260 research outputs found

    Application of reinforcement learning in robotic disassembly operations

    Get PDF
    Disassembly is a key step in remanufacturing. To increase the level of automation in disassembly, it is necessary to use robots that can learn to perform new tasks by themselves rather than having to be manually reprogrammed every time there is a different job. Reinforcement Learning (RL) is a machine learning technique that enables the robots to learn by trial and error rather than being explicitly programmed. In this thesis, the application of RL to robotic disassembly operations has been studied. Firstly, a literature review on robotic disassembly and the application of RL in contact-rich tasks has been conducted in Chapter 2. To physically implement RL in robotic disassembly, the task of removing a bolt from a door chain lock has been selected as a case study, and a robotic training platform has been built for this implementation in Chapter 3. This task is chosen because it can demonstrate the capabilities of RL to pathfinding and dealing with reaction forces without explicitly specifying the target coordinates or building a force feedback controller. The robustness of the learned policies against the imprecision of the robot is studied by a proposed method to actively lower the precision of the robots. It has been found that the robot can learn successfully even when the precision is lowered to as low as ±0.5mm. This work also investigates whether learned policies can be transferred among robots with different precisions. Experiments have been performed by training a robot with a certain precision on a task and replaying the learned skills on a robot with different precision. It has been found that skills learned by a low-precision robot can perform better on a robot with higher precision, and skills learned by a high-precision robot have worse performance on robots with lower precision, as it is suspected that the policies trained on high-precision robots have been overfitted to the precise robots. In Chapter 4, the approach of using a digital-twin-assisted simulation-to-reality transfer to accelerate the learning performance of the RL has been investigated. To address the issue of identifying the system parameters, such as the stiffness and damping of the contact models, that are difficult to measure directly but are critical for building the digital twins of the environments, system identification method is used to minimise the discrepancy between the response generated from the physical and digital environments by using the Bees Algorithm. It is found that the proposed method effectively increases RL's learning performance. It is also found that it is possible to have worse performance with the sim-to-real transfer if the reality gap is not effectively addressed. However, increasing the size of the dataset and optimisation cycles have been demonstrated to reduce the reality gap and lead to successful sim-to-real transfers. Based on the training task described in Chapters 4 and 5, a full factorial study has been conducted to identify patterns when selecting the appropriate hyper-parameters when applying the Deep Deterministic Policy Gradient (DDPG) algorithm to the robotic disassembly task. Four hyper-parameters that directly influence the decision-making Artificial Neural Network (ANN) update have been chosen for the study, with three levels assigned to each hyper-parameter. After running 241 simulations, it is found that for this particular task, the learning rates of the actor and critic networks are the most influential hyper-parameters, while the batch size and soft update rate have relatively limited influence. Finally, the thesis is concluded in Chapter 6 with a summary of findings and suggested future research directions

    Energy-based control approaches in human-robot collaborative disassembly

    Get PDF

    Partially Observable Monte Carlo Planning with state variable constraints for mobile robot navigation

    Get PDF
    Autonomous mobile robots employed in industrial applications often operate in complex and uncertain environments. In this paper we propose an approach based on an extension of Partially Observable Monte Carlo Planning (POMCP) for robot velocity regulation in industrial-like environments characterized by uncertain motion difficulties. The velocity selected by POMCP is used by a standard engine controller which deals with path planning. This two-layer approach allows POMCP to exploit prior knowledge on the relationships between task similarities to improve performance in terms of time spent to traverse a path with obstacles. We also propose three measures to support human-understanding of the strategy used by POMCP to improve the performance. The overall architecture is tested on a Turtlebot3 in two environments, a rectangular path and a realistic production line in a research lab. Tests performed on a C++ simulator confirm the capability of the proposed approach to profitably use prior knowledge, achieving a performance improvement from 0.7% to 3.1% depending on the complexity of the path. Experiments on a Unity simulator show that the proposed two-layer approach outperforms also single-layer approaches based only on the engine controller (i.e., without the POMCP layer). In this case the performance improvement is up to 37% comparing to a state-of-the-art deep reinforcement learning engine controller, and up to 51% comparing to the standard ROS engine controller. Finally, experiments in a real-world testing arena confirm the possibility to run the approach on real robots

    Enhancing fluency and productivity in human-robot collaboration through online scaling of dynamic safety zones

    Get PDF
    Industrial collaborative robotics is promising for manufacturing activities where the presence of a robot alongside a human operator can improve operator’s working conditions, flexibility, and productivity. A collaborative robotic application has to guarantee not only safety of the human operator, but also fluency in the collaboration, as well as performance in terms of productivity and task time. In this paper, we present an approach to enhance fluency and productivity in human-robot collaboration through online scaling of dynamic safety zones. A supervisory controller runs online safety checks between bounding volumes enclosing robot and human to identify possible collision dangers. To optimize the sizes of safety zones enclosing the manipulator, the method minimizes the time of potential stop trajectories considering the robot dynamics and its torque constraints, and leverages the directed speed of the robot parts with respect to the human. Simulations and experimental tests on a seven-degree-of-freedom robotic arm verify the effectiveness of the proposed approach, and collaborative fluency metrics show the benefits of the method with respect to existing approaches

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe

    Robotic disassembly of waste electrical and electronic equipment

    Full text link
    Waste electrical and electronic equipment (WEEE) is the world’s fastest growing form of waste. Inappropriate disposal of WEEE causes damage to ecosystems and local communities due to hazardous materials and toxic chemicals present in electronic products. High value metals in small quantities are dissipated and embodied energy from manufacturing are lost in shredding and crushing treatments of WEEE. On the other hand, manual disassembly is costly and presents safety concerns for human workers. Therefore, robotic disassembly is an ideal approach to addressing the treatment of WEEE. Despite extensive research in the field, large variations and uncertainties in product structures, models, and conditions is a major limitation to the implementation of automation and robotics in the waste industry. The ability of a robotic disassembly system to learn new product structures and reason about existing knowledge of product structure is vital to addressing this challenge. This thesis explores robotic disassembly for WEEE by building upon an existing research disassembly rig for LCD monitors and expanding it to address other product families. The updated disassembly system utilizes a modular framework consisting of a Cognition module, Perception module, and Operation module, in order to address the uncertainties present in end-of-life (EoL) products. A novel disassembly ontology is designed and developed with an upper and lower ontology structure to represent generic disassembly knowledge and product-family-specific knowledge respectively. Furthermore, a Learning framework enables automated expansion of the ontology using past disassembly experiences and user-demonstration. These presented methodologies form the main function of the Cognition module, which aids the Perception module and instructs the Operation module. The disassembly ontology and Learning framework are verified independently from the rest of the system prior to being integrated and validated with real disassembly runs of LCD monitors and keyboards. As such, the disassembly system’s ability to address both known and unknown EoL product types, as well as learn new product types, is demonstrated

    Enhancing remanufacturing automation using deep learning approach

    Get PDF
    In recent years, remanufacturing has significant interest from researchers and practitioners to improve efficiency through maximum value recovery of products at end-of-life (EoL). It is a process of returning used products, known as EoL products, to as-new condition with matching or higher warranty than the new products. However, these remanufacturing processes are complex and time-consuming to implement manually, causing reduced productivity and posing dangers to personnel. These challenges require automating the various remanufacturing process stages to achieve higher throughput, reduced lead time, cost and environmental impact while maximising economic gains. Besides, as highlighted by various research groups, there is currently a shortage of adequate remanufacturing-specific technologies to achieve full automation. -- This research explores automating remanufacturing processes to improve competitiveness by analysing and developing deep learning-based models for automating different stages of the remanufacturing processes. Analysing deep learning algorithms represents a viable option to investigate and develop technologies with capabilities to overcome the outlined challenges. Deep learning involves using artificial neural networks to learn high-level abstractions in data. Deep learning (DL) models are inspired by human brains and have produced state-of-the-art results in pattern recognition, object detection and other applications. The research further investigates the empirical data of torque converter components recorded from a remanufacturing facility in Glasgow, UK, using the in-case and cross-case analysis to evaluate the remanufacturing inspection, sorting, and process control applications. -- Nevertheless, the developed algorithm helped capture, pre-process, train, deploy and evaluate the performance of the respective processes. The experimental evaluation of the in-case and cross-case analysis using model prediction accuracy, misclassification rate, and model loss highlights that the developed models achieved a high prediction accuracy of above 99.9% across the sorting, inspection and process control applications. Furthermore, a low model loss between 3x10-3 and 1.3x10-5 was obtained alongside a misclassification rate that lies between 0.01% to 0.08% across the three applications investigated, thereby highlighting the capability of the developed deep learning algorithms to perform the sorting, process control and inspection in remanufacturing. The results demonstrate the viability of adopting deep learning-based algorithms in automating remanufacturing processes, achieving safer and more efficient remanufacturing. -- Finally, this research is unique because it is the first to investigate using deep learning and qualitative torque-converter image data for modelling remanufacturing sorting, inspection and process control applications. It also delivers a custom computational model that has the potential to enhance remanufacturing automation when utilised. The findings and publications also benefit both academics and industrial practitioners. Furthermore, the model is easily adaptable to other remanufacturing applications with minor modifications to enhance process efficiency in today's workplaces.In recent years, remanufacturing has significant interest from researchers and practitioners to improve efficiency through maximum value recovery of products at end-of-life (EoL). It is a process of returning used products, known as EoL products, to as-new condition with matching or higher warranty than the new products. However, these remanufacturing processes are complex and time-consuming to implement manually, causing reduced productivity and posing dangers to personnel. These challenges require automating the various remanufacturing process stages to achieve higher throughput, reduced lead time, cost and environmental impact while maximising economic gains. Besides, as highlighted by various research groups, there is currently a shortage of adequate remanufacturing-specific technologies to achieve full automation. -- This research explores automating remanufacturing processes to improve competitiveness by analysing and developing deep learning-based models for automating different stages of the remanufacturing processes. Analysing deep learning algorithms represents a viable option to investigate and develop technologies with capabilities to overcome the outlined challenges. Deep learning involves using artificial neural networks to learn high-level abstractions in data. Deep learning (DL) models are inspired by human brains and have produced state-of-the-art results in pattern recognition, object detection and other applications. The research further investigates the empirical data of torque converter components recorded from a remanufacturing facility in Glasgow, UK, using the in-case and cross-case analysis to evaluate the remanufacturing inspection, sorting, and process control applications. -- Nevertheless, the developed algorithm helped capture, pre-process, train, deploy and evaluate the performance of the respective processes. The experimental evaluation of the in-case and cross-case analysis using model prediction accuracy, misclassification rate, and model loss highlights that the developed models achieved a high prediction accuracy of above 99.9% across the sorting, inspection and process control applications. Furthermore, a low model loss between 3x10-3 and 1.3x10-5 was obtained alongside a misclassification rate that lies between 0.01% to 0.08% across the three applications investigated, thereby highlighting the capability of the developed deep learning algorithms to perform the sorting, process control and inspection in remanufacturing. The results demonstrate the viability of adopting deep learning-based algorithms in automating remanufacturing processes, achieving safer and more efficient remanufacturing. -- Finally, this research is unique because it is the first to investigate using deep learning and qualitative torque-converter image data for modelling remanufacturing sorting, inspection and process control applications. It also delivers a custom computational model that has the potential to enhance remanufacturing automation when utilised. The findings and publications also benefit both academics and industrial practitioners. Furthermore, the model is easily adaptable to other remanufacturing applications with minor modifications to enhance process efficiency in today's workplaces

    Robot Learning for Manipulation of Deformable Linear Objects

    Get PDF
    Deformable Object Manipulation (DOM) is a challenging problem in robotics. Until recently there has been limited research on the subject, with most robotic manipulation methods being developed for rigid objects. Part of the challenge in DOM is that non-rigid objects require solutions capable of generalizing to changes in shape and mechanical properties. Recently, Machine Learning (ML) has been proven successful in other fields where generalization is important such as computer vision, thus encouraging the application of ML to robotics as well. Notably, Reinforcement Learning (RL) has shown promise in finding control policies for manipulation of rigid objects. However, RL requires large amounts of data that are better satisfied in simulation while deformable objects are inherently more difficult to model and simulate. This thesis presents ReForm, a simulation sandbox for robotic manipulation of Deformable Linear Objects (DLOs) such as cables, ropes, and wires. DLO manipulation is an interesting problem for a variety of applications throughout manufacturing, agriculture, and medicine. Currently, this sandbox includes six shape control tasks, which are classified as explicit when a precise shape is to be achieved, or implicit when the deformation is just a consequence of a more abstract goal, e.g. wrapping a DLO around another object. The proposed simulation environments aim to facilitate comparison and reproducibility of robot learning research. To that end, an RL algorithm is tested on each simulated task providing initial benchmarking results. ReForm is one of three concurrent frameworks to first support DOM problems. This thesis also addresses the problem of DLO state representation for an explicit shape control problem. Moreover, the effects of elastoplastic properties on the RL reward definition are investigated. From a control perspective, DLOs with these properties are particularly challenging to manipulate due to their nonlinear behavior, acting elastic up to a yield point after which they become permanently deformed. A low-dimensional representation from discrete differential geometry is proposed, offering more descriptive shape information than a simple point-cloud while avoiding the need for curve fitting. Empirical results show that this representation leads to a better goal description in the presence of elastoplasticity, preventing the RL algorithm from converging to local minima which correspond to incorrect shapes of the DLO
    • …
    corecore