48 research outputs found

    Discrete Ray-Tracing of Huge Voxel Spaces

    Full text link

    Discrete Ray-Tracing of Huge Voxel Spaces

    Full text link

    A Discrete Radiosity Method

    Get PDF
    International audienceWe present a completely new principle of computation of radiosity values in a 3D scene. The method is based on a voxel approximation of the objects, and all occlusion calculations involve only integer arithmetics operation. The method is proved to converge. Some experimental results are presented

    Knowledge-based out-of-core algorithms for data management in visualization

    Get PDF
    Journal ArticleData management is the very first issue in handling very large datasets. Many existing out-of-core algorithms used in visualization are closely coupled with application-specific logic. This paper presents two knowledgebased out-of-core prefetching algorithms that do not use hard-coded rendering-related logic. They acquire the knowledge of the access history and patterns dynamically, and adapt their prefetching strategies accordingly. We have compared the algorithms with a demand-based algorithm, as well as a more domain-specific out-of-core algorithm. We carried out our evaluation in conjunction with an example application where rendering multiple point sets in a volume scene graph put a great strain on the rendering algorithm in terms of memory management. Our results have shown that the knowledge-based approach offers a better cache-hit to disk-access trade-off. This work demonstrates that it is possible to build an out-of-core prefetching algorithm without depending on rendering-related application-specific logic. The knowledge based approach has the advantage of being generic, efficient, flexible and self-adaptive

    A Low Complexity Discrete Radiosity Method

    Get PDF
    International audienceRather than using Monte Carlo sampling techniques or patch projections to compute radiosity, it is possible to use a discretization of a scene into voxels and perform some discrete geometry calculus to quickly compute visibility information. In such a framework , the radiosity method may be as precise as a patch-based radiosity using hemicube computation for form-factors, but it lowers the overall theoretical complexity to an O(N log N) + O(N), where the O(N) is largely dominant in practice. Hence, the apparent complexity is linear for time and space, with respect to the number of voxels in the scene. This method does not require the storage of pre-computed form factors, since they are computed on the fly in an efficient way. The algorithm which is described does not use 3D discrete line traversal and is not similar to simple ray-tracing. In the present form, the voxel-based radiosity equation assumes the ideal diffuse case and uses solid angles similarly to the hemicube

    Rendering techniques for multimodal data

    Get PDF
    Many different direct volume rendering methods have been developed to visualize 3D scalar fields on uniform rectilinear grids. However, little work has been done on rendering simultaneously various properties of the same 3D region measured with different registration devices or at different instants of time. The demand for this type of visualization is rapidly increasing in scientific applications such as medicine in which the visual integration of multiple modalities allows a better comprehension of the anatomy and a perception of its relationships with activity. This paper presents different strategies of Direct Multimodal Volume Rendering (DMVR). It is restricted to voxel models with a known 3D rigid alignment transformation. The paper evaluates at which steps of the render-ing pipeline must the data fusion be realized in order to accomplish the desired visual integration and to provide fast re-renders when some fusion parameters are modified. In addition, it analyzes how existing monomodal visualization al-gorithms can be extended to multiple datasets and it compares their efficiency and their computational cost.Postprint (published version

    Evaluation of voxel-based rendering of high resolution surface descriptions

    Get PDF

    Three-dimensional point-cloud room model for room acoustics simulations

    Get PDF
    corecore