12 research outputs found

    Design of a Memristor-based Chattering Free Sliding Mode Controller and Speed Control of the BLDC Motor

    Get PDF
    In this study, a memristor-based sliding mode controller (Mem-SMC) was designed for speed control of BLDC motor and the performance of the controller was tested in simulation. The sliding mode controller, known for its robustness against disturbances and parameter variations, was designed with a memristor known as a missing circuit element. Simulation results show that the proposed controller is successful in the speed reference tracking and is also able to respond quickly to sudden changes in the reference

    High Precision Control of Flux Switching Linear Rotary Machine for Reelwinder

    Full text link
    Since there is still large amplitude of the detent force of a flux switching linear rotary machine, the response time is long using space vector pulse width modulation control method when it works in linear motion at low speed. In order to reduce the disturbances, the sliding mode control method is adopted both in linear and rotary motions direction. An improved two degree of freedom permanent magnet flux linkage sliding mode observer is designed, which can suppress the torque and thrust pulsation of the motor and retain the torque and thrust output capacity. The stability and accuracy of the system have been greatly improved, which are verified by the experiment test

    Diffusive representation and sliding mode control of charge trapping in Al2O3MOS capacitors

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The objective of this paper is to introduce a modeling strategy to characterize the dynamics of the charge trapped in the dielectric of MOS capacitors, using Diffusive Representation. Experimental corroboration is presented with MOS capacitors made of Alumina in three different scenarios. First, the model predictions are compared with the trapped charge evolution due to arbitrary voltage excitation. Second, the predictions are compared with the measurements of a device in which a sigma-delta control of trapped charge is implemented. Finally, the time evolution when the device is simultaneously controlled and irradiated with X-rays is compared with the predictions. In all cases, a good matching between the models and the measurements is obtained.Peer ReviewedPostprint (author's final draft

    Disturbance observer design for nonlinear systems represented by input-output models

    Get PDF
    A new approach to the design of nonlinear disturbance observers for a class of nonlinear systems described by inputoutput differential equations is presented in this paper. In contrast with established forms of nonlinear disturbance observers, the most important feature of this new type of disturbance observer is that only measurement of the output variable is required, rather than the state variables. An inverse simulation model is first constructed based on knowledge of the structure and parameters of a conventional model of the system. The disturbance can then be estimated by comparing the output of the inverse model and the input of the original nonlinear system. Mathematical analysis demonstrates the convergence of this new form of nonlinear disturbance observer. The approach has been applied to disturbance estimation for a linear system and a new form of linear disturbance observer has been developed. The differences between the proposed linear disturbance observer and the conventional form of frequency-domain disturbance observer are discussed through a numerical example. Finally, the nonlinear disturbance observer design method is illustrated through an application involving a simulation of a jacketed continuous stirred tank reactor syste

    GestureMoRo: an algorithm for autonomous mobile robot teleoperation based on gesture recognition

    Get PDF
    Gestures are a common way people communicate. Gesture-based teleoperation control systems tend to be simple to operate and suitable for most people’s daily use. This paper employed a LeapMotion sensor to develop a mobile robot control system based on gesture recognition, which mainly established connections through a client/server structure. The principles of gesture recognition in the system were studied and the relevant self-investigated algorithms—GestureMoRo, for the association between gestures and mobile robots were designed. Moreover, in order to avoid the unstably fluctuated movement of the mobile robot caused by palm shaking, the Gaussian filter algorithm was used to smooth and denoise the collected gesture data, which effectively improved the robustness and stability of the mobile robot’s locomotion. Finally, the teleoperation control strategy of the gesture to the WATER2 mobile robot was realized, and the effectiveness and practicability of the designed system were verified through multiple experiments

    Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems

    Get PDF
    Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural networks (NNs) or fuzzy logic systems (FLSs) used to accommodate uncertainties also impose demanding computational cost and sluggish convergence. To address these issues, this paper proposes a new output-feedback control for uncertain pure-feedback systems without using backstepping and function approximator. A coordinate transform is first used to represent the pure-feedback system in a canonical form to evade using the backstepping or DSC scheme. Then the Levant's differentiator is used to reconstruct the unknown states of the derived canonical system. Finally, a new unknown system dynamics estimator with only one tuning parameter is developed to compensate for the lumped unknown dynamics in the feedback control. This leads to an alternative, simple approximation-free control method for pure-feedback systems, where only the system output needs to be measured. The stability of the closed-loop control system, including the unknown dynamics estimator and the feedback control is proved. Comparative simulations and experiments based on a PMSM test-rig are carried out to test and validate the effectiveness of the proposed method

    Discrete-Time Fast Terminal Sliding Mode Control for Permanent Magnet Linear Motor

    No full text
    The main objective of this paper is to solve the position tracking control problem for the permanent magnet linear motor by using the discrete-time fast terminal sliding mode control (SMC) method. Specifically, based on Euler's discretization technique, the approximate discrete-time model is first obtained and analyzed. Then, by introducing a new type of discrete-time fast terminal sliding surface, an improved discrete-time fast SMC method is developed and an equivalent-control-based fast terminal SMC law is subsequently designed. Rigorous analysis is provided to demonstrate that the fast terminal SMC law can offer a higher accuracy than the traditional linear SMC law. Numerical simulations and experimental results are finally performed to demonstrate the effectiveness of the proposed approach and show the advantages of the present discrete-time fast terminal SMC approach over some existing approaches, such as discrete-time linear sliding mode control approach and the PID control method

    Synchronous control of double-containers for overhead crane

    Get PDF
    The development and wide application of double spreaders overhead cranes have effectively improved the loading and unloading efficiency of the container terminals. However, due to the nonlinear time-varying characteristics and parameter perturbation of the lifting device of the double spreaders, the difficulty of synchronous and coordinated control of the double spreader overhead crane is increased. In order to solve the problem of synchronous control of double spreaders overhead cranes, this work establishes the mathematical model of the double spreaders overhead crane and proposes two main methods. The controller based on the fuzzy sliding mode method is established. Fuzzy logic control can effective estimate the parameters of the system, reduce the chattering of sliding mode control, and improve the performance of its control. Mean deviation coupling synchronization control combined with sliding mode control can effectively control the speed error between the two spreaders, so that they can keep working synchronously. The other controller is established which use fast non-singular terminal sliding mode control to ensure that the system can converge in a finite time. The combination of terminal sliding mode control and super twisting algorithm can enhance the stability of the system.O desenvolvimento e a vasta aplicação de pontes rolantes de duplo espalhamento tem melhorado a eficiência de carga e descarga dos terminais de contentores. No entanto devido ao facto das variações não lineares do tempo e a perturbação dos parâmetros do dispositivo de elevação de duplo espalhamento, é dificultado o controlo sincronizado e coordenado. Com o objetivo de resolver o problema do controlo síncrono das pontes rolantes de duplo espalhamento, este projeto usa o modelo matemático do guindaste de dupla propagação e propõe dois métodos de resolução. O controlo baseado no método do modo deslizante difuso. O controlo lógico difuso pode estimar eficazmente os parâmetros do sistema, reduzir a vibração do controlo do modo deslizante e melhorar o seu desempenho. O control de sincronização do acoplamento do desvio médio, combinado com o control do modo deslizante que pode controlar eficazmente o erro de velocidade entre os dois espalhadores, para que o seu trabalho possa continuar de forma síncrona. O outro controlador usa um controlo rápido e não singular do modo de deslizamento do terminal para garantir que o sistema possa convergir num tempo limitado. A combinação do control no modo deslizante do terminal e do algoritmo de super rotação pode melhorar a estabilidade do sistema

    Sigma-Delta control of charge trapping in heterogeneous devices

    Get PDF
    Dielectric charging represents a major reliability issue in a variety of semiconductor devices. The accumulation of charge in dielectric layers of a device often alters its performance, affecting its circuital features and even reducing its effective lifetime. Although several contributions have been made in order to mitigate the undesired effects of charge trapping on circuit performance, dielectric charge trapping still remains an open reliability issue in several applications. The research work underlying this Thesis mainly focuses on the design, analysis and experimental validation of control strategies to compensate dielectric charging in heterogeneous devices. These control methods are based on the application of specifically designed voltage waveforms that produce complementary effects on the charge dynamics. Using sigma-delta loops, these controls allow to set and maintain, within some limits, the net trapped charge in the dielectric to desired levels that can be changed with time. This allows mitigating long-term reliability issues such as capacitance-voltage (C-V) shifts in MOS and MIM capacitors. Additionally, the bit streams generated by the control loops provide real-time information on the evolution of the trapped charge. The proposed controls also allow compensating the effects of the charge trapping due to external disturbances such as radiation. This has been demonstrated experimentally with MOS capacitors subjected to various types of ionizing radiation (X-rays and gamma rays) while a charge control is being applied. This approach opens up the possibility of establishing techniques for active compensation of radiation-induced charge in MOS structures as well as a new strategy for radiation sensing. A modeling strategy to characterize the dynamics of the dielectric charge in MOS capacitors is also presented. The diffusive nature of the charge trapping phenomena allows their behavioral characterization using Diffusive Representation tools. The experiments carried out demonstrate a very good matching between the predictions of the model and the experimental results obtained. The time variations in the charge dynamics due to changes in the volatges applied and/or due to external disturbances have been also investigated and modeled. Moreover, the charge dynamics of MOS capacitors under sigma-delta control is analyzed using the tools of Sliding Mode Controllers for an infinite sampling frequency approximation. A phenomenological analytical model is obtained which allows to predict and analyze the sequence of control signals. This model has been successfully validated with experimental data. Finally, the above control strategies are extended to other devices such as eMIM capacitors and perovskite solar cells. Preliminary results including open loop and closed loop control experiments are presented. These results demonstrate that the application of the controls allows to set and stabilize both the C-V characteristic of an eMIM capacitor and the current-voltage characteristic (J-V) of a perovskite solar cell.La carga atrapada en dieléctricos suele implicar un problema importante de fiabilidad en muchos dispositivos semiconductores. La acumulación de dicha carga, normalmente provocada por las tensiones aplicadas durante el uso del dispositivo, suele alterar el rendimiento de éste con el tiempo, afectar sus prestaciones a nivel de circuital e, incluso, reducir su vida útil. Aunque durante años se han realizado muchos trabajos para mitigar sus efectos no deseados, sobre todo a nivel circuital, la carga atrapada en dieléctricos sigue siendo un problema abierto que frena la aplicabilidad práctica de algunos dispositivos. El trabajo de investigación realizado en esta Tesis se centra principalmente en el diseño, análisis y validación experimental de estrategias de control para compensar la carga atrapada en dieléctricos de diversos tipos de dispositivos, incluyendo condensadores MOS, condensadores MIM fabricados con nanotecnología y dispositivos basados en perovskitas. Los controles propuestos se basan en utilizar formas de onda de tensión, específicamente diseñadas, que producen efectos complementarios en la dinámica de la carga. Mediante el uso de lazos sigma-delta, estos controles permiten establecer y mantener, dentro de unos límites, la carga neta atrapada en el dieléctrico a valores prefijados, que pueden cambiarse con el tiempo. Esto permite mitigar problemas de fiabilidad a largo plazo como por ejemplo las derivas de la curva capacidad-tensión (C-V) en condensadores MOS y MIM. Adicionalmente, las tramas de bits generadas por los lazos de control proporcionan información en tiempo real sobre la evolución de la carga. Los controles propuestos permiten también compensar los efectos de la carga atrapada en dieléctricos debida a perturbaciones externas como la radiación. Esto se ha demostrado experimentalmente con condesadores MOS sometidos a diversos tipos de radiación ionizante (rayos X y gamma) mientras se les aplicaba un control de carga. Este resultado abre la posibilidad tanto de establecer técnicas de compensación activa de carga inducida por radiación en estructuras MOS, como una nueva estrategia de sensado de radiación. Se presenta también una estrategia de modelado para caracterizar la dinámica de la carga dieléctrica en condensadores MOS. La naturaleza difusiva de los fenómenos de captura y eliminación de carga en dieléctricos permite caracterizar dichos fenómenos empleando herramientas de Representación Difusiva. Los experimentos realizados demuestran una muy buena correspondencia entre las predicciones del modelo y los resultados experimentales obtenidos. Se muestra también como las variaciones temporales de los modelos son debidas a cambios en las formas de onda de actuación del dispositivo y/o a perturbaciones externas. Además, la dinámica de carga en condensadores MOS bajo control sigma-delta se analiza utilizando herramientas de control en modo deslizante (SMC), considerando la aproximación de frecuencia de muestreo infinita. Con ello se obtiene un modelo analítico simplificado que permite predecir y analizar con éxito la secuencia de señales de control. Este modelo se ha validado satisfactoriamente con datos experimentales. Finalmente, las estrategias de control anteriores se han extendido a otros dispositivos susceptibles de sufrir efectos de carga atrapada que pueden afectar su fiabilidad. Así, se han llevado a cabo experimentos preliminares cuyos resultados demuestran que la aplicación de controles de carga permite controlar y estabilizar la característica C-V de un condensador eMIM y la característica corriente-tensión (J-V) de una célula solar basada en perovskitas
    corecore