
Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

Know ledge-B ased O u t-o f-C o re A lg o rith m s
fo r D a ta M anagem ent in V isu a liza tio n

David Chisnall1, Min Chen1 and Charles Hansen2 t

1Department of Computer Science, University of Wales Swansea, UK
2School of Computing, University of Utah, USA

Abstract

Data management is the very first issue in handling very large datasets. Many existing out-of-core algorithms
used in visualization are closely coupled with application-specific logic. This paper presents two knowledge-
based out-of-core prefetching algorithms that do not use hard-coded rendering-related logic. They acquire the
knowledge o f the access history and patterns dynamically, and adapt their prefetching strategies accordingly. We
have compared the algorithms with a demand-based algorithm, as well as a more domain-specific out-of-core
algorithm. We carried out our evaluation in conjunction with an example application where rendering multiple
point sets in a volume scene graph pu t a great strain on the rendering algorithm in terms ofm em ory management.
Our results have shown that the knowledge-based approach offers a better cache-hit to disk-access trade-off.
This work demonstrates that it is possible to build an out-of-core prefetching algorithm without depending on
rendering-related application-specific logic. The knowledge based approach has the advantage o f being generic,
efficient, flexible and self-adaptive.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech­
niques - Graphics data structures and data types; I.3.m [Computer Graphics]: Visualization - Point-based tech­
niques; D.4.2 [Operating Systems]: Storage Management - Allocation/deallocation strategies.

1. Introduction

Never before in history have we had such capability for gen­
erating, collecting and storing digital data. Data repositories
at terabyte level are becoming commonplace in many ap­
plications, including bioinformatics, medicine, remote sens­
ing and nano-technology. In some applications, such as net­
work traffic visualization [Kou99] and video visualization
[DC03], we are encountering the scenario that dynamic data
streams are almost temporally unbounded.

Data management is the very first issue in handling
very large datasets. Many visualization processes involve
datasets that are much too large for the internal memory
of a computer, and have to rely on external disk storage,
usually under the virtual memory management of an oper­
ating system. The external disk access can become a se-

t Email: {csdavec,m.chen}@swansea.ac.uk, hansen@cs.utah.edu

rious bottleneck in terms of rendering speed. Out-of-core
algorithms (also known as external memory algorithms)
[Vit01] are designed to solve a variety of batch and interac­
tive computational problems by minimizing disk I/O over­
head. Many problem-specific out-of-core algorithms (e.g.,
[CMPS96, SCM99, FS01]) were proposed, showing notice­
able advantages over direct reliance on operating systems.

Such advantages are not in any way unexpected since the
virtual memory management algorithm in an operating sys­
tem is not coded with any application-specific logic, such
as a data partitioning structure or a rendering algorithm. In
most modern operating systems, the memory management
algorithms are designed to be generic, efficient and often
self-adaptive. Many have incorporated prefetching strate­
gies for anticipatory memory management. Hence this raises
an interesting question: I f a relatively generic algorithm is
able to acquire some application-specific logic dynamically,
would it be able to provide support to the application con-

© The Eurographics Association 2006.

mailto:hansen@cs.utah.edu

D. Chisnall, M. Chen & C. Hansen / Knowledge-Based Out-of-Core Algorithms

cerned in a similar way to those algorithms with hard-coded
application-specific logic?

The main objective of this work was to seek an answer to
this question in the context of visualizing very large point
datasets. In particular, we focused on algorithms that were
capable of acquiring knowledge of the data access patterns
dynamically and adapt their prefetching strategies accord­
ingly. We considered four out-of-core algorithms:

• The Least Recently Used (LRU) strategy — This is a sim­
ple memory management algorithm discussed extensively
in many textbooks on operating systems. This is the most
generic among the four considered and contains a very
limited amount of application-specific logic. It is used in
this work as a base-line for evaluating all algorithms.

• The Ray Driven Predictor (RDP) — This is the least
generic among the four considered. It relies on a signif­
icant amount of hard-coded application-specific logic, in­
cluding both the data structures and the rendering algo­
rithm, to make predictions.

• The Access Path Predictor (APP) — This algorithm as­
sumes that the most likely access pattern is a predecessor-
current-successor pattern. Unlike RDP, it does not at­
tempt to hard-code such logic mathematically, and in­
stead makes predictions based on previous access pat­
terns. Hence, it is a knowledge-based algorithm.

• The History-based Access Predictor (HAP) — This al­
gorithm also adopts a knowledge-based approach, but is
more generic than APP without the assumption about the
likelihood of any access pattern. It maintains a relatively
fuller record of access history.

In order to facilitate the evaluation of these four algo­
rithms, we considered the problem of rendering multiple
point datasets in a volume scene graph as an example appli­
cation. Through this example, we found that it is possible to
achieve good performance in visualization using a data man­
agement algorithm which does not exploit the rendering-
related logic. The data-structure-related logic, on the other
hand, plays a more critical role in out-of-core strategies.

2. Related Work

The problem of insufficient memory has been around for
almost as long as stored-program computers. Most operat­
ing systems provide some form of virtual memory [Den70]
to help alleviate this problem. Unfortunately, visualization
tasks, where the working set [Den68] changes rapidly, do
not mix well with the the demand paging strategy [SGG00]
used by most operating systems.

Cox and Elleworth [CE97] proposed a method by which
the application could control the demand paging strategy, al­
lowing data to be evicted in an intelligent way. The authors
discovered in their analysis of demand paging algorithms in
existing operating systems that a significant performance in­
crease could be gained by using smaller page sizes.

An effective out-of-core [SCESL02], or external mem­
ory [Vit01] strategy requires an efficient prefetching algo­
rithm (such as in [VM02]) in order to prevent disk la­
tency being the limiting factor in rendering. Various out-
of-core algorithms have been proposed in the context of
visualization. However, they are mostly tailored to a spe­
cific rendering method. Methods have been proposed for
both structured and unstructured 3D datasets, including:
(i) isosurface extraction [CMPS96, CS97, CS98, CFSW03,
SH00], (ii) terrain rendering [LP02], (iii) streamline visual­
ization [USM97], (iv) mesh simplification [Lin00], (v) ren­
dering time-varying volume data [SCM99], (vi) rendering
unstructured volumetric grids [LM99,FS01,CFSW03], (vii)
ray tracing [PKGH97], and (viii) radiosity [TFFH94].

While some algorithms rely little on internal memory
(e.g., [CS97,FS01]), others utilize preprocessed data struc­
tures, such as octree [USM97] and indexing [SCM99] to op­
timize disk I/O operations.

3. Motivation and Example Application

The main focus of this paper is the design and evaluation of
knowledge-based out-of-core algorithms. In particular, we
would like to adapt the generic design principle for memory
and cache management in modern operating systems, and re­
duce the amount of hard-coded application-specific logic in
out-of-core algorithms for visualization systems. Typically
application-specific logic falls into two categories, namely
data-related and traversal-related. The former is concerned
with the organization of data, such as data partitioning, con­
nectivity and block size. The latter is concerned with the ac­
cess sequence of different parts of the data.

In visualization, the most common traversal-related logic
is rendering-related, and the majority of access is read­
only, hence the so-called ‘dirty data block’ issue does not
normally arise. If an out-of-core algorithm does not have
rendering-related logic hard-coded, it can be applied to dif­
ferent visualization applications that have the same data-
related logic, provided that it can acquire rendering-related
logic dynamically at run-time, and it can adapt itself dynam­
ically to varying parameters such as scene complexity, data
size, viewing positions, sampling intervals and transfer func­
tions. Meanwhile, when an out-of-core algorithm is aware
of some data-related logic, it will most likely be more cost-
effective in handling in-core and out-core swapping than the
paging strategy built into an operating system.

In order to assist in the design and evaluation of the al­
gorithm concerned, as an example application, we consid­
ered the problem of rendering multiple point datasets in a
volume scene graph using discrete ray tracing, which was
initially discussed in [Che05]. Although point datasets are
commonly rendered using projective methods such as sur-
fels [PZvBG00] and QSplat [RL00], There are many merits
for deploying discrete ray tracing in conjunction with vol-

© The Eurographics Association 2006.

D. Chisnall, M . C hen & C. H ansen / K now ledge-B ased O ut-of-C ore A lgorithm s

(a) 5 x 1K (b) 5 x 10K (c) 5 x 1M

Figure 1: Five iso-surfaces o f a hyperbolic field are visual­
ized using point sets that are randomly placed on the sur­
faces with different resolutions. Each iso-surface is approxi­
mated by (a) 1K, (b) 10K and (c) 1M points respectively.

Figure 2: Two Visible Human point sets, representing bones
(1,218,973 points) and skin (267,303 points) respectively,
are combined together using a volume scene graph. The
point sets were part o f the polygonal model provided by
William E. Lorensen [Lor95] and made available by Geor­
gia Institute o f Technology.

ume scene graphs. For example, it allows creation of com­
binational visualization of point sets and volume datasets.
It opens the possibility of storing segments in a segmented
volume as individual point sets (e.g., Figures 1 and 2). It en­
ables the incorporation of advanced rendering features, such
as shadows and refraction, which can add additional visual
cues to a visualization (e.g., Figure 3).

(a) without shadows (b) with shadows

Figure 3: The David dataset (Stanford) contains 28,184,526
points, fo r which an octree with 10 levels takes about 64
GB space. The visualization with shadows gives extra visual
cues about the spatial relationship between the object and
its surrounding, and between different parts o f the object.

As shown in [Che05], discrete ray tracing of a point cloud
by brute force requires the evaluation of all points in the
cloud, and it is hence not scalable in terms of the num­
ber of points. One can obtain significant speedup with a
data partitioning scheme such as an octree. For example,
tests in [Che05] indicated an average speedup at a factor of
around 140 for a set of 10000 points. Therefore, memory
becomes the fundamental bottleneck of ray tracing a volume
scene graph with very large point sets, as it would demand an
overwhelming amount of memory to accommodate all point
datasets and their associated control structures.

In this work, we adopt octrees as the main data partition­
ing scheme as in [Che05]. Although the efficiency of such a
data partitioning scheme is not the primary concern of this
paper, there are good reasons for using this scheme in our
example application. Firstly, it is one of the most commonly-
used schemes in graphics and visualization. It is general
enough for obtaining a fair comparison between different
out-of-core algorithms, without introducing distortion due to
some special algorithmic features, such as the assumption of
opaque surfaces or pre-determined ray directions.

In this example application, each point dataset defines a
point-based volume object (PBVO), where each point is as­
sociated with a radial basis function (RBF), and the RBFs
are blended to form a scalar field of the PBVO. Like con­
ventional volume objects, a PBVO can be associated with
transfer functions and can be combined with other volume
objects in a volume scene graph. The control structure of the
entire volume scene graph is a hierarchical set of bounding
boxes, in addition to the octree structure associated with ev­
ery point set. Further details can be found in [Che05].

© The Eurographics Association 2006.

D. Chisnall, M . C hen & C. H ansen / K now ledge-B ased O ut-of-C ore A lgorithm s

Renderer

sampling position
r------------------- “i

octree nodes & points
i

Out-ol-Core Pre fetching Algorithms
| points fetching requests octree tVodes

Point Caching Octree Caching 1

points I/O instructions octree nodes
On-disk Point Sets On-disk Octrees

Figure 4: The software architecture o f the testing environ­
ment fo r our out-of-core algorithms.

4. System Architecture

Figure 4 shows the overall architecture used for evaluating
the out-of-core data management algorithms discussed in the
next section. The renderer is a discrete ray tracer. The tested
algorithms, which are contained in a data management layer,
interact with the renderer through the same interface. The
renderer informs the data management layer of the current
sampling position s , and receives an octree leaf node which
contains s if s hits a non-empty volume region. Each octree
leaf node contains indexes of points which are stored in an
out-of-core array. When the octree leaf node is loaded, all
its associated data points are automatically loaded into the
memory if they are not already in core.

The data management layer also includes two out-of-core
controllers, for caching octree nodes and point data respec­
tively. Three of the algorithms to be discussed issue prefetch­
ing instructions to the controllers, with an associated prior­
ity. If there is enough in-core space to fulfill these requests,
the anticipated octree nodes (and the corresponding point
data) will be loaded. When the in-core space is full, lower
priority nodes are evicted to make space for higher prior­
ity ones. The priority of a node is set by the data manage­
ment layer, according to the confidence of the prediction.
The priority of all cached nodes is gradually decayed over
time, except that whenever a node is referenced, it is set to
the highest priority. This dynamic change of priority is very
similar to the change of the scheduling priority of processes
in UNIX operating systems.

5. Out-of-Core Data Management Algorithms

There are two main types of out-of-core data management
algorithms, namely demand-based and prediction-based.
The latter type is also referred to as prefetching, pre-caching
or anticipatory algorithms. Similar to the notion used in op­
erating systems, the optimal algorithm for out-of-core data
management is an algorithm such that

• It would always prefetch the data block which will be re­
quired in the nearest future if it is not already in core.

• When the cache is full, it will always replace the data

block that would not be required for the longest period
of time.

The first condition applies to prediction-based algorithms
only, while the second condition applies to both types of al­
gorithms. Understandably, the optimal algorithm is very dif­
ficult, if not impossible, to realize.

The effectiveness of a prediction-based algorithm par­
tially depends on its ‘knowledge’ of the application-specific
logic. Many out-of-core algorithms are closely coupled with
a particular application, for instance, surface extraction and
volume ray casting. This allows some of the application-
specific logic to be hard-coded into the out-of-core algo­
rithms. However, such ‘knowledge’ is rather static, and such
an algorithm usually makes predication in a rather ‘mechan­
ical’ manner. An alternative approach is for the algorithm
to acquire the ‘knowledge’ at run-time dynamically, and to
adapt its prediction mechanism accordingly. In the follow­
ing discussions, we refer those algorithms that acquire, store
and use dynamic knowledge as knowledge-based.

A knowledge-based algorithm makes algorithmic deci­
sions using inferred knowledge, and as the system runs, it
learns how to function efficiently. In our case, the inferred
knowledge relates to access patterns within the data to be
visualized. A knowledge-based prefetching algorithm will
learn the order in which data is accessed and automatically
pre-cache data to be accessed next.

In the following subsections, we first describe a demand-
based algorithm, which is used in Section 6 as a base-line
for evaluation. We then describe three predication-based al­
gorithms, starting with the ray driven predictor with the
most hard-coded application-specific logic, followed by two
knowledge-based algorithms, namely access path predictor
and history-based access predictor.

5.1. The Least Recently Used (LRU) Strategy

This is a strategy commonly used in operating systems as a
demand-based page replacement algorithm. It does not suf­
fer from the so called Belady’s anomaly [SGG00], and pro­
vides a good approximation to the optimal algorithm with­
out using pre-paging. We adapted this algorithm for man­
aging the caching of octree nodes, and we implemented the
algorithm in software by utilizing a queue that contains all
cached octree nodes. The queue is organized in a temporal
order. When an octree node is requested, if it is already in
the cache, it will be moved to the head of the queue; other­
wise, it is loaded into the cache and stored at the head of the
queue. When the cache is full, the least recently used node,
that is, the tail of the queue, is evicted to make room.

After the octree node is cached, the out-of-core octree
controller informs the out-of-core point set controller of the
point list from the accessed leaf node. On receipt of the point
list, the point set controller checks that these are cached in­
core, and if not, attempts to load them asynchronously.

© The Eurographics Association 2006.

D. C hisnall, M . Chen & C. H ansen / K now ledge-B ased O ut-of-Core A lgorithm s

5.2. The Ray Driven Predictor (RDP)

The RDP algorithm is closely coupled with our discrete
ray-tracing engine used for rendering volume scene graphs.
Given a ray and the current sampling position sc, the algo­
rithm makes an assumption that the octree nodes following
the ray and along its path will likely be accessed subse­
quently. The algorithm determines a sampling point sp on
the ray which falls just outside of the current octree node.
It then attempts to navigate the octree until it reaches the
node that contains the predicted sampling point sp . If, at any
point on this navigation, it would need a node which is not
already in the cache, it instructs the lower layer to prefetch it
in preparation for the sampling at sp . This process continues
for each sampling point.

5.3. The Access Path Predictor (APP)

This is a knowledge-based algorithm, and it is aware of data
related logic (i.e., the structure of the data), but only a very
limited amount of rendering-related logic. It assumes that the
most common access pattern within a dataset is the frequent
appearance of the same predecessor-current-successor pat­
tern. For example, when three octree nodes, Na, Nb and Nc,
are accessed in sequence, the pattern of Na ^ Nb ^ Nc can
be recorded in Nb. When next time Nb is accessed, if Na
were the predecessor of Nb, we could use the recorded pat­
tern Na ^ Nb ^ Nc to predict Nc as the next node to be
required, and pre-cache Nc in advance.

Such an access pattern represents a section of a path along
which an application navigates through its data. The APP
algorithm particularly suits applications with more regular
access patterns, such as ray tracing, marching cubes and fea­
ture tracking. However, unlike the RDP algorithm, it does
not assume that Na, Nb and Nc have to be on the same line,
or Na, Nb and Nc must be in the same neighborhood. Hence,
it can accommodate a diverse range of rendering features
such as refraction, space leaping, and so on.

In our implementation of the APP algorithm, four pairs of
predecessor-successor are stored in each octree node, allow­
ing the recording of up to four access patterns, each reflects a
local view of some ‘access traffic’ passing through the node.
Whenever a node is visited, its knowledge is updated. As
the main costs of out-of-core management is related to the
leaf nodes of an octree, we limit the acquisition and storage
of knowledge to leaf nodes only. This restriction not only
reduces a substantial amount of ineffective computational
costs for knowledge acquisition, but also conveniently uti­
lized the eight unused child addresses in each leaf node.

When the algorithm is unable to make a predication based
on the recorded predecessor-current-successor patterns, it at­
tempts to make a predication based on the four successors.
If this is not successful, the algorithm resorts to the basic
mechanism by navigating the octree from the current leaf
node to a leaf node that contains the new sampling position.
The algorithm is outlined in Algorithm 1.

Algorithm 1 The Access Path Predictor
Require: New sample point s,
Require: two recent octree nodes Nlast , Ncur

Nnew — NULL;
if s is in Ncur then {If s is in an cached node, do nothing}

Nnew — Ncur;
else {Phase I: Predication with Access Path}

for each recorded predecessor Np,i of Ncur do
if Nlast = = Np,i and s is in Np,i then

Nnew —— Np,i;
end if

end for
end if
{Phase II: Predication with Historical Next}
if Nnew = N U LL then

for each recorded successor Ns,i of Ncur do
if s is in Ns,i then

Nnew — Ns,i;
return Nnew

end if
end for

end if
{Phase III: Fall back to octree navigation}
if Nnew = N U LL then

Nnew — OctreeNavigation(Ncur, s)
end if
{Update knowledge in Ncur }
Replace the oldest (Np,i,Ns,i) in Ncur with (Nlast,Nnew);
{Precache octree nodes}
if Ncur is a recorded predecessor of Nnew then

Nnext — the corresponding sucessor in Nnew;
Precache Nnext with a high priority

else
Precache all four successors in Nnew with a low priority

end if
return Nnew

5.4. The History-based Access Predictor (HAP)

The assumption of the frequent appearance of a certain
pattern is a limited form of application-specific logic. We
can remove this assumption completely, resulting in a
knowledge-based algorithm that relies entirely on historic
records.

For each leaf node, the HAP algorithm captures the
knowledge of those nodes that were required immediately
afterwards in previous visits to the node. It also utilizes the
eight unused child address in each leaf node. When there are
more than eight successors identified, it replaces the oldest
successor recorded with the new one. When visiting a node,
the algorithm pre-caches all known potential successors of
the node. This potentially generates more disk traffic, since
up to eight nodes are cached in order to load one.

© The Eurographics Association 2006.

D. Chisnall, M . C hen & C. H ansen / K now ledge-B ased O ut-of-C ore A lgorithm s

5.5. General Remarks on APP and HAP

The two knowledge-based algorithms, APP and HAP, are
aware of some of data-related logic, that is, the data parti­
tioning mechanism, and the size of data blocks. The core part
of both algorithms does not require the information about
data connectivity, which is only used in the case the algo­
rithms cannot make a prediction based on acquired knowl­
edge. In general, they are not aware of the process being
used to render a visualization image, and they infer knowl­
edge based on existing access patterns. One minor exception
is that APP utilizes an assumption about common traversal
paths in order to improve the cost-effectiveness of knowl­
edge acquisition, storage and reasoning.

Both APP and HAP mainly acquire the knowledge about
leaf nodes, which link to the relevant point data. This means
that the associated application frequently hops from one leaf
node to another. In the absence of this knowledge, it would
frequently be necessary to navigate several nodes up and
then back down the octree, and each of these nodes could
potentially require a disk access.

The secondary advantage of the ability to move directly
between leaf nodes in an octree is that it reduces the size of
the working set. There is a lower probability that non-leaf
nodes will be required, and so more cache space can be used
to store leaf nodes and associated point sets.

6. Results and Evaluation

We carried out a series of tests for evaluating the four algo­
rithms described above, and compare the performance of the
three prefetching algorithms with the LRU algorithms as a
base-line benchmark.

In particular, we focused on two metrics, namely cache hit
rate and total disk reads, which are commonly considered
in operating system design. The cache hit rate indicates the
percentage of requests which can be met without accessing
the out-of-core storage. The total disk reads metric is the
number of times that an out-of-core algorithm was required
to load data from the disk. To facilitate comparison between
rendering passes, the disk reads were normalized, using the
LRU score for each pass as a base-line.

We first conducted a series of tests on randomly generated
point sets of various sizes (between 100 and 100,000 points).
Two types of point sets were generated in which the points
were placed randomly on a spherical surface, and within a
spherical volume. Tables 1 and 2 include a summary of the
results for of the tests. Figure 5 shows the normalized disk
reads for the random point sets comprising points in a spher­
ical volume. Figure 6 shows the cache hit rates for the same
data sets. Each rendering pass was conducted at three differ­
ent sampling intervals, which represent a type of rendering-
related logic.

From these results we can observe that the RDP and the

Table 1: Summary o f normalized disk reads fo r random
data, averaging varying data sizes and sampling distances.

Dataset LRU RDP APP HAP
Points on a Surface 1 1.81 0.81 1.92
Points in a Volume 1 2.20 0.87 2.44

Table 2: Summary o f cache hit rates fo r random data.

Dataset LRU RDP APP HAP
Points on a Surface 98.90 99.83 99.74 99.76
Points in a Volume 99.66 99.85 99.84 99.87

HAP show a significant increase in the number of disk reads
required, while APP performs better even than LRU by this
metric in spite of performing pre-caching. All three prefetch­
ing algorithms achieved higher hit rates than LRU, with
marginal variation.

Figure 5 shows that the performance of APP is consistent
over a variety of point sets and sampling intervals, while the
performance of the other prefetching algorithms varies con­
siderably. Figure 6 shows that the performance of LRU is
adversely affected by the increase in data size. It is also af­
fected more greatly by coarse sampling intervals due to the
poor locality of reference here, clearly indicating the advan­
tage of prefetching.

We also tested the four algorithms in relation to a number
of real data sets, including the procedurally generated hyper­
bolic surfaces (Figure 1), a single Stanford Bunny, a scene
containing twenty bunnies (see [Che05]) and two Visible
Human point sets for skin and bone respectively (Figure 2).
For the scene with twenty bunnies, we purposely loaded 10
bunny datasets (two bunnies per dataset) in order to evaluate
the performance in relation to multiple point sets in a volume
scene graphs. Some of the tests (e.g., the hyperbolic field
with 5 million points in Figure 1(d)) would almost halt an
average desktop computer without out-of-core data manage­
ment. Tables 3 and 4 summarize the normalized disk reads
and cache hit rates for these data sets. Figures 7 and 8 show
more detailed results with different sampling intervals.

As we can see from Table 3, APP gives performance com­
parable to LRU, while the other two prefetching algorithms
result in an increased disk load. Table 4 shows that APP’s
better performance in terms of disk reads comes at a slight
expense in terms of hit rates, but still delivers better perfor­
mance than a demand-driven LRU strategy.

RDP, the algorithm with the most hard-coded knowledge,
performed consistently better than the other three, being the
only algorithm to achieve a hit rate of over 99% in all tests.
The two knowledge based algorithms, however, improved
the cache hit rate by over 1%.

Note that although this improvement of 1% seems small,
Amdahl’s law [Amd67] shows us that this can generate a
significant performance improvement. Each failed cache hit
stalls the rendering algorithm until the data can be loaded

©c The Eurographics Association 2006.

D. Chisnall, M. C hen & C. H ansen / K now ledge-B ased O ut-o f-C ore A lgorithm s

m

Least Recently Used i iRay Driven Predictor i iAccess Path Predictor i i ■History-based Access Predictor s. \ 'J

I I I

Points / Sampling Interval

Figure 5: Normalized disk reads fo r random data sets com­
prising points in a spherical volume.

Table 3: Summary o f normalized disk reads fo r real data.

Dataset LRU RDP APP HAP
Stanford Bunny 1.54 1.21 1.57
Twenty Bunnies 1.54 1.17 1.63

Hyperboloid 1.24 0.94 1.07
VH Bone 1.06 0.77 1.05
VH Skin 1.14 0.95 1.08
Average 1.30 1.01 1.28

Table 4: Summary o f cache hit rates fo r real data.

Dataset LRU RDP APP HAP
Stanford Bunny 96.19% 99.29% 97.67% 98.19%
Twenty Bunnies 96.19% 99.29% 97.22% 98.19%

Hyperboloid 97.83% 99.55% 99.63% 99.68%
VH Bone 99.54% 99.99% 99.95% 99.95%
VH Skin 99.79% 99.99% 99.97% 99.97%
Average 97.91% 99.62% 98.89% 99.20%

4

Points / Sampling Interval

Figure 6: Cache hit rates fo r random data sets comprising
points in a spherical volume.

from disk. Since a disk reads usually takes around 9ms,
which equates to 9,000,000 instruction cycles lost on a mod­
erately fast computer.

On the other hand, although a 30% increase in disk reads
may seem a lot, it does not have the same impact as failed
catch hits. Because of asynchronous disk reads, the disk ac­
cesses activated by the prefetching algorithm do not stall the
rendering algorithm, and normally run in parallel with the
rendering task. Hence, in terms of overall rendering speeds,
the impact of disk reads caused by prefetching is generally
not noticeable.

In general, the improvement of cache hit rate translates
to an improvement in frame-rate, especially for vary large
datasets rendered with highly constrained in-core cache size.
For example, consider the rendering of the David dataset
(Figure 3) on a low-specification computer with a 1GB RAM
and 1GB swap space and a 1.4GHz Athlon processor. As

the point dataset, together with opacity and radius of each
RBF, requires over 0.5GB space, and its octree (of height 8)
takes 1.96GB, the computer cannot support the discrete ray
tracer without out-of-core data management. We applied the
above-mentioned algorithms to the rendering of the David
dataset, with an additional constraint of 14MB virtual mem­
ory space. On average, we saw a 10-15% speed improvement
using HAP over LRU.

7. Conclusions

In this paper we have presented two new knowledge-based
algorithms, APP and HAP, for out-of-core data manage­
ment in visualization. In conjunction with an example ap­
plication, we have shown that a knowledge-based approach
can provide cache hit rates of a similar quality with, and
often exceeding an algorithm designed using hard-coded
application-specific logic. In the case of APP, this improve­
ment does not come at the expense of increased disk load,
though its assumption of predecessor-current-successor pat­
terns may not be effective for all visualization applications.
On the other hand, HAP is more flexible, but requires rela­
tively high throughput in disk access.

Most existing prefetching algorithms speculatively cache
a large amount of data that is never accessed, imposing a sig­
nificant load on the storage device responsible for the data
set. We have shown that a knowledge-based approach does
not necessarily need to carry this penalty, and have presented
a novel algorithm, APP, which provides a good trade-off be­
tween disk accesses and cache hit rates.

Our results indicate that it is possible to design a generic
knowledge-based out-of-core algorithm that can support a
variety of visualization applications. This opens the possi­
bility of designing and developing a standard API that con­
tains a collection of out-of-core data management algorithms
which will be the focus of our future work.

© The Eurographics Association 2006.

D. Chisnall, M . C hen & C. H ansen / K now ledge-B ased O ut-of-C ore A lgorithm s

i

Least Recently Used i iRay Driven Predictor i iAccess Path Predictor i i ■History-based Access Predictor k ^

2 I 2 m I I -2 >

Points / Sampling Interval

Figure 7: Normalized disk reads fo r real data.

Points / Sampling Interval

Figure 8: Cache hit rates fo r real data.

References
[Amd67] Amdahl G. M.: Validity of the single processor ap­

proach to achieving large scale computing capabilities. In Proc.
AFIPS Spring Joint Computer Conference (1967), pp. 483-485.

[CE97] Cox M., Ellsworth D.: Application-controlled de­
mand paging for out-of-core visualization. In Proc. IEEE Visual­
ization (1997).

[CFSW03] Chiang Y.-J., Farias R., Silva C. T., Wei B.: A
unified infrastructure for parallel out-of-core isosurface extrac­
tion and volume rendering of unstructured grids. In Proc. IEEE
Symposium on Parallel Visualization and Graphics (2003).

[Che05] Chen M.: Combining point clouds and volume objects
in volume scene graphs. In Proc. Volume Graphics (New York,
2005).

[CMPS96] Cignoni P., Montani C., Puppo E., Scopigno
R.: Optimal isosurface extraction from irregular volume data. In
Proc. IEEE Symposium on Volume Visualization (1996), pp. 31­
38.

[CS97] Chiang Y.-J., Silva C. T.: I/o optimal isosurface ex­
traction. In Proc. IEEE Visualization (1997), pp. 293-300.

[CS98] Chiang Y.-J., Silva C. T.: Interactive isosurface ex­
traction. In Proc. IEEE Visualization (1998), pp. 167-174.

[DC03] Daniel G. W., Chen M.: Video visualization. In Proc.
IEEE Visualization (2003), pp. 409-416.

[Den68] Denning P. J.: The working set model for program
behaviour. Communications of the ACM 11, 5 (May 1968), 323­
333.

[Den70] Denning P. J.: Virtual memory. ACM Computing Sur­
veys (CSUR) 2, 3 (Semptember 1970), 153-189.

[FS01] Farias R., Silva C. T.: Out-of-core rendering of large,
unstructured grids. IEEE Computer Graphics and Applications
21, 4 (2001), 42-50.

[Kou99] Koutsofio E. E.: Visualizing large-scale telecommu­
nication networks and services. In Proc. IEEE Visualization
(1999).

[Lin00] Lindstrom P.: Out-of-core simplification of large
polygonal models. In Proc. SIGGRAPH (2000), pp. 259-262.

[LM99] Leutenegger P., Ma K.-L.: Fast retrieval of disk-
resident unstructured volume data for visualization. In Exter­
nal Memory Algorithms and Visualization (DIMACS Book Series,
American Mathematical Society) (1999), vol. 50.

[Lor95] Lorensen W. E.: Marching through the visible man. In
Proc. Visualization (1995), pp. 368-373.

[LP02] Lindstrom P., Pascucci V.: Terrain simplification
simplified: A general framework for view-dependent out-of-core
visualization. IEEE Transactions on Visualization and Computer
Graphics 8, 3 (2002), 239-254.

[PKGH97] Pharr M., Kolb C., Gershbein R., Hanrahan
P.: Rendering complex scenes with memory-coherent ray tracing.
In Proc. SIGGRAPH (1997), pp. 101-108.

[PZvBG00] Pfister H., Zwicker M., van Baar J., Gross
M.: Surfels: surface elements as rendering primitives. In Com­
puter Graphics (Proc. SIGGRAPH 2000) (2000), pp. 335-342.

[RL00] Rusinkiewicz S., Levoy M.: QSplat: a multiresolu­
tion point rendering system for large meshes. In Proc. SIG­
GRAPH (2000), pp. 343-252.

[SCESL02] Silva C. T., Chiang Y. J., El-Sana J., Lind­
strom P.: Out-of-core algorithms for scientific visualization and
computer graphics. In Proc. Visualization (2002).

[SCM99] Shen H.-W., Chiang L.-J., Ma K.-L.: A fast vol­
ume rendering algorithm for time-varying fields using a time-
space partitioning (tsp) tree. In Proc. IEEE Visualization (1999),
pp. 371-378.

[SGG00] Silberschatz A., Galvin P., Gagne G.: Applied
Operating Ssytems Concepts. John Wiley & Sons, 2000.

[SH00] Sutton P. M., Hansen C. D.: Accelerated isosurface
extraction in time-varying fields. IEEE Transactions on Visual­
ization and Computer Graphics 6, 2 (2000), 98-107.

[TFFH94] Teller S., Fowler C., Funkhouse T., Hanra­
han P.: Partitioning and ordering large radiosity computations.
In Proc. SIGGRAPH (1994), pp. 443-450.

[USM97] Ueng S.-K., Sikorski C., Ma K.-L.: Out-of-core
streamline visualization on large unstructured meshes. IEEE
Transactions on Visualization and Computer Graphics 3, 4
(1997), 370-380.

[Vit01] Vitter J. S.: External memory algorithms and data
structures: dealing with massive data. ACM Computer Survey
33, 2 (2001), 209-271.

[VM02] Varadhan G., Manocha D.: Out-of-core render­
ing of massive geometric datasets. In Proc. IEEE Visualization
(2002).

0.2

© The Eurographics Association 2006.

