494 research outputs found

    A solution to detect and avoid conflicts for civil remotely piloted aircraft systems into non-segregated airspaces

    Get PDF
    The capability to ‘‘detect and avoid’’ potential collisions is one of the main technical challenges restricting widespread operations of unmanned aircraft into non-segregated airspaces. In fact, to operate into prescribed environments, an unmanned aircraft needs an onboard technology to replace the capability of the human pilot to ‘‘see and avoid’’ collision hazards. Such a technology is a ‘‘sense and avoid’’ system. This article focuses on the ‘‘avoid function’’ of such a system and proposes a suitable solution. The approach to the problem is to schematize a generic obstacle through a moving ellipsoid that represents the region of space the unmanned aircraft must not violate. The obtained solution enables situations of potential conflict to be detected and avoided through a set of such as speed changes in magnitude and/or direction. Thousands of test cases have been considered to validate this solution. Simulations show that the proposed algorithm is able to detect and avoid situations of potential conflict in the three-dimensional space and in real-time, even without the assistance of a human operator. As such, it can be considered as a fundamental step for the development of a prototype of ‘‘sense and avoid’’ system for promoting the integration of unmanned aircraft into non-segregated airspaces

    1D Simulation and Experimental Analysis of a Turbocharger Turbine for Automotive Engines Under Steady and Unsteady Flow Conditions

    Get PDF
    Abstract Turbocharging technique is more and more widely employed on compression ignition and spark ignition internal combustion engines, as well, to improve performance and reduce total displacement. Experimental studies, developed on dedicated test facilities, can supply a lot of information to optimize the engine-turbocharger matching, especially if tests can be extended to the typical engine operating conditions (unsteady flow). A specialized components test rig (particularly suited to study automotive turbochargers) has been operating since several years at the University of Genoa. The test facility allows to develop studies under steady or unsteady flow conditions both on single components and subassemblies of engine intake and exhaust circuit. In the paper the results of an experimental campaign developed on a turbocharger waste-gated turbine for gasoline engine application are presented. Preliminarily, the measurement of the turbine steady flow performance map is carried out. In a second step the same component is tested under unsteady flow conditions. Instantaneous inlet and outlet static pressure, mass flow rate and turbocharger rotational speed are measured, together with average inlet and outlet temperatures. A numerical procedure, recently developed at the University of Naples, is then utilized to predict the steady turbine performance map, following a 1D approach. The model geometrically schematizes the component basing on few linear and angular dimensions directly measured on the hardware. Then, the 1D steady flow equations are solved within the stationary and rotating channels constituting the device. All the main flow losses are properly taken into account in the model. The procedure is able to provide the sole "wheel-map" and the overall turbine map. After a tuning, the overall turbine map is compared with the experimental one, showing a very good agreement. Moreover, in order to improve the accuracy of a 1D engine simulation model, the classical map-based approach is suitably corrected with a sequence of pipes that schematizes each component of the device (inlet/outlet ducts, volute and wheel) included upstream and downstream the turbine to account for the wave propagation and accumulation phenomena inside the machine. In this case, the previously computed "wheel-map" is utilized. The turbine pipes dimensions, are automatically provided by the geometrical module of the proposed procedure to correctly reproduce the device volume and the flow path length

    Discharge hydrograph estimation at upstream-ungauged sections by coupling a Bayesian methodology and a 2-D GPU shallow water model

    Get PDF
    Abstract. This paper presents a novel methodology for estimating the unknown discharge hydrograph at the entrance of a river reach when no information is available. The methodology couples an optimization procedure based on the Bayesian geostatistical approach (BGA) with a forward self-developed 2-D hydraulic model. In order to accurately describe the flow propagation in real rivers characterized by large floodable areas, the forward model solves the 2-D shallow water equations (SWEs) by means of a finite volume explicit shock-capturing algorithm. The two-dimensional SWE code exploits the computational power of graphics processing units (GPUs), achieving a ratio of physical to computational time of up to 1000. With the aim of enhancing the computational efficiency of the inverse estimation, the Bayesian technique is parallelized, developing a procedure based on the Secure Shell (SSH) protocol that allows one to take advantage of remote high-performance computing clusters (including those available on the Cloud) equipped with GPUs. The capability of the methodology is assessed by estimating irregular and synthetic inflow hydrographs in real river reaches, also taking into account the presence of downstream corrupted observations. Finally, the procedure is applied to reconstruct a real flood wave in a river reach located in northern Italy

    A double scale methodology to investigate flow in karst fractured media via numerical analysis. The Cassino plain case study (Central Apennine, Italy)

    Get PDF
    A methodology to evaluate the hydraulic conductivity of the karstmedia at a regional scale has been proposed, combining pumping tests and the hydrostructural approach, evaluating the hydraulic conductivity of fractured rocks at the block scale. Obtaining hydraulic conductivity values, calibrated at a regional scale, a numerical flow model of the Cassino area has been developed, to validate the methodology and investigate the ambiguity, related to a nonunique hydrogeological conceptual model. The Cassino plain is an intermontane basin with outstanding groundwater resources.The plain is surrounded by karst hydrostructures that feed the Gari Springs and Peccia Springs. Since the 1970s, the study area was the object of detailed investigations with an exceptional density of water-wells and piezometers, representing one of the most important karst study-sites in central-southern Italy. Application of the proposed methodology investigates the hydraulic conductivity tensor at local and regional scales, reawakening geological and hydrogeological issues of a crucial area and tackling the limits of the continuum modelling in karst medi

    Route schematization with landmarks

    Get PDF
    Predominant navigation applications make use of a turn-by-turn instructions approach and are mostly supported by small screen devices. This combination does little to improve users\u27 orientation or spatial knowledge acquisition. Considering this limitation, we propose a route schematization method aimed for small screen devices to facilitate the readability of route information and survey knowledge acquisition. Current schematization methods focus on the route path and ignore context information, specially polygonal landmarks (such as lakes, parks, and regions), which is crucial for promoting orientation. Our schematization method, in addition to the route path, takes as input: adjacent streets, point-like landmarks, and polygonal landmarks. Moreover, our schematic route map layout highlights spatial relations between route and context information, improves the readability of turns at decision points, and the visibility of survey information on small screen devices. The schematization algorithm combines geometric transformations and integer linear programming to produce the maps. The contribution of this paper is a method that produces schematic route maps with context information to support the user in wayfinding and orientation
    • …
    corecore