26 research outputs found

    MEGA: An Energy Aware Algorithm for Self-Powered Wireless Sensor Networks in Sustainable Smart Infrastructure

    Get PDF
    Smart infrastructure is attractive for possessing many desirable features, such as uninterrupted monitoring of health conditions, timely response to damages, and human-infrastructure interactions. Embedded sensors that collectinformation are critical for decision making. However, the lifetime of electronic sensors is a constraint to infrastructure lifetime if sensors are physically embedded in the infrastructure at construction time. In this paper, we studied a self-powered wireless sensor network that harvests energy from mechan-ical vibration in the environment. A dynamic, hierarchical algorithm called MEGA is proposed that constructs clusters and elects the cluster head based on residue energy and energy harvest rate. Taking a smart bridge as an application example, the simulation study has verified the effectiveness of the proposed protocol

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented

    Network coding-based survivability techniques for multi-hop wireless networks

    Get PDF
    Multi-hop Wireless Networks (MWN) have drawn a lot of attention in the last decade, and will continue to be a hot and active research area in the future also. MWNs are attractive because they require much less effort to install and operate (compared to wired networks), and provide the network users with the flexibility and convenience they need. However, with these advantages comes a lot of challenges. In this work, we focus on one important challenge, namely, network survivability or the network ability to sustain failures and recover from service interruption in a timely manner. Survivability mechanisms can be divided into two main categories; Protection and restoration mechanisms. Protection is usually favored over restoration because it usually provides faster recovery. However, the problem with traditional protection schemes is that they are very demanding and consume a lot of network resources. Actually, at least 50% of the used resources in a communication session are wasted in order to provide the destination with redundant information, which can be made use of only when a network failure or information loss occurs. To overcome this problem and to make protection more feasible, we need to reduce the used network resources to provide proactive protection without compromising the recovery speed. To achieve this goal, we propose to use network coding. Basically, network coding allows intermediate network nodes to combine data packets instead of just forwarding them as is, which leads to minimizing the consumed network resources used for protection purposes. In this work we give special attention to the survivability of many-to-one wireless flows, where a set of N sources are sending data units to a common destination T. Examples of such many-to-one flows are found in Wireless Mesh Networks (WMNs) or Wireless Sensor Networks (WSNs). We present two techniques to provide proactive protection to the information flow in such communication networks. First, we present a centralized approach, for which we derive and prove the sufficient and necessary conditions that allows us to protect the many-to-one information flow against a single link failure using only one additional path. We provide a detailed study of this technique, which covers extensions for more general cases, complexity analysis that proves the NP-completeness of the problem for networks with limited min-cuts, and finally performance evaluation which shows that in the worst case our coding-based protection scheme can reduce the useful information rate by 50% (i.e., will be equivalent to traditional protection schemes). Next, we study the implementation of the previous approach when all network nodes have single transceivers. In this part of our work we first present a greedy scheduling algorithm for the sources transmissions based on digital network coding, and then we show how analog network coding can further enhance the performance of the scheduling algorithm. Our second protection scheme uses deterministic binary network coding in a distributed manner to enhance the resiliency of the Sensors-to-Base information flow against packet loss. We study the coding efficiency issue and introduce the idea of relative indexing to reduce the coding coefficients overhead. Moreover, we show through a simulation study that our approach is highly scalable and performs better as the network size and/or number of sources increases. The final part of this work deals with unicast communication sessions, where a single source node S is transmitting data to a single destination node T through multiple hops. We present a different way to handle the survivability vs. bandwidth tradeoff, where we show how to enhance the survivability of the S-T information flow without reducing the maximum achievable S-T information rate. The basic idea is not to protect the bottleneck links in the network, but to try to protect all other links if possible. We divide this problem into two problems: 1) pre-cut protection, which we prove it to be NP-hard, and thus, we present an ILP and a heuristic approach to solve it, and 2) post-cut protection, where we prove that all the data units that are not delivered to T directly after the min-cut can be protected against a single link failure. Using network coding in this problem allows us to maximize the number of protected data units before and after the min-cut

    QoS constrained cellular ad hoc augmented networks

    Get PDF
    In this dissertation, based on different design criteria, three novel quality of service (QoS) constrained cellular ad hoc augmented network (CAHAN) architectures are proposed for next generation wireless networks. The CAHAN architectures have a hybrid architecture, in which each MT of CDMA cellular networks has ad hoc communication capability. The CAHAN architectures are an evolutionary approach to conventional cellular networks. The proposed architectures have good system scalability and high system reliability. The first proposed architecture is the QoS constrained minimum-power cellular ad hoc augmented network architecture (QCMP CAHAN). The QCMP CAHAN can find the optimal minimum-power routes under the QoS constraints (bandwidth, packet-delay, or packet-error-rate constraint). The total energy consumed by the MTs is lower in the case of QCMP CAHAN than in the case of pure cellular networks. As the ad hoc communication range of each MT increases, the total transmitted power in QCMP CAHAN decreases. However, due to the increased number of hops involved in information delivery between the source and the destination, the end-to-end delay increases. The maximum end-to-end delay will be limited to a specified tolerable value for different services. An MT in QCMP CAHAN will not relay any messages when its ad hoc communication range is zero, and if this is the case for all MTs, then QCMP CAHAN reduces to the traditional cellular network. A QoS constrained network lifetime extension cellular ad hoc augmented network architecture (QCLE CAHAN) is proposed to achieve the maximum network lifetime under the QoS constraints. The network lifetime is higher in the case of QCLE CAHAN than in the case of pure cellular networks or QCMP CAHAN. In QCLE CAHAN, a novel QoS-constrained network lifetime extension routing algorithm will dynamically select suitable ad-hoc-switch-to-cellular points (ASCPs) according to the MT remaining battery energy such that the selection will balance all the MT battery energy and maximizes the network lifetime. As the number of ASCPs in an ad hoc subnet decreases, the network lifetime will be extended. Maximum network lifetime can be increased until the end-to-end QoS in QCLE CAHAN reaches its maximum tolerable value. Geocasting is the mechanism to multicast messages to the MTs whose locations lie within a given geographic area (target area). Geolocation-aware CAHAN (GA CAHAN) architecture is proposed to improve total transmitted power expended for geocast services in cellular networks. By using GA CAHAN for geocasting, saving in total transmitted energy can be achieved as compared to the case of pure cellular networks. When the size of geocast target area is large, GA CAHAN can save larger transmitted energy

    Resource Allocation in Relay Enhanced Broadband Wireless Access Networks

    Get PDF
    The use of relay nodes to improve the performance of broadband wireless access (BWA) networks has been the subject of intense research activities in recent years. Relay enhanced BWA networks are anticipated to support multimedia traffic (i.e., voice, video, and data traffic). In order to guarantee service to network users, efficient resource distribution is imperative. Wireless multihop networks are characterized by two inherent dynamic characteristics: 1) the existence of wireless interference and 2) mobility of user nodes. Both mobility and interference greatly influence the ability of users to obtain the necessary resources for service. In this dissertation we conduct a comprehensive research study on the topic of resource allocation in the presence of interference and mobility. Specifically, this dissertation investigates the impact interference and mobility have on various aspects of resource allocation, ranging from fairness to spectrum utilization. We study four important resource allocation algorithms for relay enhanced BWA networks. The problems and our research achievements are briefly outlined as follows. First, we propose an interference aware rate adaptive subcarrier and power allocation algorithm using maximum multicommodity flow optimization. We consider the impact of the wireless interference constraints using Signal to Interference Noise Ratio (SINR). We exploit spatial reuse to allocate subcarriers in the network and show that an intelligent reuse of resources can improve throughput while mitigating the impact of interference. We provide a sub-optimal heuristic to solve the rate adaptive resource allocation problem. We demonstrate that aggressive spatial reuse and fine tuned-interference modeling garner advantages in terms of throughput, end-to-end delay and power distribution. Second, we investigate the benefits of decoupled optimization of interference aware routing and scheduling using SINR and spatial reuse to improve the overall achievable throughput. We model the routing optimization problem as a linear program using maximum concurrent flows. We develop an optimization formulation to schedule the link traffic such that interference is mitigated and time slots are reused appropriately based on spatial TDMA (STDMA). The scheduling problem is shown to be NP-hard and is solved using the column generation technique. We compare our formulations to conventional counterparts in the literature and show that our approach guarantees higher throughput by mitigating the effect of interference effectively. Third, we investigate the problem of multipath flow routing and fair bandwidth allocation under interference constraints for multihop wireless networks. We first develop a novel isotonic routing metric, RI3M, considering the influence of interflow and intraflow interference. Second, in order to ensure QoS, an interference-aware max-min fair bandwidth allocation algorithm, LMX:M3F, is proposed where the lexicographically largest bandwidth allocation vector is found among all optimal allocation vectors while considering constraints of interference on the flows. We compare with various interference based routing metrics and interference aware bandwidth allocation algorithms established in the literature to show that RI3M and LMX:M3F succeed in improving network performance in terms of delay, packet loss ratio and bandwidth usage. Lastly, we develop a user mobility prediction model using the Hidden Markov Model(HMM) in which prediction control is transferred to the various fixed relay nodes in the network. Given the HMM prediction model, we develop a routing protocol which uses the location information of the mobile user to determine the interference level on links in its surrounding neighborhood. We use SINR as the routing metric to calculate the interference on a specific link (link cost). We minimize the total cost of routing as a cost function of SINR while guaranteeing that the load on each link does not exceed its capacity. The routing protocol is formulated and solved as a minimum cost flow optimization problem. We compare our SINR based routing algorithm with conventional counterparts in the literature and show that our algorithm reinforces routing paths with high link quality and low latency, therefore improving overall system throughput. The research solutions obtained in this dissertation improve the service reliability and QoS assurance of emerging BWA networks

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Variable power transmission in highly Mobile Ad-Hoc Networks

    Get PDF
    Mobile Ad Hoc Networks pose challenges in terms of power control, due to their fixed transmission power, the mobility of nodes and a constantly changing topology. High levels of power are needed in wireless networks, particularly for routing. As a result of the increase in the number of communication devices being used, there is the challenge of increased density within these networks, and a need to extend the battery life of communication devices. In order to address this challenge, this thesis presents the development of a new protocol (Dynamic Power AODV), which is an enhancement of the Ad Hoc On Demand Distance Vector (AODV) protocol. The new protocol dynamically adjusts the transmission power based on the range, which depends on node density. This thesis provides a systematic evaluation of the performance of DP-AODV, in a high speed and high density environment, in comparison with three other routing protocols. The experiments demonstrated that DP-AODV performed better than two of the protocols in all scenarios. As compared to the third protocol (AOMDV), DP-AODV gave better performance results for throughput and Power Consumption, but AOMDV performed better in terms of Packet Delivery Fraction rate and End-to-End Delay in some cases
    corecore