123 research outputs found

    On robustness of phase resetting to cell division under entrainment

    Get PDF
    International audienceThe problem of phase synchronization for a population of genetic oscillators (circadian clocks, synthetic oscillators, etc.) is considered in this paper, taking into account a cell division process and a common entrainment input in the population. The proposed analysis approach is based on the Phase Response Curve (PRC) model of an oscillator (the first order reduced model obtained for the linearized system and inputs with infinitesimal amplitude). The occurrence of cell division introduces state resetting in the model, placing it in the class of hybrid systems. It is shown that without common entraining input in all oscillators, the cell division acts as a disturbance causing phase drift, while the presence of entrainment guarantees boundedness of synchronization phase errors in the population. The performance of the obtained solutions is demonstrated via computer experiments for two different models of circadian/genetic oscillators (Neurospora's circadian oscillation model and the repressilator)

    Piecewise Linear Dynamical Systems: From Nodes to Networks

    Get PDF
    Piecewise linear (PWL) modelling has many useful applications in the applied sciences. Although the number of techniques for analysing nonsmooth systems has grown in recent years, this has typically focused on low dimensional systems and relatively little attention has been paid to networks. We aim to redress this balance with a focus on synchronous oscillatory network states. For networks with smooth nodal components, weak coupling theory, phase-amplitude reductions, and the master stability function are standard methodologies to assess the stability of the synchronous state. However, when network elements have some degree of nonsmoothness, these tools cannot be directly used and a more careful treatment is required. The work in this thesis addresses this challenge and shows how the use of saltation operators allows for an appropriate treatment of networks of PWL oscillators. This is used to augment all the aforementioned methods. The power of this formalism is illustrated by application to network problems ranging from mechanics to neuroscience

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area
    • …
    corecore