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Abstract 

The rapid growth of genomic sequences has expanded the number of known proteins, however, their 

annotation mapping to known diseases and cell processes is still trailing. Protein mapping relies on 

experimental methods, such as linkage mapping studies, that are both expensive and time-consuming, 

so computational methods have emerged as alternatives for candidate prioritization.  

Network-based algorithms are one kind of algorithm that has been developed for this purpose.  

Diseases and cell processes are resultant of the coordination of multiple physically interacting proteins, 

thus, biological networks can be used to search for new proteins that frequently interact with other 

disease or process associated proteins. Although several algorithms have been developed to tackle this 

problem, most of them do not use the full extent of available information within the network for their 

predictions, only relying on the known proteins associated with the disease/cell process of interest, or 

only using additional information from phenotypically similar diseases. 

Here we propose GAP-MINE, a network-based algorithm with module-based interpretable embeddings, 

that uses additional modules to improve the prediction of new gene annotations. GAP-MINE is an 

adaptable algorithm with diverse possibilities in each of its several steps, such as the use of different 

classification algorithms or different protein interaction networks. We applied GAP-MINE in the 

discovery of newly associated genes for a total of 429 processes and 301 diseases. Using Random Walks 

with Restart as the scoring function, GAP-MINE shows median F-Measure scores consistently above 

0.9. Compared to baseline and literature algorithms, GAP-MINE not only shows significantly better 

results but is also more precise and robust to the addition of noise, with its candidates showing 

biologically relevant annotations. GAP-MINE is therefore a suitable algorithm for gene annotation 

prediction and could be used to narrow down the number of genes to validate experimentally. 

Keywords: Machine Learning; Network Biology; Gene-Disease Association; Gene-Process 

Association; Network Embeddings.  
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Resumo Alargado 

A revolução tecnológica no mundo da sequenciação observada nas últimas duas décadas levou a um 

grande aumento no número de proteínas conhecidas. Porém, este aumento não foi correspondido com o 

aumento no seu número de anotações proteicas, em particular acerca do seu envolvimento em processos 

celulares e doenças. Atualmente, apenas cerca de 25% das proteínas humanas é conhecida por ter uma 

associação a uma doença. A lenta expansão de conhecimento destas associações deve-se essencialmente 

às técnicas experimentais necessárias para as descobrir, como por exemplo, estudos de ligação genética 

e genome-wide association studies, uma vez que falham quando aplicados a doenças heterogéneas, ou 

produzem números elevados de falsos positivos, respetivamente. Isto leva a um complexo processo de 

validação de resultados, que inevitavelmente desacelera o processo de anotação.  

O desenvolvimento de métodos capazes de produzir um número mais restrito de candidatos surge então 

como uma necessidade para a mais eficaz descoberta de associações, com vários tipos de métodos 

computacionais a terem sido desenvolvidos nas últimas décadas. Uma fração destes métodos foca-se no 

uso de redes. Os mecanismos de processos celulares e doenças surgem da coordenação de múltiplas 

proteínas que interagem fisicamente, formando módulos de doenças e de processos celulares numa rede 

de interações biológicas. As redes biológicas podem ser representadas sob a forma de grafos, objectos 

matemáticos que representam como um conjunto de entidades interage entre si. Os grafos são formados 

por um conjuntos de nós (ou vértices), ligados entre si por arestas, permitindo a fácil representação e 

análise de redes, como as de interação de proteínas. Estas redes podem então ser exploradas de forma a 

encontrar padrões de interação que caracterizem as proteínas que fazem parte de um determinado 

módulo, de modo a mais tarde expandir este conhecimento e encontrar novas proteínas candidatas que 

possam eventualmente estar associadas a esse mesmo módulo e ser experimentalmente validadas. A 

deteção dos padrões que caracterizam as proteínas associadas a cada módulo depende do uso de métricas 

capazes de discriminar as relações de interesse que cada proteína apresenta, podendo estas métricas ir 

desde a medição da distância de cada proteína ao módulo, ao uso de métodos mais complexos de difusão, 

tais como Random Walks with Restart. 

Muitos dos algoritmos já desenvolvidos focam-se no uso de métricas de proximidade, como o Closeness, 

que mede a centralidade de um determinado nó na rede, ou realizando um teste hipergeométrico de 

modo a analisar o enriquecimento de um nó em ligações com nós do módulo de interesse. A maioria dos 

algoritmos disponíveis na literatura baseia-se apenas na informação dada pela relação de cada nó com 

os nós do módulo em estudo, com uma minoria destes algoritmos a usar informação adicional de doenças 

fenotipicamente semelhantes. O mapeamento do interactoma humano ainda está por concluir, e, 

portanto, as redes de interação proteica usadas estão incompletas, faltando nós e arestas aos grafos 

contruídos. Para além disso, os processos de deteção de associações estão expostos à presença de falsos 

positivos. Tanto a incompletude das redes da interação como a presença de falsos positivos são fatores 
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que podem afetar em larga escala as previsões de algoritmos que apenas se baseiam no próprio módulo, 

dificultando então o processo de seleção de novos candidatos. Será, portanto, interessante o 

desenvolvimento de um algoritmo capaz de usar uma maior fração dos dados ao seu dispor, sem 

depender do uso de informação, como a semelhança fenotípica, que permita uma maior precisão 

aquando da previsão de novos candidatos, mas também uma maior robustez sob a presença de alterações 

na rede de interação ou de anotações incorretas.  

Neste trabalho, é então proposto o desenvolvimento de um novo algoritmo para a previsão de novos 

candidatos associados com doenças ou processos celulares designado de Gene Annotation Prediction 

using Module-based Interpretable Network Embeddings (GAP-MINE). A maior contribuição deste 

algoritmo é o uso de network embeddings facilmente interpretáveis num contexto biológico. Network 

embeddings, são vetores usados para explicar a relação de cada nó da rede com os restantes através de 

um espaço multidimensional. Estes podem ser adaptados ao contexto de nosso problema, e assim 

explicar a relação que cada nó tem com cada módulo, criando, portanto, uma representação 

multidimensional que pode ser usada para descobrir os padrões que caracterizam as proteínas associadas 

a um determinado módulo, usando informação adicional contida no restante vetor. Para além disso, ao 

exprimirem a relação de cada nó com os diferentes módulos, estes vetores permitem uma melhor 

interpretação dos resultados, uma vez que permitem a análise dos módulos escolhidos. 

O algoritmo desenvolvido é composto por 6 passos que podem ser facilmente adaptados consoante a 

natureza do problema. Primeiramente, a rede de interação proteica foi construída utilizando as interações 

disponíveis na bases de dados APID e HuRI, juntamente com as anotações de associação de proteínas a 

processos e doenças, provenientes das bases de dados REACTOME e DisGeNET, respetivamente. A 

rede criada apresenta um total de 17 204 nós, ligados por 260 960 arestas. Foram criados três tipos de 

módulos: um de processos celulares, num total de 429, e dois do doença, que variam consoante a 

conectividade do módulo em si, porém tendo origem nos mesmo dados, totalizando um total de 203 

aquando da utilização de módulos conectados, e de 301 aquando da utilização de módulos mais dispersos 

na rede. Cinco diferentes métricas foram, de seguida, aplicadas à rede (Hypergeometric Test, Closeness, 

Betweenness, Fraction Betweenness e Random Walks with Restart) sendo modificadas das suas formas 

normais de forma a explicar como cada nó se relaciona com os nós associados a um determinado 

módulo. Ao serem aplicadas aos diferentes módulos, é então formado um embedding para cada nó de 

dimensão igual ao número de módulos presentes na rede, resultando na matriz de embeddings de N vs. 

M dimensões, onde N é o número de nós da rede e M o número de módulos. À matriz é depois aplicado 

um passo de seleção, onde, para a classificação de um determinado módulo são selecionados os módulos 

que mais contribuem para a discriminação das proteínas associadas e não associadas ao mesmo. Tendo 

os módulos mais relevantes selecionados, os embeddings são fornecidos a um modelo de regressão 

logística, um algoritmo de classificação, que é treinado e otimizado com uma validação cruzada de 10 

passos. Este algoritmo de classificação é depois avaliado usando um conjunto de teste, e aplicado para 

a totalidade dos dados de modo a prever as novas associações. Por fim, as associações previstas são 

validadas através comparação dos termos da Gene Ontology e da Human Phenotype Ontology (este 

último exclusivamente aplicado a proteínas de doença) em comum com os termos enriquecidos das 

proteínas do módulo alvo, e pela procura do identificador da proteína e do nome do módulo em títulos 

e resumos da literatura.  

O algoritmo GAP-MINE foi primeiramente comparado com um modelo padrão que apenas utiliza os 

valores obtidos para o módulo que se pretende classificar. Verificou-se que as Random Walks with 

Restart são as melhores métricas a ser usadas para a previsão de novas proteínas associadas aos módulos, 

obtendo valores medianos de F-Measure acima de 0.9 utilizando tanto o nosso algoritmo, como os 

modelos padrão. Comparando o nosso algoritmo com os modelos padrão, foi possível observar que 

foram obtidos resultados significativamente melhores em 2 dos 3 tipos de módulos aquando da utilização 
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de tanto as Random Walks with Restart, como do Closeness como métricas, obtendo, no entanto, piores 

resultados usando Betweenness e Fraction Betweenness. 

Analisando as Random Walks with Restart em pormenor, foi possível verificar que a melhoria dos 

resultados obtidos se deveu a um aumento da precisão em todos os módulos, à custa de capturar um 

menor número de positivos. O mesmo comportamento foi verificado em testes feitos onde a rede 

utilizada foi alterada para simular casos de falta de informação ou da inclusão de falsos positivos.  

A combinação GAP-MINE com Random Walks with Restart foi também comparada com outros 

algoritmos já estabelecidos (GenePANDA, Raw e MaxLink), tendo sido observado que o nosso algoritmo 

é capaz de obter resultados significativamente melhores do que qualquer um dos três algoritmos.  

De forma geral, as previsões feitas pelo nosso algoritmo mostram-se enriquecidas em termos relevantes 

e relacionados com os termos associados aos diferentes processos e doenças, tendo também sido possível 

verificar a presença na literatura de algumas das novas associações. 

Concluindo, o nosso algoritmo mostra-se ser uma alternativa capaz de prever novas associações entre 

proteínas e processos celulares/doenças, com uma melhoria de precisão, o que deverá facilitar o processo 

de validação experimental, e acelerar a descoberta de novas associações.  

Palavras-chave: Aprendizagem automática; Redes Biológicas; Associações Doença-Proteína; 

Associações Processo-Proteína; Network Embeddings.  
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Chapter 1  

Introduction 

In the last decades, sequencing improvements have led to a huge increase in the number of known 

proteins. However, the number of proteins with known association with diseases and cell processes is 

still trailing, with only about 25% of human proteins having a known disease association, 21% having 

a curated process annotation (REACTOME), and 85% having an associated biological process (GO) 

[1]. Besides gene-wise experiments, these annotations are usually found by genome-wide association 

studies (GWAS) [2] or linkage mapping studies [3]. However, these methods either produce a very large 

number of candidates (and inevitably many false positives) for experimental validation or fail when 

applied to complex heterogeneous diseases [4]. This leads to an expensive and arduous process of 

experimental validation that slows down the annotation task, and so, other methods able to present a 

more stringent number of candidates have been developed. 

The use of network-based methods has been one of the major approaches [5]. Cell Processes and Disease 

mechanisms emerge from the coordinated function of multiple physically interacting proteins, that 

constitute Process or Disease network modules [6]. Biological networks, created with experimental 

interactome information, together with the known protein annotations, allow for the search of patterns 

that characterize the module proteins. Candidate proteins that present similar patterns to the ones 

observed for known module proteins can be found and identified as suitable candidates for experimental 

validation. The patterns that characterize the module proteins can be defined by a set of different network 

metrics that go from measuring a protein distance to the module, to more complex propagation methods, 

such as random walks with restart. 

Several algorithms already use biological networks for the prediction of functional annotations. George 

et al. [7] and Yin et al. [8], developed algorithms based on the protein network distance and their shortest 

paths; Gaula et al. [9], Ghiassian et al. [10], and Petti et al. [11] use implementations of the 

hypergeometric test to select proteins enriched in interactions with known module members; Guney et 

al. developed NetShort [12], a closeness-based algorithm that scores proteins by the inverse of their 

distance to the module; Garcia-Vaquero et al. [13] and Maiorino et al. [14] developed methods based on 

how a node connects two modules of interest; finally, diffusion-based algorithms score proteins by 

performing random walks or simulating diffusion processes throughout the network. Vandin et al. 

developed Raw [15], a diffusion-based algorithm. Köhler et al. developed the Random Walks with 

Restart (RWR) [16]. Due to its good performance, the RWR has been incorporated into several 

prediction algorithms like PRINCE [17], VAVIEN [18], and ORIENT [19]. 
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Table 1.1 - Network-based methods for the prediction of new gene-disease associations, representing the use of different net-
work proximity or connectivity metrics. 

Name Year Type Author 

CPS 2006 
Shortest Paths 

George et al. [7] 

GenePANDA 2017 Yin et al. [8] 

MaxLink 2014 
Hypergeometric 

Test 

Gaula et al. [9] 

DIAMOnD 2015 Ghiassian et al. [10] 

DiaBLE 2020 Petti et al.[11] 

NetShort 2012 Closeness Guney et al. [12] 

S2B 

Flow Centrality 

2018 

2020 
Betweenness 

Garcia-Vaquero et al. [13] 

Maiorino et al. [14] 

RWR 2008 

Random Walks with 

Restart/Diffusion 

Köhler et al. [16] 

PRINCE 2010 Vanunu et al. [17] 

Raw 2011 Vandin et al. [15] 

VAVIEN 2011 Erten et al. [18] 

ORIENT 2013 Le et al. [19] 

Additionally, some authors have developed network-based prioritization algorithms like Cardigan [20] 

and ProDiGe [21] that use additional information from phenotypically similar diseases to complement 

the disease module information and consequently improve the scoring of candidate proteins. These 

approaches are useful to find candidates for less-characterized diseases. However, they still require 

previous knowledge of the similarities between the diseases which might not be available. Not only that, 

but it is also possible that relevant information for the discrimination of candidate proteins might be 

found in other diseases and processes that are not phenotypically similar.  

Another relevant factor lies in the fact that current protein interaction networks are known to be 

incomplete, lacking both nodes and edges that have not yet been experimentally detected [22]. Proteins 

annotated with a given process or disease are also incomplete and contaminated with false positive 

associations. When making predictions of new proteins associated with a given process or disease, those 

predictions can be severely affected by the referred incompleteness around the corresponding network 

module. Therefore, it might be useful to use additional modules when predicting proteins associated 

with a specific module. 

1.1 Objectives 

This work’s principal objective is the development of an algorithm for the prediction of genes associated 

with diseases and cell processes with the use of targeted network embeddings, entitled Gene Annotation 

Prediction using Module-based Interpretable Network Embeddings (GAP-MINE). Network 

embeddings should be a suitable representation of how each candidate interacts with additional modules 

and thus provide additional information for the candidate classification without the need for previous 

phenotypic similarity knowledge. 

Furthermore, this project can be divided into three different goals: 

1. Define what proximity/connectivity metrics provide more precise results when used as 

predictors for new gene-module associations. 

2. Establish a network embedding-based pipeline able to surpass the base metrics performances, 

not only in a complete network but also under different network conditions. 

3. Compare the developed pipeline’s performance with already established methods and validate 

the new predictions. 
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1.2 Document Structure 

This document is structured as follows: 

• Chapter 2 includes the theory fundamentals required to understand the methodology, as well as 

their adaptation to the problem. 

• Chapter 3 focuses on the methodology taken for the development of this work, mainly, the 

different steps of GAP-MINE. 

• Chapter 4 presents the obtained results in the multiple performance tests performed. 

• Chapter 5 presents the discussion of the obtained results. 
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Chapter 2  

Background 

2.1 Gene-Process and Gene-Disease Associations 

The completion of the human genome project [23] together with the technological revolution in the 

sequencing world has provided remarkable opportunities for a better understanding of human diseases 

[24]. While Mendelian diseases have particular genes directly causing the disease, common disease-

associated genes explain only a fraction of the disease behavior (and are not strictly causal), as these 

diseases result from the coordination of multiple interacting genes [25]. Additionally, while monogenic 

diseases exist, many disease phenotypes are modified by additional genes, so it is rare to have diseases 

with a single associated gene [6,26]. 

Over the last decades, several initiatives were created to identify and unify the knowledge of disease-

associated genes. The Online Mendelian Inheritance in Man (OMIM) [27] is a knowledge base of human 

genes associated with genetic disorders with over 26 000 annotated genes. DisGeNET [28–30] is a 

database with the collection of more than 620 000 associations between more than 17 500 genes and 

24 000 diseases (Mendelian, complex, and environmental), along with 117 000 genomic variants. 

DisGeNET comprises the gene-disease associations from four different database types: 

• Curated: gene-disease associations from curated resources. Includes data from UniProt [31], 

CTD [32], Orphanet, ClinGen [33], Genomics England, CGI [34], and PsyGeNET [35]. 

• Animal Models: associations from animal models mapped into human genes. Includes data from 

CTD, MGD [36], and RGD [37]. 

• Inferred: associations inferred from HPO [38] and variant-disease associations. Includes data 

from HPO and ClinVar [39]. 

• Literature: associations extracted from textual sources of interest.  

Life at a cellular level is controlled by a network of molecular reactions, with the annotation of the 

involved proteins being required to try to understand the full extent of the cellular life. Several resources 

annotate the genes involved in the several processes occurring in the cell. One of these resources is the 

Reactome Knowledgebase [40], a literature-based database for the description of the human biological 

processes that characterize the genes, proteins, and molecules that take part in more than 11 000 

reactions. Reactome has over 10 000 annotated protein-coding genes and 25 000 proteins that interact 

with 1 856 molecules. 

2.2 Protein-Protein Interactions 

Protein-protein interactions (PPI) are central to the basic functioning of cellular life [41], with proteins 

constituting more than half of the dry mass of the cell [42] and with more than 650 000 estimated 

interactions [43]. Binary and complex (composed of more than 2 proteins) protein-protein interactions 

are involved in core processes for cell life such as transcription, translation, cell-cell adhesion and 

communication, protein synthesis, and degradation, among others. Due to the large scale of biological 

processes dependent on PPIs, it is easy to correlate disruptions in the cell life with changes in PPIs. 

While most of these disruptions can be suppressed by the cell systems, some might be directly linked to 
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diseases, being causal or being directly linked to the disease phenotype or progression. Additionally, as 

previously stated, diseases and cell processes emerge from the coordination of multiple interacting 

proteins, and so, PPIs can provide suitable ways to find new involved proteins in the neighborhood of 

the already known associated proteins [41].  

The map of PPIs is an ongoing issue, with different experimental techniques being employed depending 

on the problem. One of the principal mapping techniques is the yeast two-hybrid (Y2H) [44], the 

predecessor to most experimental techniques [45]. Y2H splits a transcription factor into its DNA binding 

domain and its transcription activation domain and connects each one to one of the two proteins to be 

tested; in case of interaction, the domains are close enough to present activity and thus activate the 

transcription of a reporter protein, that produces a signal indicating the occurred interaction.  

Figure 2.1 - Y2H system overview. A transcription factor is split into its DNA binding domain and activation domain. Each 

domain is coupled to one of the testing proteins, if they interact, the transcription factor activates the transcription of a reporter 

protein (B). Otherwise, no protein is transcribed (A). Created with BioRender.com. 

However, Y2H techniques have certain biases, such as the fact that only proteins that can reach the 

nucleus and that cannot independently activate the used reported gene can be used, increasing the 

number of false negatives. Membrane proteins are of particular interest for drug development, however, 

their mapping is particularly challenging due to their hydrophobic characteristics, and therefore requires 

the adaptation of the Y2H technique to enable their detection. Co-complex methods can also be used 

and allow for the detection of protein complexes and more physiological-like results as no tagging is 

required [46].  

Several initiatives have been published in the last years with different mapping approaches and 

coverages of the human interactome. The Agile Protein Interactomes DataServer (APID) [47,48] is a 

public resource with the collection of interactomes for more than 1100 organisms. APID integrates the 

information of five primary databases (BioGRID [49], DIP [50], HPRD [51], IntAct [52], and MINT 

[53]) together with experimentally resolved 3D structures (tested between protein pairs to find protein-

protein contacts that allow the interaction), making APID database a combination of literature curated 

interactions, experimentally assessed interactions and inferred interactions. As of March 2021, APID 

has a total of 667805 different PPIs (binary or complex), covering 46.7% of the known human proteome. 

APID defines three different confidence thresholds for the interactions, depending on whether all 

interactions (inferred or not) are included (level 0), all interactions have 2 or more experimental pieces 

of evidence (level 1), or all interactions were detected by at least one binary method (instead of co-

complex detection methods – level 2). 

HuRI [54] is an ongoing initiative for the mapping of the human binary interactome. HuRI’s goal 

consists of the systematic mapping of the human interactome, performing pairwise assessments for more 

A 

B 
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than 90% of the human protein-coding genome, using three different Y2H techniques in 9 independent 

screenings of the search space. Version 9.1 of the human ORFeome covers 17 408 protein-coding genes, 

forming more than 150 million pairwise combinations to be searched. HuRI’s latest version (HI-III-20) 

encompasses 8 275 proteins, containing a total of 52 569 interactions.  

APID and HuRI databases can be combined to try to maximize the interactome coverage. The APID’s 

dependence on literature curated PPIs makes this database biased towards having proteins known to 

have important roles in cell processes and diseases with more interactions (and more dense networks 

around them) as more experiments are performed with them. On the other hand, HuRI’s Y2H techniques, 

search the human proteome in an unbiased way, however, have difficulties finding membrane PPIs, 

something that APID should not have as membrane proteins are common targets for the development 

of therapeutic solutions. 

2.3 Graphs 

A graph is a mathematical object used to represent pairwise relationships between a set of entities. 

Graphs are composed of a set of nodes (also called vertices), connected by a set of edges [55]. Graphs 

have a variety of applications, ranging from representing chemical molecules (where nodes represent 

atoms and edges represent chemical bonds) to representing social networks (where nodes represent 

different people and edges represent whether they are friends) [56]. In biology, graph implementations 

are used for single-cell transcriptome analysis, to represent neurons and their connections, or to represent 

physical or regulatory interactions between biomolecules within a cell, for example [57].  

Graphs can be grouped into two main categories, depending on whether their edges are directed or 

undirected. Directed graphs are used to represent relationships where one node's interaction with another 

does not guarantee the opposite. These graphs are often used in gene regulatory networks where a given 

transcription factor interacts with a target gene, but the contrary does not necessarily occur. On the other 

hand, edges in an undirected graph simply state that the connected nodes bilaterally interact with each 

other. Undirected graphs can be used to represent physically interacting proteins, for example. 

A second categorization of graphs can be done depending on whether these include weights or not. 

Weighted graphs require additional information than just the interactions but can provide more accurate 

insights. In biological terms, these weights can be seen as the expression level of each gene (weighted 

nodes) or the interaction probability of two proteins (weighted edges).  

Graphs can be further customized with the inclusion of auxiliary information, annotating nodes, edges, 

or the whole graph. The added information can have a variety of characteristics, ranging from labels and 

discrete or continuous attributes as node or edge features [58].   

Graphs can also be used for the application of the Guilt-by-Association principle. In a graph with 𝑁 

nodes and 𝑀 edges, additional information can be used to label the nodes accordingly to some class, 

such as their association to a disease, which allows for inference of the class of the remaining nodes of 

a graph. The labeled nodes can positively or negatively influence the presence of positive labeled nodes 

in their neighborhood. In cases where nodes positively influence the presence of positive labeled nodes, 

nodes with an enriched number of edges between them and the positive labeled ones can be predicted 

to be of the same class [59]. Translating this principle into our problem, genes enriched with interactions 

with module-associated genes can be predicted to be associated with that same module. As an example, 

let’s take a set of 7 genes, connected by 9 edges, with 3 of those genes being known to be associated 

with disease X (Figure 2.2). By direct analysis of this graph, we can infer that gene D might also be 

associated with disease X, as 3 of the 4 interactions it has link it to disease-associated genes. 
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Figure 2.2 - Guilt-by-association example. In a network with only 7 nodes and with 3 of them being associated with disease X 

(nodes A, B, and F), it is possible to infer that node D might also be associated with disease X. Figure created with Cytoscape 

[60]. 

2.3.1 Network Proximity Metrics 

Graphs can range from having a small set of nodes and edges (as seen in Figure 2.2), to having hundreds 

of thousands of nodes and edges. While it is easy to infer graph properties in small graphs, it is 

impossible to do the same in bigger graphs, and so, alternatives to represent the graph’s information are 

required. Proximity metrics are useful ways to characterize each node and its neighborhood and can be 

later given to models that effectively find new information within the thousands of existing nodes. 

Different metrics, with varying complexity, can be used depending on the purpose of the study.  

One of the simpler metrics to compute is the shortest path between two nodes. The shortest path is 

defined as the least number of edges required in order to get from one node to another. The shortest 

paths are in fact a base metric used on a large scale on other metrics. 

Closeness is the measure of how central to the network a given node is. Scores are computed by doing 

the inverse of the average length of the shortest paths from a node to all other nodes in the network. 

Closeness can be computed by equation 2.1, where 𝑁 is the number of nodes in the network and 𝑑(𝑦, 𝑥) 

is the length of the shortest path that connects nodes 𝑥 and 𝑦. High closeness values are associated with 

nodes more closely connected to the other nodes, and thus, more central.  

𝐶(𝑥) =
𝑁

∑ 𝑑(𝑦, 𝑥𝑦 )
 (2.1) 

Betweenness is a centrality measure that scores a node presence in the shortest paths that connect two 

given nodes. This metric is calculated by equation 2.2, where 𝜎𝑦𝑧 is the number of shortest paths between 

nodes 𝑦 and 𝑧, 𝜎𝑦𝑧(𝑥) are the number of shortest paths between 𝑦 and 𝑧 that pass through 𝑥, and 𝑦 and 

𝑧 are any two nodes in the network that are not 𝑥.  

𝑔(𝑥) = ∑
𝜎𝑦𝑧(𝑥)

𝜎𝑦𝑧
𝑥≠𝑦≠𝑧

 (2.2) 

Random Walks with Restart can also be applied to a graph. Starting from a specific node, nodes are 

scored by randomly walking the network, i.e., going from one node to another following the available 

edges that connect them. At each step, there is a probability of the walk restarting from the initial nodes. 

At the end of 𝑛 iterations, nodes are scored according to the number of times they were visited. The 

number of iterations is large enough to ensure that node visiting probabilities are stable. 

? 
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2.4 Graph Embeddings 

Embeddings are low-dimensional vectors that translate high-dimensional vectors, and consequently, 

ease the use of machine learning models. Embeddings are used in a variety of cases, such as linguistics, 

where Google’s Word2vec [61], one of the most popular embedding algorithms, is used to compute 

embeddings that individually describe the words present in a text corpus, with words that share similar 

contexts having similar embedding vectors. 

A special use case for embeddings is their application to graphs. Graph embeddings are low-dimensional 

vector representations of the graph that try to preserve certain properties of it. In general, graph 

embeddings can be divided into four different categories [58]: 

• Node Embeddings: the most common type of embedding. Represent each node in a low 

dimensional space, with nodes that are close to each other in the graph having similar vectors. 

Node embeddings are commonly computed by first- or second-order proximity. First-order 

proximity gets the closer nodes by the weight of the edge that connects them (higher weight, 

more similar). Second-order proximity is computed by the similarity of the neighborhood of the 

two compared nodes (more common neighbors, more similar). 

• Edge Embeddings: represent edges as a low-dimensional vector. Edge embeddings can typically 

be represented by the embedding of the node pair, allowing it to make it comparable to other 

nodes or predict the existence of a link between two nodes. 

• Hybrid Embeddings: represent the combination of different types of graph components. Hybrid 

embeddings can combine the embedding of nodes and edges or the embedding of nodes and 

communities. Node and edge embeddings can be referred to as substructure embeddings and 

have been used in the representation of subgraphs. Community embeddings take into account 

the structure of heavily connected regions in a graph (communities) for the computation of the 

embedding [62]. 

• Whole-Graph Embeddings: typically used to represent a small graph into a single vector and to 

compare the similarities of two different graphs (with similar vectors). Whole-graph 

embeddings are computationally expensive as it is required to capture all properties of a graph. 

Thus, compromises between the computational time and the embedding quality need to be 

made. One solution for this problem is the hierarchical embedding of a graph, with the 

processing of graph structures at different levels and their later concatenation into one vector.  

2.5 Machine Learning 

Machine Learning is a field of computer science focused on the development of algorithms able to learn 

patterns from data in order to make predictions about new observations. Machine Learning algorithms 

can be categorized into three different kinds: supervised, semi-supervised, and unsupervised [63,64].  

2.5.1 Types of Machine Learning 

Supervised Learning models are used to make predictions about unseen unlabeled data. Supervised 

learning requires labeled data as input and creates a model able to, first, discriminate the own training 

data labels, to then predict the labels of new unseen data. Supervised learning problems can be further 

separated into two categories: Classification and Regression. The difference between these two 

categories relies on the type of the predicted label. Classification models predict categorical values, with 

these either being binary values (where there are only two possible outcomes) or multiclass values 

(where there are > 2 possible outcomes). Regression models, on the other hand, try to find a relationship 
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between the training data and a continuous response variable, meaning that the predicted value will be 

in a continuous range.  

Semi-Supervised Learning has the same goal as the supervised learning models, however, here, the 

training data is composed of both labeled and unlabeled observations in order to produce a better model, 

as unlabeled examples allow for the addition of information to the model.  

In Unsupervised Learning models, only unlabeled data is used, i.e., no knowledge about the data 

distribution is previously known, and so, the model is responsible to learn and categorize the data into 

different groups, for example, clusters.  

For the proposed problem of this work, we want to predict whether a gene is associated with a specific 

module or not. Thanks to the already known gene-disease and gene-process associations, we can create 

a labeled dataset that can be used to train and test a supervised machine learning model, performing a 

classification task to predict if a gene is associated with the module.  

2.5.2 Supervised Learning – Logistic Regression 

Logistic regression is one simple, but powerful algorithm, that despite its name, is used for classification 

proposes [63–65]. This linear model was first built when computers were not around, but there was 

already a need for linear classification models. When in presence of a binary classification problem, we 

can model the two possible outputs as 0 and 1, where 𝑦 = 1 is the label to be predicted. Thus, a function 

whose range is from 0 to 1, can be defined to predict whether an input is negative or positive. The 

function used in logistic regression is the sigmoid function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (2.3) 

Where 𝑥 is the combination of the sample predictor variables: 

𝑥 = 𝑤0𝑥0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑚𝑥𝑚 (2.4) 

The sigmoid function output can be interpreted as the probability of a given sample belonging to 𝑦 = 1, 

with the probability of a sample belonging to 𝑦 = 0, being consequently given by 1 − 𝑓(𝑥). In a 

standard case, it is considered that any sample whose probability is above 0.5 belongs to the positive 

class, however, the probability threshold can be adjusted to the problem. The logistic regression can also 

be adapted to multiclass classification.  

The building of the logistic regression model lies in the optimization of its maximum likelihood function, 

i.e., maximizing the likelihood of the training data according to the model. The maximum likelihood 

function is given by: 

𝐿 = ∏ 𝑓(𝑥𝑖)𝑦𝑖

𝑖=1…𝑁

(1 − 𝑓(𝑥𝑖))
(1−𝑦𝑖)

(2.5) 

Where 𝑖 identifies an individual in a set of N individuals. The optimization of the maximum likelihood 

can be seen as the minimization of the logarithm of the likelihood function (cost function): 

𝐶 =  − ∑ 𝑦𝑖

𝑁

𝑖=1

ln 𝑓(𝑥) + (1 − 𝑦𝑖) ln(1 − 𝑓(𝑥)) (2.6) 
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2.5.3 Performance Metrics 

When creating and applying a model, it is necessary to evaluate its performance. As previously stated, 

binary classification problems only have two possible outcomes (typically 0 or 1), and so, a classifier's 

predictions can be grouped into four categories, depending on whether the predicted label was in 

conformance with the true label or not. 

A confusion matrix can be used to summarize the algorithm performance, as it shows the number of 

True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).  

Table 2.1 - Confusion matrix of a binary classification problem. Each label is classified by the comparison of its true and 

predicted class, being classified as a TP, FP, TN, or FN.  

 
Predicted Label 

Positive Negative 

T
ru

e 

L
a

b
el

 

Positive TP FN 

Negative FP TN 

In our problem, a TP is a module node predicted to be part of the module, a TN is any node not known 

to be part of the module to be classified as not being part of it, and a FP is any node not known to be 

part of the module classified as being part of it. Finally, FN represents the module nodes that were 

classified as not being part of it.  

Frequently, classification algorithms are evaluated by their accuracy. The accuracy can be interpreted 

as the fraction of the correct predictions, i.e., the sum of TP and TN divided by the total number of 

labels, as shown in equation 2.7: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.7) 

However, this metric should not be applied to imbalanced datasets. Imbalanced datasets are datasets that 

have an abnormal proportion of positive or negative labels, i.e., instead of having a close to 50/50 

proportion of positive and negative examples, some datasets might have distributions of 10/90 or 1/99 

positive to negative samples. In our case, process and disease modules have between 50 and 300 genes, 

whereas the biological network has more than 17 000 genes, leading to a very imbalanced dataset. This 

is a problem for accuracy as high accuracy scores can be achieved even if no labels are predicted to be 

of the positive class. Taking our dataset example, a disease module of 300 genes that has no genes to be 

predicted to be part of it will still achieve an approximate accuracy of 98%, not reflecting the poor model 

performance. 

Other metrics can thus be computed to better evaluate a model’s performance, especially on imbalanced 

datasets. Precision is the fraction of true positives in the total number of positive predictions (equation 

2.8): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.8) 

Recall is the fraction of positives that were predicted as such (equation 2.9): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.9) 

In theory, a good machine learning model has high precision and recall scores, however, combinations 

of high precision scores with low recall ones, or vice-versa are possible. As a result, it is not always easy 

to assert a model performance by the direct analysis of these two metrics. The F-Measure (equation 
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2.10) is a combination of precision and recall scores through their harmonic mean that allows for the 

evaluation of the model performance with a single value. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2

1
𝑅𝑒𝑐𝑎𝑙𝑙

+
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

= 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.10) 

Nonetheless, it is important to analyze the precision and recall scores obtained by the model, as 

depending on the model goal, it might be more useful to have higher precision scores at the expense of 

recall, for example. 

2.5.4 Cross-Validation 

A standard way to evaluate a model's performance is to simply use a data partition to train it and another 

to test its performance. However, a model can suffer from underfitting or overfitting if it is too simple 

or too complex for the used training data. A possible solution to this problem is to use an additional set 

for the validation of the model, prior to its application on the test data. However, this implies a third data 

split, which can greatly reduce the number of samples used to learn the model.  

Cross-Validation is a technique that allows for the validation of the model, without requiring a validation 

set. A basic approach to cross-validation is k-fold cross-validation, where the training set is split into 𝑘 

folds, with 𝑘 − 1 folds being used to train the model, and the remaining fold used to evaluate the model 

performance. The process is repeated 𝑘 times, with each different fold being used once to evaluate the 

model. Figure 2.3 summarizes a 5-fold cross-validation procedure. In the end, the 𝑘 different models 

with 𝑘 different performances are built. If the performance is satisfactory, the model is then trained with 

the entire training dataset and applied to the testing data. 

 

Figure 2.3 - Standard cross-validation processing. The available data is split into a train and a test set. The train set is split into 

n sets and a model is trained in n iterations, using a different set in each iteration for its evaluation. After the n iterations, the 

model is evaluated with the original, unseen, test set.  

2.5.5 Hyperparameter Tuning 

Machine Learning models have two types of parameters that influence the model performance: the ones 

that are learned from the training data (as in the case of the logistic regression’s coefficients), and the 

ones that can be finely tuned by the user, called the hyperparameters.  

Hyperparameters cannot be estimated from the data as their values are set before the learning process. 

These parameters have a direct impact on the model’s performance but it is not possible to know the 

best value for each hyperparameter, beforehand, so these need to be optimized.  
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The most popular method for hyperparameter tunning is grid search. This method consists of an 

exhaustive search for the best combination of hyperparameter scores. In order to apply it, it requires a 

list of the hyperparameters and the values to be tested. This method could be time-consuming as a 

different model is trained for each value combination of each hyperparameter (if we want to optimize 

two hyperparameters with 5 different values each, grid search will create 10 different models), and so, 

some compromises might be required, such as decreasing the number of hyperparameters to tune, or the 

range of values to test for each hyperparameter. 

Random Search is another tuning method, that differs from grid search as instead of the set of values to 

test for each hyperparameter, a statistical distribution to randomly choose from is given along with the 

number of combinations to try.  

Halving grid search is a technique based on grid search, that searches for the best parameter value 

combination using successive halving. In successive halving, the parameter combinations are all initially 

tested with a small number of resources, i.e., training samples. The best performing combinations 

survive this iteration and are again tested, but with a larger number of training samples. At the last 

iteration, only one parameter combination will have survived and will be chosen as the best-performing 

one. As all the possible combinations are only trained once with a small set of samples, this approach 

allows for a more time-effective parameter search than the grid search. 

Cross-validation is often coupled with (halving) grid search techniques. This way, the returned best 

parameter combination is asserted to provide consistent results on unseen data and can later be fitted to 

the entire training data and then predict the outcomes of the test set.  

2.5.5.1 Logistic Regression Hyperparameters 

Logistic Regression has three main hyperparameters that can be tuned: penalty, solver, and C [63,64,66]. 

The penalty parameter defines the inclusion of a regularization term in the cost function of the logistic 

regression (equation 2.6), with the cost function of the logistic regression being defined by: 

𝐶𝑜𝑠𝑡 = ∑(−𝑦𝑖

𝑁

𝑖=1

ln 𝑓(𝑥) − (1 − 𝑦𝑖) ln(1 − 𝑓(𝑥))) + 𝑟(𝑤) (2.11) 

There are four different penalty values to be considered: None, L1, L2, and ElasticNet. L1 regularization 

can be seen as a form of feature selection, as it produces a sparse matrix, with some features having a 

value of 0. On the other hand, L2 regularization only forces the weights of each feature to be small, but 

never zero. ElasticNet method is an ensemble of L1 and L2 regularizations, having a ratio that influences 

the contribution of each regularization. None simply considers 𝑟(𝑤) = 0. 

The C parameter is directly linked to the penalty parameter as it represents the inverse of the 

regularization strength, with smaller C values leading to a stronger regularization.  

The cost function described in equation 2.11 has no closed form solution, thus, its optimization usually 

depends on gradient descent algorithms. Python’s scikit learn library [66] presents five different 

algorithms for the optimization of the cost function, that can be controlled by the solver parameter. Of 

the five available solvers, “liblinear” for example, uses a coordinate descent algorithm, and “sag” uses 

a Stochastic Average Gradient descent algorithm. The solver selection not only must take into account 

their computational time, but also consider the possible regularization penalties, since not all solvers are 

compatible with the presented penalties. 
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2.6 Feature Selection 

In the previous section, a basic notion of machine learning models and how they work was presented. 

One critical part of building a successful model lies in the quality of the given data. Not only can datasets 

present a high dimensionality, i.e., a high number of features, as some of these features might be highly 

correlated with each other or just not provide any relevant information for our model, so the model can 

benefit from their removal. The removal of these features could possibly be performed manually, but 

datasets can have hundreds of features with not all of them being correctly labeled so it can be very 

time-consuming.  

Feature Selection algorithms try to remove features that do not provide useful additional information to 

the model. Basic feature selection algorithms simply remove the features with the lowest variance. 

However, there are some more complex algorithms, based on machine learning model information, 

taking advantage of the L1 regularization (that as previously discussed weights some features as 0) or 

using the feature importance originated from a tree model [64,67]. 

2.6.1 OPLS-DA 

OPLS-DA (Orthogonal Partial Least Squares Discriminant Analysis) [68,69] is a regression model 

based on PLS (Partial Least Squares), a latent variable regression module based on the covariance 

between the data and the labels. OPLS-DA projects the data into one component whose variation is 

maximally correlated with the data labels and into several other orthogonal components whose variation 

is uncorrelated with the data labels, making it easy to interpret. 

Although OPLS-DA's main use is to work as a classification algorithm, it can also be used as a feature 

selection algorithm, as it scores the contribution of each feature for the separation of the labels with a 

Variable Importance in Projection (VIP) score [70]. Each feature is scored regarding its contribution to 

the variance explained by each component of the OPLS model, depending on the weight of the 

component itself (orthogonal components have lower weights). Higher VIP scores (𝑉𝐼𝑃 ∈ [0; ∞[)  are 

associated with features (in our case process or disease modules) more important for the discrimination 

of the positive and negative labels of the target module. Usually, features with VIP scores above 1 are 

considered to be relevant for the model, however, this value can be tuned depending on the data [71]. 

2.7 Ontologies 

Ontologies provide a standardized form to represent, characterize and analyze data through a set of 

formalized entities and rules that describe their relationship [72]. In biology, ontologies can be used to 

define a structured, precisely defined vocabulary that is able to describe cell processes, disease, 

phenotypes, and gene functions across multiple systems [73].  

The Open Biomedical Ontology (OBO) is the most popular ontology language for the description of 

biomedical and biological terms. Despite being an abstract formulation, ontologies are easily 

represented as graphs, where nodes represent the entities and edges their relationships. Biological 

ontology graphs are simple hierarchies, with child nodes having increasing levels of detail. In OBO 

ontologies, terms are connected by relations like “is_a” or “part_of” that form assertions between the 

connected nodes, e.g., “cytokinesis part_of cell proliferation”. 

2.7.1 Gene Ontology 

Gene Ontology (GO) is the most used ontology in biology, describing biological processes, molecular 

functions, and cell components in three independent hierarchies. The biological process ontologies 

comprise the larger processes, composed of multiple molecular activities. Cellular component 
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ontologies encompass the locations relative to cellular structures in which a gene product performs a 

function. Finally, molecular function ontologies relate to molecular-level activities performed by gene 

products, describing activities such as catalysis and transport.  

 

Figure 2.4 - Gene Ontology example structure. Nodes are organized in a hierarchical structure, where each node represents a 

GO term. Nodes have one or more parent nodes (upstream connections) [73]. 

GO unifies the knowledge of gene products and gene functions for almost 1.5 million gene products, 

across 5 213 species, 185 of which with more than 1 000 annotations. As of July 2022, GO comprises 

more than 7 million annotations across the three different aspects. Overall, GO is composed of 43 558 

terms, of which 28 140 are related to biological processes, 11 238 are related to molecular functions, 

and 4 180 are related to cellular components.  

The characterization of cell processes and diseases can be performed with a Gene Ontology Enrichment 

Analysis (GOEA). This analysis allows the discovery of the GO terms over-represented in a particular 

gene set (for example genes associated with a particular disease) against a particular background. Over-

represented terms can be interpreted as being correlated with the chosen set of genes, and thus allow for 

the interpretation of the biological relevance of such genes [74].  

2.7.2 Human Phenotype Ontology 

The Human Phenotype Ontology (HPO) [38] is an ontology that systematically defines phenotypes 

found in human diseases. HPO can be divided into five different sub ontologies: phenotypic abnormality, 

mode of inheritance, clinical modifier, clinical course, and frequency. 

HPO provides annotations to diseases defined by the Online Mendelian Inheritance in Man (OMIM) 

database. Currently, HPO contains 108 580 annotations across 7 801 diseases, with the majority of the 

annotations being derived from the disease entry in OMIM.  

HPO enables the association between diseases and phenotypes and between genes and phenotypes, thus 

allowing for the indirect comparison of shared phenotypes between genes and diseases.  
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Chapter 3  

Materials and Methods 

This chapter presents the methodology for the development of GAP-MINE, together with the 

methodology taken in all performance tests and comparisons. 

 

Figure 3.1 - Overview of GAP-MINE’s methodology: (A) Creation of the biological network with module-association 

annotations (diamond, octagon, and triangle nodes); (B) Scoring of each node regarding its proximity with the module nodes; 

(C) Creation of the embedding; (D) Feature Selection; (E) Logistic Regression Classifier Training; (F) Prediction and validation 

of new module-associated nodes. Figures A, B, and F were created with Cytoscape [60]. Figure E was adapted from [63]. 

GAP-MINE’s methodology can be explained in 6 different steps (Figure 3.1). First of all, the biological 

network is built using the information from protein-protein interactions and the gene-disease and gene-

process associations. Each node is then scored regarding its proximity with the nodes associated with a 

target module, with this process being repeated for all modules. The node scores form a vector 

embedding representing its proximity across all modules. A feature selection algorithm is then applied 

to these embeddings, selecting the modules that best optimize the discrimination of the labels for a 

particular target module. The filtered embeddings are then used to train and test a logistic regression 

classifier. The classifier is then applied to the entire set of data, predicting new node-module 

associations, that later are validated. All steps of GAP-MINE’s methodology are described in detail 

across the remaining of this chapter.  

Furthermore, alterations to GAP-MINE’s standard pipeline were performed to compare the algorithm 

performance against baseline and established methods and to evaluate its robustness to protein 

interaction network-related problems, such as network incompleteness and false positive annotations. 

All alterations to the standard GAP-MINE pipeline and the inclusion of additional methods are described 

in the later stages of this chapter. 
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3.1 Network Construction 

3.1.1 Protein-Protein Interactions 

Physical protein-protein interactions were obtained from two different data sources: APID and HuRI.  

In APID’s case, we selected interactions from the Homo sapiens interactome with quality level 1 (proven 

by 2 or more experimental pieces of evidence). The selected interactome comprises a total of 265 217 

interactions. HuRI’s HI-III-22 version was selected, containing 52 569 interactions and covering around 

77% of a search space of more than 17 500 genes. 

APID and HuRI use different protein identifier formats, causing a merging problem since the two 

databases have proteins in common and need to have the same identifier to properly merge the 

interactions and identify the proteins in common. UniProt IDs and Ensembl IDs are used to identify the 

proteins in APID and HuRI databases, respectively. Both ID types were translated into their HGNC 

Gene Name [75] synonyms. HGNC Gene Names provide good coverage results for the translation of 

UniProt and Ensembl IDs while presenting a single active identifier for the identification of each gene 

(the identifier might change but there are no multiple active identifiers to refer to the same gene at the 

same time). When combined, the resultant interactome has 284 177 interactions and 17 222 genes. 

The igraph’s package [76] was used to build the protein interaction network. The obtained interactome 

was simplified to remove self-loops, repeated edges, and to keep only the main component. The final 

network comprises a total of 17 204 genes connected by 260 960 interactions.   

3.1.2 Gene-Process and Gene-Disease Associations 

Gene-process associations were retrieved from Reactome, while gene-disease associations were 

retrieved from DisGeNET. Both Reactome and DisGeNET modules were filtered according to their 

number of genes, only keeping those that range from 50 to 300 genes, resulting in a total of 429 processes 

and 301 diseases. This range guarantees an adequate minimum number of positive cases for model 

training and avoids very large and heterogeneous modules.  

Reactome and DisGeNET protein IDs were translated into their HGNC Gene Name in order to properly 

annotate the nodes in the created biological network.  

3.1.2.1 Disease Modules 

One factor that heavily impacts the prediction quality of network-based modules is their dispersion 

throughout the network. As nodes are scored regarding their proximity with module-associated nodes, 

disperse modules will have a broader distribution of values and module-associated nodes will not be 

able to achieve such high scores, increasing the probability of wrong nodes ranking amongst the higher-

scored ones. 

The Seed Connector algorithm (SCA) [77] performs a search throughout the network for linking nodes 

(seed connectors) able to connect seed module nodes into a single large component. SCA iteratively 

adds to the module the node that maximally increases the size of the current largest component. SCA 

stops when there are no nodes that simultaneously neighbor the largest component and one of the 

unconnected seed nodes. When having multiple neighboring nodes to choose from, SCA selects the one 

with the highest fraction of neighboring seed nodes compared to the total number of neighbors. 

As SCA does not have any stop threshold for the number of added nodes, in our implementation of the 

algorithm we discarded disease modules with an increase of more than 40% of nodes, leaving us with 

203 different diseases.  
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A second approach was taken where the SCA algorithm was again applied to the network, however, no 

nodes were added to the module, and only retaining the original module nodes included in the final 

largest component formed by SCA, thus retaining the 301 different diseases (Conservative approach) 

(Figure 3.2). 

3.1.3 Network Proximity metrics for gene-module association prediction 

While standard proximity metrics score a node against all other nodes, a different approach should be 

taken when scoring nodes for the prediction of new gene associations with a specific process or disease 

module. In our case, the scoring of each individual node following the metrics described in chapter 2.3.1 

would provide insights about how central a given node is or how it connects node pairs in the network. 

However, process and disease modules are spread across the entire graph, meaning that the centrality of 

a node in the entire graph will not provide any information as to how this node relates to the target 

module, making it impossible to apply the Guilt-by-Association principle. Furthermore, these metrics 

should be specific to each module since a gene associated with a disease or process is not necessarily 

associated with all other processes and diseases. In this work, five different module-specific proximity 

metrics were used to estimate each node’s proximity to module nodes.  

The Hypergeometric Test computes the probability of a given node being enriched with neighbors 

known to be associated with the target module. Equation 3.1 can be used to compute this metric for each 

candidate node in the network, where 𝑘 is the number of neighbors of the candidate node associated 

with the target module, 𝑀 is the total number of possible nodes to interact with 

Figure 3.2 - Approaches taken for disease modules completion. The different networks represent how the same disease module 

is originally represented (A), and how SCA (B) and the Conservative approach (C) influence the nodes present in the disease 

module. Figures were created with Cytoscape [60]. 

A 

B C 
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(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠 − 1), 𝑛 is the number of nodes known to be associated with the target 

module, and 𝑁 is the number of neighbors of the candidate node. 

𝑃(𝑘, 𝑀, 𝑛, 𝑁 ) =
(𝑛

𝑘
)(𝑀−𝑛

𝑁−𝑘
)

(𝑀
𝑁

)
 (3.1) 

Closeness can be altered to measure how a given node is related to a given module, instead of the entire 

network. To do so, equation 2.1 can still be used, however, 𝑦 should only be a module-associated node 

(instead of any node) and consequently, 𝑁 will be the number of nodes associated with the target module. 

Betweenness can also be altered in order to follow the same rationale as the previous metrics, however, 

two different metrics can be implemented, Betweenness and Fraction Betweenness. Betweenness counts 

the fraction of module-associated node pairs that have the candidate node in their shortest paths. 

Equation 3.2 is used to compute this metric, where 𝜎𝑦𝑧(𝑥) is the number of module-associated node 

pairs that have the candidate node 𝑥 in one or more of their shortest paths, and 𝑛 is the number of 

module-associated nodes. 

𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠(𝑥) =
∑ 𝜎𝑦𝑧(𝑥)𝑥≠𝑦≠𝑧

𝑛(𝑛 − 1)
2

 (3.2) 

Fraction Betweenness follows a similar approach to Betweenness, however, here the number of different 

shortest paths that have the candidate node is accounted for, in order to give higher weights to nodes 

present in a higher fraction of the connections between the two module nodes. Fraction Betweenness 

can be computed by equation 2.2, where 𝜎𝑦𝑧 is the number of shortest paths between nodes 𝑦 and 𝑧, 

𝜎𝑦𝑧(𝑥) is the number of shortest paths between 𝑦 and 𝑧 that pass through 𝑥, being 𝑦 and 𝑧 two nodes 

associated with the target module. 

Finally, the Random Walks with Restart can be altered too, instead of starting from one specific node, 

start with equal probability from any node corresponding to a module-associated gene (Figure 3.3).  

3.1.4 Network Embedding Construction 

The scoring of every node’s proximity to the nodes associated with every module allows for the creation 

of a vector embedding that uniquely represents each node.  

Figure 3.3 - RWR implementation for gene-module association prediction.  Instead of restarting from a specific node, the RWR 

has a set of nodes from which the restart is allowed to restart, correspondent to the module nodes (diamond nodes) (A). The 

walk can thus start from any module-associated node and go to any other nodes, including those associated with the module. 

At the end of the iterations, a score is given based on the number of times each node was visited (B). Figures were created with 

Cytoscape [60]. 
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The vector embedding can thus be seen as a vector representing a node, where the 𝑗𝑡ℎ element is a 

network proximity metric explaining the proximity of that node with the 𝑗𝑡ℎ network module, composed 

by a set of nodes 𝑋 associated with that module. The combination of all vector embeddings forms a 

matrix of 𝑁 vs. 𝑀 dimensions, where 𝑁 is the number of nodes in the network and 𝑀 is the number of 

disease or process modules used to build the embedding.  

3.2 Feature Selection 

The OPLS package was used to perform an Orthogonal Partial Least Squares Discriminant Analysis. 

OPLS-DA was individually applied to each module in order to build a model to discriminate that 

module’s labels. In each model, the whole embedding matrix is used, with OPLS-DA scoring each 

module contribution for the discrimination of the target module’s labels using a VIP score. There are 

several methods to define the threshold above which the VIP scores are considered relevant. Here three 

different approaches were taken: (1) selection of the 11 highest VIP scores (predicted module VIP + 10 

modules with highest VIP scores), (2) selection of the upper outlier VIP scores (above 𝑄3 +  1.5𝑥𝐼𝑄𝑅, 

where 𝑄3 is the 3rd quartile and 𝐼𝑄𝑅 is the interquartile range), and (3) selection of the n highest VIP 

scores where n is the mean between 11 and the number of upper outliers. In any of the three cases, a 

new embedding that explains the proximity of a given node across the selected modules is created and 

can later be analyzed to better understand how each module affects the classification.    

3.3 Logistic Regression Classifier 

The logistic regression uses the network embedding matrix as an input for a classification algorithm 

aiming to predict proteins associated with a particular module. Modules in the input matrix are selected 

through OPLS-DA’s VIP score analysis, considering the three feature selection options described in 

chapter 3.2. Data is split into a stratified 80/20 partition, the same as the data partition used when 

applying the OPLS-DA model to avoid data leakage and overfitting.  

The logistic regression models were optimized using a Halving Grid Search together with a 10-fold 

cross-validation using the following hyperparameters and set of values: 

• Penalty: L1, L2, or None 

• C: [0.01, 0.1, 1, 10, 100] 

• Solver: Liblinear, Sag, Saga or Newton-cg 

• Maximum iterations: [10, 50, 100]. 

For each module, three different logistic regression models are trained and optimized with halving grid 

search, using one of the three different feature selection methods. The model with the best performance 

across the 10 different validation sets used is retained. The optimized logistic regression model is refitted 

to the used data and tested with the final 20% of (unseen) data. F-Measure is used to compare and 

evaluate the different models’ performance, both upon training and after testing. Precision and Recall 

scores are also used for a more detailed analysis of the performance of the classifiers.  

Different training and testing tasks are performed for each distinct module, thus obtaining k different 

classifiers, where k is the number of modules to classify.  
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3.4 False Positive Analysis 

3.4.1 Gene Annotations 

To evaluate if predicted False Positives could in fact be associated with the target module, additional 

gene annotations were downloaded from Gene Ontology and the Human Phenotype Ontology databases. 

When using GO annotations, Gene Names were translated into UniProt IDs to get each GO term 

associated with each protein. For the three Gene Ontology categories (Biological Processes, Cellular 

Component, and Molecular Function) associations were found for a total of 15 314, 16 101, and 15 990 

proteins, respectively. A GOEA was performed for each process and disease module by analyzing their 

known proteins and comparing them to all proteins present in the biological network. A confidence of 

95% was used as the threshold for the identification of enriched terms. 

The presence of enriched GO terms was searched for across the newly predicted proteins. Proteins with 

at least one GO term in common with that module’s enriched set were considered to be a good prediction 

of the model. As only modules that have had at least one new prediction can be analyzed, only modules 

with at least one false positive were kept, resulting in a total of 218 processes and 101 and 218 diseases 

(SCA and Conservative Modules, respectively). 

In the case of HPO annotations, DisGeNET disease IDs were translated into OMIM IDs to get the 

phenotypes associated with each disease. Due to ID incompatibilities, only 29 diseases from the SCA 

modules and 39 diseases from the Conservative modules were kept. As HPO is composed of a set of 

gene-phenotype and disease-phenotype associations, newly predicted genes were searched for having at 

least one phenotype in common with the disease of the target module.  

In both approaches, a coverage metric that represents the fraction of predicted proteins with a GO 

term/HPO phenotype in common with the target module (equation 3.3) was computed. These coverages 

were compared with expected coverages when using a set of random proteins as new predictions, chosen 

from a set of proteins that excluded the proteins from the target module and the newly predicted proteins. 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
# 𝑁𝑒𝑤 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑤𝑖𝑡ℎ 𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 𝐺𝑂 𝑡𝑒𝑟𝑚𝑠

# 𝑁𝑒𝑤 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠
(3.3) 

3.4.2 Abstract Text Mining 

Newly predicted module-associated nodes were searched to be present in titles and abstracts of published 

articles together with the name of the associated disease/process. PubMed’s API [78] was used to search 

for titles/abstracts with both terms in common. The number of hits returned by PubMed’s API was 

counted for the analysis of the results. 

3.5 Performance Tests 

3.5.1 Network Reductions 

To simulate network incompleteness two different methods of network reductions were implemented. 

The first one was performed by simply removing at random 20% of the protein-protein interactions (PPI 

80%). A second one was performed by randomly removing 20% of the proteins and their interactions 

where each protein has a probability of being removed inversely proportional to their degree (Protein 

80%). 
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3.5.2 Addition of Noise 

To simulate annotation errors, 10% of wrongly annotated proteins were added to each process or disease 

module. The proteins were chosen at random, with each one having a probability for their selection 

given by equation 3.4: 

𝑝𝑖,𝑗 =
𝑙𝑜𝑔10(𝑑𝑒𝑔𝑟𝑒𝑒𝑖)

10𝑠𝑝𝑖,𝑗
(3.4) 

Where 𝑖 identifies the protein and 𝑗 the module, 𝑑𝑒𝑔𝑟𝑒𝑒𝑖 is the degree of the queried protein and 𝑠𝑝𝑖,𝑗 

is the smallest shortest path between the protein and any protein of module 𝑗. This promotes the selection 

of proteins with higher degrees that are closer in the network to other module proteins. Proteins with 

these properties are more likely to be associated with the module even in the absence of a real 

association.  

3.6 Performance Comparisons 

GAP-MINE performance was compared at two different levels. As GAP-MINE’s method heavily 

depends on the quality of the proximity metric used, and as its main novelty is the inclusion of the 

information from different modules in an interpretable network embedding, it was first compared to a 

baseline model that solely depends on the metric quality to differentiate the labeled proteins. 

In a later stage, GAP-MINE was compared with three well-established algorithms selected from the 

literature (Raw, GenePANDA, and MaxLink). 

3.6.1 Baseline Classification 

Previous network-based methods for gene annotation prediction, such as the ones mentioned in Table 

1, have effectively been able to produce good results in the prediction of new disease-associated genes.  

All these algorithms end up ranking proteins based on a single score produced by a combination of 

factors, such as their connectivity to known disease proteins, or the similarity between their associated 

diseases. In order to have a baseline prediction model with which to compare the results of our algorithm, 

we followed a similar approach by building a classifier that ranks each protein according to its proximity 

to known disease/process proteins.   

The baseline classifier uses the scores that describe the proteins' proximity with the proteins from the 

target module. The same 80/20 stratified data split used in GAP-MINE is used here in the baseline model 

to ensure the direct comparison of the results, together with a 10-fold cross-validation. The baseline 

model uses training data to select the best metric value threshold above which nodes can be classified 

as associated with the module. On each fold, the set of selected proteins was ranked and a score threshold 

that maximizes the F-measure was selected, with its results being evaluated on the validation set. At the 

end of the cross-validation step, the average threshold score was applied to the test set. Thanks to this 

implementation, we can effectively test whether the use of a network embedding including the protein’s 

network metric scores relative to other process/disease modules results in a more accurate and robust 

prediction algorithm. 
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3.6.2 Raw 

Raw is a diffusion-based algorithm for node prioritization. Raw imposes a diffusion process on the 

interaction network to measure the influence between all pairs of nodes in an unbiased way, not 

discarding highly connected nodes or distant interactors. The Raw application can be seen as a constant 

flow running through the network during time t, with each of the module-associated nodes being the 

source of the flow. At 𝑡 → ∞, the flow values through each node are constant and can be used as node 

scores.  

3.6.3 GenePANDA 

GenePANDA is a network-based algorithm for the prioritization of candidate genes, that ranks nodes 

according to their distance to the known module nodes. GenePANDA's fundamental steps are the 

following: 

1. Starting from the protein interaction network, compute an adjusted distance matrix. A distance 

network can be obtained by computing the length of the shortest path between two nodes (𝐷𝑎𝑏).  

The adjusted distance between 𝑎 and 𝑏 is given by equation 3.5: 

𝐷𝑎𝑏
𝑎𝑑𝑗

=
𝐷𝑎𝑏

√𝜇𝑎 × 𝜇𝑏

(3.5) 

where, 

𝜇𝑎 =
∑ 𝐷𝑎𝑗

𝑁
𝑗=1

𝑁
(3.6) 

Where ∑ 𝐷𝑎𝑗
𝑁
𝑗=1  is the sum of the length of the shortest paths between node 𝑎 and every other 

node, and 𝑁 is the total number of nodes in the network. 

2. Given a list of module-associated nodes, compute a module-specific node weight, 𝑤𝑝. Candidate 

nodes should have stronger functional interactions with known module nodes than with random 

genes, thus 𝑤𝑝 is defined by: 

𝑤𝑖 =
∑ 𝐷𝑖𝑗

𝑎𝑑𝑗𝑁
𝑗=1

𝑁
−

∑ 𝐷𝑖𝑗
𝑎𝑑𝑗𝐾

𝑗=1

𝐾
(3.7) 

Where 𝑁 is the total number of nodes in the network, K is the total number of module nodes, 

and 𝐷𝑖𝑗
𝑎𝑑𝑗

 is the adjusted distance between nodes 𝑖 and 𝑗, with 𝑗 being any network node in the 

first component of the equation, and any module node in the second component.  

3. Weight conversion. To compare the scores between the different modules, weights are 

converted to probabilities. For every module, nodes are sorted by weight in descending order, 

and at each 𝑤𝑝 the corresponding precision (equation 2.8) is computed, where 𝑇𝑃 and 𝑃 are the 

total number of module nodes and the total number of nodes above 𝑤𝑝, respectively. The 

precision score is interpreted as the probability of a node with a weight above 𝑤𝑖 being 

associated with the target module. 

GenePANDA originally uses a STRING [79] network that includes the confidence of the interaction 

between two genes, which allows for the definition of raw distance between two neighbor nodes to be 

𝐷 = 1000/𝑆, with 𝑆 being the confidence on the interaction and ranging from 0 to 1 000. As our 

network does not present confidence values for the protein interactions, this step was simplified, and so 

neighboring nodes were considered to have the standard distance of 1. 
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3.6.4 MaxLink 

MaxLink is a node prioritization algorithm that relies on the Guilt-by-association paradigm. MaxLink 

scores each node 𝑖 based on the number of interactions with the module nodes. Additionally, to search 

for nodes enriched with interactions with the module, eliminating nodes with a high number of 

interactions to the module solely based on their high degree, a connectivity function (equation 3.8) is 

used.  

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑖) =
( 𝐾

𝑀𝐿
) ( 𝑁− 𝐾

deg(𝑖)−𝑀𝐿
)

( 𝑁
deg(𝑖))

(3.8) 

Where 𝑁 is the number of nodes in the network, 𝐾 is the number of module-associated nodes, 𝑀𝐿 is the 

number of links node 𝑖 has with module-associated nodes, and deg (𝑖) is the degree of node 𝑖.  

MaxLink uses a connectivity filter of 0.5, discarding candidates with 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑖) ≥ 0.5. 
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Chapter 4  

Results 

4.1 Random Walks with Restart is the best performing metric  

To test if the GAP-MINE pipeline can improve the predictive performance of the Baseline classifiers, 

we compared both approaches using different types of network metrics to predict two types of 

annotations: biological processes (based on the Reactome Pathways) and disease associations (Figure 

4.1). In all three testing scenarios (Process, Disease SCA, and Disease Conservative modules) we can 

observe that the RWR show the best performance, with F-Measure scores consistently above 0.9 on the 

test sets (Figure 4.1, Table S1), and showing similar results on the validation steps of the cross-validation 

procedure (Figure S1). Of the remaining four metrics, median F-Measure values never go above 0.5, 

with the Hypergeometric Test showing the second-best results in the Process and Conservative modules 

and the Fraction Betweenness having the second-best performance in the SCA modules. Closeness 

follows a similar behavior to both the Hypergeometric Test and the Fraction Betweenness. On the 

contrary, the Betweenness presents F-Measure values close to 0 in all three cases. 

Comparing the performance of GAP-MINE with the baseline models, it is possible to observe that 

significantly better results are obtained in 2 out of the 3 modules in both the RWR and the Closeness 

metrics. However, significantly worse results are obtained in the betweenness-based metrics 

(Betweenness and Fraction Betweenness), but this does not significantly impact the evaluation of GAP-

MINE as these are the worst-performing metrics.  

Regarding the selection of modules for the embeddings, as stated in chapter 3.2, three different selection 

methods were tested with the highest performing one in the training set being kept for that module. 

Across the different modules, with the RWR, it is interesting to observe that process prediction tends to 

have a larger fraction of classifiers with only 11 modules (35%) than disease modules, where this 

selection type only comprises 20% of the classifiers (22% in Disease SCA and 20% in Disease 

Conservative). Regarding the other two types of feature selection, outlier selection is the preferred 

method, especially in the Disease Conservative Classification where it is selected in 59% of the 

classifiers (compared to 38% and 48% in Process and Disease SCA modules, respectively). 
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Figure 4.1 - GAP-MINE and Baseline performances show RWR as the best scoring metric. Both algorithms were applied to 

the complete biological network using the five different scoring metrics (Hypergeometric Test (HT), Closeness (C), 

Betweenness (B), Fraction Betweenness (FB) and Random Walks with Restart (RWR)) and the three different module types: 

(A) Cell Process; (B) Disease SCA; (C) Disease Conservative. Results show the algorithm’s performance under a 20% testing 

set, after being trained in a 10-fold cross-validation. The same training and testing sets were used in both algorithms. Each 

boxplot represents the distribution of F-Measure values obtained for all the modules tested. * Represents statistical significance 

(* p<0.05, ** p<0.01) of the difference between Baseline and GAP-MINE distributions, evaluated by a paired Wilcoxon 

bilateral test. The * or ** are above the boxplot corresponding to the algorithm with the higher median. Figure created with 

Plotly [80]. 

4.2 GAP-MINE has higher precision but lower recall in comparison with 

the Baseline models 

RWR has proven to be the best scoring metric with both GAP-MINE and the Baseline models, with F-

Measure scores consistently above 0.9. Therefore, we used RWR to make a more detailed comparison 

of the Baseline and GAP-MINE performances. To evaluate thoroughly both methods, we used not only 

the F-Measure but also precision and recall. With the complete network (Figure 4.2), GAP-MINE 

obtains a significantly better F-Measure in both Process and Disease SCA modules. In all three module 
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types, the Baseline models produce significantly better recall scores. On the other hand, GAP-MINE is 

always more precise. Both precision and recall metrics follow the same behavior as the remaining 

metrics (Table S1). The Baseline models have higher recall but lower precision, implying that they 

classify more candidate nodes as associated with the module, but with less certainty that they are true 

positives. Considering that these annotation predictions should be experimentally validated, we find it 

more advantageous to have the GAP-MINE performance, with higher precision and lower recall. The 

total number of annotation predictions is lower, but there is higher confidence that the predictions are 

true positives.  

 

Figure 4.2 - GAP-MINE produces significantly better F-Measure scores (F) thanks to a significantly better precision (P), at the 

expense of a lower recall (R), in the three different modules (Cell Process, Disease SCA, and Disease Conservative). Boxplots 

represent the distributions of F, P, or R values for all the evaluated modules. * and ** represent the statistical significances 

(p<0.05 and p<0.01, respectively) of the difference between Baseline and GAP-MINE distributions, evaluated with a paired 

Wilcoxon bilateral test. The * or ** are above the boxplot corresponding to the algorithm with the higher median. Figure 

created with Plotly [80]. 

4.3 GAP-MINE outperforms the Baseline models in the presence of false 

annotations 

The previously shown performance evaluations intrinsically assume that the network is complete and 

that all protein annotations are correct. However, as we previously mentioned, we cannot assume that 

our network is complete and does not have any wrong information. The mapping of the human 

interactome is a project that has been developed in the past 20 years [40], with the interactome growing 

from around 3 000 interactions to more than 650 thousand interactions [22,23]. A recent study analyzed 

the interactome of Saccharomyces cerevisiae under different environmental conditions and found a 

three-fold increase in the number of known interactions, as a considerable fraction of the interactions 

were found only under specific conditions [21]. Therefore, it is important to verify if the observations 

made with the complete network are still valid in conditions that mimic network incompleteness or the 

inclusion of false protein annotations. 

Figure 4.3A and Table S2 show that, when using Protein 80% incomplete networks (lacking 20% of 

proteins and their interactions), both GAP-MINE and Baseline models have lower performances when 

applied to both types of disease modules. This is mainly due to a smaller number of positives being 

captured, as is shown by the decrease in recall scores. The fact that this decrease is only observed in the 

disease modules is probably related to the characteristics of these modules. Their smaller connectivity 

makes them more sensitive to the removal of interactions. Comparing GAP-MINE and the Baseline 

models’ performances, it is possible to observe that both algorithms present similar results and thus are 
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equally robust to the lack of interactions and proteins in the network. Similar results are obtained when 

using networks that had a 20% random removal of edges (Table S3). 

The module annotations also play a relevant role in the quality of our predictions. Wrong annotations 

will have an impact on both the scoring function and the classification step. Both algorithms were tested 

under the addition of 10% false annotations. Figure 4.3B shows the biggest observed differences 

between GAP-MINE and the Baseline models. As previously stated, the Baseline models lack precision 

when compared to GAP-MINE. This is even clearer with the addition of noise as the Baseline models 

suffer a performance loss of 10-15%, whereas GAP-MINE only loses about 5% of its precision (Table 

S4). This shows that the added module proteins are not being classified as negatives in the baseline 

models, while GAP-MINE is able to filter a significant part of them (as the decrease in precision is 

smaller than 10%). Regarding the number of captured positives, we observe that the Baseline models 

are still able to capture a larger fraction of positives, however, the decrease in precision is so considerable 

that GAP-MINE obtains significantly better F-measure scores in all three module types. 

 
A 

 B 

Figure 4.3 - GAP-MINE outperforms Baseline models in the presence of false annotations while presenting similar robustness 

to network incompleteness. Both algorithms with the RWR were tested in two different network conditions: (A) random 

removal of 20% of the proteins (with removal probability proportional to the protein degree); and (B) random addition of 10% 

of wrong annotations based on protein proximity to module (see methods). Both classifiers in (B) are trained considering the 

wrong information as true, and the performance scores are then corrected given the known truth. Boxplots represent the 

distributions of either F-Measure (F), Precision (P), or Recall (R) values for all the evaluated modules (Process, disease SCA 

and disease Conservative). * and ** represent the statistical significances (p<0.05 and p<0.01, respectively) of the difference 

between Baseline and GAP-MINE distributions, evaluated with a paired Wilcoxon bilateral test. The * or ** are above the 

boxplot corresponding to the algorithm with the higher median. Figure created with Plotly [80]. 
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4.4 The Hypergeometric Test suffers a performance loss upon the removal 

of interactions 

The Hypergeometric Test scores nodes according to their number of interactions with module nodes, 

and so, it is interesting to observe how the module connectivity impacts this metric performance on both 

the Baseline models and GAP-MINE. 

As already stated, disease modules are much less connected than process modules. A poorly connected 

module should impact the performance of the Hypergeometric Test as it is more difficult for a node to 

be connected to another node from that module. Figure 4.4A confirms this hypothesis, as the 

Hypergeometric Test produces significantly better results when classifying process annotations. 

Furthermore, within the disease modules, we also see a decrease in quality when applying this metric to 

the Conservative modules, which goes in line with our hypothesis, since these modules do not have the 

additional nodes used to connect them, as is the case of the SCA modules.  

 

 
A 

 
B 

Figure 4.4 - Module connectivity impacts the Hypergeometric Test performance. (A) The Hypergeometric Test in the complete 

network presents a performance loss when applied to disease modules, due to their poor connectivity. (B) When applying the 

Hypergeometric Test to the Protein 80% incomplete network, the process classification suffers a process loss, that is more 

dampened in the disease classification. Boxplots represent the distributions of either F-Measure (F), Precision (P), or Recall 

(R) values for all the evaluated modules (Process, disease SCA and disease Conservative). * and ** represent the statistical 

significances (p<0.05 and p<0.01, respectively) of the difference between Baseline and GAP-MINE distributions, evaluated 

with a paired Wilcoxon bilateral test. The * or ** are above the boxplot corresponding to the algorithm with the higher median. 

Figure created with Plotly [80]. 
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Another way to decrease the connectivity of a module is to remove interactions. Contrary to what was 

previously observed, both types of disease modules show better performances than the process modules 

(Figure 4.4B). The performance loss in the process modules is in fact quite staggering but it is consistent 

with our hypothesis. Process modules are very well connected, which benefits the hypergeometric test 

as module proteins will be enriched with connections between themselves. However, when we remove 

20% of the interactions, it is likely that we are also removing the specific interactions that allowed for 

that enrichment and so, it becomes easier for any node to have similar scores to module nodes. This 

marked performance loss with incomplete networks does not occur for disease modules as their smaller 

connectivity is not as severely impacted. 

4.5 The Betweenness metric achieves better performances with the 

Baseline models using incomplete networks  

The Betweenness metric was observed to be the worst metric when predicting annotations not only when 

using the complete network (Figure 4.5A), but also under several different performance tests (Table S1 

and Table S4). However, the Betweenness metric shows significantly better results when incomplete 

networks are used (Figure 4.5B, Table S2, and Table S3). Furthermore, this increase in performance 

only happens when using the Baseline models. Betweenness is a metric that scores a given node if it is 

part of the shortest paths that connect two nodes of a given module. In this implementation of 

Betweenness, it only accounts for whether a node is present or not in the shortest paths, and not the 

fraction of shortest paths they are part of. The fact that we have this binary version of Betweenness 

makes it easy for a given uncorrelated node to have a similar score to the module nodes in a highly 

connected network. By removing 20% of the interactions, it is expected that the interactions with noisy 

nodes might disappear and thus Betweenness becomes more specific and has a performance gain.  

The reason why this performance improvement only happens with the Baseline models might be 

explained if we consider the meaning of Betweenness. By scoring the nodes that are in the shortest paths 

of two module nodes, we are effectively scoring nodes that are within the target module, with any node 

that does not connect any two module nodes having a score of 0. Therefore, the scores obtained will 

only serve to identify whether a node is inside the module. Nodes outside the module will not be scored, 

independently of them being neighbors of module nodes, or being distant in the network.  The 

Betweenness/GAP-MINE approach tries to improve the prediction for a given module by adding as 

predictor variables the betweenness of the candidates relative to other modules. However, the 

betweenness of other modules will only be informative if these modules are either highly overlapping 

or completely distinct. In the former case, little or no information is added when compared with the 

betweenness of the target module. In the latter case, these modules will only be informative for a small 

fraction of the candidates. 
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Figure 4.5 - The performance of the Betweenness metric improves with the Baseline models when applied to incomplete 

networks. (A) Results were obtained when applying the Betweenness centrality to the complete network using both GAP-

MINE and Baseline models. (B) Using incomplete networks (Protein 80%), the Betweenness metric has significantly better 

results, but only when applied with the Baseline models. Boxplots represent the distributions of either F-Measure (F), Precision 

(P), or Recall (R) values for all the evaluated modules (Process, disease SCA, disease Conservative). * and ** represent the 

statistical significances (p<0.05 and p<0.01, respectively) of the difference between Baseline and GAP-MINE distributions, 

evaluated with a paired Wilcoxon bilateral test. The * or ** are above the boxplot corresponding to the algorithm with the 

higher median. Figure created with Plotly [80]. 

4.6 GAP-MINE outperforms established literature methods 

Previous results showed that GAP-MINE outperforms the baseline methods solely based on the metrics 

used to describe the relationship that each node has with module nodes. To further evaluate the 

performance of GAP-MINE, three established literature methods (Raw, GenePANDA, and MaxLink) 

were applied to our network for the prediction of gene-disease and gene-process associations. 

GAP-MINE with the RWR is shown to have significantly better performassnce results than all three 

algorithms in all module types (Figure 4.6). Of the three additional algorithms, Raw is the one showing 

more similar results to RWR, which is not a striking behavior as both algorithms are diffusion-based 

methods. GenePANDA and MaxLink produce similar results to the ones observed when Closeness and 

the Hypergeometric Test metrics were applied to the baseline, which goes in line with what was 

observed with the Raw algorithm, and with both producing worse results than the remaining two metrics. 
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Figure 4.6 - GAP-MINE shows significantly better results than established literature methods. All four algorithms were applied 

to the complete biological network and applied to the three different module types: (A) Cell Process; (B) Disease SCA; (C) 

Disease Conservative. Results show the algorithm’s performance under a 20% testing set, after being trained in a 10-fold cross-

validation. The same training and testing sets were used in both algorithms. Boxplots represent the distributions of F-Measure, 

Precision, or Recall values for all the evaluated modules. ** Represents a statistical significance of 99% of GAP-MINE scores 

being significantly higher than the compared algorithm, evaluated by a paired Wilcoxon bilateral test. Figure created with 

Plotly [80]. 

4.7 GAP-MINE module scores provide Biological Explainability for the 

predictions 

The selection of a certain number of processes or diseases to aid in the prediction of a given process or 

disease module not only contributes to the algorithm's robustness and precision but can also provide 

interesting insights from a biological point of view, as possible patterns can be inferred from the chosen 

modules. Rheumatoid Arthritis (RA), or C0003873 is a DisGeNet disease composed of 228 proteins in 

the SCA modules. RA is an autoimmune disease characterized by synovial inflammation, swelling, 
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cancer autoantibody production, and cartilage and bone destruction. Furthermore, as an autoimmune 

disease, individuals also tend to present a higher mortality rate than healthy individuals, especially due 

to cardiovascular diseases, and infections, such as pneumonia [81].  

The RA classification model was built with 11 different disease modules, one of which was the RA 

module. By analyzing the selected modules, we can find several groups of diseases that differ from each 

other but that are related to RA’s different phenotypes. One notable group is Atherogenesis, 

Atherosclerosis, and Inflammation. Not only Atherosclerosis is more prevalent in RA patients, but both 

diseases also share genetic and environmental risk factors. Furthermore, Inflammation is closely linked 

to Atherosclerosis in RA patients, as patients with both RA and Atherosclerosis show aggravated signs 

of inflammation [82]. 

Table 4.1 - Disease Modules selected for the logistic regression model that predicts new associations to Rheumatoid Arthritis. 

Disease ID Disease Name 

C0003873 Rheumatoid Arthritis 

C0020517 Allergy 

C1527304 Allergic Reaction 

C0021368 Inflammation 

C0032285 Pneumonia 

C0887898 Experimental Lung Inflammation 

C3714636 Pneumonitis 

C0032300 Lobar Pneumonia 

C1563937 Atherogenesis 

C0004153 Atherosclerosis 

C0345967 Malignant Mesothelioma 

Disease-associated genes are not necessarily causal genes as they can have other functions that are 

disrupted upon disease. Thus, it is expected that these genes show different behaviors throughout the 

embedding. A Principal Component Analysis was applied to the set of known and predicted RA proteins 

to find how the proteins group. RA proteins show two main clusters, with a fraction of proteins being 

dispersed along the first component (Figure 4.7A). More importantly, the predicted proteins cluster 

along the known proteins thus showing similar patterns to these. 

The selected modules can also provide insights on their importance to discriminate the candidate 

proteins. Figure 4.7B presents a clustergram of the candidate proteins together with their RWR scores 

for the chosen modules. We can observe three different disease clusters and three different protein 

clusters. Regarding the disease clusters, it is worth pointing out that the lung-associated diseases cluster 

together, as well as the two allergy disease modules. As for the predicted proteins, MEOX2, COPS5, 

and HTT are proteins with especially high scores under the lung-related disease modules. These results 

suggest that, besides making new disease association predictions, GAP-MINE results can discriminate 

between different subtypes of associations. 
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Figure 4.7 - Module proteins present different scoring behaviors. (A) Principal Component Analysis using the known 

Rheumatoid Arthritis proteins and the newly predicted one’s data across the 11 selected modules. 87.9% of the variance in the 

data is explained by the first two principal components. (B) Clustergram analysis with the 14 new predicted proteins of 

Rheumatoid Arthritis and the 11 selected modules to see the importance of the protein relationship with each of the chosen 

modules. Figure created with Plotly [80]. 

4.8 Novel predictions are significantly associated with concordant GO and 

HPO annotations  

Our pipeline has shown promising results when applied with the RWR, with precision scores 

consistently above 0.9. This precision was evaluated with known annotations, but the utility of GAP-

MINE depends on its ability to make novel predictions. To evaluate these novel predictions, we applied 

GAP-MINE with RWR to each of the different modules using the full extent of the data (without 

train/test/validation splits). To check whether our new predictions are biologically plausible, we applied 

two distinct approaches using GO terms or HPO phenotypes. We performed a GOEA for each process 

and disease module using their known proteins. For every newly predicted protein, we checked whether 
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it was annotated with at least one of the enriched GO terms. In the HPO phenotypes approach, for each 

new prediction, we checked for annotations with at least one phenotype in common with known disease 

phenotypes. In both approaches, we computed a coverage metric that represents the fraction of predicted 

proteins with a GO term/HPO phenotype in common with the target module. These coverages were then 

compared with expected coverages when using a set of randomly chosen proteins as new predictions. 

For each set of modules, a probability density function of coverage values was estimated for both the 

real predictions and the random ones. To find whether the real predictions were skewed to higher 

coverage values, density values were compared through their log ratio (Figure 4.8).  

As we can observe, in both the GO and HPO analysis, we get positive fold values for coverage values 

above 0.8 and 0.7, respectively. This shows that our predictions are enriched with relevant annotations 

when compared to a random classifier, and thus, are biologically relevant. 
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Figure 4.8 - GAP-MINE predictions are enriched with biologically relevant GO terms and HPO phenotypes when compared 

to a random classifier. (a) GO enrichment analysis was performed for the different process and disease modules. The predicted 

proteins GO terms were compared to the process/disease enriched GO terms. (b) HPO database provides gene-phenotype and 

disease-phenotype associations. New predictions were searched for the presence of phenotypes in common with the target 

disease. In (a) and (b) coverage values were computed as the fraction of new predictions with terms/phenotypes in common 

with the target module. Plotted curves represent the log ratio of the coverage frequency distributions of Predictions over random 

selection. A positive log ratio means that the corresponding coverage value is more frequent in real predictions compared with 

the random selection of predictions. Figure created with Plotly [80]. 

The discovery of gene associations with diseases and cell processes is an ongoing task, and so, potential 

new associations might be discovered every day. This reality differs from the databases that record these 

associations which have only periodic updates (e.g., DisGeNET's last update dates from May 2020). 

Therefore, new associations found by our algorithm might in fact have already been documented in the 

literature. As seen in chapter 4.7, 14 new genes were predicted to be associated with RA disease. To 

check whether these genes were already described to be associated with RA, we searched for 
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Titles/Abstracts with the presence of “Rheumatoid Arthritis” together with each one of the predicted 

genes. As Figure 4.9 shows, only 5 of the 14 predicted genes were not found in any paper title/abstract. 

Of the remaining 11 genes, all of them have at least 2 different papers that relate them to the predicted 

disease, which validate the predictions of our algorithm.  

 

Figure 4.9 - GAP-MINE predictions for Rheumatoid Arthritis are already documented in the literature. PubMed’s API was 

used to perform a literature search of titles and abstracts that had the predicted gene and “Rheumatoid Arthritis” in the text. 

Figure created with Plotly [80]. 
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Chapter 5  

Discussion 

GAP-MINE proposes a flexible and modular framework to improve the predictions of network-based 

gene prioritization and classification methods. Most of these methods use a list of proteins with a given 

annotation as input and compute a score for all proteins in the interaction network. The higher the score, 

the more likely it is for the protein to be associated with the annotation of the input set. GAP-MINE 

framework can apply any of these methods to a large set of annotations, each defining a network module 

and a corresponding column in the embedding matrix. Then, a feature selection step selects the most 

informative network modules to predict a target annotation. Finally, a machine learning model is trained 

with the known proteins with the target annotation as positive examples. There is a large choice of 

algorithms available for the two last steps. The interaction network used to compute the individual 

module scores can also be adjusted, by using different sources of information or by including different 

types of interaction. In this work, we only used five implementations of GAP-MINE. All five use a 

protein physical interaction network, perform feature selection through OPLS-DA, and make predictions 

with a logistic regression. The five distinct implementations differ in the network-based method to 

compute module scores. One of our main aims was to test if the implementation of GAP-MINE with 

network-based method “A” could in fact improve the predictive performance compared to method “A” 

alone. Therefore, we selected five general network metrics that could represent the variety of network-

based gene prioritization methods. It was not our goal to pursue the absolute optimization of GAP-MINE 

performance, as that would imply testing much more variations of its implementation.  

Our results confirmed that the GAP-MINE approach can achieve higher performance, measured by the 

F-measure, than the simple Baseline models with the same network metric, although that improvement 

is not homogeneous across the five metrics tested. The two variants of Betweenness perform better alone 

than within the GAP-MINE framework. This means that the Betweenness scores for additional modules 

are not informative for the prediction of the target annotation. On the other hand, Closeness and RWR 

improve with the GAP-MINE framework. Both metrics measure network proximity between the 

candidates and the modules, which may contribute to the utility of the embedding approach.     

In most cases, the improvements are related to an increase in precision, but at the expense of a lower 

recall. Even in some situations where the GAP-MINE F-Measure is not significantly higher, we observe 

increases in precision. The higher precision scores make GAP-MINE a suitable algorithm for candidate 

prediction: although a smaller number of candidates is generated at each classification task, the higher 

precision increases the likelihood of success during the experimental validation task.  

The fact that the GAP-MINE framework uses additional information when compared with the Baseline 

models led us to expect larger performance increases in conditions mimicking network incompleteness 

or the existence of false annotations. We implemented two scenarios of network incompleteness, but in 

both, the performances of GAP-MINE were very similar to the corresponding Baseline models, and no 

clear pattern of significant differences between the two approaches was observed. Our expectations were 

confirmed when we introduced false annotations. Here, we observed larger performance increases with 

GAP-MINE, consistently supported by higher precisions accompanied by smaller recall decreases. 

The RWR has the best performance under all the different tested conditions and module types, with the 

obtained candidates shown to be biologically relevant. This agrees with previous benchmark studies 
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[5,83]. Our results with GAP-MINE using RWR suggest that further optimization of GAP-MINE 

implementation with other RWR-based methods, feature selection, and machine learning algorithms 

could result in a state-of-art gene annotation prediction system. Such implementation could also be 

improved with the integration of network-independent data sources. This could be easily achieved by 

adding extra variables to the GAP-MINE embedding matrix before the machine learning step. 

Lastly, one main advantage of the GAP-MINE framework is the biological interpretability of its results. 

Previous works have combined network embeddings with machine learning to predict gene annotations 

[84,85]. But the embeddings used, such as node2vec [86,87], do not allow easy extraction of biological 

insights. As the GAP-MINE embedding is composed of variables associated with network modules and 

the corresponding annotations, it is relatively easy to get such biological interpretations. Firstly, the 

modules chosen in the feature selection step can support the generation of hypotheses about common 

mechanisms between diseases. Alternatively, if one predicts disease associations using embeddings 

based on biological processes or pathways, the relevance of such pathways for disease development can 

be inferred. Secondly, the RWR scores for the different modules in the embedding can help to 

understand why some candidates are being predicted. Even the known proteins of the target annotation 

can have different profiles in the embedding matrix, leading to the decomposition of the network module 

into submodules. These submodules can give hints for different roles in the associated process or 

disease. 

Besides its good performance results, especially robust to the presence of false annotations, GAP-

MINE’s strong points are its adaptability and its biological interpretability. Overall, GAP-MINE’s 

algorithm provides a suitable approach for network-based gene annotation prediction. 
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Supplementary Results 

Data and code availability: https://github.com/GamaPintoLab/GAP-MINE 

 

 
A 

 
B 

Figure S1 – GAP-MINE RWR performance during cross-validation. (A) Average F-Measure scores were observed in the 10 

different validation sets of the cross-validation procedure. (B) Coefficient of variation of the obtained F-measure scores during 

the model’s cross-validation procedure. The coefficient of variation is obtained by dividing the standard deviation of the 10 F-

Measure scores by their average. Low values mean low variation of performance between the 10 different sets. Figure created 

with Plotly [80] 

  

https://github.com/GamaPintoLab/GAP-MINE
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Table S1. GAP-MINE’s and Baseline model’s performance under the complete biological network. Each classifier is scored 

across three different metrics (F-Measure, Precision, and Recall). The presented scores correspond to the median, 1st, and 3rd 

quantiles (median (1st quantile – 3rd quantile)). For each performance metric, scoring metric, and module type, a paired 

Wilcoxon bilateral test was performed to compare GAP-MINE’s and the Baseline model’s performance. Bold values 

correspond to an observed statistical significance (p<0.05) between the two classifiers. 

Metric Module Classifier F-Measure Precision Recall 

Hypergeometric 

Test 

Process 
Baseline 0.368 (0.2-0.578) 0.417 (0.231-0.65) 0.357 (0.182-0.6) 

GAP-MINE 0.343 (0.188-0.609) 0.429 (0.2-0.684) 0.333 (0.182-0.579) 

Disease SCA 
Baseline 0.137 (0.104-0.182) 0.119 (0.086-0.167) 0.167 (0.111-0.252) 

GAP-MINE 0.139 (0.101-0.179) 0.125 (0.088-0.168) 0.167 (0.111-0.235) 

Disease  

Conservative 

Baseline 0.054 (0.0-0.105) 0.045 (0.0-0.095) 0.067 (0.0-0.125) 

GAP-MINE 0.056 (0.0-0.108) 0.052 (0.0-0.118) 0.061 (0.0-0.111) 

Closeness 

Process 
Baseline 0.229 (0.111-0.483) 0.25 (0.125-0.5) 0.25 (0.105-0.5) 

GAP-MINE 0.323 (0.182-0.571) 0.333 (0.188-0.625) 0.35 (0.182-0.545) 

Disease SCA 
Baseline 0.1 (0.066-0.137) 0.107 (0.065-0.149) 0.1 (0.056-0.148) 

GAP-MINE 0.109 (0.074-0.15) 0.111 (0.067-0.176) 0.116 (0.071-0.168) 

Disease  

Conservative 

Baseline 0.038 (0.0-0.08) 0.027 (0.0-0.071) 0.074 (0.0-0.136) 

GAP-MINE 0.042 (0.0-0.087) 0.031 (0.0-0.071) 0.077 (0.0-0.15) 

Betweenness 

Process 
Baseline 0.0 (0.0-0.009) 0.0 (0.0-0.005) 0.0 (0.0-0.083) 

GAP-MINE 0.0 (0.0-0.008) 0.0 (0.0-0.004) 0.0 (0.0-0.062) 

Disease SCA 
Baseline 0.013 (0.0-0.024) 0.007 (0.0-0.013) 0.067 (0.0-0.156) 

GAP-MINE 0.005 (0.0-0.022) 0.002 (0.0-0.013) 0.017 (0.0-0.091) 

Disease  

Conservative 

Baseline 0.007 (0.0-0.015) 0.003 (0.0-0.008) 0.062 (0.0-0.154) 

GAP-MINE 0.0 (0.0-0.013) 0.0 (0.0-0.008) 0.0 (0.0-0.05) 

Fraction     

Betweenness 

Process 
Baseline 0.237 (0.129-0.407) 0.229 (0.143-0.375) 0.273 (0.125-0.5) 

GAP-MINE 0.143 (0.006-0.308) 0.167 (0.003-0.438) 0.158 (0.056-0.333) 

Disease SCA 
Baseline 0.182 (0.132-0.226) 0.194 (0.15-0.25) 0.174 (0.117-0.231) 

GAP-MINE 0.176 (0.124-0.222) 0.185 (0.137-0.255) 0.167 (0.105-0.226) 

Disease  

Conservative 

Baseline 0.044 (0.009-0.075) 0.029 (0.005-0.06) 0.091 (0.023-0.154) 

GAP-MINE 0.009 (0.0-0.049) 0.005 (0.0-0.053) 0.083 (0.0-0.286) 

Random Walks 

 with Restart 

Process 
Baseline 0.963 (0.936-1.0) 1.0 (0.905-1.0) 1.0 (1.0-1.0) 

GAP-MINE 0.968 (0.944-1.0) 1.0 (0.92-1.0) 1.0 (0.938-1.0) 

Disease SCA 
Baseline 0.977 (0.951-1.0) 0.967 (0.913-1.0) 1.0 (1.0-1.0) 

GAP-MINE 0.986 (0.966-1.0) 1.0 (0.965-1.0) 1.0 (0.965-1.0) 

Disease  

Conservative 

Baseline 0.976 (0.952-1.0) 1.0 (0.92-1.0) 1.0 (1.0-1.0) 

GAP-MINE 0.974 (0.947-1.0) 1.0 (0.929-1.0) 1.0 (0.95-1.0) 
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Table S2. GAP-MINE’s and Baseline model’s performance using the Protein 80% network. Each classifier is scored across 

three different metrics (F-Measure, Precision, and Recall). The presented scores correspond to the median, 1st, and 3rd quantiles 

(median (1st quantile – 3rd quantile)). For each performance metric, scoring metric, and module type, a paired Wilcoxon bilateral 

test was performed to compare GAP-MINE’s and the Baseline model’s performance. Bold values correspond to an observed 

statistical significance (p<0.05) between the two classifiers. 

  

Metric Module Classifier F-Measure Precision Recall 

Hypergeometric 

Test 

Process 
Baseline 0.014 (0.006-0.026) 0.007 (0.003-0.013) 0.25 (0.1-0.571) 

GAP-MINE 0.016 (0.0-0.035) 0.008 (0.0-0.019) 0.125 (0.0-0.385) 

Disease SCA 
Baseline 0.105 (0.067-0.15) 0.079 (0.048-0.122) 0.167 (0.1-0.25) 

GAP-MINE 0.107 (0.065-0.157) 0.094 (0.054-0.154) 0.133 (0.071-0.208) 

Disease    

Conservative 

Baseline 0.032 (0.0-0.08) 0.02 (0.0-0.071) 0.062 (0.0-0.125) 

GAP-MINE 0.043 (0.0-0.098) 0.029 (0.0-0.091) 0.062 (0.0-0.13) 

Closeness 

Process 
Baseline 0.235 (0.118-0.471) 0.25 (0.111-0.5) 0.25 (0.111-0.5) 

GAP-MINE 0.4 (0.233-0.588) 0.429 (0.231-0.667) 0.4 (0.231-0.571) 

Disease SCA 
Baseline 0.097 (0.058-0.14) 0.087 (0.052-0.13) 0.111 (0.062-0.179) 

GAP-MINE 0.105 (0.066-0.156) 0.103 (0.062-0.167) 0.111 (0.062-0.182) 

Disease    

Conservative 

Baseline 0.033 (0.0-0.087) 0.021 (0.0-0.074) 0.067 (0.0-0.125) 

GAP-MINE 0.057 (0.0-0.105) 0.043 (0.0-0.1) 0.083 (0.0-0.143) 

Betweenness 

Process 
Baseline 0.571 (0.429-0.727) 0.5 (0.357-0.636) 0.733 (0.5-0.889) 

GAP-MINE 0.016 (0.0-0.035) 0.008 (0.0-0.019) 0.125 (0.0-0.385) 

Disease SCA 
Baseline 0.5 (0.444-0.568) 0.419 (0.366-0.484) 0.641 (0.536-0.749) 

GAP-MINE 0.107 (0.065-0.157) 0.094 (0.054-0.154) 0.133 (0.071-0.208) 

Disease    

Conservative 

Baseline 0.321 (0.222-0.4) 0.3 (0.222-0.389) 0.333 (0.222-0.462) 

GAP-MINE 0.0 (0.0-0.013) 0.0 (0.0-0.007) 0.0 (0.0-0.5) 

Fraction          

Betweenness 

Process 
Baseline 0.235 (0.133-0.375) 0.231 (0.125-0.357) 0.263 (0.125-0.495) 

GAP-MINE 0.19 (0.052-0.381) 0.25 (0.039-0.5) 0.2 (0.083-0.385) 

Disease SCA 
Baseline 0.148 (0.1-0.194) 0.135 (0.091-0.188) 0.167 (0.1-0.233) 

GAP-MINE 0.131 (0.08-0.182) 0.137 (0.083-0.2) 0.125 (0.071-0.192) 

Disease    

Conservative 

Baseline 0.038 (0.0-0.08) 0.024 (0.0-0.062) 0.071 (0.0-0.133) 

GAP-MINE 0.007 (0.0-0.051) 0.003 (0.0-0.04) 0.071 (0.0-0.208) 

Random Walks 

with Restart 

Process 
Baseline 0.963 (0.933-1.0) 1.0 (0.9-1.0) 1.0 (1.0-1.0) 

GAP-MINE 0.96 (0.933-1.0) 1.0 (0.938-1.0) 1.0 (0.9-1.0) 

Disease SCA 
Baseline 0.833 (0.767-0.889) 1.0 (0.938-1.0) 0.727 (0.643-0.833) 

GAP-MINE 0.83 (0.764-0.893) 1.0 (0.952-1.0) 0.727 (0.64-0.824) 

Disease    

Conservative 

Baseline 0.812 (0.741-0.872) 1.0 (1.0-1.0) 0.692 (0.6-0.778) 

GAP-MINE 0.8 (0.727-0.857) 1.0 (1.0-1.0) 0.667 (0.581-0.769) 
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Table S3. GAP-MINE’s and Baseline model’s performance using the PPI 80% network. Each classifier is scored across three 

different metrics (F-Measure, Precision, and Recall). The presented scores correspond to the median, 1st, and 3rd quantiles 

(median (1st quantile – 3rd quantile)). For each performance metric, scoring metric, and module type, a paired Wilcoxon bilateral 

test was performed to compare GAP-MINE’s and the Baseline model’s performance. Bold values correspond to an observed 

statistical significance (p<0.05) between the two classifiers.  

Metric Module Classifier F-Measure Precision Recall 

Hypergeometric 

Test 

Process 
Baseline 0.02 (0.0-0.035) 0.01 (0.0-0.019) 0.154 (0.0-0.455) 

GAP-MINE 0.012 (0.0-0.039) 0.006 (0.0-0.023) 0.091 (0.0-0.3) 

Disease SCA 
Baseline 0.125 (0.083-0.169) 0.108 (0.071-0.15) 0.158 (0.103-0.224) 

GAP-MINE 0.011 (0.0-0.022) 0.006 (0.0-0.013) 0.048 (0.0-0.124) 

Disease    

Conservative 

Baseline 0.047 (0.0-0.091) 0.033 (0.0-0.083) 0.067 (0.0-0.125) 

GAP-MINE 0.0 (0.0-0.013) 0.0 (0.0-0.007) 0.0 (0.0-0.067) 

Closeness 

Process 
Baseline 0.222 (0.111-0.444) 0.25 (0.111-0.5) 0.231 (0.1-0.462) 

GAP-MINE 0.387 (0.243-0.588) 0.417 (0.25-0.667) 0.4 (0.235-0.588) 

Disease SCA 
Baseline 0.095 (0.059-0.133) 0.095 (0.059-0.136) 0.095 (0.056-0.15) 

GAP-MINE 0.011 (0.0-0.023) 0.006 (0.0-0.013) 0.045 (0.0-0.134) 

Disease     

Conservative 

Baseline 0.037 (0.0-0.077) 0.025 (0.0-0.065) 0.067 (0.0-0.13) 

GAP-MINE 0.0 (0.0-0.016) 0.0 (0.0-0.009) 0.0 (0.0-0.091) 

Betweenness 

Process 
Baseline 0.566 (0.435-0.709) 0.461 (0.35-0.611) 0.739 (0.562-0.9) 

GAP-MINE 0.005 (0.0-0.01) 0.002 (0.0-0.005) 0.059 (0.0-0.833) 

Disease SCA 
Baseline 0.514 (0.479-0.556) 0.371 (0.338-0.41) 0.851 (0.789-0.9) 

GAP-MINE 0.01 (0.0-0.022) 0.005 (0.0-0.013) 0.045 (0.0-0.228) 

Disease    

Conservative 

Baseline 0.382 (0.316-0.442) 0.289 (0.242-0.333) 0.55 (0.434-0.667) 

GAP-MINE 0.004 (0.0-0.014) 0.002 (0.0-0.008) 0.033 (0.0-0.417) 

Fraction         

Betweenness 

Process 
Baseline 0.0 (0.0-0.013) 0.0 (0.0-0.007) 0.0 (0.0-0.071) 

GAP-MINE 0.222 (0.096-0.424) 0.286 (0.111-0.5) 0.2 (0.091-0.417) 

Disease SCA 
Baseline 0.163 (0.118-0.213) 0.171 (0.125-0.235) 0.162 (0.109-0.224) 

GAP-MINE 0.154 (0.103-0.2) 0.167 (0.113-0.235) 0.143 (0.089-0.208) 

Disease    

Conservative 

Baseline 0.04 (0.0-0.077) 0.027 (0.0-0.059) 0.071 (0.0-0.133) 

GAP-MINE 0.009 (0.003-0.043) 0.004 (0.002-0.033) 0.15 (0.048-0.429) 

Random Walks 

with Restart 

Process 
Baseline 0.963 (0.936-1.0) 0.96 (0.9-1.0) 1.0 (1.0-1.0) 

GAP-MINE 0.968 (0.938-1.0) 1.0 (0.929-1.0) 1.0 (0.927-1.0) 

Disease SCA 
Baseline 0.967 (0.935-1.0) 0.958 (0.911-1.0) 1.0 (0.963-1.0) 

GAP-MINE 0.974 (0.955-1.0) 1.0 (0.97-1.0) 0.967 (0.933-1.0) 

Disease    

Conservative 

Baseline 0.966 (0.941-1.0) 1.0 (0.929-1.0) 1.0 (0.938-1.0) 

GAP-MINE 0.957 (0.923-0.984) 1.0 (0.941-1.0) 0.95 (0.9-1.0) 
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Table S4. GAP-MINE’s and Baseline model’s performance using a network of 10% added noise. Each classifier is scored 

across three different metrics (F-Measure, Precision, and Recall). The presented scores correspond to the median, 1st, and 3rd 

quantiles (median (1st quantile – 3rd quantile)). For each performance metric, scoring metric, and module type, a paired 

Wilcoxon bilateral test was performed to compare GAP-MINE’s and the Baseline model’s performance. Bold values 

correspond to an observed statistical significance (p<0.05) between the two classifiers. 

Metric Module Classifier F-Measure Precision Recall 

Hypergeometric 

Test 

Process 
Baseline 0.37 (0.25-0.6) 0.4 (0.25-0.611) 0.375 (0.25-0.619) 

GAP-MINE 0.375 (0.19-0.6) 0.444 (0.25-0.722) 0.333 (0.167-0.562) 

Disease SCA 
Baseline 0.14 (0.097-0.185) 0.118 (0.077-0.159) 0.182 (0.125-0.25) 

GAP-MINE 0.136 (0.099-0.178) 0.118 (0.083-0.16) 0.167 (0.113-0.227) 

Disease      

Conservative 

Baseline 0.059 (0.0-0.103) 0.045 (0.0-0.098) 0.083 (0.0-0.143) 

GAP-MINE 0.065 (0.0-0.125) 0.057 (0.0-0.118) 0.083 (0.0-0.143) 

Closeness 

Process 
Baseline 0.211 (0.105-0.467) 0.231 (0.111-0.471) 0.25 (0.1-0.5) 

GAP-MINE 0.308 (0.154-0.56) 0.333 (0.167-0.667) 0.353 (0.167-0.556) 

Disease SCA 
Baseline 0.098 (0.071-0.14) 0.098 (0.064-0.13) 0.116 (0.071-0.158) 

GAP-MINE 0.093 (0.062-0.134) 0.088 (0.054-0.131) 0.109 (0.062-0.167) 

Disease      

Conservative 

Baseline 0.033 (0.0-0.077) 0.024 (0.0-0.066) 0.059 (0.0-0.118) 

GAP-MINE 0.036 (0.0-0.08) 0.026 (0.0-0.068) 0.067 (0.0-0.143) 

Betweenness 

Process 
Baseline 0.006 (0.0-0.009) 0.003 (0.0-0.005) 1.0 (0.0-1.0) 

GAP-MINE 0.024 (0.0-0.098) 0.013 (0.0-0.077) 0.083 (0.0-0.231) 

Disease SCA 
Baseline 0.012 (0.0-0.023) 0.006 (0.0-0.013) 0.071 (0.0-0.266) 

GAP-MINE 0.011 (0.0-0.024) 0.005 (0.0-0.014) 0.042 (0.0-0.239) 

Disease      

Conservative 

Baseline 0.007 (0.0-0.016) 0.004 (0.0-0.009) 0.05 (0.0-0.125) 

GAP-MINE 0.0 (0.0-0.01) 0.0 (0.0-0.005) 0.0 (0.0-0.059) 

Fraction   

Betweenness 

Process 
Baseline 0.235 (0.133-0.364) 0.222 (0.143-0.364) 0.273 (0.143-0.455) 

GAP-MINE 0.154 (0.009-0.303) 0.2 (0.005-0.375) 0.154 (0.062-0.333) 

Disease SCA 
Baseline 0.182 (0.125-0.222) 0.182 (0.135-0.235) 0.184 (0.125-0.233) 

GAP-MINE 0.16 (0.11-0.211) 0.182 (0.125-0.244) 0.154 (0.094-0.225) 

Disease      

Conservative 

Baseline 0.05 (0.016-0.1) 0.034 (0.01-0.071) 0.1 (0.04-0.182) 

GAP-MINE 0.009 (0.0-0.067) 0.005 (0.0-0.062) 0.079 (0.0-0.2) 

Random Walks 

with Restart 

Process 
Baseline 0.917 (0.874-0.952) 0.857 (0.81-0.917) 1.0 (0.944-1.0) 

GAP-MINE 0.957 (0.917-1.0) 0.952 (0.889-1.0) 1.0 (0.938-1.0) 

Disease SCA 
Baseline 0.914 (0.887-0.949) 0.85 (0.8-0.91) 1.0 (1.0-1.0) 

GAP-MINE 0.97 (0.923-1.0) 0.968 (0.906-1.0) 1.0 (0.947-1.0) 

Disease      

Conservative 

Baseline 0.923 (0.889-0.952) 0.867 (0.815-0.917) 1.0 (1.0-1.0) 

GAP-MINE 0.952 (0.913-0.978) 0.938 (0.885-1.0) 1.0 (0.935-1.0) 

 

 


