58,045 research outputs found

    A survey of the state of the art and focused research in range systems, task 2

    Get PDF
    Contract generated publications are compiled which describe the research activities for the reporting period. Study topics include: equivalent configurations of systolic arrays; least squares estimation algorithms with systolic array architectures; modeling and equilization of nonlinear bandlimited satellite channels; and least squares estimation and Kalman filtering by systolic arrays

    Linear estimation in Krein spaces. Part II. Applications

    Get PDF
    We have shown that several interesting problems in H∞-filtering, quadratic game theory, and risk sensitive control and estimation follow as special cases of the Krein-space linear estimation theory developed in Part I. We show that all these problems can be cast into the problem of calculating the stationary point of certain second-order forms, and that by considering the appropriate state space models and error Gramians, we can use the Krein-space estimation theory to calculate the stationary points and study their properties. The approach discussed here allows for interesting generalizations, such as finite memory adaptive filtering with varying sliding patterns

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Advanced Algorithms for Satellite Communication Signal Processing

    Get PDF
    Dizertační práce je zaměřena na softwarově definované přijímače určené k úzkopásmové družicové komunikaci. Komunikační kanály družicových spojů zahrnujících komunikaci s hlubokým vesmírem jsou zatíženy vysokými úrovněmi šumu, typicky modelovaného AWGN, a silným Dopplerovým posuvem signálu způsobeným mimořádnou rychlostí pohybu objektu. Dizertační práce představuje možné postupy řešení výpočetně efektivní digitální downkonverze úzkopásmových signálů a systému odhadu kmitočtu nosné úzkopásmových signálů zatížených Dopplerovým posuvem v řádu násobků šířky pásma signálu. Popis navrhovaných algoritmů zahrnuje analytický postup jejich vývoje a tam, kde je to možné, i analytické hodnocení jejich chování. Algoritmy jsou modelovány v prostředí MATLAB Simulink a tyto modely jsou využity pro ověření vlastností simulacemi. Modely byly také využity k experimentálním testům na reálném signálu přijatém z družice PSAT v laboratoři experimentálních družic na ústavu radioelektroniky.The dissertation is focused on software defined receivers intended for narrowband satellite communication. The satellite communication channel including deep space communication suffers from a high level of noise, typically modeled by AWGN, and from a strong Doppler shift of a signal caused by the unprecedented speed of an object in motion. The dissertation shows possible approaches to the issues of computationally efficient digital downconversion of narrowband signals and the carrier frequency estimation of narrowband signals distorted by the Doppler shift in the order of multiples of the signal bandwidth. The description of the proposed algorithms includes an analytical approach of its development and, if possible, the analytical performance assessment. The algorithms are modeled in MATLAB Simulink and the models are used for validating the performance by the simulation. The models were also used for experimental tests on the real signal received from the PSAT satellite at the laboratory of experimental satellites at the department of radio electronics.

    A Geometric Variational Approach to Bayesian Inference

    Get PDF
    We propose a novel Riemannian geometric framework for variational inference in Bayesian models based on the nonparametric Fisher-Rao metric on the manifold of probability density functions. Under the square-root density representation, the manifold can be identified with the positive orthant of the unit hypersphere in L2, and the Fisher-Rao metric reduces to the standard L2 metric. Exploiting such a Riemannian structure, we formulate the task of approximating the posterior distribution as a variational problem on the hypersphere based on the alpha-divergence. This provides a tighter lower bound on the marginal distribution when compared to, and a corresponding upper bound unavailable with, approaches based on the Kullback-Leibler divergence. We propose a novel gradient-based algorithm for the variational problem based on Frechet derivative operators motivated by the geometry of the Hilbert sphere, and examine its properties. Through simulations and real-data applications, we demonstrate the utility of the proposed geometric framework and algorithm on several Bayesian models

    Performance Analysis of a Novel GPU Computation-to-core Mapping Scheme for Robust Facet Image Modeling

    Get PDF
    Though the GPGPU concept is well-known in image processing, much more work remains to be done to fully exploit GPUs as an alternative computation engine. This paper investigates the computation-to-core mapping strategies to probe the efficiency and scalability of the robust facet image modeling algorithm on GPUs. Our fine-grained computation-to-core mapping scheme shows a significant performance gain over the standard pixel-wise mapping scheme. With in-depth performance comparisons across the two different mapping schemes, we analyze the impact of the level of parallelism on the GPU computation and suggest two principles for optimizing future image processing applications on the GPU platform

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    An Online Parallel and Distributed Algorithm for Recursive Estimation of Sparse Signals

    Full text link
    In this paper, we consider a recursive estimation problem for linear regression where the signal to be estimated admits a sparse representation and measurement samples are only sequentially available. We propose a convergent parallel estimation scheme that consists in solving a sequence of 1\ell_{1}-regularized least-square problems approximately. The proposed scheme is novel in three aspects: i) all elements of the unknown vector variable are updated in parallel at each time instance, and convergence speed is much faster than state-of-the-art schemes which update the elements sequentially; ii) both the update direction and stepsize of each element have simple closed-form expressions, so the algorithm is suitable for online (real-time) implementation; and iii) the stepsize is designed to accelerate the convergence but it does not suffer from the common trouble of parameter tuning in literature. Both centralized and distributed implementation schemes are discussed. The attractive features of the proposed algorithm are also numerically consolidated.Comment: Part of this work has been presented at The Asilomar Conference on Signals, Systems, and Computers, Nov. 201
    corecore