2,880 research outputs found

    Fluctuations and correlations in population models with age structure

    Full text link
    We study the population profile in a simple discrete time model of population dynamics. Our model, which is closely related to certain ``bit-string'' models of evolution, incorporates competition for resources via a population dependent death probability, as well as a variable reproduction probability for each individual as a function of age. We first solve for the steady-state of the model in mean field theory, before developing analytic techniques to compute Gaussian fluctuation corrections around the mean field fixed point. Our computations are found to be in good agreement with Monte-Carlo simulations. Finally we discuss how similar methods may be applied to fluctuations in continuous time population models.Comment: 4 page

    Geometry, Scaling and Universality in the Mass Distributions in Heavy Ion Collisions

    Full text link
    Various features of the mass yields in heavy ion collisions are studied. The mass yields are discussed in terms of iterative one dimensional discrete maps. These maps are shown to produce orbits for a monomer or for a nucleus which generate the mass yields and the distribution of cluster sizes. Simple Malthusian dynamics and non-linear Verhulst dynamics are used to illustrate the approach. Nuclear cobwebbing, attractors of the dynamics, and Lyapanov exponents are discussed for the mass distribution. The self-similar property of the Malthusian orbit offers a new variable for the study of scale invariance using power moments of the mass distribution. Correlation lengths, exponents and dimensions associated with scaling relations are developed. Fourier transforms of the mass distribution are used to obtain power spectra which are investigated for a 1/fβ1/f^{\beta} behavior.Comment: 29 pages in REVTEX, 9 figures (available from the authors), RU-92-0

    Bifurcation sequences in the symmetric 1:1 Hamiltonian resonance

    Full text link
    We present a general review of the bifurcation sequences of periodic orbits in general position of a family of resonant Hamiltonian normal forms with nearly equal unperturbed frequencies, invariant under Z2×Z2Z_2 \times Z_2 symmetry. The rich structure of these classical systems is investigated with geometric methods and the relation with the singularity theory approach is also highlighted. The geometric approach is the most straightforward way to obtain a general picture of the phase-space dynamics of the family as is defined by a complete subset in the space of control parameters complying with the symmetry constraint. It is shown how to find an energy-momentum map describing the phase space structure of each member of the family, a catastrophe map that captures its global features and formal expressions for action-angle variables. Several examples, mainly taken from astrodynamics, are used as applications.Comment: 36 pages, 10 figures, accepted on International Journal of Bifurcation and Chaos. arXiv admin note: substantial text overlap with arXiv:1401.285

    Survival of small populations under demographic stochasticity

    Get PDF
    We estimate the mean time to extinction of small populations in an environment with constant carrying capacity but under stochastic demography. In particular, we investigate the interaction of stochastic variation in fecundity and sex ratio under several different schemes of density dependent population growth regimes. The methods used include Markov chain theory, Monte Carlo simulations, and numerical simulations based on Markov chain theory. We find a strongly enhanced extinction risk if stochasticity in sex ratio and fluctuating population size act simultaneously as compared to the case where each mechanism acts alone. The distribution of extinction times deviates slightly from a geometric one, in particular for short extinction times. We also find that whether maximization of intrinsic growth rate decreases the risk of extinction or not depends strongly on the population regulation mechanism. If the population growth regime reduces populations above the carrying capacity to a size below the carrying capacity for large r (overshooting) then the extinction risk increases if the growth rate deviates from an optimal r-value

    Formal expansion method for solving an electrical circuit model

    Get PDF
    We investigate the validity of the formal expansion method for solving a second order ordinary differential equation raised from an electrical circuit problem. The formal expansion method approximates the exact solution using a series of solutions. An approximate formal expansion solution is a truncated version of this series. In this paper, we confirm using simulations that the approximate formal expansion solution is valid for a specific interval of domain of the free variable. The accuracy of the formal expansion approximation is guaranteed on the time-scale 1

    Marketing Percolation

    Full text link
    A percolation model is presented, with computer simulations for illustrations, to show how the sales of a new product may penetrate the consumer market. We review the traditional approach in the marketing literature, which is based on differential or difference equations similar to the logistic equation (Bass 1969). This mean field approach is contrasted with the discrete percolation on a lattice, with simulations of "social percolation" (Solomon et al 2000) in two to five dimensions giving power laws instead of exponential growth, and strong fluctuations right at the percolation threshold.Comment: to appear in Physica

    On the detuned 2:4 resonance

    Get PDF
    We consider families of Hamiltonian systems in two degrees of freedom with an equilibrium in 1:2 resonance. Under detuning, this "Fermi resonance" typically leads to normal modes losing their stability through period-doubling bifurcations. For cubic potentials this concerns the short axial orbits and in galactic dynamics the resulting stable periodic orbits are called "banana" orbits. Galactic potentials are symmetric with respect to the co-ordinate planes whence the potential -- and the normal form -- both have no cubic terms. This Z2×Z2\mathbb{Z}_2 \times \mathbb{Z}_2-symmetry turns the 1:2 resonance into a higher order resonance and one therefore also speaks of the 2:4 resonance. In this paper we study the 2:4 resonance in its own right, not restricted to natural Hamiltonian systems where H=T+VH = T + V would consist of kinetic and (positional) potential energy. The short axial orbit then turns out to be dynamically stable everywhere except at a simultaneous bifurcation of banana and "anti-banana" orbits, while it is now the long axial orbit that loses and regains stability through two successive period-doubling bifurcations.Comment: 31 pages, 7 figures: On line first on Journal of Nonlinear Science (2020
    corecore