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Abstract

XBeach is a simple 2-D, hydrodynamic-morphologic coupled model using a finite difference
explicit scheme. One of the practical improvement for XBeach is to simulate bank erosion.
We started with considering a simple case where a vertical bank retreats in a predefined
direction. The shoreline is described as straight segments of line parallel to y-axis. Along
with the retreat process of the shoreline, cells adjacent to the shoreline change their width,
which has to be accounted in the continuity and momentum equations. Tests of shoreline
retreat with straight and curved shoreline show stability of the model.

A shoreline with arbitrary orientation is then modelled as a polygon cutting through
grid cells. We adjust the continuity equation and part of the advection terms in the
momentum equation to make the model perform better in case of cut cells. Hydrodynamic
tests with a straight, diagonal channel and bent channel show that the flow field calculated
using the cut cell method is much better than the traditional “staircase” boundary. Finally,
an application of modelling flow pattern among the groins in Haihau coast, Vietnam on
real bathymetry data is carried out.

Keywords:
hydrodynamic modelling, vertical bank, shoreline retreat, two-dimensional model, finite
volume method, cut cell method, explicit scheme, XBeach
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List of symbols

A area of cell
C Chézy coefficient
CD Chart Datum
CFL Courant-Lewy-Frederich coefficient
CV computational volume
∆nB retreat distance of shoreline
∆x,∆y cell size or grid spacing
∆t timestep
δ retreat distance in Sect. 2.3.2, or flow fraction of cell face (elsewhere)
η water surface elevation
h water depth
HW High Water
i water surface slope
i, j unit vectors of x and y-axis
l2 2nd moment relative error
l∞ maximum relative error
LW Low Water
M erodible coefficient (in m/s)
M∗ erodible coefficient (in kg/(m2s))
n normal vector of a surface
nx, ny number of cells in x, y direction
q flux vector
S sediment transport rate
τw, τc shear stress on bank and its critical (threshold) value
Θ dimensionless area of cell
u, u, v, |u| velocity vector, velocity in x, y direction, velocity norm (magnitude)
uw, uc longitudinal near-bank velocity and its critical (threshold) value
x, y cross-shore and longshore co-ordinates
zb bed elevation

Subscripts and superscripts

i,j subscripts denoting cell index (position) in mesh

i+1/2 subscript denoting gridline index separating cells (i, ·) and (i+ 1, ·)
j+1/2 subscript denoting gridline index separating cells (·, j) and (·, j + 1)

n,s ,e ,w subscripts denoting faces of cell in 4 directions
n superscript denoting time level
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Chapter 1

Introduction

1.1 An improvement for a hydrodynamic-morphologic

model

In the past few decades, modelling of coastal areas has been developed rapidly. Using fast
computers, coastal models currently can handle a broad spectrum of simulations, from
wave propagation, hydrodynamics of coastal waters to marine sediment transport and salt
intrusion. While in early times, analytical approaches could only give solutions to simple
cases of straight coasts, at present many problems arising in areas with complex bathymetry
have been solved. For real world projects, computer modelling is a must.

Popular models being used are 2D, quasi-3D and 3D models. For sediment transport
models particularly, 3D models would be the most desirable, along with requirements
of computer hardware, simulation time and available data needed for model calibration
(O’Connor, 1994).

Although 3D models such as Delft3D are usually highly recommended for large projects,
it requires long run time on computers with good hardware – and even with parallel
networks. This is clearly not available for educational purposes, and a simplified model is
worth to be considered.

UNESCO-IHE, WL Delft Hydraulics and Delft University, in co-operation with US-
ACE (US Army Corps of Engineers) have been developing XBeach, a simple 2DH hy-
drodynamic - sediment transport model. The project started in February 2006. XBeach
is LGPL’ed1 and therefore users can obtain it free of charge and modify the code to suit
one’s need. The program is coded in MatLab(R)2, and Fortran, now executable and being
incrementally developed.

XBeach implements an explicit finite difference staggered scheme to solve water surface
levels, bed levels and depth-averaged velocities at grid points in the model. The design of
model aims to couple the hydrodynamic and sediment transport processes. This “on-line”
method is discussed in (Roelvink, 2006). Since XBeach currently uses uniform rectangu-

1GNU Lesser General Public Licensed. For further information, see www.gnu.org
2MatLab is a registered trademark of the MathWorks, www.mathworks.com
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2 CHAPTER 1. INTRODUCTION

lar Cartesian grid cells, it is difficult to model the complex geometry of shoreline with
an acceptable accuracy. Besides, XBeach lacks a module for calculating the retreat of
shoreline.

The displacement of shoreline in a mildly sloped coast is usually calculated through the
lowering of beach elevation of an area, which occurs when the inflowing volume of sediment
is smaller than the inflowing volume of sediment. This method is quite mature for the case
where depth contours are parallel to the coastline.

In nature, the shoreline may be a steep slope or even an almost vertical bank. Among
various causes for the retreat of such a bank, hydrodynamic force is a main factor. Thus
it is meaningful to couple the calculated flow pattern in hydrodynamic module with the
erosion process. Flow velocity near the bank is considered an important parameter for
actual erosion and transport of the bank material.

In this study, we get into the calculation by first considering the shoreline retreat in a
predefined direction (which is perpendicular to the original shoreline). During the retreat
process, the grid cells adjacent to the shoreline change in width, and their width must be
updated after each timestep. The most important issue is that the continuity equation for
these resized cells should remain correct.

The problem is then extended into a “true” 2-D case. Now representing the shoreline
as line segments aligning in either x or y-direction (“staircase” representation of shoreline)
is not enough. Orientation of any shoreline segment should be arbitrary, and so does
the direction of bank retreat. When the shoreline is properly modelled in such detail,
we not only obtain a more accurate shoreline in terms of geometry but also more correct
description of flow field (thus hydrodynamic force) nearshore.

There have been three common methods of representing the boundary (shoreline) in
high details:

• Boundary-conforming grid

• Unstructured conforming grid

• Cartesian cut cell

Nowadays, in 2-D modelling of coastal, estuarine areas and rivers, many software prod-
ucts introduce bank retreat (MIANDRAS, RIPA, MRIPA, MIKE-21C, Delft3D), which is
based on the boundary conforming approach (gridlines are defined to follow the banks).
Boundary-conforming methods, despite having the advantage of following the geometric
boundary quite closely, require a grid generator; and for irregular boundaries it is not easy
to implement.

Another difficulty for this method is that usually there are changes in geometry in
simulation time. This leads to a need for some method of grid adaptation (Mosselman,
2005). Among the above models, MIKE-21C has a sophisticated grid adaptation scheme.
MIANDRAS has a solution of adding/deleting grid points, while other models (RIPA,
MRIPA) suffers from loss of smoothness and orthogonality.
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Unstructured grid systems, based on the mature Finite Element Method (FEM), have
the flexibility in complex geometries; but experience instability in cases where shock waves
occur. A work on unstructured grid of coastal and oceanic waters is (Ham, 2006).

(a) Boundary conforming grid of a river. Source:
(Darby, 2001)

(b) Unstructured grid of a floodplain.
Source: (Bates et al., 2005)

Figure 1.1: Common types of grid in shallow water modelling

The cut cell method does not require a grid generator nor altering the gridlines during
computation as the boundary-conforming method, and it uses simple 2-D arrays to store
data (unlike the unstructured grid system), yet gives reasonably good results. Surprisingly,
a study (Quirk, 1994), found that least attention was paid to the Cartesian cut cell method,
presumably due to its conceptual simplicity.

Nevertheless, for a project that starts from scratch like XBeach, development of a
simple method is encouraged. Hence, in this study we examine the use of cut cell method
in representing flow adjacent to the irregular-shaped shoreline. The erosion rate of the
bank due to flow field can then be estimated, which in turn results in the new position of
shoreline in the next timestep.

Due to the limitation in time, the study offers issues in hydrodynamic computation in a
grid with cut cells. Simple test cases are presented to show that by using cut cell method,
the results can be improved compared with using a “staircase” representation of shoreline.
After receiving reasonable flow field near the shoreline, retreat distance of shoreline within
any cell can be roughly calculated using the procedures similarly to the simple case (whole
shoreline retreats in a predefined direction).

As a test case, simulation was done for the coast of Haihau (a district in Namdinh
province, Vietnam), where the land is bound by a low dike system, and frequently collapses
due to high waves in storms. From 1905 to 1992, the loss of land in Haihau was up to
2.5 km wide within a strip of around 16 km long (Vinh et al., 1996).

In order to protect the land loss, the sea dike system has been improved. Several T-
groins have been built in the area to trap sediment being transported away. In this study
we run the model for simulating the flow field in the groin area during a short time period.
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1.2 Objectives of the study

The study aims to solve following issues:

• Review the mechanism of shoreline erosion due to hydrodynamic forces of alongshore
currents (Chap. 2),

• Defining a new computational scheme to calculate shoreline retreat in a predefined
direction (Chap. 2),

• Implement a module in XBeach which simulates the spatial change of the coastline
due to erosion (App. C),

• Improving the hydrodynamic module of XBeach to compute flow field in case bound-
aries do not follow, but cut through, gridlines (i.e. employing cut cell method)
(Chap. 3),

• Validate the module by running XBeach for several simple cases (Chap. 3).

• Simulate the hydrodynamic process occurring at the groin area in Haihau coast. The
resulting flow field is analysed and recommendations are drawn for the performance
of XBeach (Chap. 3).

1.3 Outline

The thesis is divided into four chapters. We already had an overview of the problem and
defined the aim of study. Before getting into numerical issues, Appendix A provides further
details on XBeach. Then Chapter 2 elaborates on building the hydrodynamic calculation
based on a simple assumption that the shoreline moves in a predefined direction. The
chapter also reviews the mechanism of bank erosion.

In order to model erosion in reality, it is necessary to extend the computation into 2-D
space. Chapter 3 presents a solution using a cut cell approach. Several simple cases are
presented to validate this implementation. Appendix C will provide additional detail in
implementing the code in MatLab.

As a practical situation, the flow field around T-groins in Haihau coast, Namdinh is
investigated. Finally, in Chapter 4, conclusion and recommendations will be mentioned.



Chapter 2

Modelling coastline retreat in one
dimension

In order to model the retreat of the coastline, a module for computing erosion has to be
established in XBeach. This module is executed at the end of each time step, which gathers
the nearshore flow field as input and issues the new position of coastline as an output. We
will investigate the erosion module first, and later the hydrodynamics module. By doing
so, after dealing with flow field we can write a ready-to-run routine which couples the
nearshore hydrodynamic simulation and erosion of shoreline.

Hydrodynamic → Nearshore → Erosion rate
boundary condition flow field or distance

2.1 Physical factors of bank erosion

The retreat of a shoreline depends on the characteristic of the water body and on the
layout and sediment composition of the shore. At coastal zones, the damaging agents can
be either sea level rise, deficit of alongshore sediment transport, overwash during a storm,
or erosion of the bank/cliff. In rivers, the effect of waves are not present, and erosion is
mainly due to floods in the rainy season and relates to soil pore pressure in the dry season.

In this study, we only consider the case with steep shorelines, which resembles a (river)
bank. Failure of the bank can be due to three modes (Fischenich, 1989): 1) hydraulic
forces that remove bed and bank material; 2) geotechnical instability; or 3) a combination
of hydraulic and geotechnical factors.

Mosselman (1992) explains in more detail three causes for an erosive bank as follows:

• Erosion due to excessive shear stress. This directly relates to the alongshore velocity
of the current.

• Degradation of the bed near the bank toe,

• Collapse of the bank in case the bank height exceeds a critical height.

5
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Figure 2.1: Erosion of a cohesive bank (Mosselman, 1992). Retreat distance of bank
contains two components: the entrainment due to longshore current (∆nB), and the com-
ponent due to near-bank bed degradation (∆zb/ tanφ).

Sediment can generally be divided into two types: non-cohesive and cohesive; with dif-
ferent behaviour in erosion. In case of non-cohesive material, erosion is due to entrainment
of discrete particles and can be calculated with Shield’s formula, which is often found in
textbooks such as (van Rijn, 1993).

In this study we concentrate on steep-sloped banks, which are often composed of cohe-
sive material. This type of material is subjected to two types of erosion: (a) the entrainment
of particles/aggregates and (b) the erosion of clusters or lumps. While the former is widely
experimented, mathematical models for the latter are still simple with many assumptions
(Zhu, 2006).

2.1.1 Effect of shear stress on bank

A commonly used formula for the surface erosion rate of cohesive material is mentioned in
Parchure and Mehta (1985):

∂nB
∂t

=




M · τw − τc

τc
for τw > τc,

0 for τw 6 τc
(2.1)

where:

• M is the erodibility coefficient (m/s), which depends on the sediment characteristics,

• τw is the flow shear stress on the bank,

• τc is the critical shear stress,

• nB is the transverse coordinate of the bank (m).
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This formula assumes that erosion rate depends on the difference between τw and τc.
There are also other agents which account for the erosion of bank, such as duration of the
excessive shear stress on bank, number of shear stress peaks and variability of these peaks
(Julian and Torres, 2006), among which the peak of excessive shear stress (τbank − τc)max
is the most dominant factor.

In this study, we only consider the simple case where the magnitude (τw − τc) is the
only factor of erosion. So if τw < τc then no erosion occurs.

Determining M

Partheniades (1965) proposed a formula to estimate the eroded mass of bed material in a
second: E = M∗ (τb − τe)/τe where M∗ is a coefficient depending only on the geotechnical
conditions; in reality M∗ = 10−5 → 5× 10−4 kg/(m2s).

Mosselman (1992) employed the formula of Partheniades and replaces the co-efficient
M∗ with a coefficient M represented in m/s. In a practical case of modelling the Ohře
river (in Czech), M was chosen to be 10−7 m/s.

Winterwerp and van Kesteren (2004) suggested an analogous formula to be applied for
sand (63 – 200 µm), but including additional parameters of grain size such as D50 and cu.

Determining τw and τc

Normally the longitudinal component of the velocity adjacent to the bank is much larger
then the perpendicular one, thus the longitudinal shear stress on the bank, τw can be
calculated as suggested by Lane (1955).

τw = αLτbs (2.2)

where αL = 0.75 for width-to-depth ratios above 5, which is met in the condition of most
water bodies and τbs is the bed shear stress. The formula is equivalent to:

τw = αL
ρgu2

w

C2
(2.3)

where uw is the near-bank velocity and C is the Chézy coefficient.
For the value of τc, Julian and Torres (2006) suggested:

τc = 0.1 + 0.1779(SC%) + 0.0028(SC%)2 − 2.34× 10−5(SC%)3 (2.4)

where SC% is the silt-clay (< 0.063 mm) percentage. For pure sand, τc = 0.1 N/m2.
As an another approach, the average shear stress on the whole channel is derived from

the following basic hydraulic formula:

τ = γRS

where the specific weight of water γ = ρg, hydraulic radius of channel R ≈ h and S is the
surface water slope in channel.
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For shear stress on the river bank, Flintham and Carling (1988) suggests that τbank =
τ ·f(Pbed, Pbank) where Pbed and Pbank are wet perimeters of the bed and bank, respectively,
in a river cross-section. In our case with a coastline they are more difficult to define.

Lane (1953) calculates the critical shear stress on the bank as the shear stress on a
transversal slope in case side slope of the bank is less than the friction angle of sediment
material of bank. The formula can also be found in most books on sediment, such as (van
Rijn, 1993).

An example on calculation of erosion rate due to excessive shear stress

We assume a vertical bank (φ = 90◦) with sediment D50 = 0.2 mm, composed of 90% sand
and 10% clay subjected to a flow velocity v = 0.3 m/s. Assume a Chézy coefficient of
65 m0.5/s.

The cohesive material is characterized by a value M∗ = 10−4 kg/(m2s). Assume that
the clay has an in-situ density γ = 1500 kg/m3 then:

M =
10−4

1500
= 6.7× 10−8m/s.

When calculating with cohesive material, it should be noted that the (buoyancy) weight
of a particle is negligible compared to the attractive force between the particles. Therefore
the shear stress on bank slope can be calculated without the effect of φ.

The shear stress of the slope, calculated after Formula 2.3 is: τw = 0.157 N/m2. The
critical value, calculated after Formula 2.4 is τc = 0.118 N/m2 (→ critical velocity uc =
0.260 m/s). τw > τc, therefore erosion occurs and the calculated rate of erosion is:

E = 6.7× 10−8 · 0.157− 0.118

0.118
= 2.60× 10−8kg/(m2s)

It means that under this condition, we will expect an erosion rate of 2.2 mm/day.

2.1.2 Bed degradation as a cause of bank collapse

Another eroding mechanism is the bank failure due to geotechnical instability. Mosselman
(1992) suggested two types of mass failure due to bed degradation as follows. Firstly, if
the bed lowered by ∆z, in order to maintain the slope angle φ, the bank would retreat a
distance of ∆zb

tanφ
.

∂nB
∂t

=




− 1

tanφ

∂zb
∂t

for
∂zb
∂t

> 0,

0 for
∂zb
∂t
6 0

(2.5)

Secondly, during the erosion process, higher banks are more likely to collapse. The
retreat rate accounting for the erosion due to bank height is:

∂nB
∂t

=




G · H −Hc

Hc

for H > Hc,

0 for H 6 Hc

(2.6)
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where

• G is the erodibility coefficient,

• H is the total bank height, H = hw +Hfb (water depth + free board).

• Hc is the critical bank height

2.1.3 Generalized formula for bank erosion

In case of a coastal area we focus on non-cohesive sediment. However, in general, we can
consider a fraction ω of cohesive material and (1 − ω) of granular material (Mosselman,
1992). Then after erosion, only granular material is deposited on the bed, i.e. contributes
in the (sediment) continuity equation. The rate of additional sediment volume produced
from each length unit of the bank line is:

s = (1− ω)H
∂nB
∂t

For simplicity, in this study we only consider banks with vertical slope (φ = 90◦). Then
the formula for bank retreat is:

∂nB
∂t

= M · τw − τc
τc

+G · H −Hc

Hc

(2.7)

As can be seen in Formula 2.3, τw is proportional to u2
w. Thus we can change Formula

2.7 into:
∂nB
∂t

= M · u
2
w − u2

c

u2
c

+G · H −Hc

Hc

(2.8)

2.2 Modelling the shoreline as a polygon

In current version of XBeach, the shoreline is required to follow the edges of regular,
rectangular grid cells. This is not flexible, as we cannot model the shoreline in an adequate
resolution. So we investigate how it is done in the FLOW module of Delft3D.

2.2.1 Method employed in Delft3D-FLOW

In Delft3D-FLOW, the shoreline is considered as the gridline separating a dry cell (zb >
water level) and a wet cell (zb < water level). The only way to perform shoreline retreat
is to simulate erosion where the dry cell elevation decreases. As soon as the cell elevation
is lower than water level, the cell has transformed from a dry cell into a wet one. It also
means that the shoreline has retreated by one cell width.

Delft3D only modelled this process in an empirical way. Properties such as beach slope,
diameter of sediment are not used; instead, a factor THETSD is employed. THETSD ranges
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Figure 2.2: Representation of sediment transport between wet and dry cells in Delft3D.
Sand is transported from dry cell (lightly shaded) into wet cells (darkly shaded).

from 0 to 1, where a value of 0 corresponds to non-erodible dry cells, and 1 for the case all
effect of erosion in the neighbouring wet cell is transferred to the dry cell.

Thanh (2006) proposed an adjusted coefficient THET which limiting the erosion of dry
cells:

THET = min

(
h1 − SEDTHR

HMAXTH− SEDTHR
· THETSD, THETSD

)

where h1 is the local water depth, SEDTHR is the threshold depth for computing sediment
transport, HMAXTH is parameter set to be larger than SEDTHR, e.g. HMAXTH = -999.

2.2.2 Proposed method for bank displacement in XBeach

The first attempt of approximation is to assume that shoreline moves in straight lines
parallel to x-axis (see Fig. 2.3).

This kind of approximation has an advantage of being simple for being independent of
the hydrodynamic part. It means that we only use the output of hydrodynamic calculation
as source of erosion in each timestep; and the resulting change of shoreline does not affect
the hydrodynamic condition in the next timestep.

Figure 2.3: Schematization of shoreline as a boundary in model

The pseudo-code of this approach can be written as:

For each timestep do
Calculate hydrodynamic condition
Calculate rate of erosion e[j] for j = 1..ny
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Calculate new position of shoreline xshore[j] = xshore[j] + e[j] * dt
End for

Figure 2.4: Extension of the computational domain due to change of shoreline

Despite the simplicity of this method, it is still necessary to adjust the computational
domain as the shoreline retreats. Consider that after some timesteps, the shoreline has
retreated over a distance of more than one grid cell. In order to reflect the system more
correctly, the domain has to be extended one grid cell in width (i.e. x-direction in this
case) (Fig. 2.4).

In this case, the pseudo-code can be described as:

XBound[j] = Boundary of computational domain for j = 1..ny
For each timestep do

Calculate hydrodynamic condition
Calculate rate of erosion e[j] for j = 1..ny
Calculate new position of shoreline xshore[j] = xshore[j] + e[j] * dt
If xshore[j] - XBound[j] > dx then XBound[j] = XBound[j] + dx

End for

This method fixes the problem of a rigid computational domain. Now the erosion rate of
shoreline is computed from better hydrodynamic condition. However, even in this case, the
hydrodynamic calculation is applied to only rectangular cells, which is an approximation. It
would be more accurate if the grid cells can be distorted and follow the shoreline “polygon”.
This will be discussed in Sect. 2.3.

2.3 Displacement of shoreline in x-direction over time

The main point of this approach is to distort the grid cells which the shoreline “polygon”
cuts through. For the first simple case, we assume that the shoreline moves in x-direction,
which means ∆y will always be constant during computation.
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The basic assumption in this approach are:

• Each segment of shore line in a cell has an average retreat distance ∆nB in a com-
putational timestep ∆t.

• This distance is dependent on the v-velocity component of that cell (adjacent to the
shoreline).

• The bank elevation zbank and bed elevation zb are constants in each cell. Bank slope
is vertical.

The shoreline (assumed to run mostly parallel to y-axis) can be roughly split up into
a number of straight segments, each segment is ∆y in length and parallel to y-axis. The
retreat of shoreline is simulated by displacing these segments in x-direction. In this method,
we treat the shoreline in segments, hence the name “piecewise” method.

Alternatively, one can represent the shoreline by finding all the intersection between
the shoreline polygon and gridlines parallel to x-axis. This chain of points (nodes) defines
the shoreline in a “pointwise” way; displacement of shoreline is modelled by moving these
points along the gridlines parallel to x-axis. Next we will discuss the calculation steps in
each method.

2.3.1 “Piecewise” method

This method resembles the “partial step” approach which has been used in discretising
uneven topography (Adcroft et al., 1997). In this method, the modelled shoreline consists
of segments which are parallel to the gridlines (Fig. 2.5). The model is simple in terms
of hydrodynamic computation and we can reconstruct the shoreline by joining the mid-
point of each segment together (point I in Fig. 2.5). Furthermore, as XBeach defines the
bathymetry at the centre of the computational cell, we can get the shoreline vertices (e.g.,
point I) with same y-coordinates as the bathymetry array.

For each segment, we calculate the mean (alongshore) velocity in the adjacent cell as:

vw,i,j =
1

2
(vi,j−1 + vi,j) (2.9)

Denote ∆nB as the retreat distance (perpendicular to shoreline), then after Mosselman
(1992):

∆nB =

(
M · vw − vc

vc
+G · H −Hc

Hc

)
∆t (2.10)

Here ∆t is the morphologic time step, which is magnified fmor times of the hydrody-
namic time step, ∆tmor = fmor ∆thyd.

The new position of shoreline is calculated straightforwardly as in the following pseu-
docode:

Input Initial position of the shoreline
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Figure 2.5: Schematization of coastline in “piecewise” approach.

Figure 2.6: Sand volume ∆V to be eroded.

For each timestep do
Calculate hydrodynamic condition
Calculate retreat distance Dnb[j] for j = 1..ny
Calculate new position of shoreline xshore[j] = xshore[j] + Dnb[j]

End for

Along with erosion of the coastline, material from the eroded coast is transported to
the nearby sea bed, hence causes change in bed elevation. To account for this variation,
we use the continuity equation for sediment.

Suppose V is the volume of sediment in the cell, then ∆Vbank/∆t is the volumetric
erosion rate inside the cell (Fig. 2.6), where:

∆Vbank = ∆nB (zbank − zb) ∆y (2.11)
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Figure 2.7: Schematisation of coastline in the “pointwise” approach.

Based on the sediment balance, the result change in bed elevation is calculated as:

∆zb =
1

Awet

(∑
Sin +

∆Vbank
∆t

)
∆t (2.12)

Here the net sediment transport Sin should be calculated according to the result from
transus module. However, it can be simplified by assuming that there is no gradient in
sediment transport between cells along the coastline, so Sin = 0. Another assumption is
that the clay on bank and after settling to bed have the same porosity.

For cases with multiple shoreline retreat in one uniform direction, the method can
still be applied. For instance, a simple case is a channel running in y-direction with two
simultaneously eroding shorelines. However, this is only a trivial case of shoreline retreat
in two dimensions, which will be discussed in Chap. 3.

2.3.2 “Pointwise” method

This approach, despite its more “natural” representation of shoreline polygon (whose ver-
tices are on gridlines) is computationally more complex. In the pointwise method, the
shoreline within a single cell sized ∆x×∆y has a unique orientation characterized by the
angle α (Fig. 2.7).

In this method, as each shoreline segment is inclined by an angle α, we have to determine
the retreat distance in x-direction:

∆nBx =
∆nB
cosα

Two points on the shoreline, A and B, has different retreat distance, δ1 and δ2, that:

δ1 + δ2 = 2 ∆nBx
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Figure 2.8: Change of cell widths in case the shoreline moves past the gridline

The problem raised above has ny + 1 unknowns, δ1, δ2, . . . , δny+1. On the other hand, we
only have ny equations: δi−1 + δi = ∆nBx,i with i = 2, . . . , ny + 1. If the value of δ1

was initiated and calculation continued as: δi = 2 ∆nBx,i − δi−1 for i = 2, . . . , ny + 1 then
undershoot and overshoot would happen due to instability.

Instead, we work around by calculate δi = 1
2
(∆nBx,i−1 +∆nBx,i) and assign δ1 = ∆nBx,1

and δny+1 = ∆nBx,ny. Then the new x-coordinates of the shoreline, xi are updated with
xi + δi.

The performance of the “piecewise” and “pointwise” methods are quite similar in case
of straight shoreline and will not be presented here. In subsequent sections, however, only
the “piecewise” method is used due to its simplicity.

2.4 Hydrodynamic adjustment for resized grid cells

2.4.1 Continuity and momentum equations

Continuity equation

Finding the new values of xi is the solution for simple, fix grid case (sized ∆x). In case of
a resizing grid, these changes have to be accounted in cell sizes. Since the coastline divides
the cell which it cuts through into two parts, this will narrow the width ∆x of the cells
adjacent to the shoreline.

We consider a uniform grid in x-direction (with grid spacing ∆x∗) at t = 0. During
simulation, width of the wet cells adjacent to the shoreline generally vary in the range (0,
∆x∗] (some adjustments will be mentioned in Sect. 2.4.2). In a time period, the shoreline
may move past a gridline. In this situation, the width of the wet cell exceeds ∆x∗, and the
extra width is assigned for the nearby cell (see Fig. 2.8).

An issue has to be adjusted when dealing with wet cells is that the correction of conti-
nuity equation. As in the continuity equation of XBeach:

∂η

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0

the flux terms are represented as hu and hv, which means that every cell has the same
width and that width is suppressed in the equation.
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Figure 2.9: Staggered grid with variable ∆x. Control volume with dotted line is used for
calculating u-momentum of ui−1/2,j; with solid line: for v-momentum of vi,j−1/2

When dealing with cells of varying width, however, we have to consider the full a
coefficient (δ) accounting for the width of irregular grid cells adjacent to the shoreline has
to be included in the y-component of the flux.

∂η

∂t
+
∂hu

∂x
+
∂(δhv)

∂y
= 0

which results the discretisation as follows:

ηn+1
i,j − ηni,j

∆t
+
hni,ju

n
i,j − hni−1,ju

n
i−1,j

∆xni,j
+
hni,jv

n
i,ja

n
i,j − hni,j−1v

n
i,j−1a

n
i,j−1

∆xni,j∆y
= 0 (2.13)

where the aperture ai,j is the width where flow can pass between two cells (i, j − 1) and
(i, j) (2.10):

ai,j ≡ min (∆xi,j−1,∆xi,j) (2.14)

The only unknown in Eq. 2.13 is ηn+1
i,j . From now on, the superscript n denoting

variables in the time level n will be suppressed for brevity.

Momentum equation

The momentum equations of XBeach read:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −τbx

ρh
− g ∂η

∂x
+
Fx
ρh

(2.15)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −τby

ρh
− g∂η

∂y
+
Fy
ρh

(2.16)
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Figure 2.10: Aperture between cells (i, j) and (i, j + 1)

We have to adjust the discretisation of terms for resized cells. As can be seen from
Fig. 2.9, along distorted cells, the v’s are not aligned in y-direction as in a regular grid;
the same problem holds for η. Therefore, we have to carefully specify the distance between
computational nodes:

(
∂η

∂x

)

i−1/2,j

≈ ηi,j − ηi−1,j

xi,j − xi−1,j

=
ηi,j − ηi−1,j

∆x

2
+
δi,j ∆x

2

where δi,j =
min (∆xi,j−1,∆xi,j)

∆xi,j
( = 1 for the case in Fig. 2.9) .

(
∂v

∂x

)

i,j−1/2

=
vi+1,j−1/2 − vi−1,j−1/2

1
2
(xni+1,j−1 + xi+1,j)− xi−1,j−1/2

2.4.2 The CFL condition

For a regular grid with spacing H, the timestep is chosen, considering stability, as follows:

∆t = CFL ·min
H

|u|+√gh (2.17)

In case narrow cells present, normally we calculate ∆t as:

∆t = CFL ·min

(
∆x

|u|+√gh ,
∆y

|v|+√gh

)
(2.18)

The presence of the term
√
gh requires us to consider both x and y direction in Eq. 2.18.

In cases where
√
gh is negligible, ∆x

|u| and ∆y
|v| have the same order of magnitude even when

∆x is very small. For a simple explanation, refer to (Kleefsman, 2005).
Normally with very narrow cells, ∆x¿ ∆x∗ then also |u| ¿ √gh and

∆x

|u|+√gh ¿
∆y

|v|+√gh
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Figure 2.11: Bathymetry of a simple river used as a test case. The solid arrow shows flow
direction, dotted arrow shows direction of shoreline retreat.

To fix this restriction in timestep we allow a cell width to be a bit greater than ∆x∗,
say a threshold 1.1 ∆x∗. Then when a cell is wider than 1.1 ∆x∗, it is split into two cells
with width ∆x∗ and a small cell whose width is already greater than 0.1 ∆x∗, which will
yield less restriction in ∆t.

2.5 Test cases

2.5.1 Simple test case with straight shoreline

Excess shear stress as the only cause for erosion

We perform a test in MatLab to estimate the distance of shoreline retreat. The computa-
tional domain contains 40 × 40 cells with ∆x = 10 m and ∆y = 25 m, featuring a straight
shoreline of a river with a constant longitudinal slope of 10−4 (Fig. 2.11). The uniform
(transversal) slope of bed is 1 : 100, with elevation ranges from −4 m to −1 m. The bank
(+0.5 m) is covered with grass, with a soil component of 90% sand and 10% clay, which
results in a critical shear stress τc = 0.232 N/m2. The shoreline is taken as the gridline
between cell with elevation −1 m and 0.5 m.

Velocity distribution follows the Chézy’s formula: v = C
√
hi with C = 65 m0.5s−1

and i = 10−4. This results in a nearshore v = 0.65 m/s. On the other hand, the critical
velocity, uc is calculated to be 0.365 m/s. Excess shear stress is the only cause for erosion;
erodibility coefficient M∗ = 10−4 kg/(m2s); which is equivalent to M = 6× 10−8 m/s. The
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morphological factor is set to 1000.
The upstream velocity boundary is of Dirichlet type and calculated according to Chézy’s

formula. The downstream water level boundary is of Neumann type: (∂η/∂y)|y=ny·∆y = −i.
The boundary condition parallel to shore is u = 0 and the effect of waves is not included.
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Figure 2.12: Shoreline retreat distance with ∆t = 6 × 105 s. Alongshore velocity at
t = 7.43× 106 s

Result in Fig. 2.12 shows that initially the shoreline has a uniform retreat rate. For a
longer simulation time, higher retreat distances are observed at the upstream boundary of
the shoreline. The reason is that alongshore velocity is not uniform but decreases in the
downstream direction (Fig. 2.12). It should be noted that the normal flow depth normally
does not occur in natural rivers.

In the study, the upstream boundary is not proper in the sense that it introduce a
slightly larger velocity compared to the whole section. However in case we do not determine
a discharge in the river, an approximation of velocity following Chézy’s formula is used.

Erosion due to excess shear stress and bank collapse

With the previous example, the bank height is 1.5 m. High banks are susceptible to failure
due to geotechnical effect, yet it would be difficult to be modelled properly. An empirical
“critical bank height” of 1 m is chosen. Also the coefficient G is set to be 10−6 m/s; and
mass failure become the dominant factor of bank retreat in this case.

The result (Fig. 2.13) also shows a constant retreat velocity. However in this case, there
is no presence of disturbation from downstreams.

So far the code had been tested for simple cases with uniform flow pattern in y-direction.
The model performed stable even in case narrow cells exist. Next we will test the model
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Figure 2.13: Bank retreat distance due to combined effect of excess shear stress and mass
failure. Alongshore velocity at t = 4.89× 106 s

against the case of a curved shoreline, where the altered flow field may cause different
retreat rate of the shoreline.

2.5.2 Test case – shoreline with a hump

We perform a test case of the previous shoreline with ∆y = ∆x = 10 m. A Gaussian hump
described with the following formula is super-imposed:

x = xbase − hhump · exp

(
−y − y0

l2

)

with xbase = 330 m (≡ base shoreline), y0 = 200 m (midpoint of the shoreline) and para-
metric length l = 3 ∆y = 30 m.

During simulation, highest velocity occurs near the top of hump, 1.60 m/s due to
contraction. The top of hump erodes with fastest speed compared to other positions on
the coastline.

Fig. 2.15 shows the retreat distance of four selected points on the humped part of the
shoreline (corresponding positions are shown in Fig. 2.14b). Point number 21 corresponds
to the top of the hump retreat with the largest distance, as well as the largest retreat rate.
In constrast, point 19 has very small retreat distance due to its small nearshore velocity.
We also notice that after around timestep 1000, the retreat process of selected points seems
to stop; this has to be checked afterwards.
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(a) Velocity pattern (b) Shoreline positions with ∆t = 3 × 106 s.
Positions of four selected profiles are also shown.

Figure 2.14: Simulation of a hump-shaped shoreline.
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Figure 2.15: The retreat distance of four selected points

It can also be seen from Figs. 2.16 & 2.15 that, when the velocities drops below the
critical value then retreat distances of corresponding points remain unchanged.



22 CHAPTER 2. MODELLING COASTLINE RETREAT IN ONE DIMENSION

0 200 400 600 800 1000 1200 1400
−0.5

0

0.5

1

1.5

Timesteps

v(
m

/s
)

 

 
v(19)
v(20)
v(21)
v(22)
v

cr

Figure 2.16: The nearshore velocity of four selected points



Chapter 3

Modelling shoreline retreat in two
dimensions

The simple approach presented above is intuitive, yet has many shortcomings due to its
simplicity. In nature, most shorelines are curve-shaped and therefore subjected to erosion
in both directions. A more proper model should be established. In Computational Fluid
Dynamics (CFD), currently there are two main methods to solve the problem:

• Using a boundary-fitted (boundary conforming), structured/unstructured grid, where
grid cells can be resized during computation; in order to fit the closed boundary of
computational domain with the real physical boundary.

• Using a immersed boundary method, where the closed boundary are polygons cutting
through regular (Cartesian) grid cells. Unlike the former approach, here the grid can
be predefined and independent of the physical geometry.

The use of boundary-fitted grid is well-known for its use in cases with complex geometri-
cal boundaries. Unstructured grid are originated from the widely used finite element/finite
volume method. However, boundary-fitted methods, when applied to modelling area of
strongly varied depth, are susceptible to steep orography (Rosatti et al., 2005). For our ero-
sion problem, remeshing a boundary-fitted grid relates to the matter of efficiency. Van der
Meûlen (2003) suggests that CFD solvers using body-fitted grids often run into trouble
when dealing with complex or moving boundaries, even when the grids are unstructured.

Another drawback of boundary-fitted grids is that they require a mesh generation
process, and this takes a lot of resources, which can total to 25% of the computation
time (Van der Meûlen, 2003). Cut cell methods, in contrary, can be applied to a simple
rectangular Cartesian grid. This kind of grid can be quickly and automatically generated.
During the computation, the grids always remain rectangular, only the state of some
computational cells change. This allows us to get free from remeshing.

The non-conforming boundary method is also derived from Finite Volume Method
(FVM), and therefore intrinsically ensures conservation. The challenge when employing

23
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this method is to discretise the continuity and momentum equations for cells at the bound-
ary, where distorted cells need special treatment in order to give reliable results, preferably
second-order accuracy as with regular cells. Generally there have been two types of ap-
proach to this problem:

• The cut cell method, where the distorted shape of cells has physical significance in
discretisation. Fluxes have to be determined for non-orthogonal cell faces. Elabora-
tion on this can be found in (Kleefsman, 2005; Dröge, 2007).

• The ghost cell immersed boundary method (GCIBM), where the effect of irregular
boundaries are converted into additional mathematical factors, thus discretisation is
made as in the case of regular grid but with these extra factors. This method has
been discussed by Shyy et al. (1996); Ye et al. (1999); Tseng and Ferziger (2003).

The ghost cell method, despite its attractive basis, also requires careful treatment on
special cases where the boundary lies very near gridlines (Tseng and Ferziger, 2003). In this
study we implement the cut cell method. Due to the limitation in time, only discretisation
of continuity equation is considered in detail. In a staggered grid, control volumes for
momentum equation have much more complex configurations and requires much more
effort to treat.

3.1 Modelling the closed boundary

The physical shoreline is modelled as polygon/polyline cutting through grid cells (Fig. 3.1).
The shoreline may be predefined as a set of data points such as (x1, y1), (x2, y2), . . . , (xn, yn),
and our task is to find the intersection between that boundary and the background Carte-
sian mesh (further detail can be found in (Causon et al., 2000)). Being cut by the boundary,
any cell in the grid may fall into one of the following categories: flow cell, cut cell and solid
cell1. Regarding the shape of flow part, a cut cell may fall into one of the three sub-
categories: triangular, trapezoidal and pentagonal (Fig. 3.2). In order to determine the
centroid of cell (see Sect. 3.2), the orientation of flow part in a cut cell is also considered,
and it results in four subtypes for each cell type. An exhaustive classification is mentioned
in (Tu and Ruffin, 2002) (see Fig. B.1).

Given the grid and shoreline polygon, we need to do a preliminary scan in order to
classify the cells in grid. At first, we assign all the cells inside a nx × ny grid to be of flow
type. Then after having the co-ordinates of the land polygon, we can determine which cells
lie inside the polygon; those are the solid cells. The rest are cut cells.

Next, we have to specify the dimensions of cut cells, namely the flow area of cell Ai,j,
relative lengths δ of the flow boundary compared to the cell dimension (see Fig. 3.3). These
δ values have the same physical meaning as in the 1D-case (Sect. 2.3), but to be determined

1Koh et al. (2005) classify the cell into four types. The extra type, called “boundary cell” is a fluid cell
adjacent to a cut cell, whose discretized equations are different from those of “pure” fluid cells.
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Figure 3.1: Representation of shoreline

Figure 3.2: Different cell types.

Figure 3.3: Dimension of a pentagonal cut cell. δ’s are dimensionless quantities representing
the fraction of cell sides which flows exist. In this case, for the left and the upper side of
cell, δi−1/2,j = δi,j+1/2 = 1.

in a slightly different way. Since there are no contractions/expansions of flow between cells,
we do not have to determine minimum width between two cells.

For cell (i, j) we have four values δi−1/2,j, δi+1/2,j, δi,j−1/2 and δi,j+1/2. In a solid cells,
all these δ = 0. In a flow cell, all δ = 1; and a cut cell otherwise. For a cut cell, its type is
determined by the number of δ = 0. Type 3 has two, type 4 has one and type 5 has none.

The cut cell orientation is needed to determine the centroid of the cut cells. Each
cell type (3, 4 or 5) corresponds to four cell subtypes, with the flow part resides on four
different directions (Fig. B.1).

It is not very difficult to automate the task of cell classification when the polygon
is simple in topography. Graphic algorithms to determine the inclusion of a cell inside
a polygon are available, for example the floodfill method, which is based on breadth-
first search algorithm; or the ray-crossing method (O’Rourke, 1994). In this study, we
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will not consider it in detail. For test cases with a small-scale grid, all the work of cell
classification and geometric calculation will be determined by human common sense with
little calculation.

3.2 Modelling hydrodynamic process

An Arakawa-C type staggered grid is established in the computational domain. The integer
nodes, such as (i, j), locate at center of each cell, while half-integer nodes such as (i−1/2, j),
(i+1/2, j), (i, j−1/2) and (i, j+1/2) locate on edges of each cell (Fig. 3.4). Beside the use
of number notation, we also adopt the traditional notation where the considered cell has
the centre node P and its four neighbours (N , S, E, W ) corresponding to four directions.
Lower case letters are reserved for midpoint on cell faces (n, s, e, w).

(a) Half integer nota-
tion(Rosatti et al., 2005)

(b) Directional notation

Figure 3.4: The five-point stencil in a staggered grid.

The water elevation values, ηi,j are positioned at integer nodes, while velocities ui±1/2,j

and vi,j±1/2 are positioned at half-integer nodes. The grid is called staggered as different
components of solution are positioned at different point sets in the computational space.

The similar configuration is applied to a cut cell, but with the cell area and position of
nodes altered (Fig. 3.5). Also, in cell type 4 and 3, nodes on the solid edges are suppressed.

The flow area, A within a cut cell is calculated after Clarke et al. (1986):

A =
1

4
(SxSy + SxDy + SyDx −DxDy)

where S and D are sum and difference, respectively, of flow lengths in x and y directions.

Sx = δw + δe, Sy = δs + δn, Dx = |δw − δe|, Dy = |δs − δn|.



3.2. MODELLING HYDRODYNAMIC PROCESS 27

Figure 3.5: Positions of nodes in cut cells.

Beside the values of δ’s, the orientation of the cell should be specified in order to
correctly locate the centroid of cell. For example, with cut cell type 33 (according to the
classification of Tu and Ruffin (2002)) we have:

{
xP = xw + 1

3
δn∆x

yP = yn + 1
3
δw∆y

where xP and yP are co-ordinates of the cut cell centroid, xw and yn: for the cell edges.

3.2.1 Discretising the continuity equation

The continuity equation for a normal cell P (see Fig. 3.4b) reads:

∂η

∂t
+
∂uh

∂x
+
∂vh

∂y
= 0 (3.1)

Discretise 3.1 using directional notation:

ηn+1
P − ηnP

∆t
+
uneh

n
e − unwhnw
xe − xw +

vnnh
n
n − vns hns
yn − ys = 0 (3.2)

Here all v and h are values in the time level n; from now on this superscript is suppressed
for brevity. The unknown, ηn+1

i,j is then calculated as:

ηn+1
P = ηP − ∆t

∆x
(uehe − uwhw)− ∆t

∆y
(vnhn − vshs) (3.3)

Dealing with a cut cell P , the continuity equations must be rewritten. Denote δn, δs,
δe, δw as relative section of flow on a cut cell edge, AP as the area of cut cell and

ΘP ≡ AP
∆x∆y

as the “dimensionless area”. We consider the flow part of cut cell as a control volume
V with variable water surface level η, boundary S and outer normal vector n, with flux
(discharge) q then the generalized continuity equation for the volume is:

∂

∂t

∫

A

(ηi,j − zb,i,j) dx dy +

∮

S

q · n dS = 0 (3.4)
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where the integrals are evaluated as:

∫

A

(ηi,j − zb,i,j) dx dy = Ai,j (ηi,j − zb,i,j)

∮

S

q · n dS =
∑
n,s,e,w

(velocity) · h · δ · (∆x or ∆y)

Discretising Eq. 3.4 using the above relations:

AP
ηn+1
P − ηP

∆t
+
ueheδe∆y − uwhwδw∆y

xe − xw +
vnhnδn∆x− vshsδs∆x

yn − ys = 0 (3.5)

Subtituting Ai,j = Θi,j∆x∆y yields:

ΘP η
n+1
P = ΘP ηP − ∆t

∆x
(ueheδe − uwhwδw)− ∆t

∆y
(vnhnδn − vwhwδw) (3.6)

So Eq. 3.6 is very similar to Eq. 3.3, the only difference are dimensionless quantities:
Θ and δ. The introduction of Θ gives more convenience to calculation, as other authors
suggested the use of similar concepts: “cell capacity” κi,j (Calhoun and LeVeque, 1999;
Colella et al., 2004), or “volume fraction” Λi,j,k (Pember et al., 1993; Johansen and Colella,
1998).

There remains a problem in Eq. 3.6: how are the values hi±1/2,j and hi,j±1/2 evaluated?
The generalized form is:

hi+1/2 = λhi + (1− λ)hi+1

where the coefficient λ ∈ [0, 1]. This value cannot be arbitrarily chosen, but depends
on the flow itself. Various references, such as (P. W. Hemker; Ferziger and Perić, 2002),
pointed out that in order to acquire stability, the scheme should be upwind, i.e. if point
i is upstreams w.r.t. point i + 1 considering the flow in x-direction, then we should let
hi+1/2 = hi, otherwise we let hi+1/2 = hi+1.

The timestep ∆t is chosen based on the Courant condition, but for different cases
with different cut cell configurations, we use a simple “equivalent grid spacing”

√
Θ ∆x∆y

instead of ∆x and ∆y:

∆t = CFL ·min

√
Θ ∆x∆y

|u|+√gh (3.7)

Certainly, for cut cells in irregular shapes, one have to consider the time restriction
both in x and y direction, see e.g. (Causon et al., 2001; Mingham, 2003). However, our
point is to make as simple as possible, and the condition (3.7) work reasonably well with
the test cases in Sect. 3.3.
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3.2.2 The momentum equations

The momentum equations in general case read:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −τbx

ρh
− g ∂η

∂x
+
Fx
ρh

(3.8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −τby

ρh
− g∂η

∂y
+
Fy
ρh

(3.9)

Discretising momentum equations for cut cells can be difficult due to the various com-
plex types of control volumes for u and v (For detail, refer (Kleefsman, 2005; Dröge, 2007)).
In shallow water flow, advection is an important term, and we will discuss more about it
compared to other terms.

The advection term

We consider the horizontal momentum in a cell with the enclosed boundary S. The cell
has four faces called Se, Sn, Sw, Ss corresponding to the four directions. Then:

Momentum flux ≡
∮

S

(u · n)u dS =

∫

Se

uudy +

∫

Sn

vudx−
∫

Sw

uudy −
∫

Ss

vudx

We evaluate the integrals by first averaging u over each surface to get ūn, ūs, ūe, ūw at
half-integer nodes and to place it outside the integrals.

The u∂u
∂x

(or v ∂v
∂y

) term: Convection term is discretised using the upwind method. For

rectangular cells in “piecewise” method (Sect. 2.3.1), this discretisation seems to work
well inside the hydrodynamic module. However, in cases where cut cells are presented,
the cells are distorted and the location of u values are neither equally spaced nor aligned.
Furthermore, we have to account for the flow fraction between u- and v-CVs.

The v ∂u
∂y

(or u ∂v
∂x

) term: We discretise the term v ∂u
∂y

. In flow cells, it is straightforward
to write: (

v
∂u

∂y

)

i+1/2,j

≈ vi+1/2,j

ui+1/2,j+1 − ui+1/2,j−1

2 ∆y
(3.10)

However with the presence of cut cell, we have to account for the flow fraction. For
instance, in Fig. 3.6, we propose:

v
∂u

∂y

∣∣∣∣
12

≈ v12
u13 − u11

2 ∆y
(3.11)

v
∂u

∂y

∣∣∣∣
22

≈ v22
u23 − u21

3

2
∆y +

δ21

2
∆y

(3.12)

v
∂u

∂y

∣∣∣∣
32

≈ v32
u33 − u32

1

2
∆y +

δ21

2
∆y

(only two CVs 33 and 32 are involved) (3.13)
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Figure 3.6: Schematization for discreting the u∂u
∂y

term

Source terms

In momentum equations, source terms include water gradient force, friction and wave force.
Due to the limitation of this study, we will not consider them in detail. Furthermore, wave
force is excluded from calculation in test cases of Sect. 3.3.

For the water level gradient at cell faces, XBeach currently uses a central approximation:

(
∂η

∂x

)

i+1/2,j

=
ηi+1,j − ηi,j
xi+1,j − xi,j (3.14)

This linear interpolation gives second-order accuracy (Ferziger and Perić, 2002), but only
at interface between two flow cells. In case of a cut cell, the cell centres are not aligned.
Although there are more complex way to discretise this term (e.g. Dröge (2007)), we will
still use this simple approximation.

The friction is computed from averaged values inside the u-CV or v-CV and generally
need no special treatment in a cut cell.

3.2.3 Issues on moving the boundary in a cut cell grid

Along with the hydrodynamic process, the closed boundary constantly displaces due to
erosion. In our model we expect a slow-moving boundary such that little perturbation
is made to the flow field. The shoreline is essentially a reflective, free-slip boundary, i.e.
nearshore velocity is tangential to the shoreline. The shoreline update is done after each
hydrodynamic calculation, and new shoreline is taken into account for calculating flow field
in the next timestep.

The movement of shoreline polygon is represented through movement of individual
control points on cut cell faces. Let us consider a cell (Fig. 3.7) being cut by a polygon
segment A(xa, ya), B(xb, yb) with the midpoint M(xa+xb

2
, ya+yb

2
). Then we are able to find
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Figure 3.7: A shoreline segment within a cut cell

the unit normal vector of cut face n,

n =
ya − yb√

(xa − xb)2 + (ya − yb)2
i− xa − xb√

(xa − xb)2 + (ya − yb)2
j (3.15)

so that n ·AB = 0. Once the retreat distance ∆nB is determined (similarly to Sect. 2.3),
the midpoint is moved to the new position M ′ such that MM′ = −∆nB n.

Simply drawing the new position of shoreline through M ′ and parallel to AB would
not work since different segments of the shoreline retreat in different speeds. We have to
establish a curve joining the M ′

ij points and find the intersections of this new curve with
gridlines to form the shoreline polygon at the new timestep. During the process, there
may be times that a cell changes type in one timestep. This creates new flow fractions
and therefore we have to carefully evaluate these quantities such that water volume is
conserved.

Figure 3.8: Movement of a shoreline segment

Modelling the moving the boundary in a Cartesian cut cell grid is a difficult problem
and we will not go further in this study; instead we do some numerical tests on hydrodyamic
modelling of the cut cells.

3.3 Hydrodynamic test cases

In this part, we examine the flow field in two simple cases using the cut cell method.
The results are then compared to the case of using (regular) “staircase” boundary. The
boundaries are hard, i.e. no erosion and sediment transport is accounted in this section.

3.3.1 Test case of a diagonal channel

Simulation of a straight channel aligned diagonally to gridlines is used widely as a test
for shallow water flow models, such as in (Rosatti et al., 2005; Shyy et al., 1996). Here



32 CHAPTER 3. MODELLING SHORELINE RETREAT IN TWO DIMENSIONS

Figure 3.9: Parameters of the tested diagonal channel

450 500 550 600 650
220

240

260

280

300

320

340

X(m)

Y
(m

)

 

 

0.55

0.6

0.65

0.7

0.75

h(m)

Figure 3.10: Flow pattern in the middle section of channel

we performed a test with a channel making an α = 22.8◦ angle with horizontal gridlines
(Fig. 3.9). The channel is 100 cosα = 92.9 m wide, with uniform bed slope ib = 10−3,
and is supplied by an inflow of 100 m3/s. Gridcell size is ∆x = ∆y = 10 m. Boundary
condition for the inlet is a constant discharge and for the outlet — a constant depth.

This problem on uniform flow has an analytical solution with water depth h0 = 0.618 m
and velocity |v0| = 1.741 m/s, where the steady state is reached. In order to examine the
discretisation error, we would first simulate the flow on square grid cells.

The result (Fig. 3.15) shows that the flow generally follows the channel orientation. On
the centre of channel, the velocity and water elevation is quite uniform, while on the edges
they greatly vary. In the cell corners, water is stagnant giving a rise in water level and a
decrease of velocity.

By comparing the water depth and velocity components (u, v) at all flow cells against
the analytical solution (0.618 m, 1.605 m/s and 0.675 m/s, respectively), we obtain the
result in Table 3.1. The criteria to be used are relative errors l∞ and l2, which are calculated
as:

l∞ =
max |ui,j − ua|

ua
and l2 =

1

N

√√√√∑
i,j

(
ui,j
ua
− 1

)2
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Figure 3.11: u velocity component at 3 consecutive cross-sections compared to the analyt-
ical value (square cell method)

where ui,j is the variable to be calculated at cell (i, j) and ua is its analytical solution.
It should be noted that, although the l∞ relative error is large, the l2 relative error is

much better; since there are a small number of cells near the edge of channel where flow
is severely affected by the “staircase” boundary. The rest cells in the middle of channel
showed quite good flow pattern, with flow direction parallel to the channel axis. The
u velocity component tends to approximate the analytical value |v0| cosα = 1.605 m/s
(Fig. 3.11).

The distribution of depth in the channel (Fig. 3.11) shows shallow water in the corners
of the Southern shoreline.
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Figure 3.12: Distribution of flow depth in channel, staircase method

In this problem where analytical solution is achieved in steady state, it is necessary
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Figure 3.13: Flow field in the middle section of channel obtained from cut cell method

that the advection term is one order smaller than gravity or friction. For the simulation
above, after averaging the gravity (G), friction (F ) and advection term (A) in x direction
for the whole flow domain, we get the ratio G : F : A = 5.8 : 5.4 : 1, implying that the
advection effect is relatively small, which reflects the fact that the flow tends to reach the
uniform state. If advection is excluded from calculation, we obtain the result in Table 3.1.
So without advection, the calculated water depth is improved.

Table 3.1: Error of simulation on square cells
Advection Criterion h u v

Yes
l2 0.0029 0.0077 0.0084
l∞ 0.249 0.839 0.777

No
l2 2.13× 10−4 0.0032 0.0086
l∞ 0.029 0.334 0.801

Next we employ the cut cell description of channel boundary. Of the 1142 cells in the
flow domain, 25% are cut cells and 1.6% are “very small” cells (Θ < 10−4). The typical
∆t for this run is 0.0035 s.

At t = 347 s (nearly steady state), we obtain the flow field shown in Fig. 3.13. The
errors due to cut cell simulation (Table 3.2) is notably smaller than those of staircase
method. The flow profile (Fig. 3.14) is also better modelled, especially for cells near the
boundary.

The work of Rosatti et al. (2005) on the same test case (Table 3.3) shows that the
errors on square cells are of the same magnitude compared to this study. However, their
result on cut cells are much more accurate, presumably because semi-Lagrangian method
is applied in their model.
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Figure 3.14: u velocity component at 3 consecutive cross-sections compared to the analyt-
ical value (cut cell method)

Table 3.2: Error of simulation on cut cells
Advection Criterion h u v

Yes
l2 2.109× 10−4 0.0044 0.0045
l∞ 0.030 0.620 0.621

No
l2 5.56×10−4 0.0024 0.0017
l∞ 0.039 0.381 0.364

Table 3.3: Results of Rosatti et al. (2005)
Case Criterion h u v

Square cells, with advection
l2 n/a n/a n/a
l∞ 0.1 0.56 0.73

Square cells, w/o advection
l2 n/a n/a n/a
l∞ 0.0145 0.4 0.65

Cut cells, with advection
l2 3.2× 10−8 1.6× 10−7 5.31× 10−8

l∞ 6.8× 10−5 3.55× 10−4 0.0253

Cut cells, w/o advection
l2 n/a n/a n/a
l∞ 3.39×10−5 2.2×10−3 2.02×10−2

3.3.2 Test case of a bent channel

A bent channel, with rectangular cross-section, 25 m wide joining two orthogonal straight
channel sections is considered. The bed slope is 0.35×10−3, Chézy coefficient 83.4 m0.5s−1.
The bending curve is 90◦, with inner radius ri = 125 m and outer radius ro = 150 m. Grid
cell size is 5 m for both ∆x and ∆y.

The unit inflow discharge is 0.0617 m2/s. Analytical solution for a straight channel
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Figure 3.15: Parameters of the tested bent channel

with the same cross-section would be h0 = 0.116 m and v0 = 0.532 m/s.
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Figure 3.16: Flow field in the bending section

The resulting flow field (Fig. 3.16) shows that the flow follow the bend properly. This is
a good result considering that the channel width is only 5 ∆x and the flow area comprises
up to 28% cut cells.

The “staircase” method, in comparison, cannot give such reasonable output. Velocity
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near the contraction usually turn in transversal direction, due to the abrupt change in
geometry. This results in an unrealistic flow pattern and therefore cannot be used for our
purpose.
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Figure 3.17: Distribution of depth (m) in bent channel

Regarding the distribution of depth in channel, the cut cell method (Fig. 3.17b) clearly
yields better result compared to the square cell method (Fig. 3.17b). Even only with
smaller CFL, the depth produced by cut cell shows a deeper area in the outer bend, which
cannot be observed in the square cell case.

For this bending channel, no analytical solution is available. However, as suggested by
Rosatti et al. (2005), we can examine the transversal slope in the middle section of the
curved channel. There the flow is assumed to be in static rotation with a parabolic surface.
The difference between water level (or water depth) of outer and inner bend is given by:

∆η =
1

g
v2

0 ln

(
ro
ri

)
= 5.260× 10−3m

The result (Fig. 3.18a) shows that generally the water depth rises from inner to outer
bank as expected. The difference in η is 5.7×10−3 m. Similar to water depth, the velocity
norm |v| also rises in the outward direction (Fig. 3.18b).

Compared to the approximated analytical values, the water depth is over-estimated
in our model. The model also predicts low velocity at the inner bend. However, the
performance when using cut cell method is much better than that of the “staircase” method.
Velocity calculated from the “staircase” method is small, especially cells near the boundary;
while the water depth is too large and is not shown in the figure.

In the test case of a diagonal channel channel, we already see that flow velocity in the
cut cells of the North shoreline is significantly under-estimated. In this test case, velocity
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Figure 3.18: Distribution of flow in the bent cross-section.

in the cut cells of the inner bend is too low. The common point in both cases is the
velocity tends to reduce when flow gets in a “narrowing” cut cell. The problem possibly
lies in the upwind discretisation of the advection terms. In this study, we will not examine
this problem further. A concluding remark in this section is that by applying the cut cell
method with appropriate treatments to the continuity and momentum equations, one can
simulate the flow within irregular computational domain with better accuracy compared
to a conventional “staircase” approach.

3.4 Flow pattern around T-groins in Haihau

3.4.1 The coast of Haihau

Topography and sediment

The coastline in Haihau — 27 km in length — has been experiencing severe erosion. At
the erosion sites, the beach is narrow, only 100 – 200 m at low tide. The erosion rate, as
provided by the Provincial Dike Department in Namdinh, is around 10 m/year around the
period 1973–1990, which is quite alarming.

The beach of Namdinh contains fine-grained sand, with diameter from 0.1 mm to
0.15 mm. The thickness of this layer ranges from 0.5 m to 2.0 m. Samples analysed by
Namdinh Sea Dike Service Department, 2001 showed that 98% of sediment belongs to sand
types, the remaining 2% is of silt type (D50 = 0.157 mm, D85 = 0.199 mm).

Climate and meteorology

Namdinh is in tropical monsoon area with an annual average rainfall of 1600 – 1800 mm,
85% of which occurs in rainy season (from April to October). Typhoon and storms are
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(a) Shoreline of Namdinh and Haihau district (b) Groin field in Haihau under wave attack

Figure 3.19: The coast of Namdinh.

frequent between July and October. During the period 1911 – 1965, the region had ex-
perienced 40 typhoons. Strong typhoons usually originate in the West of Pacific Ocean,
travelling through the Philippines. The average number of typhoons per year is around 5;
however 10 typhoons were observed in each year 1964, 1973 and 1989. Typhoon Nikki hit
Namdinh in 1996, causing a surge of 3.11 m.

3.4.2 Hydrodynamic boundary conditions

Tides

Based on the tidal map of Vietnam, Namdinh has an irregular diurnal tidal scheme with
tidal range varying from 3 – 4 m. Data of Vietnamese Water Resources Institute, 2002
shows that extreme tidal current offshore of Van Ly village (in Haihau) is 0.45 m/s with
a direction 310◦ w.r.t. N in flood tide, and 0.37 m/s with a direction 159◦ w.r.t. N in ebb
tide.

Also in Van Ly, measured data in 19 years gives an MSL of 185 cm CD, max. HW
345 cm CD and min. LW −7 cm CD.

Field observations done by Hung et al. (2002) revealed that longshore current of Nam-
dinh coast has an average velocity from 0.2 to 0.4 m/s and a maximum of 0.7 to 1.0 m/s
at the depth of 2.5 m. The figures include tide-induced velocity. Longshore currents
south-westwards in winter and north-eastwards in summer.

Wind and wave

There are two periods in a year in which wind blows in different directions. In winter
time (from October to March), the dominant wind direction are north, northeast and east.
In summer (from May to August), the dominant wind direction are south, southeast and
southwest.
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Together with long wind fetch, the wave height can be large, especially in typhoons.
Observations in 1975 – 1987 showed that:

• In winter (from September to March), the sea was much rougher than in summer.
Wave height is about 0.8 m - 1.0 m, with periods varying from 7 to 10 seconds.
Predominant wave direction was northeast, and makes angles of about 30◦ to 45◦

with the shoreline.

• In summer (from April to August), there are fewer days with rough sea. However,
strong storms usually happen in this season causing severe damage to the dike system.
Average wave height varies from 0.65 m to 1.0 m with period ranging from 5 to 7
seconds. The prevailing wave direction is south and southeast.

3.4.3 Model set-up

Bathymetry

Namdinh has a system of sea dikes, with average crest elevation of 5.5 m. In calculation,
the sea dikes can only withstand stroms with wind of 9 Beaufort scale and tidal water
level of 5%-quantile. Along with upgrading the dike body, alternative measures have been
taken to protect the erosion of foreshore which negatively affects the toe of dike. In Van
Ly, five T-groins had been built to protect foreshore erosion (Fig. 3.20). This is the area
to be modelled.

Figure 3.20: Simulation area
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Table 3.4: Average wave height, period and number of waves for different directions,
measured at 17 m depth contour offshore Haihau, Namdinh (Hung et al., 2001)

N NNE NE ENE E ESE SE SSE S Calm
Hm0 (m) 1.22 1.60 2.05 1.47 1.35 1.15 1.54 1.99 1.73 -
T (s) 5.0 6.0 7.0 6.0 6.0 6.0 6.0 8.0 7.0 -
NR 1604 3211 7962 1466 3054 972 1850 1415 4922 2028

A map of the area is available with the scale 1:500. It covers a coastline length about
1800 m. The width of surfzone to be measured on the map is only 100 m, corresponding
to a water depth of 2 m (in case of LW).

It can be seen that before the dike was built, the land has an elevation of around 1.5 m
(depths of map are in + m CD). However, since we do not have bathymetry data of the site
before groins were built, only simulation of flow pattern are performed instead of modelling
the retreat process of shoreline.

Groins are made of big concrete structures, typically 1.5 m to 2 m above CD, with
a length of 55 m, width of T-bars 60 m, and crest width of 2 m. The space between
two consecutive groins is 275 m. Without the protection of groins, the land behind with
elevation from +1 to 1.5 m CD would be eroded by longshore currents, and especially, by
waves in severe storms.

The coast orientation is 65◦ w.r.t. North. We superimposed a grid consisting of 45 ×
157 cells, with cell size of 5 m × 5 m. The x-axis points landwards, and the y-axis tends
to go along the dike route. By defining this grid, the coastline is nearly straight compared
to y direction.

The foreshore slope is quite mild, and applying the cut cell method for the shoreline is
not feasible. However, for the groins where the slope of these constructions is substantial,
we can assign them with solid cell type. The flow fraction between these cells and sur-
rounding flow cells are set to 0; which means that the boundary between the groins and
water is fixed; groins are never eroded (Fig. 3.21).

Wave data

For long term wave statistics, observed data (Table 3.4) is available at depth contours 17 m
offshore Haihau (Hung et al., 2001).

For testing purpose we simulate the flow pattern in several simple cases where we
assume a steady hydrodynamic boundary. For waves we choose two scenarios:

• Waves coming from the South with Hrms = 1.2 m (corresponding to Hm0 = 1.73 m
in Table 3.4 at the local depth h = 17 m). The wave incident angle is θ0 = 25◦ and
wave period is T = 7.0 s.

• Waves coming from the East with Hrms = 0.93 m (corresponding to Hm0 = 2.05 m
in Table 3.4 at the local depth h = 17 m); θ0 = −65◦ and T = 6.0 s.
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Figure 3.21: Flow fractions between groins and surrounding flow cells (marked with thick
lines) are set to zero.

3.4.4 Results

Fig. 3.22 shows that wave height increases shorewards, which resembles the wave shoaling
phenomenon. The pattern of water surface elevation shows set-down and set-up of water
surface level. Velocity in y-direction, as the main component of longshore current, directs
from South to North in the computational co-ordinate system, with highest value reaching
2 m/s.

Fig. 3.23 shows flow field around the groins in different scenarios.
Fig. 3.24 presents the case with low water, in which the longshore current is bended

near the head of each groin, along with rip currents.
Through the example of simulating flow around the groins in Haihau, we can see that

XBeach can handle quite complex geometry. In principle, we can couple the cut cell method
inside a conventional whole cell XBeach model and make use of the new hydrodynamic
module with the existing transus/bed update modules. Therefore, it is hopefully that
XBeach can be applied with real applications.
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Figure 3.22: Result of simulation with wave from the South and low water at t = 300 s

(a) South, LW (b) West, LW

Figure 3.23: Simulated flow field in different wave and water level scenarios.
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Figure 3.24: Flow pattern among the groins at t = 300 s



Chapter 4

Conclusion

4.1 Discussion on result

In this study, we have examined a method of simulating the flowfield near a vertical bankline
in a 2-D model. The retreat process of bankline is computed in the 1-D case in coupling
with the hydrodynamic-sediment transport process. For 2-D representation of shoreline,
hydrodynamic tests were done using cut cell method.

1. Calculation on the retreat of a shoreline in a predefined direction show stable result,
even in case of shoreline with a hump and the retreat distance is significant. It means
that when feedback to hydrodynamic condition is substantial, the model continues
to work without producing spurious results. An issue to be improved is calculating
the retreat rate near the boundary.

2. Hydrodynamic tests on cut cell has shown better result compared to the whole cell
calculation. Not only is the boundary more correct geometrically but we can also
get more accurate flow field near the bank. Assuming a free-slip boundary condition
and by adjusting descretisation part of advection term, we get velocity vector nearly
tangential to the shoreline. However, the magnitude of these velocity should further
be examined.

3. A test case for Haihau coast, Vietnam shows that XBeach can operate with complex
topography. Although the cut cells are not presented in the test case, it would work
in principle and give more realistic results.

4.2 Further study

Although reasonable solutions are made during computation, there are still many features
which can be done to improve the model:

1. More proper treatment for advection term: Currently used upwind method helps avoid
employing a Riemann solver; however the method is only first-order accurate. In the
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test of diagonal channel (Sect. 3.3.1), different flow velocities were found nearby two
banks, from which we can question the effect of upwind method, since the type of
upwind cells are different in these banks.

2. Validate the model by further tests / Calibrate the model using measured data: We
need to validate the performance of hydrodynamic calculations in various cases, pre-
ferrably with analytical solution.

3. Account for waves, wind shear stress, Coriolis force: Different forces can be treated
in the momentum equations in a similar manner to currently accounted components,
e.g. water surface slope and friction.

4. (Semi-)implicit scheme or using Runge-Kutta method: The restriction in time step
of an explicit model may require excessive computational resource. In our tests, the
running time for the diagonal channel (with only 100 × 55 = 5500 cells) is even longer
than that of the bent channel (80 × 80 = 6400 cells), due to the existence of some
cells with tiny size leading to very small ∆t. Implicit schemes can help overcome this
difficulty.

5. Grid refinement: Usually the cut cell method does not provide sufficient accuracy if
the shoreline bends too sharply. We already see that water depth distribution in the
case of bent channel is not as good as straight channel. Refinement methods, which
reduces cell size locally in the zone of high gradient, is a solution to the problem.
Computational aspects of refinement can be found in e.g. (Wackers, 2003).

6. Account for different types of shoreline: We only considered the case where the bank is
vertical and therefore the top and toe of bank coincide, where shoreline can represent
as a single polyline. If the shore is considered as a sloped zone, we may need to have
different polylines for bank top and bank toe (Mosselman, 2005).



Appendix A

Overview of XBeach model

A.1 Basic characteristics of a coastal morphodynamic

model

In pure hydrodynamic models, only flows are simulated and partial derivation equations
(PDEs) are solved using either an explicit scheme or implicit scheme. In these cases, the
bottom (bed) of channel or coastal body is considered to be fixed, i.e.

∂zb
∂t

= 0

Thus the bed is considered “closed boundary”, along with the “open” boundaries.
Hydro-morphological models, on the other hand, simulate the variation of bed levels.

So along with the hydrodynamic process, the elevation of bed, (zb) changes. This change
in turn affects the flow condition. Thus, hydrodynamic and morphologic processes interact
with each other.

A common way to think in developing a hydro-morphological model is that after cal-
culating the flow field, the rate of sediment transport (S) is calculated. Then using the
sediment balance, it is able to estimate the change in bed elevation (∆zb) within a time
step (∆t). So the new bed elevation (zb + ∆zb) is updated, which effects the flow depth h.

In reality, the change in bathymetry is usually very small compared to change in flow.
Thus it is also reasonable to update the bathymetry once every a number of flow timesteps.
The “tide-averaging approach” and “RAM approach” are typical methods of such kind.
They are discussed in (Roelvink, 2006).

Also in his article, Roelvink (2006) showed that there are also other effective approaches,
named “online” and “parallel online”, where sediment transport and bottom updating are
calculated at the same time steps as the flow field. However, as there is a difference in time
scale between flow and morphology, a coefficient should be considered – the “morphological
factor” (Lesser et al., 2004). By using a morphological factor n, the change in bed level
calculated in the model multiplied by n, which represents the morphological changes over
n cycles. See Figure A.1.
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Figure A.1: Flow diagram of “online” morphodynamic model setup. (Roelvink, 2006)

This ‘online’ method is applied in XBeach. The use of ‘online’ approach has an ad-
vantage of ability to represent short-term processes which make it easy to inculde various
interactions between flow, sediment and morphology (Roelvink, 2006).

A.2 Components in XBeach model

The program XBeach consists of a main MatLab script, xbeach.m, and a number of func-
tions that operate on two structures:

• par – this contains general input parameters

• s – this contains all the arrays for a given computational domain, i.e. the “state” of
system during computation

As a typical implementation in MatLab, XBeach are divided into many modules that
operate on the structures s and par. A schematization of XBeach modules is described in
Figure A.2.

The following sections give an overview on numerical calculation in each module of
XBeach. Due to the limitation of space, we focus on the hydrodynamic module. Wave
action and sediment transport are slightly mentioned.

A.3 Hydrodynamic module

A.3.1 Equations

XBeach uses shallow water equations, Coriolis and horizontal diffusion terms are neglected.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −τbx

ρh
− g ∂η

∂x
+
Fx
ρh

(A.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −τby

ρh
− g∂η

∂y
+
Fy
ρh

(A.2)

∂η

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0 (A.3)
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Module name Description
wave input initializes structure par containing wave input parameters
flow input appends flow parameters into structure par

sed input appends sediment parameters into structure par

grid bathy creates grid and bathymetry, then store them iin structure s

wave dist creates initial directional spectrum at sea boundary
flow init initializes arrays (as elements of s) for flow computations
sed init initializes arrays (as elements of s) for sediment computations
wave bc wave boundary conditions update, each timestep
flow bc flow boundary conditions update, each timestep
wave timestep calculation of wave in one timestep
flow timestep calculation of flow in one timestep
transus calculation of suspended transport in one timestep
bed update calculation of new bed level in one timestep

Table A.1: List of modules in XBeach program

Figure A.2: Schematization of XBeach model

where h is the water depth; u, v are velocities in x, y directions, τbx and τby are bed shear
stress components; g is the acceleration of gravity, η is the water level and Fx, Fy are the
wave-induced stresses.

A.3.2 Discretisation

A staggered grid is applied, with bed levels (zb) and water levels (zs) are defined in the cen-
tre of cells, and velocities components (u, v) at the cell interfaces (the Arakawa-C scheme).
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Figure A.3: Left figure: The staggered grid system used in Delft3D-FLOW. • : depth
points, + : water level points, − : u-velocity points, : v-velocity points. All
the points in a highlighted squares have the same index in computation. Right figure: a
computational cell is highlighted. (Delft Hydraulics, 2005).

This grid is analogous to that used in Delft3D-FLOW module, the only difference is in
XBeach, the depth points and water level points are identical.

Let nx and ny be the number cells in both directions, then water level points are
numbered from 1 to nx + 1 and from 1 to ny + 1.

The gradient of water level between two adjacent cells are computed as:

(
∂η

∂x

)

i,j

=
ηi+1,j − ηi,j
xi+1,j − xi,j

(
∂η

∂y

)

i,j

=
ηi,j+1 − ηi,j
yi,j+1 − yi,j

The water depth in each cell centre is computed as:

hi,j = ηi,j − zb,i,j

The advection terms of equations are discretized using the upwind method. Since XBeach
implements an explicit scheme, the upwind method is a pre-requisite for stability. Addi-
tional information can be referred in (P. W. Hemker).

For choosing depth at edges of cells, we have to cope with a discontinuity of elevation
since each cell has its own depth hi,j. If there is substantial change in elevation there would
be analogous to the case of flow contraction and expansion, where Stelling and Duinmeijer
(2003) presented an effecient treatment.

Principle of the upwind method for the depths in continuity equation is to apply the
depth of upwind cell when u is noticeable, i.e. |u| > umin (where umin is a predefined
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minimum velocity), and the avarage depth of two cells otherwise:

hu,i,j =





hi,j if ui,j > umin

hi+1,j if ui,j < −umin
1
2
(hi,j + hi+1,j) if |ui,j| < umin

For u∂u
∂x

we have:

u
∂u

∂x
=

1

2

hu,i,jui,j + hu,i−1,jui−1,j

hmu,i,j

uni,j − uni−1,j

xni,j − xni−1,j

for uni,j > 0

u
∂u

∂x
=

1

2

hu,i,jui,j + hu,i+1,jui+1,j

hmu,i,j

uni+1,j − uni,j
xni+1,j − xni,j

for uni,j < 0

v
∂un

∂y
= vnu,i,j ·

uni,j+1 − uni,j−1

yni,j+1 − yni,j−1

Similar discretization applies for v ∂v
∂y

and u ∂v
∂x

.
The momentum equations are discretized as:

un+1
i,j − uni,j

∆t
= −u ∂u

n

∂xi,j
− v ∂u

n

∂yi,j
−
guni,j

√
uni,j

2 + vnu,i,j
2

hnu,i,jC
2

− g η
n
i+1,j − ηni,j
xi+1,j − xi,j +

Fx,i,j
ρhu,i,j

(A.4)

vn+1
i,j − vni,j

∆t
= −v ∂v

n

∂yi,j
− u ∂v

n

∂xi,j
−
gvni,j

√
unv,i,j

2 + vni,j
2

hnv,i,jC
2

− gη
n
i+1,j − ηni,j
yi,j+1 − yi,j +

Fy,i,j
ρhv,i,j

(A.5)

After computing velocities un+1
i,j and vn+1

i,j at the new time step, the water level is then
updated basing on the continuity equation (A.3). The problem is the discretized value of
h in equation.

ηn+1
i,j − ηni,j

∆t
= −u

n+1
i,j hni,j − un+1

i−1,jh
n
i−1,j

xu,i,j − xu,i−1,j

− vn+1
i,j hni,j − vn+1

i,j−1h
n
i,j−1

yv,i,j − yv,i,j−1

A.3.3 Use of Generalized Lagrangian Mean method

It is noted that in case that waves present, velocities in momentum equations are in La-
grangian form (uL, vL) instead of the usual Eulerian form (uE, vE):

uL = uE + uS and vL = vE + vS

where uS and vS are Stokes drift in x and y directions:

uS =
Ew cos θ

ρhc
and vS =

Ew sin θ

ρhc

An exceptional use of Eulerian velocities is in bed shear stress calculation: τb =
f(uE, vE).
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A.4 Sediment transport module

The continuity equation for sediment reads:

∂zb
∂t

+
∂Sx
∂x

+
∂Sy
∂y

= 0 (A.6)

In computation, it is discretized using a morphological factor fmor:

zn+1
b,i,j − znb,i,j

∆t
+ fmor

[
Snx,i,j − Snx,i−1,j

∆x
+
Sny,i,j − Sny,i,j−1

∆y

]
= 0 (A.7)

∂hC

∂t
+
∂hCuE

∂x
+
∂hCvE

∂y
+

∂

∂x

[
Dhh

∂C

∂x

]
+

∂

∂y

[
Dhh

∂C

∂y

]
=
hCeq − hC

Ts
(A.8)

A.5 Avalanching

Whenever the slope of bed exceeds a predefined critical slope mcr, the avalanching process
occurs. Sediment from cell with higher elevation drops to cell with lower elevation.

In computation, bed slope regarding in x-direction is estimated as:

∂zb
∂x

=
zb,i+1,j − zb,i,j

∆x

If this slope exceeds the critical value then the change in bed elevation is:

∆zb = min

((∣∣∣∣
∂zb
∂x

∣∣∣∣−mcr

)
∆x, 0.005

)

This change will be only 0.005 m by maximum. The new bed elevation are:

zn+1
b,i,j = znb,i,j + ∆zb,i,j

zn+1
b,i+1,j = znb,i+1,j −∆zb,i,j



Appendix B

Classification of cut cells

Figure B.1: Classification of cut cells (Tu and Ruffin, 2002). wet part in a cell is shaded
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Appendix C

MatLab code

For 1-D case, we add a shoreline module to track the position of shoreline over time. This
module is placed after the flow timestep module and is invoked in each computational
iteration.

For 2-D case, we improved the flow timestep to deal with cut cell. Continuity and
momentum equations are adjusted accounting for the factors Θ and δ. For the initial
bathymetry, Θ and δ are prescribed in grid bathy.

C.1 Hydrodynamic module (2-D)

• Additional parameters: Th(1:nx,1:ny) (Θ), delta u(1:nx,1:ny) (δw or δe);
delta v(1:nx,1:ny) (δn or δs)

• Additional state variables: [None]

C.2 Shoreline module (1-D)

• Parameters: E, G, Hc

• State variables: Dnb(1:ny) (∆nB), DV, DAwet, Dzb, zbank, Hfb(1:ny) vmid(1:ny);
x(1:ny) (x co-ordinates of shoreline).
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