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Abstract 
We investigate the validity of the formal expansion method for solving a second order ordinary 

differential equation raised from an electrical circuit problem. The formal expansion method approximates 
the exact solution using a series of solutions. An approximate formal expansion solution is a truncated 
version of this series. In this paper, we confirm using simulations that the approximate formal expansion 
solution is valid for a specific interval of domain of the free variable. The accuracy of the formal expansion 
approximation is guaranteed on the time-scale 1. 
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1. Introduction 
Mathematics and its programming have played important roles in solving as well as 

designing experiments of electrical engineering problems, for example, see the work of Sutikno 
et al. [1-4]. To be specific, in this paper we consider electrical circuit problems. Problems in 
electrical circuits are often modelled into differential equations. One of the models is called the 
van der Pol equation. This equation is due to the Dutch physicist Balthasar van der Pol in 
around 1920 to describe oscillations in a triode-circuit [5]. In a specific situation with small 
source in oscillations, the van der Pol equation becomes a vibration model with a linear friction 
term. In this paper we solve the vibration model with a linear friction term, which is a 
modification of the van der Pol equation, using the formal expansion method.  

Previous research has been conducted by a number of authors relating to the van der 
Pol equation [5-8] in physics [9-10], biology [11], economics [12], etc. [13-15]. Amongst them, 
Verhulst [5] provided a theorem about the order of accuracy of the formal expansion solution 
with respect to the perturbation factor in the damping term. Nevertheless, it has not been 
confirmed computationally when we use this method to solve the vibration model with a linear 
damping (friction term), especially the validity of the method relating to the interval of the free 
variable. Therefore, this paper shall fill this gap of research, that is, we shall validate of the 
formal expansion method computationally. The rest of this paper is written as follows.  
We provide the mathematical model and method in section 2. After that we present our research 
results and discussion in section 3. The paper is concluded with some remarks in section 4. 
 
 
2. Mathematical Model and Method 

The van der Pol equation, as the considered mathematical model, is 
 

�̈� + 𝑥 = 𝜇(1 − 𝑥2)�̇�  
 

where 𝜇 is a positive constant [5]. When the factor 𝜇(1 − 𝑥2) is replaced by −𝜀, where 𝜀 is a 
small positive constant, the model becomes 
 

ẍ + x = −εẋ  
 

which is valid for 𝑥 > 1 or 𝑥 < −1. This model is the vibration model with a linear friction term. 
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The core property in the formal expansion method is given in a theorem as follows due 
to Verhulst [5]. We consider the initial value problem 

 

ẋ = f0(t, x) + εf1(t, x) + ⋯ + εmfm(t, x) + εm+1R(t, x, ε)  
 

where 𝑥(𝑡0) =  and |𝑡 − 𝑡0| ≤ ℎ, 𝑥 ∈ 𝐷𝑅𝑛 , 0 ≤ 𝜀 ≤ 𝜀0. Here  is a constant, ℎ is a positive 

constant, 𝐷 is a domain in the 𝑛 dimension, and 𝜀0 is a positive constant. We assume that in this 
domain all functions involved in the problem are infinitely many differentiable. Then the formal 
expansion  
 

x0(t) + εx1(t) + ⋯ + εmxm(t)  
 

with 𝑥0(𝑡0) = , 𝑥𝑖(𝑡) = 0, 𝑖 = 1, … , 𝑚 approximates the exact solution 𝑥(𝑡) with the property 
 

‖x(t) − (x0(t) + εx1(t) + ⋯ + εmxm(t))‖=O(εm+1)  
 

on the time-scale 1. This means that the formal expansion is of the (𝑚 + 1)th order of accuracy. 
 
 
3. Results and Discussion 

For the convenience of writing and in order to be consistent with our references (such 
as Verhulst [5]), we consider the model 

 

ẍ + x = −2εẋ  
 

suppose the initial conditions are 𝑥(0) = 𝑎 and �̇�(0) = 0 . The exact solution to this problem is 
 

x(t) = aeεtcos(√1 − ε2 t) + ε
a

√1−ε2
e−εtsin(√1 − ε2 t)  

 

substituting 
 

x(t) = x0(t) + εx1(t) + ε2 …  
 

into the model, we obtain 
 

ẍ0 + x0 = 0,  
ẍn + xn = −2ẋn−1, n = 1,2, …  

 

now we put 
 

x0(0) = a , ẋ0(0) = (0)                    

xn(0) = 0 , ẋn(0) = 0, n = 1,2, … .
  

 

we obtain 
 

x0(t) = a cos t  
x1(t) = a sin t − at cos t    

 

therefore, our solution based on the formal expansion is 
 

x(t) = a cos t + aε(sin t − t cos t) + ε2 …  
 

that is, the first order formal solution is  
 

y1(t) = a cos t  
 

the second order formal solution is 
 

y2(t) = a cos t + aε(sin t − t cos t)  
 

Remark: We choose to consider this problem, because this problem has an exact solution. 
We intentionally use the exact solution to verify the validity of formal expansion solutions. If the 
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formal expansion solutions are valid for solving problems having exact solutions, then we shall 
be sure to use the formal expansion method to solve problems with the exact solutions are not 
known. Note that in practice, exact solutions are generally not known. Now for numerical 
experiments, we take 𝑎 = 1 and vary the values of 𝜀. To get clear illustrations, we take 𝜀 = 0.5,
0.05, 0.025 respectively. 
 
3.1. Simulation for Case 𝛆 = 𝟎. 𝟓 

For the first case, we take 𝜀 = 0.5. Figure 1 shows the exact solution, the first order 
formal expansion solution, and the second order formal expansion solution on the interval  
0 ≤ 𝑡 ≤ 1. We observe that the second order solution approximates the exact solution better 

than the first order does in the domain 0 ≤ 𝑡 ≤ 1. However, if we extend the domain to be  
0 ≤ 𝑡 ≤ 10, the second order solution behaves poorly and even worse than the first order 
solution, as given in Figure 2. 

 
 

 
 

Figure 1. Exact, first order, and second order 
solutions for 𝜀 = 0.5 in domain 0 ≤ 𝑡 ≤ 1 

 
 

Figure 2. Exact, first order, and second order 
solutions for 𝜀 = 0.5 in domain 0 ≤ 𝑡 ≤ 10 

 
 

3.2. Simulation for Case 𝛆 = 𝟎. 𝟎𝟓 
For the second case, we take 𝜀 = 0.05. Figure 3 shows the solutions on the interval  

0 ≤ 𝑡 ≤ 10. Similar to the previous case, we observe that the second order solution 

approximates the exact solution better than the first order does in the domain 0 ≤ 𝑡 ≤ 1 and the 
extended domain 0 ≤ 𝑡 ≤ 10. However, if we extend the domain further to be 0 ≤ 𝑡 ≤ 50,  
the second order solution behaves worse than the first order solution, as illustrated in Figure 4. 

 
 

 
 

Figure 3. Exact, first order, and second order 
solutions for 𝜀 = 0.05 in domain 0 ≤ 𝑡 ≤ 10 

 
 

Figure 4. Exact, first order, and second order 
solutions for 𝜀 = 0.05 in domain 0 ≤ 𝑡 ≤ 50 

 
 

3.3. Simulation for Case 𝛆 = 𝟎. 𝟎𝟐𝟓 

As the third case, we fix 𝜀 = 0.025. We plot the solutions on the interval 0 ≤ 𝑡 ≤ 10 as 
shown in Figure 5. Once again, we observe that the second order solution approximates the 
exact solution better than the first order does in the domain 0 ≤ 𝑡 ≤ 1 and the extended domain 

0 ≤ 𝑡 ≤ 10. However, once again, if we extend the domain further to be 0 ≤ 𝑡 ≤ 100, the second 
order solution behaves worse than the first order solution, as illustrated in Figure 6. 
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Figure 5. Exact, first order, and second order 
solutions for 𝜀 = 0.025 in domain 0 ≤ 𝑡 ≤ 10 

 
 

Figure 6. Exact, first order, and second 
order solutions for 𝜀 = 0.025 in domain 

 0 ≤ 𝑡 ≤ 100 
 
 

3.4. Simulation for the Validity of Order of Accuracy 
As we have mentioned in the mathematical method section, the formal expansion is 

guaranteed to be valid only on the time-scale 1. For any extension of the domain larger than 
 0 ≤ 𝑡 ≤ 1, the accuracy is not guaranteed. Obviously from the previous subsections 
(Subsections 3.1-3.3), we obtain that for an extended domain, the errors of the formal 
expansion solutions are indeed very large. In the present subsection we investigate the validity 
of the order of accuracy of the formal expansion. We limit our domain only on the interval of the 
time-scale 1. We take a discrete version of the time domain to be  
𝑡 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. This means that we have discretised the time domain 
into 11 points. Error of an approximate solution is quantified as 
 

𝐸𝑟𝑟𝑜𝑟 =  
1

𝑁
∑ |𝑥(𝑡𝑖) − 𝑦(𝑡𝑖)|𝑁

𝑖=1   

 

where 𝑁 is the number of discrete time points 𝑡𝑖 (in this case 𝑖 = 1, 2, 3, … , 𝑁 with 𝑁 = 11), 𝑥(𝑡) 
is the exact solution, and 𝑦(𝑡) is the approximate solution. Furthermore, the order of accuracy is 
calculated as: 
 

𝑂𝑟𝑑𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑙𝑜𝑔(

𝐸𝑟𝑟𝑜𝑟𝑗

𝐸𝑟𝑟𝑜𝑟𝑗+1
)

𝑙𝑜𝑔(
𝜀𝑗

𝜀𝑗+1
)

   

 

the order of accuracy is calculated based on the 𝑗th and the (𝑗 + 1)th simulations, respectively, 

using different values of 𝜀. Our results of errors and orders of accuracy are summarised in 
Tables 1 and 2. Table 1 contains the errors of the first order formal solution with respect to 
varying 𝜀 on the time-scale 1. As 𝜀 tends to zero, the order of accuracy approaches 1. This is 
consistent with the theoretical background that the solution is of the first order. Table 2 
summarises the errors of the second order formal solution with respect to varying 𝜀 on the time-

scale 1. We find that as 𝜀 tends to zero, the order of accuracy approaches 2. This is consistent 
with the theory that as it is the second order formal expansion solution, the order of accuracy  
is 2 in the time-scale 1. 

 

 
Table 1. Errors of the First Order Formal 

Solution with Respect to Varying 𝜀  
on the Time-Scale 1 

𝜀 Error Order of 
accuracy 

0.5 0.0351 - 
0.25 0.0193 0.86 
0.125 0.0101 0.93 
0.0625 0.0052 0.96 
0.03125 0.00 0.98 

 

Table 2. Errors of the Second Order Formal 
Solution with Respect to Varying 𝜀  

on the Time-Scale 1 
𝜀 Error Order of 

accuracy 

0.5 0.007527 - 
0.25 0.002037 1.89 
0.125 0.000531 1.94 
0.0625 0.000136 1.97 
0.03125 0.000034 1.98 
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As final remarks, knowing the accuracy of the formal expansion method, we could 
extend the application of this method to solve other mathematical engineering problems, such 
as those studied by researchers in [16-26]. Possible other problems to be solved using the 
formal expansion method could be those in [27-37]. 
 
 

4. Conclusion 
We have provided our research results on the formal expansion method for solving an 

electrical circuit model. The accuracy of the formal expansion is guaranteed on the time-scale 1. 
We have also confirmed the order of accuracy for the first and second order formal expansion 
solution using numerical experiments. We obtain that for the first order formal expansion 
solution, as the perturbation factor is halved, the error is also halved on the time-scale 1. For the 
second order formal expansion solution, as the perturbation factor is halved, the error is 
quartered on the time-scale 1. With these results, the formal expansion method could be used 
to solve other problems in electrical circuits for the time-scale 1. When the time-scale is not 
equal to 1, we may need to do re-scaling so that the time domain is on the time-scale 1. This 
could be a future research direction. 
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