1,641 research outputs found

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Combination of Advanced Reservation and Resource Periodic Arrangement for RMSA in EON with Deep Reinforcement Learning

    Get PDF
    The Elastic Optical Networks (EON) provide a solution to the massive demand for connections and extremely high data traffic with the Routing Modulation and Spectrum Assignment (RMSA) as a challenge. In previous RMSA research, there was a high blocking probability because the route to be passed by the K-SP method with a deep neural network approach used the First Fit policy, and the modulation problem was solved with Modulation Format Identification (MFI) or BPSK using Deep Reinforcement Learning. The issue might be apparent in spectrum assignment because of the influence of Advanced Reservation (AR) and Resource Periodic Arrangement (RPA), which is a decision block on a connection request path with both idle and active data traffic. The study’s limitation begins with determining the modulation of m = 1 and m = 4, followed by the placement of frequencies, namely 13 with a combination of standard block frequencies 41224–24412, so that the simulation results are less than 0.0199, due to the combination of block frequency slices with spectrum allocation rule techniques.

    Combination of Advanced Reservation and Resource Periodic Arrangement for RMSA in EON with Deep Reinforcement Learning

    Get PDF
    The Elastic Optical Networks (EON) provide a solution to the massive demand for connections and extremely high data traffic with the Routing Modulation and Spectrum Assignment (RMSA) as a challenge. In previous RMSA research, there was a high blocking probability because the route to be passed by the K-SP method with a deep neural network approach used the First Fit policy, and the modulation problem was solved with Modulation Format Identification (MFI) or BPSK using Deep Reinforcement Learning. The issue might be apparent in spectrum assignment because of the influence of Advanced Reservation (AR) and Resource Periodic Arrangement (RPA), which is a decision block on a connection request path with both idle and active data traffic. The study’s limitation begins with determining the modulation of m = 1 and m = 4, followed by the placement of frequencies, namely 13 with a combination of standard block frequencies 41224–24412, so that the simulation results are less than 0.0199, due to the combination of block frequency slices with spectrum allocation rule techniques.

    New core and spectrum balancing algorithms for space division multiplexed elastic optical networks

    Get PDF
    This paper proposes two new algorithms for core and spectrum allocation in Elastic Optical Networks with Space Division Multiplexing. In order to avoid the effect of inter-core crosstalk, a Core Balancing Algorithm (CBA) is proposed for core allocation, and a Spectrum Balancing Algorithm (SBA) for spectral allocation. Such algorithms prove to be efficient in terms of circuit blocking probability and blocked data ratio. They achieve at least 55.7% gain in terms of circuit blocking probability and 41.1% gain in terms of blocked data ratio when compared to other evaluated algorithms. It is shown that the proposed algorithms achieve low computational cost and higher energy efficiency than other similar algorithms.info:eu-repo/semantics/acceptedVersio

    BER-Adaptive RMLSA Algorithm for Wide-Area Flexible Optical Networks

    Get PDF
    Wide-area optical networks face significant transmission challenges due to the relentless growth of bandwidth demands experienced nowadays. Network operators must consider the relationship between modulation format and maximum reach for each connection request due to the accumulation of physical layer impairments in optical fiber links, to guarantee a minimum quality of service (QoS) and quality of transmission (QoT) to all connection requests. In this work, we present a BER-adaptive solution to solve the routing, modulation format, and spectrum assignment (RMLSA) problem for wide-area elastic optical networks. Our main goal is to maximize successful connection requests in wide-area networks while choosing modulation formats with the highest efficiency possible. Consequently, our technique uses an adaptive bit-error-rate (BER) threshold to achieve communication with the best QoT in the most efficient manner, using the strictest BER value and the modulation format with the smallest bandwidth possible. Additionally, the proposed algorithm relies on 3R regeneration devices to enable long-distances communications if transparent communication cannot be achieved. We assessed our method through simulations for various network conditions, such as the number of regenerators per node, traffic load per user, and BER threshold values. In a scenario without regenerators, the BER-Adaptive algorithm performs similarly to the most relaxed fixed BER threshold studied in blocking probability. However, it ensures a higher QoT to most of the connection requests. The proposed algorithm thrives with the use of regenerators, showing the best performance among the studied solutions, enabling long-distance communications with a high QoT and low blocking probability

    Contributions to network planning and operation of Flex-Grid/SDM optical core networks

    Get PDF
    Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICThe ever demanding bandwidth requirements for supporting emerging telecom services such as ultra-high-definition video streaming, cloud computing, connected car, virtual/augmented reality, etc., bring to the fore the necessity to upgrade continuously the technology behind transport networks in order to keep pace with this exponential traffic growth. Thus, everything seems to indicate that fixed-grid Wavelength-Division Multiplexed (WDM) networks will be upgraded by adopting a flexible-grid, thus providing finer bandwidth allocation granularities, and therefore, increasing the Grade-of-Service by packing more information in the same spectral band of standard Single-Mode Fibers (SMFs). Nevertheless, unfortunately, the fundamental Shannon’s limit of SMFs is rapidly approaching, and, then, the research efforts to increase the SMFs' capacity will be useless. One solution to overcome this capacity crunch effect is to enable one extra dimension in addition to the frequency one, namely, the spatial dimension, thus deploying S parallel paths in order to multiply, in the best case, by S the capacity of SMF-based networks. However, additionally, it is necessary to decrease the cost and energy per bit in order to provide economically attractive solutions. For this purpose, a smooth upgrade path has to be carried out as new integrated devices and system components are developed for Space Division Multiplexing (SDM). This thesis is concentrated on the planning and operation of the combined flexible WDM and SDM networks (i.e., Flex-Grid/SDM networks) proposing several strategies aimed at optimizing network resources usage with hardware complexity analysis. For this purpose, firstly, network problems are carefully studied and stated, and then, mathematical and/or heuristic algorithms are designed and implemented in an optical network simulator. Specifically, after an introduction to the thesis, chapter 2 presents the background and related work. Next, chapter 3 concentrates on the study of spatially fixed Flex-Grid/SDM networks, i.e., when a rigid number of spatial channels are reserved per allocated traffic demand. In its turn, chapter 4 studies the case of Spectrally-Spatially Flexible Optical Networks (SS-FONs), as the ones providing the upper-bound network capacity. Costs and hardware requirements implied on providing this flexibility are analyzed. Network nodes aimed at reducing the cost of SS-FONs are presented and evaluated in chapter 5. Finally, this thesis ends with the presentation of the main contributions and future research work in chapter 6.La demanda de ancho de banda cada vez más exigente para soportar servicios de telecomunicación emergentes tales como la transmisión de video de alta calidad, computación en la nube, vehículo conectado, realidad virtual/aumentada, etc.…, ha puesto de manifiesto la necesidad de actualizar constantemente la tecnología detrás de las redes de transporte óptico con la finalidad de ir a la par de este incremento exponencial del tráfico. De esta manera, todo parece indicar que las redes basadas en la multiplexación por division de longitud de onda (Wavelength Division Multiplexing, WDM) de ancho espectral fijo serán actualizadas adoptando un ancho de banda espectral flexible, que ofrece asignaciones de ancho de banda con granularidad más fina acorde a las demandas de tráfico; y por lo tanto, incremanta el Grado de Servicio de la red, ya que se permite acomodar mayor información en la misma banda espectral de las fibras monomodo (Single Mode Fibers, SMFs). Sin embargo, desafortunadamente, el límite de Shannon de las fibras monomodo se está aproximando cada vez más, y cuando esto ocurra las investigaciones para incrementar la capacidad de las fibras monomodo serán infructuosas. Una posible solución para superar este colapso de las fibras monomodo es habilitar la dimensión espacial a más de la frecuencial, desplegando � caminos paralelos con la finalidad de multiplicar por � (en el mejor de los casos) la capacidad de las fibras monomodo. No obstante, es necesario disminuir el costo y la energía por bit con la finalidad de proveer soluciones comerciales atractivas. Para tal propósito debe llevarse a cabo una actualización moderada conforme nuevos dispositivos y componentes integrados son desarrollados para la implementación de la tecnología basada en la multiplexación por división de espacio (Space Division Multiplexing, SDM). Esta tesis se concentra en la planificación y operación de la combinación de las redes WDM flexibles y SDM (es decir, de las redes Flex-Grid/SDM) proponiendo varias estrategias dirigidas a optimizar el uso de los recursos de red junto con el análisis de la complejidad del hardware que viene acompañada. Para este fin, primeramente, los problemas de red son cuidadosamente estudiados y descritos. A continuación, se han diseñado e implementado algoritmos basados en programación lineal entera o heurísticas en un simulador de redes ópticas. Después de una introducción inicial, el capítulo 2 de esta tesis presenta el marco teórico sobre los conceptos tratados y los trabajos publicados anteriormente. A continuación, el capítulo 3 se concentra en el estudio de las redes Flex-Grid/SDM con la dimensión espacial rígida; es decir, cuando un número fijo de canales espaciales son reservados por cada demanda de tráfico establecida. Por su parte, el capítulo 4 estudia las redes Flex-Grid/SDM considerando flexibilidad tanto en el dominio espacial como espectral (Spectrally and Spatially Flexible Optical Networks, SS-FONs), las cuales proveerían la capacidad máxima de las redes SDM. Adicionalmente, los costos y requerimientos de hardware implicados en la provisión de esta flexibilidad son analizados. El capítulo 5 presenta la evaluación de nodos orientados a reducir los costos de las SS-FONs. Finalmente, el capítulo 6 expone las principales contribuciones y las posibles líneas de trabajo futuroEls requisits incessants d’ample de banda per al suport de nous serveis de telecomunicació, com poden ser la difusió en directe de vídeo de molt alta definició, la informàtica en el núvol, els cotxes intel·ligents connectats a la xarxa, la realitat virtual/augmentada, etc…, han exigit una millora contínua de les tecnologíes de les actuals xarxes de transport de dades. Tot sembla indicar que les xarxes de transport òptiques actuals, basades en la tecnologia de multiplexació per divisió de longitud d’ona (Wavelength Division Multiplexing, WDM) sobre un grid espectral rígid, hauran de ser reemplaçades per tecnologies òptiques més flexibles, amb una granularitat més fina a l’hora de suportar noves connexions, incrementat el grau de servei de les xarxes gràcies a aprofitament major de l’ample de banda espectral proporcionat per les fibres òptiques monomode (Single Mode Fibers, SMFs). Tanmateix, estem exhaurint ja la capacitat màxima de les fibres òptiques SMF segons ens indica el límit fonamental de Shannon. Per tant, qualsevol esforç enfocat a millorar la capacitat d’aquestes xarxes basades en SMFs pot acabar sent infructuós. Una possible solució per superar aquestes limitacions de capacitat és explorar la dimensió espacial, a més de l’espectral, desplegant camins en paral·lel per tal de multiplicar per , en el millor cas, la capacitat de les SMFs. Tot i això, és necessari reduir el cost i el consum energètic per bit transmès, per tal de proporcionar solucions econòmicament viables. Amb aquest propòsit, pot ser necessària una migració progressiva, a mesura que es desenvolupen nous dispositius i components per aquesta nova tecnologia de multiplexació per divisió espacial (Spatial Division Multiplexing, SDM). La present tesi es centra en la planificació i operació de xarxes òptiques de nova generació que combinin tecnologies de xarxa WDM flexible i SDM (és a dir, xarxes Flex-Grid/SDM), proposant estratègies per a l’optimització de l’ús dels recursos de xarxa i, en definitiva, el seu cost (CapEx). Amb aquest propòsit, s’analitzen en primer moment els problemes adreçats. Tot seguit, es dissenyen algorismes per tal de solucionar-los, basats en tècniques de programació matemàtica i heurístiques, els quals s’implementen i es proven en un simulador de xarxa òptica. Després d’una introducció inicial, el capítol 2 d’aquesta tesi presenta tots els conceptes tractats i treballs relacionats publicats amb anterioritat. Tot seguit, el capítol 3 es centra en l’estudi de les xarxes Flex-Grid/SDM fixes en el domini espai, és a dir, on sempre es reserva un nombre rígid de canals espacials per qualsevol demanda suportada. El capítol 4 estudia les xarxes flexibles en els dominis espectrals i espacials (Spectrally-Spatially Flexible Optical Nextworks, SS-FONs), com aquelles que poden proporcionar una capacitat de xarxa màxima. En aquest context, s’analitzen els requeriments en termes de cost i hardware per tal de proporcionar aquesta flexibilitat. Llavors, en el capítol 6 es presenten opcions de node de xarxa capaces de reduir els costos de les xarxes SS-FONs. Finalment, en el capítol 7 es repassen totes les contribucions de la tesi, així com posibles línies de treball futurAward-winningPostprint (published version
    • …
    corecore