92 research outputs found

    Methods for multilevel analysis and visualisation of geographical networks

    Get PDF

    Methods and Measures for Analyzing Complex Street Networks and Urban Form

    Full text link
    Complex systems have been widely studied by social and natural scientists in terms of their dynamics and their structure. Scholars of cities and urban planning have incorporated complexity theories from qualitative and quantitative perspectives. From a structural standpoint, the urban form may be characterized by the morphological complexity of its circulation networks - particularly their density, resilience, centrality, and connectedness. This dissertation unpacks theories of nonlinearity and complex systems, then develops a framework for assessing the complexity of urban form and street networks. It introduces a new tool, OSMnx, to collect street network and other urban form data for anywhere in the world, then analyze and visualize them. Finally, it presents a large empirical study of 27,000 street networks, examining their metric and topological complexity relevant to urban design, transportation research, and the human experience of the built environment.Comment: PhD thesis (2017), City and Regional Planning, UC Berkele

    Urban morphology and housing market

    Get PDF
    Urban morphology has been a longstanding field of interest for geographers but without adequate focus on its economic significance. From an economic perspective, urban morphology appears to be a fundamental determinant of house prices since morphology influences accessibility. This PhD thesis investigates the question of how the housing market values urban morphology. Specifically, it investigates peopleโ€™s revealed preferences for street patterns. The research looks at two distinct types of housing market, one in the UK and the other in China, exploring both static and dynamic relationships between urban morphology and house price. A network analysis method known as space syntax is employed to quantify urban morphology features by computing systemic spatial accessibility indices from a model of a cityโ€™s street network. Three research questions are empirically tested. Firstly, does urban configuration influence property value, measured at either individual or aggregate (census output area) level, using the Cardiff housing market as a case study? The second empirical study investigates whether urban configurational features can be used to better delineate housing submarkets. Cardiff is again used as the case study. Thirdly, the research aims to find out how continuous change to the urban street network influences house price volatility at a micro-level. Data from Nanjing, China,is used to investigate this dynamic relationship. The results show that urban morphology does, in fact, have a statistically significant impact on housing price in these two distinctly different housing markets. I find that urban network morphology features can have both positive and negative impacts on housing price. By measuring different types of connectivity in a street network it is possible to identify which parts of the network are likely to have negative accessibility premiums (locations likely to be congested) and which parts are likely to have positive premiums (locations highly connected to destination opportunities). In the China case study, I find that this relationship holds dynamically as well as statically, showing evidence that price change is correlated with some aspects of network change

    ๊ธฐ์ˆ ์ง€์‹์˜ ๋ณต์žก์„ฑ ๊ด€๋ฆฌ: ๋‹ค์–‘์„ฑ, ์œตํ•ฉ์„ฑ, ๋™ํƒœ์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…ยท์กฐ์„ ๊ณตํ•™๋ถ€, 2018. 2. ๋ฐ•์šฉํƒœ.์ง€์†์ ์ธ ๊ธฐ์ˆ ํ˜์‹ ์„ ์ฐฝ์ถœํ•˜๊ธฐ ์œ„ํ•ด์„œ ์—ฐ๊ตฌ๊ฐœ๋ฐœ์— ๊ด€๋ จ๋œ ๋ฐ์ดํ„ฐ์™€ ์ •๋ณด๋ฅผ ๊ฐ€๊ณตํ•˜์—ฌ ์ด๋ฅผ ์ฐฝ์˜์ ์ธ ์ง€์‹์œผ๋กœ ์ „ํ™˜์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ง€์‹๊ฒฝ์˜์ด ๊ฐ•์กฐ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์ตœ๊ทผ ๊ธฐ์ˆ ์ง€์‹์˜ ๋ณต์žก์„ฑ์ด ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋ณต์žก์„ฑ์„ ๊ณ ๋ คํ•œ ๋ณด๋‹ค ์ฒด๊ณ„์ ์ธ ๊ธฐ์ˆ ์ง€์‹๊ฒฝ์˜์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์ˆ ์ง€์‹์€ ๋” ์ด์ƒ ํ•˜๋‚˜์˜ ๋‹จ์ผ ๊ธฐ์ˆ ์ด ์•„๋‹Œ ๋‹ค์–‘ํ•œ ๊ด€๋ จ ๊ธฐ์ˆ ๊ณผ ํ•™์ œ๋ฅผ ํฌํ•จํ•˜๊ฒŒ ๋˜์—ˆ์œผ๋ฉฐ, ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ๋“ค์ด ์„œ๋กœ ์œตํ•ฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ๋กœ ๋ฐœ์ „ํ•˜๋Š” ์–‘์ƒ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๊ธฐ์ˆ ์ง€์‹์„ ํ™œ์šฉํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์ด ๋”์šฑ ๋‹ค์–‘ํ•ด์ง€๊ณ  ๊ทธ ํŒŒ๊ธ‰ํšจ๊ณผ๊ฐ€ ๊ด‘๋ฒ”์œ„ํ•ด์ง์— ๋”ฐ๋ผ ๊ธฐ์ˆ ์ง€์‹์€ ๋”์šฑ ๋™์ ์ธ ํ™˜๊ฒฝ์— ๋…ธ์ถœ๋˜๊ณ  ์žˆ๋‹ค. ์ด์—, ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ ๊ธฐ์ˆ ์ง€์‹์˜ ๋ณต์žก์„ฑ์„ ๊ตฌ์„ฑํ•˜๋Š” ํŠน์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ํŠนํžˆ ๋ณต์žก์„ฑ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์š” ๊ฒฝ์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธฐ์ˆ ์ง€์‹์˜ ๋ณต์žก์„ฑ์„ ๊ตฌ์„ฑํ•˜๋Š” ํŠน์„ฑ์„ ๋‹ค์–‘์„ฑ, ์œตํ•ฉ์„ฑ, ๋™ํƒœ์„ฑ๋กœ ์ •์˜ํ•˜๊ณ  ๊ฐ ํŠน์„ฑ์— ๊ด€๋ จ๋œ ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ๋‹ค์–‘ํ™”๋œ ๊ธฐ์ˆ ์ง€์‹์˜ ๊ตฌ์กฐ ํƒ์ƒ‰ ๋ฌธ์ œ, ๊ธฐ์ˆ ์œตํ•ฉ์ด ํ™œ๋ฐœํ•œ ์ƒํ™ฉ์—์„œ ๊ธฐ์ˆ  ํŠธ๋ Œ๋“œ ์˜ˆ์ธก ๋ฌธ์ œ, ๋™์ ์ธ ํ™˜๊ฒฝ์— ๋†“์ธ ๋Œ€ํ˜• ๊ธฐ์ˆ  ํ”„๋กœ์ ํŠธ ํ‰๊ฐ€ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ ์„ธ ๊ฐ€์ง€ ์„ธ๋ถ€ ์—ฐ๊ตฌ๋Š” ์ ํ•ฉํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ํ™œ์šฉ ๋ฐ ์ฐฝ์กฐ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ฐ ๋ฌธ์ œ๋“ค์„ ํšจ๊ณผ์ ์œผ๋กœ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์ˆ ์ง€์‹์˜ ๋‹ค์–‘์„ฑ ๊ด€๋ฆฌ ์ธก๋ฉด์—์„œ ๊ธฐ์ˆ ์ง€์‹์˜ ๊ตฌ์กฐ ๋ถ„์„์„ ๋‹ค๋ฃฌ๋‹ค. ์ตœ๊ทผ ๊ธฐ์ˆ ์ง€์‹์€ ๋‹คํ•™์ œ์ ์ธ ์„ฑ๊ฒฉ์„ ๊ฐ€์ง€๋ฉฐ, ์—ฐ๊ตฌ๊ฐœ๋ฐœ ์ „๋žต์˜ ์˜ฌ๋ฐ”๋ฅธ ๋ฐฉํ–ฅ์„ ์„ค์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๊ทธ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ์—ฐ๊ตฌ ๋™ํ–ฅ์„ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹คํ•™์ œ์ ์ธ ๊ธฐ์ˆ ์ง€์‹์˜ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์ €๋„ ์ธ์šฉ ๋„คํŠธ์›Œํฌ์™€ ๋„คํŠธ์›Œํฌ ๋ถ„์„์„ ํ™œ์šฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ €๋„ ์ธ์šฉ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ  ๋„คํŠธ์›Œํฌ ์ค‘์‹ฌ์„ฑ(centrality) ์ธก์ • ๋ฐ ์ค‘๊ฐœ(brokerage) ๋ถ„์„์„ ํ™œ์šฉํ•˜์—ฌ ๋‹คํ•™์ œ ์—ฐ๊ตฌ๊ฐ€ ๋Œ€ํ‘œ์ ์œผ๋กœ ํ™œ๋ฐœํžˆ ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š” ๋‚˜๋…ธ๊ณผํ•™๊ธฐ์ˆ  ๋ถ„์•ผ์˜ ์ง€์  ๊ตฌ์กฐ๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ ‘๊ทผ์€ ์ง€์‹์˜ ํ๋ฆ„ ์ธก๋ฉด์—์„œ ์ค‘์š”ํ•œ ๊ธฐ์ˆ  ์š”์†Œ(technology element)์™€ ์ง€์‹ ๊ตํ™˜ ์ธก๋ฉด์—์„œ ์ง€์‹ ์›์ฒœ(knowledge source)์˜ ์ค‘๊ฐœ ์—ญํ• ์„ ํŒŒ์•…ํ•จ์œผ๋กœ์จ ๊ธฐ์ˆ ์ง€์‹์˜ ๋‹คํ•™์ œ์ ์ธ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ๋ฏธ์‹œ์ , ๊ฑฐ์‹œ์  ๊ด€์ ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์ˆ ์ง€์‹์˜ ์œตํ•ฉ์„ฑ ๊ด€๋ฆฌ ์ธก๋ฉด์—์„œ ๊ธฐ์ˆ ์œตํ•ฉ์˜ ์˜ˆ์ธก์„ ๋‹ค๋ฃฌ๋‹ค. ์˜ค๋Š˜๋‚  ๊ธฐ์ˆ ์ง€์‹์€ ๋น ๋ฅด๊ฒŒ ์ง„ํ™”ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์œตํ•ฉ์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์ด ์ฐฝ์ถœ๋˜๋Š” ์–‘์ƒ์„ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ, ๊ธฐ์ˆ  ๊ฐ„์˜ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ ค์ง€๊ณ  ์žˆ์œผ๋ฉฐ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ  ํŠธ๋ Œ๋“œ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ด ๋”์šฑ ์–ด๋ ค์›Œ์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒˆ๋กญ๊ฒŒ ๋“ฑ์žฅํ•˜๋Š” ์œ ๋ง ๊ธฐ์ˆ ์˜ ๊ธฐ์ˆ ์œตํ•ฉ์„ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ํŠนํ—ˆ๋™์‹œ๋ถ„๋ฅ˜๋ถ„์„๊ณผ ๋งํฌ์˜ˆ์ธก๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ ‘๊ทผ์€ ๋„คํŠธ์›Œํฌ์˜ ํŠน์„ฑ์„ ๋ฐ”ํƒ•์œผ๋กœ ์ž ์žฌ์ ์ธ ๋งํฌ๋ฅผ ์˜ˆ์ธกํ•˜๋ฏ€๋กœ ๊ณผ๊ฑฐ์— ์กด์žฌ ์•Š์•˜๋”๋ผ๋„ ๋ฏธ๋ž˜์— ๋‚˜ํƒ€๋‚  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ๊ธฐ์ˆ ์œตํ•ฉ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค. ์ดํ•ด๋ฅผ ๋•๊ธฐ ์œ„ํ•ด, ์ œ์•ˆ๋œ ์ ‘๊ทผ์€ 3D ํ”„๋ฆฐํŒ… ๊ธฐ์ˆ ์— ์ ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ํ–ฅํ›„ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ  ๋ฐ ์‚ฐ์—…์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์ˆ ์ง€์‹์˜ ๋™ํƒœ์„ฑ ๊ด€๋ฆฌ ์ธก๋ฉด์—์„œ ๋Œ€ํ˜• ๊ธฐ์ˆ  ํ”„๋กœ์ ํŠธ์˜ ํ‰๊ฐ€๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ๊ธฐ์ˆ ์ง€์‹์„ ํ™œ์šฉํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์ด ๋‹ค์–‘ํ•ด์ง€๊ณ , ๊ธฐ์ˆ ์ง€์‹์ด ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ํŒŒ๊ธ‰ํšจ๊ณผ์˜ ๋ฒ”์œ„๊ฐ€ ํ™•๋Œ€๋จ์— ๋”ฐ๋ผ ๊ธฐ์ˆ  ํˆฌ์ž ํ”„๋กœ์ ํŠธ์˜ ์˜์‚ฌ๊ฒฐ์ • ๋ฌธ์ œ๊ฐ€ ๋”์šฑ ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋™์ ์ธ ํ™˜๊ฒฝ์—์„œ ํ”„๋กœ์ ํŠธ์˜ ํƒ€๋‹น์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์‹œ์Šคํ…œ ๋‹ค์ด๋‚ด๋ฏน์Šค(system dynamics)์™€ ํ–‰์œ„์ž ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง(agent-based modeling)์„ ๊ฒฐํ•ฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ ‘๊ทผ์—์„œ ์‹œ์Šคํ…œ ๋‹ค์ด๋‚ด๋ฏน์Šค ๋ถ€๋ถ„์€ ํ”„๋กœ์ ํŠธ์˜ ๋น„์šฉ๊ณผ ํšจ์ต์„ ๊ตฌ์„ฑํ•˜๋Š” ์‹œ์Šคํ…œ ์š”์†Œ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์„ค๋ช…ํ•˜๊ณ , ํ–‰์œ„์ž ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง ๋ถ€๋ถ„์€ ์‚ฌ์šฉ์ž์˜ ์ด์งˆ์„ฑ(heterogeneity)์„ ๊ณ ๋ คํ•œ ์ฐฝ๋ฐœ์  ํ–‰๋™(emergent behavior)์„ ๋ฌ˜์‚ฌํ•œ๋‹ค. ์‚ฌ๋ก€ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์ ‘๊ทผ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์˜€์œผ๋ฉฐ, ์ œ์•ˆ๋œ ์ ‘๊ทผ์€ ๋™์ ์ธ ํ™˜๊ฒฝ์—์„œ ํ”„๋กœ์ ํŠธ์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ์œ ์—ฐํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค.In order to create constant innovation, management of technological knowledge, where the data and information related to R&D are transformed into creative knowledge, has been increasingly emphasized. Moreover, as the complexity of recent technological knowledge continues to increase, there is a growing demand for more systematic management considering complexity to obtain novel insights about rising managerial problems and solutions. Technological knowledge no longer includes a single technology but various related technologies and disciplines, and various technologies converge into a new technology. In addition, as the people who use technological knowledge become more diversified and its ripple effects become more widespread, technological knowledge is exposed to a more dynamic environment. Therefore, this dissertation aims to examine the characteristics that constitute the complexity of technological knowledge, and resolve major managerial problems resulting from its characteristics. Specifically, this study defines the emerging characteristics that accelerate the complexity of technological knowledge as diversity, convergence, and dynamismthen three research questions related to each characteristic are addressed through three research themes. Each research theme is studied by utilizing and creatively combining appropriate methodologies to answer each research question. The first study focuses on the research theme for managing diversity in complexity, and deals with the identification of intellectual structure of technological knowledge. Recently, technological knowledge has a multidisciplinary nature. Hence, it is important to understand the knowledge structure and research trends in order to develop the direction of R&D strategy. In this study, a framework that includes journal citation network and network analysis is proposed as a method to identify the structure of multidisciplinary technological knowledge. Specifically, a journal citation network is constructedthen network centrality measures and brokerage analysis are used to explore the intellectual structure of nanoscience and nanotechnology, where multidisciplinary research is actively done. The proposed approach can provide a microscopic and macroscopic view of the multidisciplinary structure of technological knowledge by identifying the important technology element regarding knowledge flow, and the intermediary role of each knowledge source regarding knowledge exchange. The second study focuses on the research theme for managing convergence in complexity, and deals with the prediction of technological convergence. As technological knowledge is rapidly evolving and new technologies are being created through convergence, the boundaries between technologies are blurred and it becomes more difficult to predict new technology trends. In this study, a framework that includes patent co-classification analysis and link prediction is proposed as a method to predict the technological convergence of emerging technologies. The proposed approach has the advantage in that it can discover the potential convergence, even if it does not exist in the past, because it predicts the potential link based on the characteristics of the network. The proposed approach is applied to 3D printing technology, and it is expected to be utilized in various technologies and industries in the future. Finally, the third study focuses on the research theme for managing dynamism in complexity, and deals with the evaluation of technology-intensive and large-scale projects. Increasingly, technology investment projects face a dynamic environment that incorporates both macroscopic system and microscopic individuals. In this study, a new approach to dynamic feasibility analysis for investment projects is proposed through an integrated simulation model using system dynamics (SD) and agent-based modeling (ABM). The combination of SD and ABM is suggested due to their complementary strengths. The former SD part elucidates the relationships among system elements that constitute project's benefits and costs, while the latter ABM part depicts users emergent behavior with their heterogeneity. A case study demonstrates the applicability of the proposed approach. The findings show that the proposed approach can provide a valuable and flexible framework for analyzing project feasibility in a dynamic environment.Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Purpose 3 1.3 Scope and framework 5 1.4 Outline 7 Chapter 2 Research Background 10 2.1 Theoretical Background 10 2.1.1 Concept of Complexity 10 2.1.2 Complexity Management 11 2.1.3 Dimension of Complexity 13 2.2 Methodological Background 15 2.2.1 Network Metrics: Centrality and Brokerage 15 2.2.2 Link Prediction 19 2.2.3 System Dynamics (SD) and Agent-based Modeling (ABM) 21 Chapter 3 Managing Diversity in Complexity 24 3.1 Introduction 24 3.2 Knowledge Source Network 27 3.3 Research Process 31 3.3.1 Overall Process 31 3.3.2 Knowledge Source Selection 32 3.3.3 Technology Element Composition 33 3.4 Identification of Intellectual Structure 37 3.4.1 Macro View of Intellectual Structure 37 3.4.2 Micro View of Intellectual Structure 43 3.5 Conclusion 56 Chapter 4 Managing Convergence in Complexity 58 4.1 Introduction 58 4.2 Convergence of Emerging Technologies 60 4.2.1 Understanding of Emerging Technology 60 4.2.2 Technological Convergence Analysis using Patents 61 4.3 Research process 63 4.3.1 Overall Process 63 4.3.2 Detailed Process 64 4.4 Prediction of Technological Convergence 69 4.4.1 Background 69 4.4.2 Data Collection and Data Partition 69 4.4.3 Patent Co-classification Network Construction 71 4.4.4 Link Prediction of Patent Network 73 4.4.5 Investigation and Prediction of Technological Convergence 75 4.5 Conclusion 83 Chapter 5 Managing Dynamism in Complexity 85 5.1 Introduction 85 5.2 Feasibility Studies 89 5.2.1 Feasibility Studies for Large-scale Projects 89 5.2.2 Dynamic Approach in Feasibility Study 90 5.3 Research Process 93 5.3.1 Conceptual Framework 93 5.3.2 Composition of Modules 95 5.3.3 Overall Process 100 5.4 Evaluation of Large-scale Project 103 5.4.1 Background 103 5.4.2 Modeling Process 104 5.4.3 Results 115 5.5 Discussion 118 5.5.1 Theoretical and Practical Implications 118 5.5.2 Generalization 119 5.6 Conclusion 122 Chapter 6 Conclusion 124 6.1 Summary and Contributions 124 6.2 Limitations and Future Research 129 Bibliography 131 Appendix 150 Appendix A Supplementary Information about SD and ABM 150 Appendix A.1 System Dynamics (SD) 150 Appendix A.2 Agent-based Modeling (ABM) 151 Appendix B Prior Research on Formulating Integrated SD Model and AB Model 152 Appendix C List of 73 Nano Journals 153 Appendix D Centrality Score of Nano Knowledge Sources 156 Appendix E Brokerage Score of Nano Knowledge Sources in Weighted Version 159 Appendix F Description and Assumption of Overall Variables in Combined Model 162 ์ดˆ ๋ก 168Docto

    Statistical Inference for Propagation Processes on Complex Networks

    Get PDF
    Die Methoden der Netzwerktheorie erfreuen sich wachsender Beliebtheit, da sie die Darstellung von komplexen Systemen durch Netzwerke erlauben. Diese werden nur mit einer Menge von Knoten erfasst, die durch Kanten verbunden werden. Derzeit verfรผgbare Methoden beschrรคnken sich hauptsรคchlich auf die deskriptive Analyse der Netzwerkstruktur. In der hier vorliegenden Arbeit werden verschiedene Ansรคtze fรผr die Inferenz รผber Prozessen in komplexen Netzwerken vorgestellt. Diese Prozesse beeinflussen messbare GrรถรŸen in Netzwerkknoten und werden durch eine Menge von Zufallszahlen beschrieben. Alle vorgestellten Methoden sind durch praktische Anwendungen motiviert, wie die รœbertragung von Lebensmittelinfektionen, die Verbreitung von Zugverspรคtungen, oder auch die Regulierung von genetischen Effekten. Zunรคchst wird ein allgemeines dynamisches Metapopulationsmodell fรผr die Verbreitung von Lebensmittelinfektionen vorgestellt, welches die lokalen Infektionsdynamiken mit den netzwerkbasierten Transportwegen von kontaminierten Lebensmitteln zusammenfรผhrt. Dieses Modell ermรถglicht die effiziente Simulationen verschiedener realistischer Lebensmittelinfektionsepidemien. Zweitens wird ein explorativer Ansatz zur Ursprungsbestimmung von Verbreitungsprozessen entwickelt. Auf Grundlage einer netzwerkbasierten Redefinition der geodรคtischen Distanz kรถnnen komplexe Verbreitungsmuster in ein systematisches, kreisrundes Ausbreitungsschema projiziert werden. Dies gilt genau dann, wenn der Ursprungsnetzwerkknoten als Bezugspunkt gewรคhlt wird. Die Methode wird erfolgreich auf den EHEC/HUS Epidemie 2011 in Deutschland angewandt. Die Ergebnisse legen nahe, dass die Methode die aufwรคndigen Standarduntersuchungen bei Lebensmittelinfektionsepidemien sinnvoll ergรคnzen kann. Zudem kann dieser explorative Ansatz zur Identifikation von Ursprungsverspรคtungen in Transportnetzwerken angewandt werden. Die Ergebnisse von umfangreichen Simulationsstudien mit verschiedenstensten รœbertragungsmechanismen lassen auf eine allgemeine Anwendbarkeit des Ansatzes bei der Ursprungsbestimmung von Verbreitungsprozessen in vielfรคltigen Bereichen hoffen. SchlieรŸlich wird gezeigt, dass kernelbasierte Methoden eine Alternative fรผr die statistische Analyse von Prozessen in Netzwerken darstellen kรถnnen. Es wurde ein netzwerkbasierter Kern fรผr den logistischen Kernel Machine Test entwickelt, welcher die nahtlose Integration von biologischem Wissen in die Analyse von Daten aus genomweiten Assoziationsstudien erlaubt. Die Methode wird erfolgreich bei der Analyse genetischer Ursachen fรผr rheumatische Arthritis und Lungenkrebs getestet. Zusammenfassend machen die Ergebnisse der vorgestellten Methoden deutlich, dass die Netzwerk-theoretische Analyse von Verbreitungsprozessen einen wesentlichen Beitrag zur Beantwortung verschiedenster Fragestellungen in unterschiedlichen Anwendungen liefern kann

    Mapping urban networks in mainland China through the lens of corporate spatial organization

    Get PDF

    The problem of idiographic and nomothetic space: towards a metatheory or urbanism

    Get PDF

    Sustainability in the Global-Knowledge Economy

    Get PDF
    Knowledge affects all aspects of the economy, but digitalization probably represents the most ubiquitous of its appearances. This book analyzes, from a constructive point of view, some of its applications, extracting lessons to maximize its utility and exporting its use to other sectors. It also shows the caveats of its applications, allowing managers to learn its difficulties and how to overcome them from real-life cases. All the information is presented in an academic and rigorous way and represents an excellent starting point to study the effects of digitalization for both practitioners and researchers

    Characterising and modeling the co-evolution of transportation networks and territories

    Full text link
    The identification of structuring effects of transportation infrastructure on territorial dynamics remains an open research problem. This issue is one of the aspects of approaches on complexity of territorial dynamics, within which territories and networks would be co-evolving. The aim of this thesis is to challenge this view on interactions between networks and territories, both at the conceptual and empirical level, by integrating them in simulation models of territorial systems.Comment: Doctoral dissertation (2017), Universit\'e Paris 7 Denis Diderot. Translated from French. Several papers compose this PhD thesis; overlap with: arXiv:{1605.08888, 1608.00840, 1608.05266, 1612.08504, 1706.07467, 1706.09244, 1708.06743, 1709.08684, 1712.00805, 1803.11457, 1804.09416, 1804.09430, 1805.05195, 1808.07282, 1809.00861, 1811.04270, 1812.01473, 1812.06008, 1908.02034, 2012.13367, 2102.13501, 2106.11996
    • โ€ฆ
    corecore