control higher-order agents without having to find a new control 

strategy or redesign the gains by solving a new optimization problem. We assume that the 

aggregate higher-order dynamics of all agents can be expressed in the controllable canonical 

form 

                                    

[
 
 
 
 

�̀�

�̀�(1)

⋮
�̀�(𝑚−1)

�̀�(𝑚) ]
 
 
 
 

=

[
 
 
 
 
0 𝐼 0 ⋯ 0
0 0 𝐼 0
⋮ ⋱ ⋮
0 0 0 𝐼
0 0 0 ⋯ 0]

 
 
 
 

[
 
 
 
 

𝑞

𝑞(1)

⋮
𝑞(𝑚−1)

𝑞(𝑚) ]
 
 
 
 

+

[
 
 
 
 
0
0
⋮
0
𝐼]
 
 
 
 

𝑢                            (3.2) 

where 𝑞 ∈ ℝ2𝑛 is the aggregate position vector of all agents, 𝑞(𝑗) ∈ ℝ2𝑛 denotes the 𝑗 'th 

derivative of 𝑞, and 𝐼 ∈ ℝ𝑛×𝑛 is the identity matrix. Although at first sight (3.2) may seem 

restrictive, in fact, it encompasses a large class of agents. This is because by coordinate 

transformation techniques such as feedback linearization, or approximation techniques such as 

linearization and gain scheduling, dynamics of many systems can be expressed as (3.2). 
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Given the gain matrix 𝐴 designed for agents with the singleintegrator model, the control for 

agents with dynamics (18) can be chosen as 

                                              𝑢 = 𝑘0𝐴𝑞 + 𝑘1𝐴𝑞(1) + ⋯ + 𝑘𝑚𝐴𝑞(𝑚)                                    (3.3) 

where 𝑘0, 𝑘1, … , 𝑘𝑚 ∈ ℝ are scalar control gains.(3.3) can be implemented locally using only the 

relative measurements (due to the special structure of 𝐴 ). Under this control, the closed-loop 

dynamics is given by 

                           

[
 
 
 
 

�̀�

�̀�(1)

⋮
�̀�(𝑚−1)

�̀�(𝑚) ]
 
 
 
 

=

[
 
 
 
 

0 𝐼 0 ⋯ 0
0 0 𝐼 0
⋮ ⋱ ⋮
0 0 0 𝐼

𝑘0𝐴 𝑘1𝐴 𝑘2𝐴 ⋯ 𝑘𝑚𝐴]
 
 
 
 

⏟                  
�⃐�

[
 
 
 
 

𝑞

𝑞(1)

⋮
𝑞(𝑚−1)

𝑞(𝑚) ]
 
 
 
 

.                             (3.4) 

Theorem 4. If for all nonzero 𝜇 ∈ eig (𝐴) roots of the polynomial equation 

                                          𝜆𝑚+1 − 𝑘𝑚𝜇𝜆𝑚 − ⋯ − 𝑘1𝜇𝜆 − 𝑘0𝜇 = 0                                 (3.5) 

have negative real parts, then under control (3.3), agents with dynamics (3.2) globally converge 

to the desired formation. 

Proof. The closed-loop state matrix �⃐� given in (3.4) is in the (block) controllable canonical form. 

From this observation and Lemma 5 (found in the Appendix), the characteristic equation of �⃐� is 

given by 

                          
det (𝜆𝑚+1𝐼 − 𝑘𝑚𝜆𝑚𝐴 − ⋯ − 𝑘1𝜆𝐴 − 𝑘0𝐴)

= ∏  𝜇∈eig (𝐴)   (𝜆𝑚+1𝐼 − 𝑘𝑚𝜆𝑚𝜇 − ⋯ − 𝑘1𝜆𝜇 − 𝑘0𝜇) = 0
                  (3.6) 
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which from the assumption of the theorem implies that the nonzero eigenvalues of �⃐� have 

negative real parts. 

To find gains 𝑘0, 𝑘1, … , 𝑘𝑚 that satisfy the condition of Theorem 4 the Routh-Hurwitz criterion 

can be used. 

Example 2. (Quadrotor dynamics) Quadrotor dynamics can be described as (F. Sabatino, 

2015) 

                      

[
�̀�
�̀�
𝑧̀

]  = 𝑅 [
0
0
𝑢𝑎

] − [
0
0
𝑔

]

[

�̀�

휃̀
�̀�

]  = 𝑇 [

𝜔𝑥

𝜔𝑦

𝜔𝑧

]

[

�̀�𝑥

�̀�𝑦

�̀�𝑧

]  = 𝐽−1 [
𝑢𝑥

𝑢𝑦

𝑢𝑧
] − 𝐽−1 ([

𝜔𝑥

𝜔𝑦

𝜔𝑧

] × 𝐽 [

𝜔𝑥

𝜔𝑦

𝜔𝑧

])

                                 (3.7) 

where, 𝑥, 𝑦, 𝑧 ∈ ℝ are coordinates of the quadrotor’s center of mass in the world frame, 𝜑, 휃, 𝜓 

are roll, pitch, yaw angles that describe the orientation of the quadrotor body frame in the world 

frame, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 are the angular body rates about associated body axes, 𝑔 is the gravitational 

constant, 𝑢𝑎 is a mass-normalized thrust input, and 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 are moment inputs applied to the 

airframe about corresponding body axes. Further, 𝐽 ∈ ℝ3×3 is the mass moment of inertia matrix, 

𝑅 ∈ SO(3) is the rotation matrix parameterized in terms of 𝑧 − 𝑥 − 𝑦 Euler angles as 

            𝑅: = [

𝑐𝜓𝑐𝜃 − 𝑠𝜑𝑠𝜓𝑠𝜃 −𝑐𝜑𝑠𝜓 𝑐𝜓𝑠𝜃 + 𝑐𝜃𝑠𝜑𝑠𝜓

𝑐𝜃𝑠𝜓 + 𝑐𝜓𝑠𝜑𝑠𝜃 𝑐𝜑𝑐𝜓 𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑐𝜃𝑠𝜑

−𝑐𝜑𝑠𝜃 𝑠𝜑 𝑐𝜑𝑐𝜃

]                  (3.8) 

where 𝑐, 𝑠 are respectively shorthand notations for cos (⋅), sin (⋅) functions, and 
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                       𝑇: =
1

𝑐𝜑
[

𝑐𝜑𝑐𝜃 0 −𝑐𝜃

𝑠𝜑𝑠𝜃 𝑐𝜑 −𝑐𝜃𝑠𝜑

−𝑠𝜃 0 𝑐𝜃

] ∈ ℝ3×3                           (3.9) 

is the transformation matrix that relates the roll, pitch, yaw derivatives to the angular velocities 

in the body frame. Linearizing dynamics  about the hover point 𝑥 = 𝑦 = 𝑧 = �̀� = �̀� = 𝑧̀ =

0, 𝜔𝑥 = 𝜔𝑦 = 𝜔𝑧 = 0, 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0, and  𝑢𝑎 = 𝑔 gives the quadrotor linearized dynamics, 

                                                 

𝛿�̀� = 𝑔𝛿휃 𝛿휃̀ = 𝑢𝑦

𝛿�̀� = −𝑔𝛿𝜑 𝛿�̀� = 𝑢𝑥

𝛿𝑧̀ = 𝑢𝑎 𝛿�̀� = 𝑢𝑧

                   (3.10) 

where 𝛿 represents a small displacement about the equilibrium/linearization point. Since we are 

interested in 2D formations, we only consider the lateral dynamics along the 𝑥 − 𝑦 axes, and 

separately control the quadrotor’s altitude by setting 𝑢𝑎 =
𝑔

𝑐𝜑𝑐𝜃
 to stabilize it at a constant 

altitude. 

To represent the dynamics in the canonical form (3.4), we define 

𝛿휃⃐𝑖: = 𝑔𝛿휃𝑖 ,  𝛿�⃐� 𝑖: = −𝑔𝛿𝜑𝑖,  �⃐� 𝑖
𝑦
: = 𝑔𝑢𝑖

𝑦
,  �⃐� 𝑖

𝑥: = −𝑔𝑢𝑖
𝑥 

where subscript 𝑖 is used to distinguish agents. Using this notation, (3.10) can be described in the 

vector form as 

                            �̀�𝑖 = [

0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼
0 0 0 0

] 𝑝𝑖 + [

0
0
0
𝐼

] 𝑢𝑖                               (3.11) 
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Where 

𝑝𝑖: = [𝛿𝑥𝑖, 𝛿𝑦𝑖 , 𝛿�̀�𝑖, 𝛿�̀�𝑖, 𝛿휃⃐𝑖 , 𝛿�⃐� 𝑖, 𝛿휃⃐
̀
𝑖 , 𝛿�⃐� ̀𝑖]

⊤

𝑢𝑖: = [�⃐� 𝑖
𝑦
, �⃐� 𝑖

𝑥]
⊤

                                         (3.12) 

are respectively the state and control vectors, and 𝐼 ∈ ℝ2×2 is the identity matrix. Note that by 

defining the aggregate position vector as 𝑞 = [𝛿𝑥1, 𝛿𝑦1, … , 𝛿𝑥𝑛, 𝛿𝑦𝑛]⊤, dynamics of agents can 

be expressed in the form (3.4). This model will be used in the Simulations section to achieve a 

desired formation. 

3.5 Simulations 

To validate the proposed approach, several simulations for planar formation of 

quadrotors, unicycles are provided. 

3.5.1 Quadrotors 

Fig. 9(a) − (d) shows the top view of quadrotors at different time instances. The sensing 

graph among agents is shown by gray lines connecting the quadrotors. The initial positions of the 

quadrotors are chosen randomly and are shown in Fig. 9(a). As can be seen in Figs. 9( b) − (d), 

the proposed control strategy brings the agents to the desired formation. Note that when the 

distance between two quadrotors becomes less than 8 units of length, the collision avoidance 

strategy is engaged to rotate the control direction outside of the collision cone. Consequently, 

none of the quadrotors collide during the simulation. Further notice that since the control only 

uses the local relative position measurements, the desired formation is achieved up to a rotation 

and translation. That is, the orientation of the square formation is not controlled. 
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(a)                                                             (b) 

 

(c)                                                              (d)                             

Fig. 3.1. Simulation of 9 quadrotors with a square grid desired formation (actual size of vehicles 

increased by a factor of 1.5 for better visibility). (a) Top view at t = 0s. (b) t = 17s. (c) t = 29s. (d) 

t = 40s. 
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                                        (a)                                                            (b)                                                      

                                

                                (c)                                                                     (d) 

Fig. 3.2 Simulation of 9 unicycles with a square grid desired formation (actual size of vehicles 

increased by a factor of 1.5 for better visibility). (a) Top view at t = 0s. (b) t = 6s. (c) t = 9s. (d) t 

= 15s. 
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3.5 Concluding Remarks and Future Work 

We presented a distributed formation control strategy for a team of agents with a variety 

of dynamics to autonomously achieve a desired planar formation. Under the assumption that the 

sensing graph is undirected and universally rigid, we showed that formation control gains can be 

designed by solving a SDP problem. This design enjoys several robustness properties, such as 

robustness to positive scaling and rotation (( up to ± 90∘) of the control vector, saturations in 

the input, and switches in the sensing topology. The control was extended to agents with higher-

order linear (or linearizable) holonomic dynamics, such as quadrotors, followed by further 

extension to agents with nonholonomic unicycle and car dynamics. An important outcome of this 

work was a fully distributed collision avoidance algorithm that emerged naturally from the 

robustness properties of the proposed strategy. To typify the control, simulations for vehicles 

with different dynamics were presented, and experiments on a distributed robotic platform where 

performed. Future work includes investigating additional requirements, such as inter-agent 

communication, to guarantee that the collision avoidance algorithm can overcome gridlock 

scenarios. Moreover, inter-agent communication can be exploited in a distributed optimization 

scheme to solve the SDP problem in decentralized way. Other possible research avenues include 

extending the proposed approach to 3D formations, formation control of heterogeneous vehicles, 

and formation control of moving vehicles such as cars on a highway. 
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CHAPTER IV 

DISTRIBUTED COMMAND FILTERED ROBUST TRACKING CONTROL OF 

WAVE-ADAPTIVE MODULAR VESSEL WITH UNCERTAINTY 

 

A Wave-Adaptive Modular Vessel (WAM-V) is an under- actuated system. There are 

fewer control inputs than the numbers of the degree of freedom. Control of a WAM-V is 

challenging due to its underactuated nature. In oceans, there are unknown currents applied to a 

WAM-V. Therefore, in the model of a WAM-V, there are disturbances. Considering the 

complexity of tasks, robustness and flexibility of multiple WAM-Vs, coordination of multiple 

systems has been an important mission. We considered formation control of multiple WAM-Vs 

with uncertainty. There are parametric uncertainty and non-parametric uncertainty in the model 

of each WAM- V and the information of the leader WAM-V is available only to a portion of the 

follower WAM-Vs. In this chapter, we consider formation control of multiple WAM-Vs with 

uncertainty and a leader vehicle. Distributed robust controllers are proposed with the aid of 

adaptive backstepping techniques. The proposed control laws ensure that the formation errors 

and the tracking errors exponentially converge to zero. To reduce the computation load in 

controller design, distributed command filtered controllers are proposed. To verify the 

effectiveness of the proposed cooperative control laws, simulation results are presented.
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4.1. Problem Statement 

 

4.1.1   WAM-V Modeling   

 

 It is considered a group of m wave-adaptive modular vessels (WAM-Vs). Each WAMV 

has two propellers in its pontoons. With the aid of the results in (Fossen, 1994), the kinematics of 

the j-th WAM-V can be written as 

 

                                             

�̀�𝑗  = 𝑢𝑗cos 𝜓𝑗 − 𝑣𝑗sin 𝜓𝑗

�̀�𝑗  = 𝑢𝑗sin 𝜓𝑗 + 𝑣𝑗cos 𝜓𝑗

�̀�𝑗  = 𝑟𝑗

                                         (4.1) 

where (𝑥𝑗 , 𝑦𝑗) denotes the coordinates of the center of the WAM-V in the earth-fixed frame, 𝜓𝑗 

is the orientation of the WAM-V, and 𝑢𝑗 , 𝑣𝑗 and 𝑟𝑗 are the velocities of the WAM-V in surge, 

sway and yaw, respectively. For simplicity of analysis, it is assumed that the 𝑗 th WAM-V has 

port/starboard and fore/aft symmetry and the motion in heave, roll and pitch can be neglected. 

The dynamics of the 𝑗 th WAM-V can be written as (Fossen, 1994) 

𝑚1𝑗�̀�𝑗 − 𝑚2𝑗𝑣𝑗𝑟𝑗 + 𝑑1𝑗𝑢𝑗 + 𝐷1𝑗 = 𝐹𝐿𝑗 + 𝐹𝑅𝑗 

𝑚2𝑗�̀�𝑗 + 𝑚1𝑗𝑢𝑗𝑟𝑗 + 𝑑2𝑗𝑣𝑗 + 𝐷2𝑗 = 0 

            𝑚3𝑗�̀�𝑗 − (𝑚1𝑗 − 𝑚2𝑗)𝑢𝑗𝑣𝑗 + 𝑑3𝑗𝑟𝑗 + 𝐷3𝑗 = 𝐿𝑗(𝐹𝐿𝑗 − 𝐹𝑅𝑗)                  (4.2) 

where 𝑚𝑖𝑗(> 0) and 𝑑𝑖𝑗(> 0) for 𝑖 = 1,2,3 are (effective) inertia and hydrodynamic damping of 

the WAM-V, respectively; 𝐿𝑗 is the moment arm of the forces with respect to the center of 

geometry and mass of the WAM-V, which are assumed to coincide; 𝐷𝑖𝑗 is un-modeled dynamics 

and disturbance, and 𝐹𝐿𝑗 and 𝐹𝑅𝑗 are the force generated by the propellers. 
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For control purpose, each WAM-V knows its own state and the states of its neighbors by 

wireless communication or sensors. If each WAM-V is considered as a node, the 

communications between WAM-Vs can be described by a directed graph (i.e., digraph) 𝒢 =

{𝒱, ℰ}, where 𝒱 = {1,2, … , 𝑚} is a node set, ℰ is an edge set with elements (𝑖, 𝑗) which describes 

the communication from node 𝑖 to node 𝑗. If the state of node 𝑖 is available to node 𝑗, there is an 

edge (𝑖, 𝑗) in ℰ, and vice versa. Node 𝑖 is a neighbor of node 𝑗 if the state of node 𝑖 is available to 

node 𝑗. Since communication is directional, (𝑖, 𝑗) is an ordered pair, which means that (𝑖, 𝑗) ∈ ℰ 

does not mean (𝑗, 𝑖) ∈ ℰ. For node 𝑗, the indexes of its neighbors form a set which is denoted by 

𝒩𝑗 . Therefore, the available states to node 𝑗 are the state of node 𝑗 and the state of node 𝑖 for all 

𝑖 ∈ 𝒩𝑗 . A directed path in a digraph is an ordered sequence of vertices such that any ordered pair 

of vertices appearing consecutively in the sequence is an edge of the digraph. Node 𝑖 is reachable 

to node 𝑗(𝑗 ≠ 𝑖) if there exists a directed path from node 𝑖 to node 𝑗.  

4.1.2 Problem Statement 

In the dynamics (4)-(6), the inertia parameters 𝑚𝑖𝑗 and 𝑑𝑖𝑗 are not exactly known in 

practice. It is given a leader WAM-V which moves along a smooth trajectory (𝑥0(𝑡), 𝑦0(𝑡)). The 

leader WAM-V is labeled as node 0. The 𝑚 WAM-Vs in (1)-(3) are called the follower WAM-

Vs. The state of the leader WAM-V is available to some of the follower WAM-Vs. The 

communication between 𝑚 follower WAM-Vs and the leader WAM-V is described by a digraph 

𝒢𝑒 = {𝒱𝑒 , ℰ𝑒} with a node set 𝒱𝑒 = 0,1,2, … , 𝑚. For node 𝑗(0 ≤ 𝑗 ≤ 𝑚), its neighbor set is 

denoted as 𝒩𝑗
𝑒. Node 0 is said to be globally reachable if node 0 is reachable to node 𝑗 for 1 ≤

𝑗 ≤ 𝑚.  
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In this paper, the following assumption is made on the communication digraph 𝒢𝑒 

Assumption 1: In the communication digraph 𝒢𝑒 , node 0 is globally reachable.It is also given a 

desired geometric pattern 𝒫 defined by constant vectors [𝑝𝑗𝑥, 𝑝𝑗𝑦]
⊤
(1 ≤ 𝑗 ≤ 𝑚) which satisfy 

∑𝑗=1
𝑚  𝑝𝑗𝑥 = 0 and ∑𝑗=1

𝑚  𝑝𝑗𝑦 = 0. We consider the following formation control problem. 

Formation Control Problem: Design a controller (𝐹𝐿𝑗 , 𝐹𝑅𝑗) for 𝑗 -th follower WAM-V based 

on its neighbors’ state information such that 

                         

 lim
𝑡→∞

  [
𝑥𝑖 − 𝑥𝑗

𝑦𝑖 − 𝑦𝑗
] = [

𝑝𝑖𝑥 − 𝑝𝑗𝑥

𝑝𝑖𝑦 − 𝑝𝑗𝑦
] , 1 ≤ 𝑖, 𝑗 ≤ 𝑚

lim
𝑡→∞

 ∑  𝑚
𝑗=1   (

𝑥𝑗

𝑚
− 𝑥0) = 0

lim
𝑡→∞

 ∑  𝑚
𝑗=1   (

𝑦𝑗

𝑚
− 𝑦0) = 0

           (4.3) 

In the above problem, eqn. (4.3) means that 𝑚 follower WAM-Vs come into the desired 

geometric pattern 𝒫. 

4.2 Distributed Robust Controller Design 

It is assumed that the nominal values of 𝑚𝑖𝑗 and 𝑑𝑖𝑗 are �⃐�  𝑖𝑗 and �⃐�𝑖𝑗 , respectively. The errors 

between the nominal values and the real values are bounded by known constants, i.e., 

|𝑚1𝑗 − �⃐�  1𝑗| ≤ 𝜌1𝑗, |𝑚2𝑗 − �⃐�  2𝑗| ≤ 𝜌2𝑗 , |𝑚3𝑗 − �⃐�  3𝑗| ≤ 

𝜌3𝑗 , |𝑑1𝑗 − �⃐�1𝑗| ≤ 𝜌4𝑗 , |𝑑3𝑗 − �⃐�3𝑗| ≤ 𝜌5𝑗 , |𝐷1𝑗| ≤ 𝜌6𝑗 , and 

|𝐷3𝑗| ≤ 𝜌7𝑗 , where 𝜌𝑖𝑗(1 ≤ 𝑖 ≤ 7) are known. The system in (4.1) -(4.2) has a cascade structure. 

We will take this advantage and design a distributed controller for the 𝑗 -th WAM-V with the aid 

of backstepping techniques (Krstic et al., 1995). 

Step 1: For system 𝑗, the weighted average of its neighbor’s information is defined as 
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                         휁1𝑗 =
∑  𝑖∈𝒩𝑗

𝑒  𝑎𝑗𝑖(𝑥𝑖−𝑝𝑖𝑥)

∑  𝑖∈𝒩𝑗
𝑒  𝑎𝑗𝑖

,  휁2𝑗 =
∑  𝑖∈𝒩𝑗

𝑒  𝑎𝑗𝑖(𝑦𝑖−𝑝𝑖𝑦)

∑  𝑖∈𝒩𝑗
𝑒  𝑎𝑗𝑖

                      (4.4) 

where 𝒩𝑗
𝑒 is the neighbor set of node 𝑗 in the digraph 𝒢𝑒, 𝑎𝑗𝑖 is a positive constant for 𝑗 =

1,2, … , 𝑚. In the system (4.1)-(4.2), we consider 𝑢𝑗cos 𝜓𝑗  and 𝑢𝑗sin 𝜓𝑗  as virtual control inputs 

and design tracking controllers such that 

                                 
lim
𝑡→∞

 (𝑥𝑗(𝑡) − 𝑝𝑗𝑥 − 휁1𝑗(𝑡)) = 0

lim
𝑡→∞

 (𝑦𝑗(𝑡) − 𝑝𝑗𝑦 − 휁2𝑗(𝑡)) = 0
                          (4.5) 

For convenience, we let 

                                𝑢𝑗cos 𝜓𝑗 = 휂1𝑗 ,  𝑢𝑗sin 𝜓𝑗 = 휂2𝑗                           (4.6) 

where 휂1𝑗 and 휂2𝑗 will be chosen later. Let the tracking error 

                                𝑒∗𝑗 = [
𝑒1𝑗

𝑒2𝑗
] = [

𝑥𝑗 − 𝑝𝑗𝑥 − 휁1𝑗

𝑦𝑗 − 𝑝𝑗𝑦 − 휁2𝑗
]                            (4.7) 

then 

                          �̀�∗𝑗 = [
휂1𝑗

휂2𝑗
] + [

−sin 𝜓𝑗

cos 𝜓𝑗
] 𝑣𝑗 − [

휁̀1𝑗

휁̀2𝑗

]                        (4.8) 

(4.8) can be considered as a linear system with perturbations. Stabilizing controllers can be 

designed as 

                  

휂1𝑗  = −𝑎𝑗𝑗𝑒1𝑗 + 𝑣𝑗sin 𝜓𝑗 −
𝜌𝑥𝑒1𝑗

√𝑒1𝑗
2 +ℎ(𝑡)

𝑇2𝑗  = −𝑎𝑗𝑗𝑒2𝑗 − 𝑣𝑗cos 𝜓𝑗 −
𝜌𝑦𝑒2𝑗

√𝑒2𝑗
2 +ℎ(𝑡)

                        (4.9) 
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where 𝑎𝑗𝑗 = ∑𝑖∈𝒩=  𝑎𝑗𝑖, 𝜌𝑥 and 𝜌𝑦 are sufficiently large constants, ℎ(𝑡) > 0, and ℎ(𝑡) 

exponentially converges to zero. 

To verify that the proposed virtual controller (4.9) ensures that (4.5)hold, we substitute 

the virtual controller (4.9) to (4.1) − (4.2) and  have  

              

�̀�𝑗 = − ∑  𝑖∈𝒩𝑗
′  𝑎𝑗𝑖(𝑥𝑗 − 𝑝𝑗𝑥 − 𝑥𝑖 + 𝑝𝑖𝑥) −

𝜌𝑥𝑒1𝑗

√𝑒𝑖𝑗
2 +ℎ

�⃐�𝑗 = − ∑  𝑖∈𝑁𝑗
′  𝑎𝑗𝑖(𝑦𝑗 − 𝑝𝑗𝑦 − 𝑦𝑖 + 𝑝𝑖𝑦) −

𝜌𝑦𝑒2𝑗

√𝑒2𝑗
2 +ℎ

              (4.10) 

Define �⃐�𝑗 = 𝑥𝑗 − 𝑝𝑗𝑥 − 𝑥0 and �⃗�𝑗 = 𝑦𝑗 − 𝑝𝑗𝑦 − 𝑦0 where 

𝑝0𝑥 = 𝑝0𝑦 = 0, we have 

                    

�̀⃐�𝑗 = − ∑  𝑖∈𝑁𝑗
∗  𝑎𝑗𝑖(�⃐�𝑗 − �⃐�𝑖) − �̀�0 −

𝜌𝑥𝑒1𝑗

√𝑒1𝑗
2 +ℎ

�̅⃐�𝑗 = − ∑  𝑖∈𝒩𝑗
∗  𝑎𝑗𝑖(�⃐�𝑗 − �⃐�𝑖) − �⃐�0 −

𝜌𝑦𝑒2𝑗

√𝑒2𝑗
2 +ℎ

                 (4.11) 

For the communication between vehicles we make the following assumption. 

Assumption 2: The leader vehicle is globally reachable. If 

𝜌𝑥 ≥ m  {|�̀�0(𝑡)|},  𝜌𝑦 ≥ m  {|�⃐�0(𝑡)|}, 

it can be proved that �⃐�𝑗 and �⃐�𝑗 exponentially converge to zero if Assumption 2 is satisfied with 

the aid of the results in [Dong, 2013] 

By (4.6) , we solve 𝑢𝑗  and 𝜓𝑗 and obtain 𝑢𝑗 = 𝑇3𝑗 and 𝜓𝑗 = 휂4𝑗 where 
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                                           𝑇3𝑗 = √휂1𝑗
2 + 휂2𝑗

2 ,  휂4𝑗 = atan 2(𝑇2𝑗 , 휂1𝑗)               (4.12) 

In (4.12), atan 2 is not defined if 휂2𝑗 = 0 and 𝑇1𝑗 = 0. To avoid this, we make the 

following assumption. Assumprion 3: 0 < 𝜖 < �̀�0
2(𝑡) + �̀�0

2(𝑡) < ∞ for any time 𝑡, where 𝜖 is a 

small positive constant Step 2: 𝑢𝑗  and 𝜓𝑗 are not the real control inputs and [𝑢𝑗 , 𝜓𝑗]
⊤

≠

[𝑇𝑗𝑗 , 휂4𝑗]
𝑇
. Let 

𝑧𝑣𝑗 = [𝑧1𝑗, 𝑠2𝑗]
⊤

= [𝑢𝑗 − 휂𝛽𝑗 , 𝜓𝑗 − 휂𝐻𝑗]
⊤

 

then 

                 

�̀̀�𝑗 =  − ∑  𝑖∈𝒩𝑗
𝑒  𝑎𝑗𝑖(�̀�𝑗 − �̀�𝑖) − �̀�0 −

𝜌𝑥𝑒1𝑗

√𝑒1𝑗
2 +ℎ

�̀��̀� =  − ∑  𝑖∈𝒩𝑗
𝑒  𝑎𝑗𝑖(�⃐�𝑗 − �̀�𝑖) − �̀�0 −

𝜌𝑦𝑒2𝑗

√𝑒2𝑗
2 +ℎ

 +Ω𝑗

𝑚1𝑗𝑧1̀𝑗 = 𝑚2𝑗𝑣𝑗𝑟𝑗 − 𝑑1𝑗𝑢𝑗 + 𝐹𝐿𝑗 + 𝐹𝑅𝑗

 −𝑚1𝑗휂̀3𝑗 − 𝐷1𝑗

𝑧2̀𝑗 = 𝑟𝑗 − 휂̀4𝑗

                      (4.13)       

Where, 

                              

Λ𝑗 = 𝑧1𝑗cos 휂4𝑗 + 𝑢𝑗𝑧2𝑗cos 휂4𝑗
(cos 𝑧2𝑗−1)

𝑧2𝑗

 −𝑢𝑗𝑧2𝑗sin 휂4𝑗
sin 𝑧2𝑗

𝑧2𝑗

Ω𝑗 = 𝑧1𝑗sin 휂4𝑗 + 𝑢𝑗𝑧2𝑗sin 휂4𝑗
(cos 𝑧2𝑗−1)

𝑧2𝑗

 +𝑢𝑗𝑧2𝑗cos 휂4𝑗
sin 𝑧2𝑗

𝑧2𝑗

                      (4.14) 

for 1 ≤ 𝑗 ≤ 𝑚. For the system in (4.13), the following input-to-state property can be shown. 
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Lemma 1: For the systems in (4.13), Under Assumption 2 

1 if 𝑧1𝑗 and 𝑧2𝑗 are bounded and converge to a small neighborhood of the origin with radius 

𝑟, �̀�𝑗 and �̀�𝑗 are bounded and converge to a neighborhood of the origin whose radius can 

be made as small as possible by choosing 𝑟 very small. 

2 if 𝑧1𝑗 and 𝑧2𝑗 are bounded and converge to zero, �⃐�𝑗 and �̀�𝑗 are bounded and converge to 

zero. 

3 if 𝑧1𝑗 and 𝑧2𝑗 exponentially converge to zero, �̀�𝑗 and �̀�𝑗 exponentially converge to zero. 

The proof of Lemma 1 is omitted due to space limit. Thanks to Lemma 1, we design 

controllers such that 𝑧1𝑗 and 𝑧2𝑗 are bounded and converge to zero. Choose a Lyapunov 

function candidate 

                        𝑉2𝑗 =
1

2
∑  𝑚

𝑗=1 (𝑚1𝑗𝑧1𝑗
2 + 𝑧2𝑗

2 )                               (4.15) 

and differentiate 𝑉2𝑗 along the solution of the systems in (4.13), we have 

                              
�̀�2𝑗 =  ∑  𝑚

𝑗=1   𝑧1𝑗[𝑚2𝑗𝑣𝑗𝑟𝑗 − 𝑑1𝑗𝑢𝑗 + 𝐹𝐿𝑗 + 𝐹𝑅𝑗

−𝑚1𝑗휂̀3𝑗 − 𝐷1𝑗] + ∑  𝑚
𝑗=1   𝑧2𝑗(𝑟𝑗 − 휂̀4𝑗)

                            (4.16) 

We choose 

                          

𝐹𝐿𝑗 + 𝐹𝑅𝑗 =  −𝐾3𝑧1𝑗 + �⃐�  1𝑗휂̀3𝑗 − �⃐�  2𝑗𝑣𝑗𝑟𝑗 + �⃐�1𝑗𝑢𝑗

 −(𝜌1𝑗|휂̀3𝑗| + 𝜌2𝑗|𝑣𝑗𝑟𝑗|

+𝜌4𝑗|𝑢𝑗| + 𝜌6𝑗)sign (𝑧1𝑗) =: 𝛿1𝑗

𝑟𝑗 = 휂5𝑗

휂5𝑗 =  −𝐾4𝑧2𝑗 + 휂̀4𝑗

                            (4.17) 

where 𝐾3 and 𝐾4 are positive definite matrices. Then 
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                                       �̀�2𝑗 ≤ − ∑  𝑚
𝑗=1 (𝐾3𝑧1𝑗

2 + 𝐾4𝑧2𝑗
2 )                                      (4.18) 

It can be shown that 𝑧1𝑗 and 𝑧2𝑗(1 ≤ 𝑗 ≤ 𝑚) are bounded and exponentially converge to zero. 

• Step 3: 𝑟𝑗 is not the real control inputs and 𝑟𝑗 ≠ 휂5𝑗 . 

                               

 Let 𝑧3𝑗 = 𝑟𝑗 − 휂5𝑗 , then 

𝑧2̀𝑗 = −𝐾4𝑧2𝑗 + 𝑧3𝑗

𝑚3𝑗𝑧3̀𝑗 = (𝑚1𝑗 − 𝑚2𝑗)𝑢𝑗𝑣𝑗 − 𝑑3𝑗𝑟𝑗 − 𝑚3𝑗휂̀5𝑗

−𝐷3𝑗 + 𝐿𝑗(𝐹𝑅𝑗 − 𝐹𝐿𝑗)

                   (4.19) 

Choose a Lyapunov function candidate 

                                            𝑉3𝑗 = 𝑉2𝑗 +
1

2
∑  𝑚

𝑗=1 𝑚3𝑗𝑧3𝑗
2                                      (4.20) 

and differentiate it along the solutions of the system, we have 

   

�̀�3𝑗 ≤  − ∑  𝑚
𝑗=1   (𝐾3𝑧1𝑗

2 + 𝐾4𝑧2𝑗
2 ) + ∑  𝑚

𝑗=1   𝑧2𝑗𝑧3𝑗

 + ∑  𝑚
𝑗=1   𝑧3𝑗 ((𝑚1𝑗 − 𝑚2𝑗)𝑢𝑗𝑣𝑗 − 𝑑3𝑗𝑟𝑗 − 𝑚3𝑗휂̀𝑗𝑗

−𝐷3𝑗 + 𝐿𝑗(𝐹𝑅𝑗 − 𝐹𝐿𝑗))

                          (4.21) 

We choose 

                            

𝐿𝑗(𝐹𝑅𝑗 − 𝐹𝐿𝑗) =  −𝐾5𝑧3𝑗 − 𝑧2𝑗 − (�⃐�  1𝑗 − �⃐�  2𝑗)𝑢𝑗𝑣𝑗

 +�⃐�3𝑗𝑟 + �⃐�  3𝑗휂̀5𝑗 − ((𝜌1𝑗

+𝜌2𝑗)|𝑢𝑗𝑣𝑗| + 𝜌5𝑗|𝑟𝑗| + 𝜌3𝑗|휂̀5𝑗|

+𝜌7𝑗)sign (𝑧3𝑗) =: 𝛿2𝑗

                (4.22) 

where 𝐾5 is a positive constant. 
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Then 

                               �̀�3𝑗 ≤ − ∑  𝑚
𝑗=1 (𝐾3𝑧1𝑗

2 + 𝐾4𝑧2𝑗
2 + 𝐾5𝑧3𝑗

2 )               (4.23) 

It can be shown that 𝑧1𝑗 , 𝑧2𝑗 , 𝑧3𝑗(1 ≤ 𝑗 ≤ 𝑚) are bounded and exponentially converge to zero. 

Solve the equations in (4.17) and (4.22), we obtain the control inputs as follows: 

                                                       𝐹𝑅𝑗 =
1

2
(𝛿1𝑗 +

𝛿2𝑗

𝐿𝑗
) ,  𝐹𝐿𝑗 =

1

2
(𝛿1𝑗 −

𝛿2𝑗

𝐿𝑗
)                      (4.24) 

The above results are summarized in the following theorem. 

Theorem 1: For 𝑚 vehicles in (4.1-4.2)and a leader vehicle with the desired trajectory (𝑥0, 𝑦0), 

under Assumptions 1 − 3, the control laws in (4.24) ensure that (4.3) are satisfied. 

4.3 Distributed Command Filtered Tracking Control Laws 

In the proposed controller in the last section, the derivatives of signals are needed. To 

avoid this, a command filtered controller can be designed with the aid of the ideas in (Dong et 

al., 2012). To this end, we introduce the following command filters: 

                        

�̀�1𝑗  = −𝑟1𝑗|𝜒1𝑗 − 휂3𝑗|
1

2sign (𝜒1𝑗 − 휂3𝑗) + 𝜒2𝑗  

�̀�2𝑗  = −𝑟2𝑗sign (𝜒2𝑗 − �̀�1𝑗)

�̀�3𝑗  = −𝑟3𝑗|𝜒3𝑗 − 휂4𝑗|
1

2sign (𝜒3𝑗 − 휂4𝑗) + 𝜒4𝑗  

�̀�4𝑗  = −𝑟4𝑗sign (𝜒4𝑗 − �̀�3𝑗)

�̀�5𝑗  = −𝑟5𝑗|𝜒5𝑗 − 휂5𝑗|
1

2sign (𝜒5𝑗 − 휂5𝑗) + 𝜒6𝑗

�̀�6𝑗  = −𝑟6𝑗sign (𝜒6𝑗 − �̀�5𝑗)

          (4.25) 

The compensated signals are defined by 



 

46 
 

                                  

�̀�1𝑗  = −
𝐾3

�⃐�   1𝑗
𝜉1𝑗

�̀�2𝑗  = −𝐾4𝜉2𝑗 + 𝜉3𝑗 + (𝜒5𝑗 − 휂5𝑗)

�̀�3𝑗  = −
𝐾5

�⃐�   3𝑗
𝜉3𝑗

                        (4.26) 

Let 

                                          

𝑤1𝑗  = 𝑢𝑗 − 𝜒1𝑗 − 𝜉1𝑗

𝑤2𝑗  = 𝜓𝑗 − 𝜒3𝑗 − 𝜉2𝑗

𝑧3𝑗  = 𝑟𝑗 − 𝜒5𝑗 − 𝜉3𝑗

                                (4.27) 

then 

               

𝑚1𝑗�̀�1𝑗 = 𝑚2𝑗𝑣𝑗𝑟𝑗 − 𝑑1𝑗𝑢𝑗 + 𝐹𝐿𝑗 + 𝐹𝑅𝑗

 −𝑚1𝑗�̀�1𝑗 − 𝐷1𝑗 − 𝑚1𝑗�̀�1𝑗

�̀�2𝑗 = 𝑟𝑗 − �̀�3𝑗 − �̀�2𝑗

= 𝑧3𝑗 + 𝜉3𝑗 + (𝜒5𝑗 − 휂5𝑗) + 휂5𝑗

 −�̀�3𝑗 − �̀�2𝑗

𝑚3𝑗𝑧3̀𝑗 = (𝑚1𝑗 − 𝑚2𝑗)𝑢𝑗𝑣𝑗 − 𝑑3𝑗𝑟𝑗 − 𝑚3𝑗�̀�5𝑗

 −𝐷3𝑗 + 𝐿𝑗(𝐹𝑅𝑗 − 𝐹𝐿𝑗) − 𝑚3𝑗�̀�3𝑗

              (4.28) 

We choose 

𝐹𝐿𝑗 + 𝐹𝑅𝑗 =  −𝐾3(𝑢𝑗 − 𝜒1𝑗) + �⃐�  1𝑗�̀�1𝑗

 −�⃐�  2𝑗𝑣𝑗𝑟𝑗 + �⃐�1𝑗𝑢𝑗 − (𝜌1𝑗|�̀�1𝑗|

 +𝜌2𝑗|𝑣𝑗𝑟𝑗| + 𝜌4𝑗|𝑢𝑗|

+𝜌6𝑗)sign (𝑤1𝑗) =: 𝛿1𝑗

𝐿𝑗(𝐹𝑅𝑗 − 𝐹𝐿𝑗) =  −𝐾4𝜓𝑗 + �̀�3𝑗

휂5 =  −𝐾5(𝑟𝑗 − 𝜒𝑠𝑗) − 𝑤2𝑗 − (�⃐�  1𝑗

−�⃐�  2𝑗)𝑢𝑗𝑣𝑗 + �⃐�3𝑗𝑟 + �⃐�  3𝑗�̀�5𝑗

 − ((𝜌1𝑗 + 𝜌2𝑗)|𝑢𝑗𝑣𝑗| + 𝜌5𝑗|𝑟𝑗|

+𝜌3𝑗|�̀�5𝑗| + 𝜌7𝑗)sign (𝑧3𝑗)

=: 𝛿2𝑗
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then (4.28) are in the following forms. 

             

𝑚1𝑗�̀�1𝑗 =  −𝐾3𝑤1𝑗 + �̀�2𝑗𝑣𝑗𝑟𝑗 − �̀�1𝑗𝑢𝑗

 −�̀�1𝑗�̀�1𝑗 − 𝐷1𝑗 +
𝑚1𝑗−�⃐�   1𝑗

�⃐�   1𝑗
𝐾3𝜉1𝑗

 −(𝜌1𝑗|�̀�1𝑗| + 𝜌2𝑗|𝑣𝑗𝑟𝑗|

+𝜌4𝑗|𝑢𝑗| + 𝜌6𝑗)sign (𝑤1𝑗)

�̀�2𝑗 =  −𝐾4𝑤2𝑗 + 𝑧3𝑗

𝑚3𝑗𝑧3̀𝑗 = (�̀�1𝑗 − �̀�2𝑗)𝑢𝑗𝑣𝑗 − �̀�3𝑗𝑟𝑗 − �̀�3𝑗�̀�5𝑗 − 𝐷3𝑗

 −𝐾5𝑧3𝑗 − 𝑤2𝑗 +
𝑚3𝑗−�⃐�   3𝑗

�⃐�   3𝑗
𝐾5𝜉3𝑗

 − ((𝜌1𝑗 + 𝜌2𝑗)|𝑢𝑗𝑣𝑗| + 𝜌5𝑗|𝑟𝑗| + 𝜌3𝑗|�̀�𝑠𝑗|

+𝜌7𝑗)sign (𝑧3𝑗)

               (4.30) 

Theorem 2: For 𝑚 vehicles in (4.1)-(4.2) and a leader vehicle with the desired trajectory 

(𝑥0, 𝑦0), under Assumptions 1 − 3, the control law in (4.24) with 𝛿1𝑗 in (4.29) and 𝛿2𝑗 in (4.30) 

ensure that (4.3) are satisfied.  

Proof: Choose a Ly apunov function 

                            𝑉4 =
1

2
∑  𝑚

𝑗=1 (𝑚1𝑗𝑤1𝑗
2 + 𝑤2𝑗

2 + 𝑚3𝑗𝑧3𝑗
2 )                   (4.31) 

its derivative along the solution of the closed loop system is 

                

�̀�4 ≤  −𝐾3𝑤1𝑗
2 − 𝐾4𝑤2𝑗

2 − 𝐾5𝑧3𝑗
2

 +
𝑚1𝑗−�⃐�   1𝑗

�⃐�   1𝑗
𝐾3𝜉1𝑗𝑤1𝑗 +

𝑚3𝑗−�⃐�   3𝑗

�⃐�   3𝑗
𝐾5𝜉3𝑗𝑧3𝑗

               (4.32) 

Noting that 𝜉1𝑗 and 𝜉3𝑗 exponentially converge to zero, it can be shown that 𝑤1𝑗, 𝑤2𝑗, and 𝑧3𝑗 

exponentially converge to zero, respectively. 
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By the command filters, 𝜒1𝑗 − 휂3𝑗 , 𝜒3𝑗 − 휂4𝑗 , and 𝜒5𝑗 − 휂5𝑗 are bounded and converge to zero in 

a finite time. By the definitions of the compensated signals, 𝜉1𝑗, 𝜉3𝑗, and 𝜉2𝑗 exponentially 

converge to zero. So, 𝑧1𝑗 and 𝑧2𝑗 converge to zero. By Lemma 1, �̀�𝑗 and �̀�𝑗 converge to zero, 

which means that (4.7) − (4.9) are satisfied. 

4.4 Simulation 

Consider three identical WAM-Vs with the model parameters: 𝑚1𝑗 = 200, 𝑚2𝑗 =

250, 𝑚3𝑗 = 80, 𝑑1𝑗 = 70, 𝑑2𝑗 =100, 𝑑3𝑗 = 50 for 𝑗 = 1,2,3. The un-modeled dynamics and 

uncertainty is as follows: 𝐷1𝑗 = 2𝑐𝑜 𝑠 0. 3𝑡, 𝐷2𝑗 = 2𝑐𝑜 𝑠 0. 2𝑡,and 𝐷3𝑗 = 2𝑐𝑜 𝑠 0. 1𝑡.  

Assume the desired geometric pattern 𝒫 is a triangle defined by (𝑝1𝑥, 𝑝1𝑦)(0,20), (𝑝2𝑥, 𝑝2𝑦) =

(−20, −10), and (𝑝3𝑥, 𝑝3𝑦) = (20, −10). (see Fig. 1). The desired trajectory (𝑥0, 𝑦0) =

(20𝑐𝑜 𝑠 0. 1𝑡, 20𝑠𝑖 𝑛 0. 1𝑡) 

Assume the communication digraph 𝒢 among the WAMVs is fixed and is shown in Fig. 2. The 

communication graph is directed. If the estimates of inertia parameters are known as 

 �⃐�  1𝑗 = 210, �⃐�  2𝑗 = 240, �⃐�  3𝑗 = 75, �⃐�1𝑗 = 75, �⃐�2𝑗 = 105, �⃐�3𝑗 = 55 for 𝑗 = 1,2,3. The bounds 

between the estimations can be chosen as 𝜌1𝑗 = 10, 𝜌2𝑗 = 10, 𝜌3𝑗 = 10, 𝜌4𝑗 = 10, 𝜌𝔰𝑗 =

10, 𝜌6𝑗 = 3, and 𝜌7𝑗 = 4. The cooperative control laws can be obtained by Theorem 2. Figs. 4 −

4 show the time response of �̀�𝑗 and �̀�𝑗 for 1 ≤ 𝑗 ≤ 3. Figs. 5 − 7 show the time response of 

𝑧1𝑗, 𝑧2𝑗, and 𝑧3𝑗 for 1 ≤ 𝑗 ≤ 3. The simulation results verify Theorem 1. 
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Fig 4.1: Desired formation of three WAM-Vs 

 

Fig. 4.2: Communication digraph 
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Fig 4.3: Time response of �⃐�𝑗 for 1 ≤ 𝑗 ≤ 3 

 

 

Fig 4.4: Time response of �⃐�𝑗 for 1 ≤ 𝑗 ≤ 3 
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Fig 4.5: Time response of 𝑧1𝑗 for 1 ≤ 𝑗 ≤ 3 

 

 

Fig. 4.6: Time response of 𝑧2𝑗 for 1 ≤ 𝑗 ≤ 3 
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Figure 4.7: Time response of 𝑧3𝑗 for 1 ≤ 𝑗 ≤ 3 

 

                                                                4.5 Conclusion 

 

In this Chapter, we considered formation control of multiple uncertain WAM-Vs with a 

leader WAM-V. If inertia parameters are not exactly known, distributed robust tracking laws 

were proposed with the aid of neighbors’ information. To reduce the computation load in 

controller design, distributed command filtered controllers were proposed. Simulation results 

show the effectiveness of the proposed results. 
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CHAPTER V 

CONCLUSION AND FUTURE RESEARCH 

In this dissertation, we presented a distributed formation control strategy for a team of 

UAVs to autonomously achieve and maintain a desired formation while traveling toward a 

desired destination. Given a desired formation, we showed how stabilizing control gains can be 

found from solving a convex optimization problem. These gains, which can be communicated to 

the agents before start of the mission, were used to calculate linear and angular velocity control 

commands for the UAVs under the Dubins constraint. Simulations were provided to show that 

under the proposed control the UAVs achieve the desired formation and travel along the assigned 

direction. Proof of convergence for the saturated UAV control is a topic of future work. To 

preserve connectivity, avoid obstacles, or prevent collision among UAVs, distributed techniques 

such as potential field traffic circle or control barrier function approach can be employed. 

Another strategy is a temporary change of altitude, i.e., UAVs passing over or under each other 

to avoid collision. This strategy can preserve the stability properties, however, the low-level 

altitude controller can become more complicated. Incorporating collision/obstacle avoidance 

strategies with the proposed formation control and analyzing the stability properties of the 

resulting system will be a topic of future work.
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Again, we considered formation control of multiple uncertain WAM-Vs with a leader 

WAM-V. If inertia parameters are not exactly known, distributed robust tracking laws were 

proposed with the aid of neighbors’ information. To reduce the computation load in controller 

design, distributed command filtered controllers were proposed. Simulation results show the 

effectiveness of the proposed results. 

Lastly, we presented a distributed formation control strategy for a team of agents with a 

variety of dynamics to autonomously achieve a desired planar formation. Under the assumption 

that the sensing graph is undirected and universally rigid, we showed that formation control 

gains can be designed by solving a SDP problem. This design enjoys several robustness 

properties, such as robustness to positive scaling and rotation (up to ±90∘ ) of the control vector, 

saturations in the input, and switches in the sensing topology. The control was extended to agents 

with higher-order linear (or linearizable) holonomic dynamics, such as quadrotors, followed by 

further extension to agents with nonholonomic unicycle and car dynamics. An important 

outcome of this work was a fully distributed collision avoidance algorithm that emerged 

naturally from the robustness properties of the proposed strategy. To symplify the control, 

simulations for vehicles with different dynamics were presented, and experiments on a 

distributed robotic platform where performed. 

Future work includes investigating additional requirements, such as inter-agent 

communication, to guarantee that the collision avoidance algorithm can overcome gridlock 

scenarios. Moreover, inter-agent communication can be exploited in a distributed optimization 

scheme to solve the SDP problem in a decentralized way. Other possible research avenues 

include extending the proposed approach to 3D formations.
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