
A Low Complexity Discrete Radiosity Method

Pierre Yves Chatelier, Rémy Malgouyres

To cite this version:

Pierre Yves Chatelier, Rémy Malgouyres. A Low Complexity Discrete Radiosity Method.
Computers and Graphics, Elsevier, 2006, Discrete Geometry for Computer Imagery, 30 (1),
pp.37-45. <hal-01183722>

HAL Id: hal-01183722

https://hal.archives-ouvertes.fr/hal-01183722

Submitted on 10 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Clermont Université

https://core.ac.uk/display/49274764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01183722

A Low Complexity

Discrete Radiosity Method

Pierre Y. Chatelier a Rémy Malgouyres b

achatelier@llaic3.u-clermont1.fr

bremy.malgouyres@llaic3.u-clermont1.fr

LLAIC, Clermont-Ferrand, France

Abstract

Rather than using Monte Carlo sampling techniques or patch projections to com-
pute radiosity, it is possible to use a discretization of a scene into voxels and perform
some discrete geometry calculus to quickly compute visibility information. In such
a framework , the radiosity method may be as precise as a patch-based radiosity
using hemicube computation for form-factors, but it lowers the overall theoretical
complexity to an O(N log N)+ O(N), where the O(N) is largely dominant in prac-
tice. Hence, the apparent complexity is linear for time and space, with respect to
the number of voxels in the scene. This method does not require the storage of
pre-computed form factors, since they are computed on the fly in an efficient way.
The algorithm which is described does not use 3D discrete line traversal and is not
similar to simple ray-tracing. In the present form, the voxel-based radiosity equation
assumes the ideal diffuse case and uses solid angles similarly to the hemicube.

Key words: Radiosity; voxels; discrete geometry; linear complexity; visibility

1 Introduction

In computer graphics, radiosity is known to globally provide smoother results
than simple ray-tracing, since it aims at diffusing light in a better way. The
main drawback is the cost involved by the new physical properties to man-
age, that may still be simplified to be reasonably expensive. Mixing radiosity
and ray-tracing usually gives excellent results, with Monte Carlo or stochas-
tic approaches [11][6]. Apart from sampling methods, radiosity can also be
handled in a more systematic manner by computing relationships between the
scene elements [7]. However, it has usually been done on a discretization of the
surfaces into polygonal patches [4] . A discretization into voxels (elementary

Preprint submitted to Elsevier Science September 2, 2005

volume elements) coupled with discrete geometry can bring new possibilities
of fast visibility computation, especially for complex scenes where the patches
would form a very complex mesh. The goal of this paper is to detail a previ-
ous paper about the subject [3] that brought some improvements to a previous
voxel-based discrete radiosity method introduced in [8]. We present a new rep-
resentation of the visibility problem, and a new data flow in computing, which
lead to a quasi-linear time and space complexity for radiosity solving. The new
algorithm consists in handling the visibility problem globally for each direction
in space. The space is partitioned into lists of voxels, where “neighbors in the
list” means “neighbors in terms of visibility”. Classical ray traversal becomes
useless and no time is spent in empty spaces.
Then, the radiosity can be propagated between the voxels, using the computed
visibility information. By iterating within a set of directions, the radiosity in
the scene converges toward a solution of a discretized radiosity equation. A
tool similar to the hemicube [4] is used, factorizing some computations and
using the notion of solid angle.
This algorithm is designed to work on a given set of voxels. The discretization
step, and the visualization with radiosity, do not belong to the algorithm, and
can be derived from [8] for instance.
The first part of this paper presents our discrete radiosity equation, a second
part introduces useful notions of discrete geometry, and a third part shows
the radiosity algorithm that can be used with such tools.

2 The voxel-based radiosity equation

Radiosity is defined as the total power of light leaving a point. In practice,
this notion is useful provided that some assumptions are made about the
properties of the surfaces. In the continuous form of the radiosity equation,
the computed radiosity B(x) is given for each point x. For a discretization
into patches, B(x) is considered homogeneous along the patches, and for a
discretization into voxels, it is simply considered homogeneous on the surface
contained inside each voxel. The voxel-based radiosity equation initially found
in [8] is written as follows:

B(x) = E(x) + ρd(x)
∑

−→σ ∈D

B(V (x,−→σ))
cos θ(x, V (x,−→σ))

π
Â(−→σ) (1)

An intuitive explanation of Equation (1) is: “the total power of light leaving
a voxel x (the B(x) term), is defined by two terms: the proper emittance of
this voxel as a light source (the E(x) term), and some re-emission of the light
it receives from its environment (the sum)”.

2

• B(·) is present in both sides of the equality, reflecting interdependence be-
tween a point and its environment. It does not consider any outgoing direc-
tion, so it supposes that each point emits light uniformly in every direction.

• A point re-emits only a fraction ρd(x) of the light that it receives. Assuming
that this factor does not depend on incoming or outgoing direction is known
as the ideal diffuse hypothesis.

• D is a set of discrete directions in space.
• V (x,−→σ) is a visibility function, returning the first point y as seen from x in

the direction of −→σ .
• To quantify how much of an object is seen from a point, the term Â(−→σ)

is the fraction of a solid angle associated to the direction −→σ . We call it a
direction factor.

• cos θ(x, V (x,−→σ)) expresses that incident light is more effective when it
comes perpendicularly to the surface.

• The π factor is a normalization term deriving from radiance considerations.

In Equation (1), the expensive information to compute is the function V (x,−→σ),
(the first voxel encountered from x in the direction of −→σ). In [8], it is precom-
puted, and thus is very similar to the form factors of the classical approach.
The term Â(−→σ) can also be easily precomputed. Note that V (x,−→σ) is not
well defined, since the discrete 3D line going through x and −→σ is sometimes
defined up to a translation (see Fig. 1). But this is not a problem since each
possible ray leads to an acceptable solution.

σ

x o b j e c t σ

x o b j e c t σ

x o b j e c t
Figure 1. Given x and σ, several rays may be used to find a V (x, σ). One of them
can be arbitrarily chosen.

2.1 Solving the equation

To solve Equation (1), a converging iterative method similar to the one used
with classical patch-based radiosity can be used: it usually relies on Gauss-
Seidel relaxation [4]. If we consider the equation under its form B = E + M.B,
where B is a vector of elements and M a matrix of factors, some properties of
M ensure the sequence Bn+1 = E + M.Bn to converge toward a limit, which
is a solution of the discrete equation. Roughly speaking, this is a transcription
of light gathering, each iteration going a step further in light re-emission. The
convergence is expected since light is progressively absorbed. Technically, each
iteration consists in propagating packets of energy between mutually visible
voxels.

3

3 Discrete geometry

3.1 Discrete lines

A 2D discrete line [9] whose directing vector is (a, b) can be represented by
the set of points: {(x, y) ∈ Z

2/µ ≤ ay − bx < µ + ω}, where ω denotes the
arithmetical thickness of the line, and µ sets the position of the line. The higher
ω, the thicker the line. If ω is too small, the set of points becomes disconnected
(see Fig. 4). ω is related to the connectivity of the line. If ω = max(|a|, |b|),
the line is 8-connected and it is called the näıve case. If ω = |a|+ |b|, the line
is 4-connected and it is called the standard case.

Figure 2. {4-8}-connectivity Figure 3. {6-18-26}-connectivity

Given a direction vector (a, b, c) ∈ Z
3 with a ≥ b ≥ c, a notion of 3D line has

been defined [5], as the set of points (x, y, z) ∈ Z
3 so that

µ ≤ cx − az < µ + ω

µ′ ≤ bx − ay < µ′ + ω′

Other cases can be deduced by symmetry. It is noteworthy that with that
definition, a 3D discrete line represents the intersection between two discrete
planes, each one being the orthogonal extrusion of a 2D discrete line included
in one of the coordinate planes. Alternatively, one can say that a 3D discrete
line projects onto two 2D discrete lines that are sufficient to retrieve the 3D line
(see Fig. 5). The connectivity is related to ω and ω′. If the two 2D projections
are näıve (resp. standard), the 3D line is näıve (resp. standard) itself.

(x, y) ∈ Z
2/µ ≤ ax − by < µ + ω

(

2

1

) (

2

1

)

(

2

1

) (

2

1

)

� = 1 , � = 1 � = 1 , � = 2
� = 1 , � = 3 � = 1 , � = 4

Figure 4. Different 2D-thicknesses,
with (a, b) = (2, 1)

z yx

10

7

3

Figure 5. A 3D discrete line directed
by (10, 7, 3) and its 2D projections

4

3.2 Partitioning the space into lines

In this section we set and prove that the space can be partitioned into parallel
3D discrete lines, along a given direction. This means that a voxel belongs to
one and only one of these lines, which can be explicitly computed.

proposition: Let us denote by Z
3
∗

the set Z
3\{(0, 0, 0)}. Given an integer

vector −→v ∈ Z
3
∗
, a voxel space can be partitioned into a set of näıve, or a set

of standard, 3D discrete lines, whose direction vector is −→v .

proof : Let −→v = [a, b, c], with (a, b, c) ∈ Z
3
∗
, (a, b, c) having no common divisor

other than 1. We assume without loss of generality that a ≥ b ≥ c ≥ 0.

A 3D discrete line with −→v as directing vector is defined by two 2D projections.
The connectivity of the 3D line and of its projections are related, so that we
can study separately the näıve case and the standard case. Let us denote the
arithmetical thicknesses by:

näıve case:

ωab = max(|a|, |b|) 6= 0

ωac = max(|a|, |c|) 6= 0

ωbc = max(|b|, |c|)
standard case:

ωab = |a| + |b| 6= 0

ωac = |a| + |c| 6= 0

ωbc = |b| + |c|

Since a ≥ b ≥ c ≥ 0, the relevant 2D projections are in the planes (Oxy)
and (Oxz). This is why only ωbc may be null. Thus, the 3D discrete line is
equivalent to the set of all (x, y, z) such that:

µab ≤ −bx + ay < µab + ωab

µac ≤ −cx + az < µac + ωac

Since a, b, c, ωab, ωac are fixed, only the position of the line may be chosen and
we denote such a set of voxels by L(µab, µac). Let us introduce the set of 3D
discrete lines denoted by {Li,j}(i,j)∈Z2 = {L(i∗ωab, j ∗ωac)}(i,j)∈Z2 . Given i and
j, an Li,j 3D discrete line is defined by:

i ∗ ωab ≤ −bx + ay < i ∗ ωab + ωab

j ∗ ωac ≤ −cx + az < j ∗ ωac + ωac

or

i ∗ ωab ≤ −bx + ay < (i + 1) ∗ ωab

j ∗ ωac ≤ −cx + az < (j + 1) ∗ ωac

Given a voxel (x, y, z) ∈ Z
3, this voxel belongs to Lk,l with k = ⌊−bx+ay

ωab

⌋ and

l = ⌊−cx+az
ωac

⌋ (where ⌊x⌋ denotes the “floor” function). Moreover, the Li,j ’s are
pairwise disjoint and thus they constitute a partition. Indeed, let us consider
a voxel v = (x, y, z) belonging to Li,j and to Li′,j′, with (i, j) 6= (i′, j′). We
assume for instance i < i′, because if i = i′, the following reasoning can still

5

be held, replacing i by j and say that j < j′.

v ∈ Li,j and v ∈ Li′,j′ ⇒

i ∗ ωab ≤ −bx + ay < (i + 1) ∗ ωab

i′ ∗ ωab ≤ −bx + ay < (i′ + 1) ∗ ωab

⇒

−bx + ay < (i + 1) ∗ ωab ≤ i′ ∗ ωab

i′ ∗ ωab ≤ −bx + ay

⇒ −bx + ay < −bx + ay which is impossible

As a conclusion, given a direction, and a näıve or standard connectivity, the set
of corresponding Li,j ’s is a partition of the voxel space into 3D discrete lines
following this direction. Then, a simple operation using the floor function
allows to deduce, from the coordinates of a voxel, the Li,j line it belongs to.

4 Voxel-based radiosity

4.1 A new approach of discrete radiosity

The main problem of the approach presented in [8] lies in the required informa-
tion about visibility, stored as a precomputed set of V (x,−→σ). Such information
is very expensive to store for each voxel of the scene, and usually does not
fit in RAM. A secondary memory is necessary. A scene with 2 × 106 voxels
would basically generate about 80 GB of data. With the help of discrete ge-
ometry, a new approach can be introduced, that deduces visibility on-the-fly.
No pre-computations are needed, and no information has to be stored on disk.
Both time and space complexity are improved by this method. This can be
done by transforming the visibility problem.

4.2 Transforming the visibility problem by considering lists

When querying y = V (x,−→σ), we find out a relationship between the two
voxels x and y. Then, when querying z = V (y,−→σ), we do not only find out
a relationship between y and z, but we also emphasize that x and z, even if
they can’t see each other because of y, lie on the same ray for the direction
−→σ . This could be represented by a list containing x, y and z in this order.
Querying V (x,−→σ) can be done using discrete ray-tracing [1] [10] [12].

Considering that, the visibility problem can be reversed. Instead of discovering
the lists (representing rays) when querying visibility, it is rather possible to

6

deduce the visibility from such lists if they already exist. A list L−→σ containing
x, y and z encodes the fact that V (x,−→σ) = y and V (y,−→σ) = z.

So, instead of iterating on each voxel x, and querying V (x,−→σ), we can rather
iterate on −→σ and compute a whole bunch of V (x,−→σ) at a time for a fixed −→σ .
This second approach is interesting, since we show in the next two sections that
the cost of building and storing these sorted lists can be lower than discrete
ray-tracing.

a set of voxels relationships in the same set under two directions

Figure 6. Visibility solving by finding voxels on the same 3D discrete lines

4.3 A simple approach to build the lists

A ray of light is represented by a sorted list of the voxels that would be
intersected if not considering occlusion. Therefore, for a given direction, each
voxel belongs to one and only one ray, the set of all rays constituting a partition
of the space. Then, using the mathematical properties presented in Section 3.2
about discrete space partitioning, we can handle such structures rather easily.

In the partition, each ray is characterized by a couple of integers (i, j). First,
since the voxels are considered available in memory, it is easy to iterate over
them, whatever the order, and compute their (i, j) and put them in the match-
ing ray. Since i and j are bounded by the geometry of the scene, the most
efficient structure to use is a 2D array of lists, indexed by i and j. It is not
very efficient in term of space, since sparse scene would generate a sparse ar-
ray, but one can find a compromise by considering hash maps. To simplify, we
assume our structure to be a 2D array of lists, indexed by i and j. The lists
are incrementally filled when iterating the voxels and computing their (i, j);
here again it is technically tunable, by considering a mean length for the lists
and pre-allocating some memory to make it work faster.

That first step only builds unsorted lists, which hold voxels which are in rela-
tion, but need sorting to reflect visibility: if the x, y and z voxels used above
have been encountered in the y, z, x order during that traversal, the list should
sort them anyway to x, y and z. This can easily be done by considering a sort-
ing criterion relative to a scalar product between the direction and the position
of the voxel.

7

Finally, to save space, there is only one big 2D array of lists at a time in
memory, and it is reset for each direction −→σ .

The overall complexity of the dispatching process, for a given direction, for one
voxel, is a constant time. For N voxels, the time complexity of this dispatching
process is obviously O(N). Then adding sorting for the built lists results in
an O(N log N). N t i m e s :

O(N)

O(N lnN)
V oxel

O(1)
!−→

extracting
(i, j)

O(1)
−→

finding
list

O(1)
!−→

inserting
increased list sorted lists

4.4 An efficient approach to build the lists

Sorting the lists is not required if they can be filled in the right order. To
ensure that property, an appropriate traversing order must be found for the
data structure supplying the voxels to the list-filling algorithm (see Figure 7).d i r e c t i o n
Figure 7. Given a direction and a set of voxel, traverse them in a right order allows
to build the lists incrementally without extra sort

A kind of wavefront, perpendicular to the current direction, and evolving in
that direction, encounters the voxels of the scene in their natural order for
the given direction. In the discrete case, the wavefront can be aligned along
a coordinate axis. It is worth noting that the voxels in a 3D discrete line
are ordered with respect to a lexicographic order on their coordinates x, y
and z, depending on the directing vector. Hence, the wavefront itself can be
implemented by a lexicographic order (see Fig. 8).

So far, no conditions were required on the data structure supplying the vox-
els to the radiosity algorithm. But we now need the ability to be given the
voxels with respect to one of the 48 possible lexicographic orders. In practice,
without assumptions on the original data structure, it is possible to use 48
additional arrays, one for each lexicographic order, containing sorted pointers
to the N voxels. This is affordable as a precomputation, in O(N log N) time,
and in practice only needs a few seconds. Its practical time cost is totally
negligible aside the radiosity solving step, since it is done once for all and is
not systematically repeated for each −→σ .

8

Figure 8. An appropriate traversing order of voxels respects their natural order in
the discrete lines. a) A wavefront encounters the voxels in the good order. b) In the
discrete case, the wavefront may be oriented along a coordinate axis. c) and d) This
wavefront can be represented by a lexicographic order on the coordinates.

4.5 Reducing the number of lexicographic orders

An obvious method to reduce the number of lexicographic orders to use is to
take in account the symmetry of opposite directions. We can keep only a half
of the directions, the other half being the opposites, and instead of 48 sorted
arrays, we can use only 24 of them, with the ability to parse them forwards
and backwards.

A second method to reduce this number is to consider that the respective
order of the x, y and z coordinates does not matter. As it can be seen in
2D on Figure 8, considering x before y or y before x ends by building the
same lists. However, in 3D, this is not true when encountering “bubbles” (see
Figure 9). Those bubbles may appear in the standard case because we use
only two out of three projections to characterize the 3D discrete lines. This
has been done on purpose as a basic simplification of our algorithm, because
we consider that bubbles can safely be ignored. Not only the case is rare,
but also adjacent voxels usually do not exchange light in the radiosity kernel.
Therefore, neglecting the bubbles won’t perturb the final results.

Finally, assuming that the respective order of x, y and z does not matter,
the number of different lexicographic orders to consider drops down from 48
to 8, and it can still be cut to 4 thanks to the symmetry property. In this
context, for a direction −→v = (a, b, c), the lexicographic order must only fulfill
the following conditions: if a (resp. b, resp. c) ≥ 0, then x (resp. y, resp. z)
is considered in ascending order, otherwise in descending order.

Figure 9. A bubble

9

4.6 Computing the set of discrete directions

Our algorithm relies on a set of discrete directions, allowing fast voxel order-
ing. Computing such a set is easy. We can consider a discrete sphere, each
voxel of its surface giving a direction with respect to its center. However,
the order in which these directions will be considered may be tuned a little.
Taking the directions randomly may be a good idea since it will certainly be
very “isotropic” and ensure a fast convergence of the algorithm. Another idea
is to consider successively different discrete sphere, with increasing radius.
This methods guarantees that even if the algorithm is stopped before it has
completed, it has been very “isotropic” so far (see Figure 10).

The only difficulty is to prevent a direction from being used twice, and to
assign to each of them a tuned direction factor (see Section 2): it should be
proportional to the importance of the direction in the biggest sphere. This is
done easily, using appropriate data structures to store the computed directions
on each sphere. A more extensive background on discrete spheres can be found
in [2].

small radius for the surrounding sphere greater radii give new directions

Figure 10. The set of discrete directions can be computed by increasing the radius
of a discrete sphere. In this case, the directions are computed in an order such that
each step further is a refinment in light spreading, and can be stopped without
generating visible artifact due to privileged directions.

4.7 The final algorithm

We have shown in the previous sections how to handle the visibility problem
with a low complexity. To solve the voxel-based radiosity equation, a con-
verging iterative method is used, as described in [8]. The final algorithm is
described on the next page.

4.7.1 Time complexity

The algorithm requires two parameters, which are the radius R of the discrete
sphere used to compute the direction factors, and a number I of iterations to

10

Prepare the needed four lexicographic orders;
Compute a set of discrete directions;
for each direction do

compute and store the associated direction factor;

//the number of iterations is a small constant
for iterations = 1 to MaxIterations do

//the number of directions is a big constant
for each direction do

//dispatching step: O(N)
Select the appropriate lexicographic order;
for each voxel (with respect to the lexicographic order) do

//The voxels are naturally sorted at insertion
Add it to the back of the list (3D discrete line) it belongs to;

//propagation (solving) step: O(N)
for each list do

propagate radiosity between contiguous voxels by updating Bn+1;

reset the lists;

Algorithm 1: The final radiosity algorithm

converge to a radiosity solution (usually less than 6). The number of directions
is an O(R2) (usually a few thousands). For N voxels in the scene, the time
complexity is:

4 × O(N log N)
︸ ︷︷ ︸

preparing lexico-

graphic orders

+ I × O(R2) × (O(N) + O(N))
︸ ︷︷ ︸

radiosity solving

= O(N log N)
︸ ︷︷ ︸

negligible

in practice

+O(I × R2 × N)

4.7.2 Space complexity

We assume that the N voxels modeling the 3D scene are already encoded in an
O(N) data structure. Given a direction, the set of lists we use for partitioning
contains exactly one reference to each voxel, so that O(N) is expected for the
total space complexity. Four precomputed lexicographic arrays of voxels are
needed, this is an O(N). We also need an array to store the lists. Since the
lists form a partition of the 3D space, the number of lists needed for a scene is
related to the square of the width of the 3D scene. Only the surface of objects
are discretized, so that the width of the scene is usually an O(

√
N). Thus, the

number of lists is at most an O(N), since in the worst case, where each list
contains a single voxel, there are exactly N lists. The lists are reset for each
direction, so that the hidden constant depends solely on the geometry of the
scene, not on the number of directions. Thus, the hidden constant remains
small, and the space complexity needed by our algorithm is an O(N) which
merges with the O(N) already needed by the data structure used for modeling.

11

5 Experimental results

5.1 Improvements over previous voxel-based method

The scene of Fig. 11, presented in [8], is made of 310,000 patches, and has
been discretized into about 2 × 106 voxels. It has been computed with the
new algorithm in the same conditions as with the previous one: 6 iterations,
about 15,000 directions, on an Athlon 900 MHz with 1.5 GB of RAM. It has
shown a 60% time improvement, for identical result quality (27 hours instead
of 72). A main advantage is also that no hard disk space is needed since the
whole computation can be done in RAM.

5.2 Storing some results on disk to optimize

Each iteration uses the same set of directions and leads to the same computa-
tions to retrieve the visibility of the voxels along the rays of a given direction.
This is not a real problem because there are very few iterations. However,
if disk space is available, the lists computed during the first iteration can
be dumped and recalled in the following iterations. Tests have shown that it
results in a 20% time regression for the first iteration, and a 30% time improve-
ment for the following ones. On the one hand, more resources help optimizing,
on the other hand, it does not deeply outperform the RAM-only approach,
especially if we consider the huge required amount of hard disk: basically, it
is about 60 GB for 2 × 106 voxels and 15,000 directions.

6 Parallelization of the method

There are at least two easy levels of parallelization of the presented algorithm.

• first, the propagation step, after the lists have been built, acts iteratively
on each list, and the lists do not share data, since it is a partition of voxels.
So, there may be several threads updating the lists without conflicts;

• second, our discrete radiosity equation is linear, so that it is possible to
divide the sum into several sums.

∑

D

=
∑

D1

+
∑

D2

+ . . . +
∑

Dn

where
⋃

Di

= D.

Thus, several processors may be used to divide the set of directions. How-
ever, it requires the voxel data to be duplicated on each node, and the
results must be regularly gathered and updated. But the first tests about
this parallelization, that can be seen on Figure 12, show an effective speed
improvement: the cost of communications is not a problem until 4 cluster
nodes.

These two parallelizations are quite easy, compared to the problem of dis-
patching the data on a cluster of machines. Indeed, the later involves complex

12

communication to be efficient. The overall parallelization is the subject of
another related work.

Figure 11. This scene is only lit by
radiosity

05 01 0 01 5 02 0 02 5 0
1 2 3 4 5N u m b e r o f n o d e sT i me(mi nut es)

Figure 12. Parallelization results on a
given test scene (multi-thread disabled)

7 Conclusion and perspectives

A voxel-based radiosity algorithm has been presented, with a quasi-linear com-
plexity in time and a linear complexity in space, with respect to the number
of voxels encoding the scene. Many experiments remain to be done in order
to improve this approach of radiosity. First, instead of limiting ourselves to
the ideal diffuse case, we are investigating the efficient introduction of Bidi-
rectional Reflectance Distribution Functions (BRDF), to enhance the physical
properties taken in account. Then, we are also working on the effective paral-
lelization of the method, sharing work and data on a cluster of machines.

Acknowledgments:

Thanks to Rita Zrour for providing us the first results about parallelization.

References

[1] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for
ray tracing. In Eurographics ’87, pages 3–10. Elsevier Science Publishers,
Amsterdam, North-Holland, 1987.

[2] Eric Andres and Marie-Andrée Jacob. The discrete analytical hyperspheres.
IEEE Transactions on Visualization and Computer Graphics, 3(1):75–86, 1997.

13

[3] Pierre Y. Chatelier and Rémy Malgouyres. A low complexity discrete radiosity
method. In Eric Andres, Guillaume Damiand, and Pascal Lienhardt, editors,
DGCI, volume 3429 of Lecture Notes in Computer Science, pages 392–403.
Springer, 2005.

[4] Michael F. Cohen and Donald P. Greenberg. The hemi-cube: a radiosity solution
for complex environments. In SIGGRAPH ’85: Proceedings of the 12th annual

conference on Computer graphics and interactive techniques, pages 31–40. ACM
Press, 1985.

[5] Isabelle Debled-Rennesson. Étude et reconnaissance des droites et plans

discrets. PhD thesis, Université Louis Pasteur, Strasbourg, 1995.

[6] Philip Dutre, Kavita Bala, and Philippe Bekaert. Advanced Global Illumination.
A. K. Peters, Ltd., Natick, MA, USA, 2002.

[7] Paul S. Heckbert. Finite Element Methods for Radiosity. In ACM SIGGRAPH

’93 Course Notes - Global Illumination, pages 1–7. 1993.

[8] Rémy Malgouyres. A discrete radiosity method. In Achille Braquelaire, Jacques-
Olivier Lachaud, and Anne Vialard, editors, Discrete Geometry for Computer

Imagery, 10th International Conference, DGCI 2002, Bordeaux, France, pages
428–438. Springer, April 2002.

[9] Jean-Pierre Reveillès. Géometrie discrète, calcul en nombres entiers et

algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg, 1991.

[10] Nilo Stolte and René Caubet. Discrete ray-tracing of huge voxel spaces. Comput.

Graph. Forum, 14(3):383–394, 1995.

[11] Ingo Wald, Timothy J. Purcell, Joerg Schmittler, Carsten Benthin, and Philipp
Slusallek. Realtime Ray Tracing and its use for Interactive Global Illumination.
In Eurographics State of the Art Reports, 2003.

[12] R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE Computer

Graphics & Applications, 12(9):19–28, 1992.

14

