5 research outputs found

    Network-Based Methods for Approaching Human Pathologies from a Phenotypic Point of View

    Get PDF
    Network and systemic approaches to studying human pathologies are helping us to gain insight into the molecular mechanisms of and potential therapeutic interventions for human diseases, especially for complex diseases where large numbers of genes are involved. The complex human pathological landscape is traditionally partitioned into discrete “diseases”; however, that partition is sometimes problematic, as diseases are highly heterogeneous and can differ greatly from one patient to another. Moreover, for many pathological states, the set of symptoms (phenotypes) manifested by the patient is not enough to diagnose a particular disease. On the contrary, phenotypes, by definition, are directly observable and can be closer to the molecular basis of the pathology. These clinical phenotypes are also important for personalised medicine, as they can help stratify patients and design personalised interventions. For these reasons, network and systemic approaches to pathologies are gradually incorporating phenotypic information. This review covers the current landscape of phenotype-centred network approaches to study different aspects of human diseasesThis work was partially funded by The Spanish Ministry of Economy and Competitiveness with European Regional Development Fund [grant numbers PID2019-108096RB-C21 and PID2019-108096RB-C22]; the European Food Safety Authority [grant number GP/EFSA/ENCO/2020/02]; the Andalusian Government with European Regional Development Fund [grant numbers UMA18- FEDERJA-102 and PAIDI 2020:PY20-00372]; Fundacion Progreso y Salud [grant number PI-0075-2017], also from the Andalusian Government; the Ramón Areces foundation, which funds project for the investigation of rare disease (National call for research on life and material sciences, XIX edition); the University of Malaga (Ayudas del I Plan Propio) and the Institute of Health Carlos III which funds the IMPaCT-Data project. The CIBERER is an initiative from the Institute of Health Carlos III. The conclusions, findings and opinions expressed in this scientific paper reflect only the view of the authors and not the official position of the European Food Safety Authority. Partial funding for open access charge: Universidad de Málag

    Network modeling of patients' biomolecular profiles for clinical phenotype/outcome prediction

    Get PDF
    Methods for phenotype and outcome prediction are largely based on inductive supervised models that use selected biomarkers to make predictions, without explicitly considering the functional relationships between individuals. We introduce a novel network-based approach named Patient-Net (P-Net) in which biomolecular profiles of patients are modeled in a graph-structured space that represents gene expression relationships between patients. Then a kernel-based semi-supervised transductive algorithm is applied to the graph to explore the overall topology of the graph and to predict the phenotype/clinical outcome of patients. Experimental tests involving several publicly available datasets of patients afflicted with pancreatic, breast, colon and colorectal cancer show that our proposed method is competitive with state-of-the-art supervised and semi-supervised predictive systems. Importantly, P-Net also provides interpretable models that can be easily visualized to gain clues about the relationships between patients, and to formulate hypotheses about their stratification

    Development of a machine learning-based pipeline able to predict genes associated with diseases and cell processes using interpretable network embeddings

    Get PDF
    Tese de Mestrado, Bioinformática e Biologia Computacional, 2022, Universidade de Lisboa, Faculdade de CiênciasA revolução tecnológica no mundo da sequenciação observada nas últimas duas décadas levou a um grande aumento no número de proteínas conhecidas. Porém, este aumento não foi correspondido com o aumento no seu número de anotações proteicas, em particular acerca do seu envolvimento em processos celulares e doenças. Atualmente, apenas cerca de 25% das proteínas humanas é conhecida por ter uma associação a uma doença. A lenta expansão de conhecimento destas associações deve-se essencialmente às técnicas experimentais necessárias para as descobrir, como por exemplo, estudos de ligação genética e genome-wide association studies, uma vez que falham quando aplicados a doenças heterogéneas, ou produzem números elevados de falsos positivos, respetivamente. Isto leva a um complexo processo de validação de resultados, que inevitavelmente desacelera o processo de anotação. O desenvolvimento de métodos capazes de produzir um número mais restrito de candidatos surge então como uma necessidade para a mais eficaz descoberta de associações, com vários tipos de métodos computacionais a terem sido desenvolvidos nas últimas décadas. Uma fração destes métodos foca-se no uso de redes. Os mecanismos de processos celulares e doenças surgem da coordenação de múltiplas proteínas que interagem fisicamente, formando módulos de doenças e de processos celulares numa rede de interações biológicas. As redes biológicas podem ser representadas sob a forma de grafos, objectos matemáticos que representam como um conjunto de entidades interage entre si. Os grafos são formados por um conjuntos de nós (ou vértices), ligados entre si por arestas, permitindo a fácil representação e análise de redes, como as de interação de proteínas. Estas redes podem então ser exploradas de forma a encontrar padrões de interação que caracterizem as proteínas que fazem parte de um determinado módulo, de modo a mais tarde expandir este conhecimento e encontrar novas proteínas candidatas que possam eventualmente estar associadas a esse mesmo módulo e ser experimentalmente validadas. A deteção dos padrões que caracterizam as proteínas associadas a cada módulo depende do uso de métricas capazes de discriminar as relações de interesse que cada proteína apresenta, podendo estas métricas ir desde a medição da distância de cada proteína ao módulo, ao uso de métodos mais complexos de difusão, tais como Random Walks with Restart. Muitos dos algoritmos já desenvolvidos focam-se no uso de métricas de proximidade, como o Closeness, que mede a centralidade de um determinado nó na rede, ou realizando um teste hipergeométrico de modo a analisar o enriquecimento de um nó em ligações com nós do módulo de interesse. A maioria dos algoritmos disponíveis na literatura baseia-se apenas na informação dada pela relação de cada nó com os nós do módulo em estudo, com uma minoria destes algoritmos a usar informação adicional de doenças fenotipicamente semelhantes. O mapeamento do interactoma humano ainda está por concluir, e, portanto, as redes de interação proteica usadas estão incompletas, faltando nós e arestas aos grafos contruídos. Para além disso, os processos de deteção de associações estão expostos à presença de falsos positivos. Tanto a incompletude das redes da interação como a presença de falsos positivos são fatores que podem afetar em larga escala as previsões de algoritmos que apenas se baseiam no próprio módulo, dificultando então o processo de seleção de novos candidatos. Será, portanto, interessante o desenvolvimento de um algoritmo capaz de usar uma maior fração dos dados ao seu dispor, sem depender do uso de informação, como a semelhança fenotípica, que permita uma maior precisão aquando da previsão de novos candidatos, mas também uma maior robustez sob a presença de alterações na rede de interação ou de anotações incorretas. Neste trabalho, é então proposto o desenvolvimento de um novo algoritmo para a previsão de novos candidatos associados com doenças ou processos celulares designado de Gene Annotation Prediction using Module-based Interpretable Network Embeddings (GAP-MINE). A maior contribuição deste algoritmo é o uso de network embeddings facilmente interpretáveis num contexto biológico. Network embeddings, são vetores usados para explicar a relação de cada nó da rede com os restantes através de um espaço multidimensional. Estes podem ser adaptados ao contexto de nosso problema, e assim explicar a relação que cada nó tem com cada módulo, criando, portanto, uma representação multidimensional que pode ser usada para descobrir os padrões que caracterizam as proteínas associadas a um determinado módulo, usando informação adicional contida no restante vetor. Para além disso, ao exprimirem a relação de cada nó com os diferentes módulos, estes vetores permitem uma melhor interpretação dos resultados, uma vez que permitem a análise dos módulos escolhidos. O algoritmo desenvolvido é composto por 6 passos que podem ser facilmente adaptados consoante a natureza do problema. Primeiramente, a rede de interação proteica foi construída utilizando as interações disponíveis na bases de dados APID e HuRI, juntamente com as anotações de associação de proteínas a processos e doenças, provenientes das bases de dados REACTOME e DisGeNET, respetivamente. A rede criada apresenta um total de 17 204 nós, ligados por 260 960 arestas. Foram criados três tipos de módulos: um de processos celulares, num total de 429, e dois do doença, que variam consoante a conectividade do módulo em si, porém tendo origem nos mesmo dados, totalizando um total de 203 aquando da utilização de módulos conectados, e de 301 aquando da utilização de módulos mais dispersos na rede. Cinco diferentes métricas foram, de seguida, aplicadas à rede (Hypergeometric Test, Closeness, Betweenness, Fraction Betweenness e Random Walks with Restart) sendo modificadas das suas formas normais de forma a explicar como cada nó se relaciona com os nós associados a um determinado módulo. Ao serem aplicadas aos diferentes módulos, é então formado um embedding para cada nó de dimensão igual ao número de módulos presentes na rede, resultando na matriz de embeddings de N vs. M dimensões, onde N é o número de nós da rede e M o número de módulos. À matriz é depois aplicado um passo de seleção, onde, para a classificação de um determinado módulo são selecionados os módulos que mais contribuem para a discriminação das proteínas associadas e não associadas ao mesmo. Tendo os módulos mais relevantes selecionados, os embeddings são fornecidos a um modelo de regressão logística, um algoritmo de classificação, que é treinado e otimizado com uma validação cruzada de 10 passos. Este algoritmo de classificação é depois avaliado usando um conjunto de teste, e aplicado para a totalidade dos dados de modo a prever as novas associações. Por fim, as associações previstas são validadas através comparação dos termos da Gene Ontology e da Human Phenotype Ontology (este último exclusivamente aplicado a proteínas de doença) em comum com os termos enriquecidos das proteínas do módulo alvo, e pela procura do identificador da proteína e do nome do módulo em títulos e resumos da literatura. O algoritmo GAP-MINE foi primeiramente comparado com um modelo padrão que apenas utiliza os valores obtidos para o módulo que se pretende classificar. Verificou-se que as Random Walks with Restart são as melhores métricas a ser usadas para a previsão de novas proteínas associadas aos módulos, obtendo valores medianos de F-Measure acima de 0.9 utilizando tanto o nosso algoritmo, como os modelos padrão. Comparando o nosso algoritmo com os modelos padrão, foi possível observar que foram obtidos resultados significativamente melhores em 2 dos 3 tipos de módulos aquando da utilização de tanto as Random Walks with Restart, como do Closeness como métricas, obtendo, no entanto, piores resultados usando Betweenness e Fraction Betweenness. Analisando as Random Walks with Restart em pormenor, foi possível verificar que a melhoria dos resultados obtidos se deveu a um aumento da precisão em todos os módulos, à custa de capturar um menor número de positivos. O mesmo comportamento foi verificado em testes feitos onde a rede utilizada foi alterada para simular casos de falta de informação ou da inclusão de falsos positivos. A combinação GAP-MINE com Random Walks with Restart foi também comparada com outros algoritmos já estabelecidos (GenePANDA, Raw e MaxLink), tendo sido observado que o nosso algoritmo é capaz de obter resultados significativamente melhores do que qualquer um dos três algoritmos. De forma geral, as previsões feitas pelo nosso algoritmo mostram-se enriquecidas em termos relevantes e relacionados com ostermos associados aos diferentes processos e doenças, tendo também sido possível verificar a presença na literatura de algumas das novas associações. Concluindo, o nosso algoritmo mostra-se ser uma alternativa capaz de prever novas associações entre proteínas e processos celulares/doenças, com uma melhoria de precisão, o que deverá facilitar o processo de validação experimental, e acelerar a descoberta de novas associações.The rapid growth of genomic sequences has expanded the number of known proteins, however, their annotation mapping to known diseases and cell processes is still trailing. Protein mapping relies on experimental methods, such as linkage mapping studies, that are both expensive and time-consuming, so computational methods have emerged as alternatives for candidate prioritization. Network-based algorithms are one kind of algorithm that has been developed for this purpose. Diseases and cell processes are resultant of the coordination of multiple physically interacting proteins, thus, biological networks can be used to search for new proteins that frequently interact with other disease or process associated proteins. Although several algorithms have been developed to tackle this problem, most of them do not use the full extent of available information within the network for their predictions, only relying on the known proteins associated with the disease/cell process of interest, or only using additional information from phenotypically similar diseases. Here we propose GAP-MINE, a network-based algorithm with module-based interpretable embeddings, that uses additional modules to improve the prediction of new gene annotations. GAP-MINE is an adaptable algorithm with diverse possibilities in each of its several steps, such as the use of different classification algorithms or different protein interaction networks. We applied GAP-MINE in the discovery of newly associated genes for a total of 429 processes and 301 diseases. Using Random Walks with Restart as the scoring function, GAP-MINE shows median F-Measure scores consistently above 0.9. Compared to baseline and literature algorithms, GAP-MINE not only shows significantly better results but is also more precise and robust to the addition of noise, with its candidates showing biologically relevant annotations. GAP-MINE is therefore a suitable algorithm for gene annotation prediction and could be used to narrow down the number of genes to validate experimentally

    Disease gene prediction for molecularly uncharacterized diseases.

    No full text
    Network medicine approaches have been largely successful at increasing our knowledge of molecularly characterized diseases. Given a set of disease genes associated with a disease, neighbourhood-based methods and random walkers exploit the interactome allowing the prediction of further genes for that disease. In general, however, diseases with no known molecular basis constitute a challenge. Here we present a novel network approach to prioritize gene-disease associations that is able to also predict genes for diseases with no known molecular basis. Our method, which we have called Cardigan (ChARting DIsease Gene AssociatioNs), uses semi-supervised learning and exploits a measure of similarity between disease phenotypes. We evaluated its performance at predicting genes for both molecularly characterized and uncharacterized diseases in OMIM, using both weighted and binary interactomes, and compared it with state-of-the-art methods. Our tests, which use datasets collected at different points in time to replicate the dynamics of the disease gene discovery process, prove that Cardigan is able to accurately predict disease genes for molecularly uncharacterized diseases. Additionally, standard leave-one-out cross validation tests show how our approach outperforms state-of-the-art methods at predicting genes for molecularly characterized diseases by 14%-65%. Cardigan can also be used for disease module prediction, where it outperforms state-of-the-art methods by 87%-299%
    corecore