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Abstract 

Disassembly is a key step in remanufacturing. To increase the level of automation in 

disassembly, it is necessary to use robots that can learn to perform new tasks by themselves 

rather than having to be manually reprogrammed every time there is a different job. 

Reinforcement Learning (RL) is a machine learning technique that enables the robots to learn 

by trial and error rather than being explicitly programmed.  

In this thesis, the application of RL to robotic disassembly operations has been studied. Firstly, 

a literature review on robotic disassembly and the application of RL in contact-rich tasks has 

been conducted in Chapter 2. 

To physically implement RL in robotic disassembly, the task of removing a bolt from a door 

chain lock has been selected as a case study, and a robotic training platform has been built for 

this implementation in Chapter 3. This task is chosen because it can demonstrate the 

capabilities of RL to pathfinding and dealing with reaction forces without explicitly specifying 

the target coordinates or building a force feedback controller. The robustness of the learned 

policies against the imprecision of the robot is studied by a proposed method to actively lower 

the precision of the robots. It has been found that the robot can learn successfully even when 

the precision is lowered to as low as ±0.5𝑚𝑚. This work also investigates whether learned 

policies can be transferred among robots with different precisions. Experiments have been 

performed by training a robot with a certain precision on a task and replaying the learned skills 

on a robot with different precision. It has been found that skills learned by a low-precision 

robot can perform better on a robot with higher precision, and skills learned by a high-precision 

robot have worse performance on robots with lower precision, as it is suspected that the policies 

trained on high-precision robots have been overfitted to the precise robots.  
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In Chapter 4, the approach of using a digital-twin-assisted simulation-to-reality transfer to 

accelerate the learning performance of the RL has been investigated. To address the issue of 

identifying the system parameters, such as the stiffness and damping of the contact models,  

that are difficult to measure directly but are critical for building the digital twins of the 

environments, system identification method is used to minimise the discrepancy between the 

response generated from the physical and digital environments by using the Bees Algorithm. It 

is found that the proposed method effectively increases RL's learning performance. It is also 

found that it is possible to have worse performance with the sim-to-real transfer if the reality 

gap is not effectively addressed. However, increasing the size of the dataset and optimisation 

cycles have been demonstrated to reduce the reality gap and lead to successful sim-to-real 

transfers. 

Based on the training task described in Chapters 4 and 5, a full factorial study has been 

conducted to identify patterns when selecting the appropriate hyper-parameters when applying 

the Deep Deterministic Policy Gradient (DDPG) algorithm to the robotic disassembly task. 

Four hyper-parameters that directly influence the decision-making Artificial Neural Network 

(ANN) update have been chosen for the study, with three levels assigned to each hyper-

parameter. After running 241 simulations, it is found that for this particular task, the learning 

rates of the actor and critic networks are the most influential hyper-parameters, while the batch 

size and soft update rate have relatively limited influence. 

Finally, the thesis is concluded in Chapter 6 with a summary of findings and suggested future 

research directions.    
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1.  Introduction 

1.1. Research background 

Remanufacturing is a processing strategy to return an End-of-Life (EoL) product to be at least 

as good as an originally manufactured one. As one of the most important Circular Economy 

strategies, remanufacturing is promising in many aspects, such as reducing the overall cost of 

production, reducing negative environmental impact, improving material usage efficiency, and 

providing the opportunity to upgrade the products. The development of remanufacturing will 

undoubtedly bring benefits to more sustainable manufacturing.  

The remanufacturing procedure usually contains disassembly, cleaning, inspection, repair or 

replace, reassembly, and testing. Among them, disassembly is the first and most crucial step 

for the following reasons. Firstly, a reliable way to retrieve the complete product cores is 

required to proceed with the rest of the steps. In other words, remanufacturing can be 

economically unjustifiable if the cores are severely damaged during disassembly. Secondly, 

remanufacturing is not the only EoL processing that requires disassembly. Other processing, 

such as recycling and repurposing, also benefit from reliable and efficient disassembly. In other 

words, advancement towards a reliable and efficient disassembly system is transferable to other 

strategies. 

Disassembly is challenging to robotise due to variability in the condition of the returned 

products and the required dexterity in robotic manipulations. Furthermore, disassembly is 

usually more stochastic than assembly, as it has to contend with used products of uncertain 

shapes, sizes, and conditions. The recent advancement of industrial robots and related 

automation technologies, such as computer vision, sensors and machine learning, is promising 
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for developing automated disassembly systems when dealing with the uncertainties in 

variability and increasing dexterity.  

The research directions of robotic disassembly can be broadly categorised into four levels: 

robotic disassembly system design (Shahbazi et al., 2021), product disassembly sequence 

planning (Ong et al., 2021), robot path planning (Gasparetto et al., 2015), and robotic 

disassembly operations (Zhang et al., 2019). Among them, the study of disassembly operations 

is the most fundamental because every other planning or design depends on the capability of 

robots to perform operations. Furthermore, most disassembly operations rely on the robots 

interacting with external objects. Therefore, external information, such as force and visual 

information, is utilised only in this level of study. Examples of operations include unscrewing, 

object manipulation, and separating parts with close contact. Example solutions to these 

operations include force controllers, active or passive compliance strategies and robotic tools. 

One of the critical features identified from these operations is physical contact, and many 

problems originate from the intrinsic rigidity of industrial robots. Although robots with intrinsic 

passive compliances are available, the precision of this kind of robot is an issue as precise 

operations usually require the robots to have high stiffness in their joints. Therefore, the studies 

on operations with physical contact focus on understanding the fundamental physics of the 

problems, hoping to design tools and control strategies to ensure the safety of the robots and 

the parts. 

However, this research direction usually involves carefully building a mechanics model of the 

task that requires extensive knowledge — for example, knowing the exact geometry of the 

parts, which is not practical in disassembly due to uncertainties and lack of information. Thus, 

another approach where the robot can learn from trial-and-error – Reinforcement Learning (RL) 
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– can bring benefits because it does not require extensive prior knowledge and a mechanistic 

model. RL has recently achieved much success in various areas. It has also been applied to 

industrial robots to learn controllers for assembly operations with contact. This research 

attempts to bring the methods of RL also to the disassembly operations. 
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1.2. Aim and objectives 

This research aims to apply RL in learning disassembly operations and investigate the methods 

to increase the performance of the learning process and the learned controllers. The main 

objectives of the PhD programme include: 

1. Building a robotic disassembly operation training platform with RL, 

2. Characterise and demonstrate the application of RL with a case study of a robot learning 

to remove a pin from a door chain slot, 

3. Investigating the ability of the off-policy algorithms to learn from past data, 

4. Investigating the robustness of the RL learning method against the precision of the robot, 

5. Investigating the transferability of the learned controller among robots with different 

precision, 

6. Building a simulated disassembly operation training platform for RL, 

7. Accelerating the learning process by Sim-to-Real transfer, 

8. Optimising the simulated environment by Bees Algorithm (BA), 

9. Hyper-parameter study of DDPG algorithm with three case studies of simulated 

disassembly operations. 
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1.3. Outline of the thesis 

Chapter 1 introduces the background, aim and objectives of this research. 

Chapter 2 reviews the state-of-the-art literature on topics of robotic disassembly and 

applications of RL in robotic disassembly. 

Chapter 3 reports the development of a robotic disassembly operation training platform by 

demonstrating the robot learning to slide a pin along a door chain slot using RL algorithms. 

Also, this chapter reports investigations about the robustness and transferability of the learned 

controllers under the influence of the precision of the robot. This chapter corresponds to 

objectives 1 to 5. 

Chapter 4 reports the study of accelerating the learning process by transferring a learned 

controller from a simulated environment to a real-world environment (sim-to-real). This 

chapter corresponds to objectives 6 to 8. 

Chapter 5 describes the hyper-parameter study of the DDPG algorithm. This chapter 

corresponds to objective 9. 

Chapter 6 concludes the thesis and suggests future research directions. 
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2.  Literature Review 

2.1. Robotic disassembly for remanufacturing 

Remanufacturing is one of the main choices for End-of-Life (EoL) processing when a product 

has reached the end of its lifecycle (AUTOREMAN project, 2017). According to (British 

Standards Institution, 2009), Remanufacturing "returns a used product to at least its original 

performance with a warranty that is equivalent or better than that of the newly manufactured 

product”. Therefore, remanufacturing should be differentiated from the other EoL processing, 

such as reconditioning, reusing or refurbishing, in terms of the quality of the returned products, 

whereas the others only require the returned products to have an equivalent or lower quality 

(British Standards Institution, 2010). 

Remanufacturing is an industry that has many positive social-economical impacts, such as 

material efficiency, sustainability and job opportunities (Jansson, 2016; Liao et al., 2018; 

Mitchell & Morgan, 2015; Sundin & Lee, 2012). One study shows that remanufacturing a 

diesel engine could reduce 66% of energy consumption compared with an originally 

manufactured one and has a 97% reduction of ozone depletion potential (Liu et al., 2014). 

Another study analyses strategies for remanufacturing loading machines, reporting up to 80% 

less climate impact and 58% less cost (Xiao et al., 2018). Remanufacturing also provides an 

opportunity to upgrade the product (Fofou et al., 2021), which is argued to impact business 

models (Chierici & Copani, 2016).  

As illustrated in Figure 2.1, remanufacturing returns the processed product with the highest 

standard. However, it does not mean the products should always be remanufactured despite the 

benefits. Other factors, such as cost, quantity and quality of the returned cores, should also be 
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considered (Ijomah, 2009; Zhang et al., 2020b). Also, there are arguments about repurposing 

some EoL products on a large scale, such as Lithium-ion batteries, might introduce a lag of 5 

to 10 years for the critical materials to be recycled and recirculated back to the market (Kamran 

et al., 2021). The logic is also applicable to remanufacturing. Some researchers have dedicated 

to evaluating the remanufacturability of the products (Amezquita et al., 1995; Fang et al., 2014; 

Zhang et al., 2020a), and there are some attempts to improve the remanufacturability through 

better product design (Ijomah et al., 2007; Shahbazi et al., 2021). However, with all the 

promising benefits, the study of remanufacturability itself proves that remanufacturing still 

requires more development to be a mature industry. 

 

Figure 2.1: Hierarchy of benefits from the main EoL processing. 
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A complete remanufacturing cycle typically contains the following steps: disassembly, cleaning, 

inspection, repair, testing and re-assembly (British Standards Institution, 2010; Östlin, 2008). 

All steps require extra labour and cost. Among them, an efficient and reliable disassembly, as 

the first step of the remanufacturing process, must be developed to conduct the following steps 

on a large scale. With the advancement of Industry 4.0, automating disassembly is a promising 

research direction (Kerin & Pham, 2019, 2020), particularly with the rapid development of 

industrial robots.  

2.2. Robotic disassembly 

2.2.1. Challenges in robotic disassembly 

Assembly and disassembly share many commonalities, but the challenges of automating 

disassembly are more extensive than their assembly automation counterpart (Vongbunyong & 

Chen, 2015). In disassembly, three main unique challenges are different from assembly. 

Firstly, the uncertainties arising from the conditions of the returned EoL products must be 

carefully dealt with (Foo et al., 2022), as certainties are the key to a stable automation system. 

As for assembly, the uncertainties of the parts tend to be controlled to the minimum before 

being assembled (Daneshmand et al., 2022).  

Secondly, a disassembly system must deal with an uncertain feed stream due to a much smaller 

input stream than an assembly system (Bogue, 2019) because the returned quantity of the 

returned products is hard to predict, but it can be anticipated and planned in an assembly system. 

To respond to the variety of input streams, a disassembly system that is flexible enough to deal 

with a range of returned products instead of just one kind is much more desired.  
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Thirdly, a product is generally easier to assemble than disassemble for a few reasons. The main 

reason is that the products should remain secured and intact during the use stage of the lifecycle. 

Sometimes, this is a matter of health and safety (Kong et al., 2018; Nedjalkov et al., 2016). 

Customers will not trust a product that is loosely assembled. Another reason is that the design 

for disassembly has been less considered for products developed years ago due to a lack of 

legislation and sustainable development awareness. Another part of the reason is that designing 

a product that is easy on both assembly and disassembly adds cost to the product, which is an 

unwise decision if the manufacturers do not need to be responsible for the disposal or 

maintenance of the product. 

In summary, a disassembly system must face a system that contains higher uncertainty in terms 

of the variance of EoL conditions of the returned products and the diversity of the products 

than an assembly system. Sometimes, a disassembly system must face products that are harder 

to disassemble than assemble. 

With the increased development of robotic technology, industrial robots in a disassembly 

system can solve some of the mentioned problems with less cost, which is not to say that using 

industrial robots can solve all the problems, but to say that by combining with other automation 

devices, such as specialised end-effectors or automation devices that are independent of the 

robot, industrial robots will be more critical as a part of the automation system. Hence, the 

scope of the literature review is limited to the field of robotic disassembly, which is a subset of 

disassembly automation. 

2.2.2. Robotic disassembly in four levels 

The studies about robotic disassembly can be categorised into these four levels:  
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 Level 1: Studies that focus on developing a robotic disassembly cell from the 

perspective of developing a whole system. These studies need to be differentiated from 

those focusing only on parts of the robotic system. 

 Level 2: Studies that focus on planning the sequence to disassemble a product.  

 Level 3: Studies that focus on planning the motion of the robots.  

 Level 4: Studies that focus on specific disassembly operations.  

The principle of categorisation is based on the kind of information considered when choosing 

the approaches at each level, as illustrated in Figure 2.2. 

Although the problems from these levels seem to have a top-down structure, it should not be 

mistaken that the design of a robotic disassembly system should follow the sequence of these 

levels. The decision from one level will inevitably affect the decision of another. For example, 

if the robot cannot fulfil a particular operation as planned, then either the disassembly sequence 

plan needs to be changed, or the function of the cell needs to be reviewed. 

 

Figure 2.2: Levels of robotic disassembly studies and the corresponding problems to 
solve. 
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One major topic of study is not included in this four-level categorisation, but it also contributes 

extensively to robotic disassembly systems. It is the studies on design for disassembly (Soh et 

al., 2014) where the researchers include techniques that could ease disassembly operations, 

such as smart materials (Abuzied et al., 2020) or combining fasteners (one-to-many fasteners) 

(Carrell et al., 2009), from the design stage of the product. However, these techniques can only 

be applied to new generations of products. The current disassembly system development 

focuses on disassembling the retired products from the previous generations.  

The rest of this section briefly reviews studies from the perspective of the above-mentioned 

four levels. The purpose of the review is not to be exhaustive or systematic but to elaborate on 

the features and limitations of the current studies by showing some representative studies. 

Some recent systematic reviews on studies of robotic disassembly have been done by (Hjorth 

& Chrysostomou, 2022; Poschmann et al., 2020).  

Level 1 – Disassembly system design 

On level 1, the system's functions and the equipment availability are considered. However, the 

designs made at this level are tightly linked with level 4, as the function of the system and the 

equipment required for a system are tightly linked with what operations can be done by the 

robots. Thus, some studies investigate the automation potential to disassemble products 

(Blankemeyer et al., 2021; Hellmuth et al., 2021).  

A group of studies have focused on developing disassembly systems in which collaborative 

robots and operators work side-by-side in a Human-Robot Collaboration (HRC) way to achieve 

semi-autonomous disassembly (Ogenyi et al., 2021). The main disadvantage of a fully 

autonomous system is that it is generally harder to achieve because of the limitations of robotic 
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tools, accumulation of errors, and less adaptability compared with human operators (Hjorth & 

Chrysostomou, 2022). These can all be avoided by HRC. 

Huang et al. built an HRC disassembly cell to disassemble an automotive water pump (Huang 

et al., 2019). The water pump consists of press-fitted parts, so a hydraulic press is used to 

separate them. In this case study, the human operator only needs to operate the hydraulic press. 

The robot is responsible for all the other tasks, including following the movement of the press 

while holding the pressed part. Despite the effectiveness shown in the case study, the product 

is relatively easy, as it has only six components. 

Based on the previous work, Huang et al. built another HRC disassembly cell to disassemble a 

turbocharger, which is a more complicated product in terms of more components and types of 

operations involved. In this case study, the human operator is only responsible for unscrewing 

some bolts that the nut runner on the robot cannot access (Huang et al., 2021). However, this 

study does not consider the uncertainty introduced by the EoL conditions of the returned 

products. 

However, the downside of HRC is also apparent. To work with robots side-by-side requires a 

higher safety standard (Michalos et al., 2015; Villani et al., 2018). Also, HRC can be seen as a 

way to trade the level of automation for the capability of dealing with uncertainties by 

combining the mechanical power of the robots and the cognitive ability and dexterity of 

humans. Thus, the efficiency is inevitably lower (Foo et al., 2022). 

Level 2 – Product disassembly sequence planning 

On level 2, the product information, such as the part list and connection relations, is provided 

to plan the disassembly sequence. Only high-level instructions are given, such as what part to 
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disassemble by which robot or what connectors should be removed first. In other words, the 

output only instructs the equipment what to do, not how they do it. 

At this level, the cognitive ability of the robotic system, such as using vision sensing (DiFilippo 

& Jouaneh, 2018; Vongbunyong et al., 2013; Wegener et al., 2015), to obtain more information 

can contribute to better planning or replanning. 

A systematic literature review is done by (Zhou et al., 2018), where the challenges and trends 

are clearly stated. A more recent review can be found in (Ong et al., 2021). 

Level 3 – Robotic motion planning 

On level 3, given the instructions, the robot plans every single movement. The robots might 

have been given some targeting locations, for example, moving from point A to point B, from 

the plan generated from level 2. Then, it is this level's responsibility to figure out the specific 

path or trajectory to move from point A to point B. However, suppose the robots do not know 

the targeting locations. In that case, the locations should be generated by the decision-making 

agent (human or computer) before planning the paths and trajectories. A systematic literature 

review can be found in (Gasparetto et al., 2015).  

Level 4 – Robotic disassembly operations 

On level 4, a specific operation needs to be carried out after the robot has been moved to a 

targeting location, which includes but is not limited to pick-and-place objects, unscrewing 

threaded fasteners (Li et al., 2020), removing an object from another (Zhang et al., 2019). All 

robotic operations need to encounter misalignment errors to some degree, for example, due to 

the repeatability of the robots or the precision of the vision systems. Thus, some operations will 

fail in some situations, such as objects slipping out of the gripper or bolts failing to be 

unscrewed, as the robot cannot successfully localise the bolts. Therefore, physical information, 
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such as vision and force information from cameras and force/torque sensors, is essential for 

some operations.  

The disassembly operation study is the foundation of a robotic disassembly system because the 

decisions from every other level depend on the capability of robots to perform disassembly 

operations. 
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2.3. Application of reinforcement learning on robotic 

disassembly 

Reinforcement Learning (RL) is a branch of machine learning algorithms specialising in 

making sequential decisions. The goal of RL is to make an agent make decisions (actions) based 

on observations, following the direction of having the best reward (an artificially designed 

function to rate the observations and actions) across a period of action-observation interactions. 

With the increased exposure to data and iterations of learning, an adequately designed RL agent 

should improve at making decisions to get more rewards to shape the agent's behaviour. 

Although other ways exist to model the RL problems (Sutton & Barto, 2018), the Markov 

Decision Process (MDP) is the most popular way to model the problems, as shown in Figure 

2.3. In an MDP, the agent is the one that takes the actions, and everything else that the agent 

interacts with is the environment. At each time step, 𝑡, the agent perceives the state, 𝑆 , from 

the environment, represented by a set of features from the environment, and the agent selects 

an action, 𝐴 , and interacts with the environment, while the environment responds with reward 

feedback, 𝑅 , and changes from the current state to the next one, 𝑆 .  

This section reviews some representative studies of applying RL in robotic disassembly. 

 

Figure 2.3: Basic agent-environment interaction in MDP (Sutton & Barto, 2018) 
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2.3.1. Reinforcement learning from an engineering perspective 

This section reviews two promising research areas in improving robotic disassembly in general. 

The discussion focuses not on the advancement of RL algorithms but on what specific features 

of RL demonstrate the potential of helping robotic disassembly from an engineering 

perspective. 

RL for continuous control 

RL can select actions from both discrete and continuous action domains. Although some 

famous applications of RL are developed based on the problems in which the agent chooses 

discrete actions, such as playing video games (Mnih et al., 2013; Mnih et al., 2015) and the 

famous AlphaGo (Silver et al., 2017), a high proportion of the problems in robotics are solved 

by designing controllers, such as position controller or force controller (Mckerrow, 1991), that 

require input from continuous space. (Note that this is similar to the combinatorial and 

continuous problems in optimisation algorithms. RL has so many similarities with optimisation 

algorithms that a subfield of RL, Policy Search (PS), attempts to solve the problems by direct 

optimisation in the parameter space (Deisenroth et al., 2013; Sigaud & Stulp, 2019), and PS is 

widely used in robotic control problems (Chatzilygeroudis et al., 2020). 

Although there has been successful implementation of RL in discrete action space (Inoue et al., 

2017), choosing actions from a continuous action space is recognised to be more suitable for 

robotic tasks (Deisenroth et al., 2013; Kober et al., 2013).  

Since robotic control is such a broad topic, it is hard to compare the algorithms fairly. Thus, 

some previous studies attempted to benchmark the RL algorithms in continuous control tasks 

(Duan et al., 2016; Henderson et al., 2018; Mahmood et al., 2018). However, it is still hard to 

draw universal conclusions from these kinds of comparison studies because one RL algorithm 
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might outperform others in one task but underperform in another one, or a change of the hyper-

parameter can turn the results around (Islam et al., 2017; Mania et al., 2018).  

Model-based RL algorithms 

Unlike model-free RL algorithms, model-based RL algorithms learn directly from the transition 

data and a surrogate model that models the system’s dynamic. This surrogate model is also 

trained by the same dataset that trains the learning agent, as shown in Figure 2.4 (Sutton & 

Barto, 2018). 

In this way, the data efficiency is much higher than merely learning from experiences, which 

is a handy feature in robotic control because higher data efficiency means fewer trial-and-error 

interactions are required for the robots (Polydoros & Nalpantidis, 2017). Studies in simulated 

environments usually do not consider the importance of fewer interactions (Heess et al., 2017; 

Wang et al., 2019). For example, in one study (Levine et al., 2017), the training involved 

1,700,000 grasp attempts from 14 robotic manipulators. Training with fewer interactions is 

needed (Mouret, 2016). 

 

Figure 2.4: Illustration of model-based RL (Sutton & Barto, 2018).  
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However, the disadvantage of model-based RL is obvious: the performance highly relies on the 

accuracy of the prediction model. When training with real robotic tasks, the model must capture 

the task's randomness to make accurate predictions (Chua et al., 2018; Kurutach et al., 2018).  

2.3.2. Reinforcement learning in robotic assembly/ disassembly operations 

As discussed in Section 2.2, robotic disassembly operations are the most fundamental elements 

in a robotic disassembly system. They are often limited by the flexibility, precision and margin 

of error that the robots can offer.   

To the date of this thesis, no published research paper discusses applying RL to robotic 

disassembly operation problems to the best of the author's knowledge. However, the existing 

literature focuses heavily on applying RL to robotic assembly problems. As discussed in 

Section 2.2, assembly and disassembly operations share some commonalities, especially in that 

they both need to address the issues associated with contacts. Therefore, the literature reviewed 

in this section is from the domain of assembly operations, hoping that the application on 

assembly operations can provide insights into disassembly operations. 

Robotic assembly tasks are tasks about using robot manipulators to assemble components. 

Although other assembly operations exist, the typical operation can be represented as inserting 

a peg into a hole (Xu et al., 2019a). The peg-hole problems have been studied extensively, and 

solutions from different approaches have been offered. The main challenges of this insertion 

problem include (1) force information being complex and hard to predict and 2) positioning 

error due to inaccuracy from various sources, such as repeatability of the robot or the precision 

of the measurements (Whitney, 1982).  

Nuttin et al. are among the first to propose the conceptual work of using RL in peg-hole 

assembly problems (Nuttin et al., 1997). The force controller adjusts its parameters by the 
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REINFORCE algorithm (Williams, 1992). However, the experiment is only performed in a 

simulated environment with CAD models.  

More recent works start from Inoue et al., who are the first to apply RL to learn high-precision 

peg-hole insertion operation in a real-world setup (Inoue et al., 2017). They have trained 

multiple Long Short-Term Memory (LSTM) neural networks as they treat the insertion process 

as non-Markovian or partially observable (Bakker, 2001). They establish the basic architecture 

of the training system, the way to represent states and actions, the termination conditions, and 

the strategy of separating the operation into two stages: searching and insertion. Although 

separating the operation into two stages is not a novel idea for peg-hole insertion (Sharma et 

al., 2013), the effort to include this separation in an RL approach should still be highlighted. 

They have demonstrated that the RL approach is a competitive strategy for high-precision peg-

hole insertion operations. The clearance between the peg and the hole is as small as 10 𝜇𝑚. 

They have also found that by using RL, the robot is able to perform peg-hole insertion where 

the precision of the manipulator is lower than the clearance without applying any compliance 

strategies. However, their approach is limited to the problem that is defined in a discrete action 

domain, which is not suitable when the solution space is too large, compared with the 

algorithms that can select actions from a continuous action domain, such as Deterministic 

Policy Gradient (DDPG) algorithm (Lillicrap et al., 2016). 

Thomas et al. improved the RL efficiency and success rate by combining motion planning 

algorithms in a simulated environment and learning an actual robot by manipulating the reward 

function (Thomas et al., 2018). They start by showing a motivating example of a ring-shaft 

assembly operation, where the central axis of the ring is far from the central axis of the shaft at 

the starting position so that the correct path is hard to be searched by a typical RL algorithm, 

indicating that the algorithm is trapped in local optima. Firstly, a reference trajectory is 
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generated in a simulated environment, given the geometry of the components from CAD 

models. Then, the generated reference trajectory guides the policy search in a direction that can 

avoid collisions and local optima of the policy search. Finally, to increase the generalisation 

capability of the controller across different task configurations (different initial and final 

positions of the object), a neural network that takes the state information and the reference 

trajectories as input is trained. Afterwards, the actions are selected based on the state 

information, and a fraction of the local trajectories centred around the current time step, 𝑡. This 

method decreases the online computational load as the motion planning algorithm has already 

encoded the global information. The authors have successfully demonstrated their approach in 

three tasks: 1) interlinking two U-shape blocks, 2) assembling a gear with a circular aperture 

to a shaft, and 3) inserting a round peg into a hole. However, the above approach can only be 

implemented if high-quality CAD models can be obtained before the training, but the models 

are not always available. Also, the demonstrating robot is an inherently compliant robot rather 

than a rigid industrial robot arm, which means some degree of compliance has been previously 

integrated. Therefore, applying the proposed approach to traditional robot manipulators 

requires further investigation. 

Ren et al. solved the problem of selecting discrete actions from continuous using the DDPG 

algorithm (Lillicrap et al., 2016; Ren et al., 2018). They introduced compliant strategies in the 

RL settings for high-precision peg-hole insertion problems by adding Cartesian stiffness 

dimensions for impedance control into the actions space. This work proposes a "jamming 

indicator" that makes the RL process fully become an MDP. The authors have argued that the 

state information for each time step will then contain enough information to describe the state 

fully, and they have also tested the learned policy's generalisation ability. However, the "hole" 

being inserted by the peg is formed by two vertical and parallel walls, which essentially is a 

2D hole instead of a 3D one, and whether such simplification can be generalised in actual peg-
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hole insertion is questionable. The results of the learning curves appear to be very unstable, so 

the method or the hyper-parameter responsible for balancing exploration and exploitation 

should be improved.  

A group of works used the Guided Policy Search (GPS) algorithm family to train the robots for 

assembly operations (Sergey & Vladlen, 2013). Luo et al. proposed using a Mirror Descent 

Guided Policy Search (MDGPS) algorithm (Luo et al., 2018; Montgomery & Levine, 2016), a 

variant of GPS, to learn the assembly problem where a round peg is inserted into a deformable 

hole with a smaller diameter. The GPS algorithm is a model-based on-policy algorithm that 

alternates between trajectory optimisation over local policies and then provides samples from 

local policies to the global policy. Compared with previous works, the authors argue that by 

providing an on-wrist F/T sensor and a rigid industrial robotic arm, the admittance control can 

also be integrated with the RL setting, meaning that not just the robots with inherent passive 

compliant joints or the robots that can issue joint torque commands can perform RL with 

contact-rich tasks (Ren et al., 2018). They have demonstrated that the deformable hole can be 

5 mm smaller in diameter than the peg. 

Another work by Luo et al. uses the same MDGPS algorithm. However, the application 

scenario changes from admittance controller to impedance controller and the action space 

changes from tool space to operational space (Luo et al., 2019). The demonstrating case is to 

assemble a set of gears that contains four contact-rich assembly operations: 1) inserting a round 

peg into a round hole, 2) fitting a gear wheel to the shaft, 3) inserting another gear wheel with 

squared peg-hole fitting, 4) align the two gear wheels. They have done an ablation study 

showing that the force information is less useful when used directly as the input to a global 

policy neural network model. 
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Another work from the GPS algorithm family was done by Fan et al. (Fan et al., 2019). It 

extends the GPS algorithm family to replace the traditional global policy with the DDPG 

algorithm (Lillicrap et al., 2016). It demonstrates the implementations with a Lego brick and 

U-shaped block assemblies.  

Xu et al. extended the application of the DDPG algorithm (Lillicrap et al., 2016) to a dual-peg 

in-hole insertion problem by adding a fuzzy reward system and a feedback exploration strategy 

(Xu et al., 2019b). The fuzzy reward system tries to balance the contact force and operational 

time or possibly include more considerations by using fuzzy logic to shape the reward function. 

The feedback exploration strategy includes actively adjusting the exploration noise for both 

action space (Khamassi et al., 2017) and parameter space based on the reward. The exploration 

is decreased when the agent is performing better and vice versa. However, the feedback 

exploration strategy increases the computation load between each action step, thus decreasing 

the control frequency during the operation.  

Schoettler et al. demonstrated that using a more intuitive reward function (Schoettler et al., 

2020), for example, the 𝑙1 distance between the current image and the goal image or the sparse 

reward function, can increase the success rate and robustness against the error of the goal 

position of the training. They demonstrate the assembly operations by inserting three 

commonly found electric connectors, a) a USB connector, b) a D-Sub connector, and c) a 

Model-E connector. To overcome the vast space to exploration for optimising the sparse reward 

function, they have injected prior knowledge by using the Residual RL technique (Johannink 

et al., 2019; Silver et al., 2019) combined with the Soft Actor-Critic (SAC) algorithm (Haarnoja 

et al., 2018) and the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm 

(Fujimoto et al., 2018). However, computing rewards from visual rather than force information 
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requires much more computation. In the case of contact-rich assembly, the advantage of using 

visual information over force information is not very clear.  

Beltran-Hernandez et al. combined two traditional force control schemes, the PID parallel 

position/force control scheme (Chiaverini & Sciavicco, 1993) and the admittance control 

scheme, separately with the SAC algorithm (Haarnoja et al., 2018) to achieve peg-hole 

insertion task (Beltran-Hernandez et al., 2020b). They propose a "fail-safe mechanism" to 

decrease human involvement during the training. However, that mechanism relies on 

constantly checking the feasibility of the selected action, which should have been excluded 

from the action selection domain in the first place. Including it during the episode increases the 

unnecessary computation load.  

Beltran-Hernandez et al. have also extended their work with an RL improvement technique 

called distributed prioritised experience replay (Beltran-Hernandez et al., 2020a; Horgan et al., 

2018). The highlight of this paper is to implement the idea of simulation-to-real (sim-to-real) 

transfer (Chebotar et al., 2019) to improve the generalisation capability of the learned policies 

by pre-training the robot in a simulated environment. Thus, some factors are randomised for 

each training, including a) the initial/final position of the end-effector, b) surface stiffness, c) 

the error of predicted final goal, and d) desired insertion force. Another novelty is that instead 

of using the force/torque (F/T) information from the wrist sensor directly as the state input to 

the neural networks, the last 12 readings from the F/T sensor are converted from 12 time-series 

arrays to a 36-dimensional vector by a temporal convolutional network (Bai et al., 2018) with 

the other state information. This approach enables the feature extracted from the fluctuating of 

the force information to be used directly as state information for the current time step. The 

policy is trained on the assembly task of inserting a cuboid peg into a hole. Further 

generalisation capability studies evaluate the learned policies on the other assembly cases, 
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including a) ring-shaft assembly, b) 2-pin electric plug inserting into a socket, c) plugging in a 

LAN cable to a connector, d) plugging in a USB. Despite the excellent reported performance, 

not all the robots can access the controllers at the joint motor levels. Also, the training quality 

on actual operations will depend much on the simulation quality.  
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2.4. Summary 

Remanufacturing is the only EoL processing that can return the used product to be at least as 

good as an originally manufactured one. Remanufacturing as an industry is promising in 

bringing many benefits, including cost reduction, less environmental damage, positive social 

impact, and the potential to upgrade business models. However, remanufacturing is limited by 

the quality and quantity of the returned product cores. Thus, disassembly is considered to be 

the critical step in remanufacturing.  

Disassembly is currently a labour-intensive process due to the uncertainty and variation of the 

EoL products. The key to improving disassembly is to automate the process by industrial robots. 

Therefore, robots need to be intelligent and flexible.  

Four groups of studies about developing a robotic disassembly system have been categorised:  

disassembly system design, product sequence planning, robotic motion planning, and 

disassembly operation methods. Among them, disassembly operation is the most fundamental 

part because the decisions from every other level depend on the capability of robots to perform 

disassembly operations.   

Enabling the robots to learn from trial-and-error and existing data on disassembly operations 

is one meaningful way to make the robots flexible and robust, which can be achieved by 

integrating with the advancement of RL. However, although RL has been implemented in 

virtual environments on control tasks, the specific studies on applying RL in actual robotic 

operations for both assembly and disassembly still require further investigation. The current 

studies on RL mainly focus on developing theories or designs from an algorithm perspective.  
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However, the application aspect, such as investigating the relationship between learning 

performance and the physical features of the robots and using simulations to accelerate 

trainings, requires further investigation.  
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3.  Robotic Disassembly Task Training and Skill 

Transfer Using Reinforcement Learning 

3.1. Preliminaries 

Disassembly is an early and key step in remanufacturing (Priyono et al., 2016). Although there 

has been extensive research into robotic assembly, relatively little has been done to address 

disassembly (Poschmann et al., 2020). This is because disassembly is challenging to robotise 

due to variability in the condition of the returned products and the required dexterity in robotic 

manipulations (Vongbunyong & Chen, 2015). Furthermore, disassembly is usually more 

stochastic than assembly, as it has to contend with used products of uncertain shapes, sizes, and 

conditions.   

Solutions to various aspects of the disassembly automation problem have been proposed. A line 

of research focuses on modelling, planning and optimising the disassembly sequences (Guo et 

al., 2021). Some other works have proposed methods to develop robotic disassembly cells that 

are usually designed in a human-robot-collaborative way to increase the flexibility of the 

disassembly systems (Wegener et al., 2015). Another approach to increase the flexibility for 

robots to deal with the uncertainties in disassembly is by increasing the perception ability. For 

example, Vongbunyong et al. (Vongbunyong et al., 2013) have utilised vision systems to 

address variability in the product. However, the focus of these investigations has been on the 

whole product disassembly level. The specific robotic disassembly operations involve the 

physical interactions between the robot and the objects, such as unscrewing a nut (Li et al., 

2020) or removing a peg from a hole (Zhang et al., 2019). Further research is needed to 

fundamentally increase the efficiency and capability of robotic disassembly cells. 
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A challenge in developing a robotic disassembly cell is rapidly planning the robot's control 

strategy for tasks that involve frequent contact (Li et al., 2020; Zhang et al., 2019), which is 

not widely studied in robotic disassembly but has been extensively studied in the field of 

robotic assembly. In assembly, a commonly studied contact-rich task is to insert a peg into a 

hole with a small clearance (Xu et al., 2019a). The classical approach is to obtain a 

mathematical description of the component geometries for predicting the evolution of the 

contact force. Then, based on the control strategies (rules), the robot adjusts its motion to 

minimise the load exerted on the part and the robot (Wan et al., 2017). Alternatively, passive 

compliance devices have been proposed, but most designs only work for fixed component 

geometries, which is impractical when robots have to deal with components of different 

dimensions (Whitney, 1982). 

However, the coding and parameter-tuning process of the rule-based approach to generate skills 

can be time-consuming, and the task environment needs to be accurately measured and 

carefully documented (Li et al., 2020; Wan et al., 2017; Whitney, 1982; Xu et al., 2019a; Zhang 

et al., 2019). As opposed to obtaining the controller based on analysing the specific component 

geometries and parameter tuning, the data-driven approach, such as reinforcement learning 

(RL), can be used to learn a controller for contact-rich robotic disassembly operations. 

RL is a form of machine learning where decision-making skills are acquired by trial and error 

(Sutton & Barto, 2018). Apart from the benefits of the data-driven approach described above, 

RL is attractive in situations where no data are accessible, as in the case of supervised learning 

(Ma et al., 2021), since RL allows learning from scratch. As described later in this chapter, 

some RL algorithms can also learn directly from an existing dataset. Apart from assembly, RL 

has achieved success in many other robotics problems, such as grasping (Levine et al., 2017) 

and motion planning (Li et al., 2022). 
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Applying RL to robotic manipulation tasks reduces programming complexity, coding time and 

dependence on the operator (Kober et al., 2013). For robotic operations learnt by trial and error, 

there is no need to fine-tune the feedback controller (Roveda et al., 2018) or develop a specific 

rule-based program. Inoue et al. (Inoue et al., 2017) applied RL to the assembly problem in 

real-life settings, but the method is limited to selecting actions from a discrete domain. Thomas 

et al. (Thomas et al., 2018) have shown that by utilising CAD models and motion planners, 

tasks can be learned and generalised, but the CAD models might not always be available or 

accurate, especially for disassembly tasks, where the condition of the product can be highly 

varied. Ren et al. (Ren et al., 2018) and Luo et al. (Luo et al., 2019) have studied RL applied 

to impedance control. However, impedance control may not be practicable in every scenario, 

as it requires a fast controller and rapid sensory feedback. Additionally, Xu et al. (Xu et al., 

2019b) and Fan et al. (Fan et al., 2019) demonstrated that high-precision assembly tasks can 

be achieved using RL. 

Apart from the articles mentioned in the previous paragraph that focus on generating robotic 

operational skills by RL, another aspect of the research is the generalisation of the learned skills 

through skill transfer (Kroemer et al., 2021). Various types of skill transfer have been proposed. 

For example, to bypass the common issues of RL associated with lack of data and unsafe 

exploration by robots, simulators have been utilised to generate skills for virtual robots; the 

virtually generated skills can subsequently be transferred to the physical world (Salvato et al., 

2021). Another type aims to transfer the skills learned in one task to others within the task 

family (Pastor et al., 2009). Finally, skill transfer among robots with different configurations 

has also been demonstrated in the literature (Gupta et al., 2017). 

However, to the best of the authors' knowledge, the influence of precision (repeatability) of the 

robot, or more generally, the mismatch between the action command and the actual actions 
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being taken, has not been studied in the context of RL and robotics. For example, the precision 

of a robot could change with time and thus could be different between when it learned a task 

and when it had to execute that task. In another scenario, the policies learnt by a master robot 

may be required to replicate on other robots with different precision. Thus, precision is an 

important factor when deploying industrial robots in manufacturing-related operations, as it is 

a fundamental equipment property. Without this understanding, a knowledge gap exists in how 

a robotic skill obtained through RL can be mass-implemented. 

The contributions of this work are as follows: (i) developing an RL-based training platform for 

robot learning contact-rich disassembly operations, empirically studying (ii) the effect of 

changes in the precision of the robot on the performance of the controllers learned by RL 

methods, and (iii) the performance of the controller implemented by a robot if the controller is 

learned and transferred from a robot with a different precision. 

The chapter is structured as follows. In Section 3.2, the problem of training a robot by RL is 

formulated. In Section 3.3, the training platform, a methodology to modify the robot's precision, 

and the experimental procedures are introduced. The experimental results are presented and 

discussed in Section 3.4. Section 3.5 concludes the chapter and suggests future research 

directions. 
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3.2. Problem Formulation 

RL is a form of machine learning that improves the performance of a system on one or a set of 

tasks, 𝒯, with an increased amount of data, 𝒟, or experience, 𝐸) (Sutton & Barto, 2018). The 

RL problem can be modelled as a Markov Decision Process (MDP), where the state, 𝑠 ∈ 𝑆, is 

the current description of the environment at the time step, 𝑡, and 𝑎 ∈ 𝐴 denotes the action 

selected by the decision-making agent. In RL, the agent constantly makes decisions according 

to the state and the decision-making policy 𝜋(𝑎 |𝑠 , 𝜃 ), which is a stochastic or deterministic 

mapping from states to actions, where 𝜃  denotes the parameters of the policy. By evaluating 

the received state feedback through a reward function, 𝑟 (𝑠 , 𝑎 , 𝑠 ), the RL algorithm can 

update the policy, 𝜋 , to maximise the expectation of the total reward, 𝑅, defined by 

𝑅 = 𝛾 𝑟 (𝑠 , 𝑎 , 𝑠 ) 
(3.1) 

where 𝛾 ∈ [0,1]  is the discount factor, and 𝑇  is the termination time step for an episodic 

training process. RL tasks can be divided into continuous and episodic learning tasks. As many 

robotic tasks, such as pick-and-place and pin-hole separation, are not continuous but involve 

resetting and rebooting, only episodic learning tasks are considered in this work. 

A robotic disassembly task can also be modelled as an MDP. The state, 𝑠 , can be defined by 

𝑠 = 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤, 𝐹 , 𝐹 , 𝐹 , 𝑇 , 𝑇 , 𝑇  (3.2) 

where 𝑥, 𝑦 and 𝑧 denote the Cartesian coordinates of the robot flange, 𝑢, 𝑣 and 𝑤 denote the 

rotation angle of the robot flange, 𝐹 , 𝐹 , 𝐹 , 𝑇 , 𝑇  and 𝑇  denote the force and torque acting 

along the 𝑥, 𝑦 and 𝑧 axes, respectively, while the action, 𝑎 , is defined by 



Page 40 of 114 
 

𝑎 = [∆𝑥, ∆𝑦, ∆𝑧, ∆𝑢, ∆𝑣, ∆𝑤] (3.3) 

which is the movement command sent to the robot from the controller at each time step. Similar 

ways of defining actions, states, and the reward function have been successfully implemented 

in other studies (Inoue et al., 2017; Ren et al., 2018; Xu et al., 2019b).  
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3.3. Robotic Disassembly Training System Setup and Robot 

Repeatability Modification 

This section introduces the platform set up to train a robot to perform contact-rich disassembly 

tasks. The task of removing a door-chain bolt from a lock is used as a case study to validate the 

feasibility of the training platform. That task could be troublesome for robots with low 

precision or compliance due to the small clearances involved. The main challenge is the 

nonlinear evolution of the contact force during the task. For this study, a modified version of 

the popular Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2016) with 

delayed updates is selected to demonstrate the use of RL to enable a robot to learn the task. The 

reasons for adopting this algorithm will be explained, although alternative RL algorithms could 

equally be used (Fujimoto et al., 2018). 

3.3.1. Training Task and Platform 

3.3.1.1. Training Task - Sliding a Bolt along a Groove 

Figure 3.1(a) shows the components of the door-chain lock used in this study. The aim of the 

task is to train a robot to slide the bolt along a door-chain groove to the end where the clearance 

is large enough to allow it to be pulled out. Although a person would have no difficulty sliding 

the bolt, when a traditionally programmed robot operates, the bolt could jam if the axis of the 

groove is different from that the robot has been programmed to move along. That situation 

could happen if, for example, the fixture holding the lock has been accidentally rotated. In other 

words, the traditional way of programming such tasks would require knowledge about whether 

the object's axis and prefer it to be aligned with one axis of the robot coordinate system. In 

contrast, the learning-based skill acquisition only requires a rough direction to move along, e.g. 

along the +𝑥 direction of the robot flange coordinate, without the need to know the groove's 

axis.  
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The training process is considered episodic, where for each episode, the robot grips the bolt 

from the same starting position (point A in Figure 3.1(a)) and tries to move it to point B. 

Throughout the process, the force and torque information is constantly monitored to ensure that 

the robot does not experience excessive load so that the parts or the robot will not be damaged. 

The robot is encouraged to take actions that would maximise the accumulated discounted 

reward according to Equation (3.1), where the reward function, 𝑟, in this case, is defined as  

 

Figure 3.1: Task illustration of (a) the bolt and the groove, (b) training platform setup with 
the KUKA IIWA LBR robot and a Robotiq 2-finger gripper. The aim of the task is to slide 

the bolt to the removal point. The clearance between the pin and the groove is less than 
1𝑚𝑚. 
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𝑟 = 𝑤 (𝑥 − 𝑥 ) − 𝑤
𝐹

𝐹
− 𝑤

𝑇

𝑇
 

(3.4) 

where 𝑥  denotes the coordinate of the robot flange along the x-axis at the current time step, 

and 𝐹 = 𝐹 + 𝐹 + 𝐹  and 𝑇 = 𝑇 + 𝑇 + 𝑇  denote the squared normalised 

force and torque experienced around the three axes. 𝐹  and 𝑇  are the maximum allowed 

force and torque on the flange of the robot during the task, and 𝑤  , 𝑤  , and 𝑤   are the 

coefficients of the reward terms. In this case, 𝑤  , 𝑤  , and 𝑤   are set at 0.6 , 0.2 , and 0.2 , 

respectively. The purpose of the weights is to bring the terms of the reward functions into the 

same order of magnitude, and they can also be used to control the relative importance of each 

term depending on the preference of the practitioner. They can be selected arbitrarily as long 

as the result is that the terms in the reward function are on the same order of magnitude. If 

𝐹  or 𝑇  is greater than 𝐹  or 𝑇 , respectively, or the maximum time step has been 

reached, the episode is terminated and labelled a failure. In this experiment, the safety force is 

30𝑁, the safety torque is 5𝑁𝑚, and the maximum time step is 100. 

3.3.1.2. Training Platform and Architecture 

Fig. 1(b) shows the training platform setup. A KUKA iiwa LBR 14 robot (KUKA, 2022) is 

deployed in this case study. The robot has the feature that can estimate the force, 𝐹, and torque, 

𝑇, applied at the robot flange through measurements from integrated joint-level torque sensors. 

This offers an alternative means to use an external 6-axis F/T sensor to acquire force/torque 

information. Although the information obtained using this method is relatively noisy, due to 

friction and error accumulation from multiple sensors, the method offers great simplicity during 

system integration. The experiment shows that this method is sufficient for this case study. A 

Robotiq two-finger gripper is used as the end effector to grip the bolt. 
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Figure 3.2 shows the architecture of the robotic training platform. The RL unit in Figure 3.2 is 

a standard PC (Intel(R) Core(TM)i5-6500 CPU 3.20 GHz), and the PC communicates with the 

robot through the TCP/IP protocol. The RL unit selects actions based on the current policy and 

the state information gathered from the robot. It then sends an action command to the robot and 

waits for the feedback from this action. This communication process runs in cycles and stops 

when the termination condition of the episode has been reached.  

3.3.2. Deep Deterministic Policy Gradient algorithm 

The DDPG algorithm, originally proposed by Lillicrap et al. (Lillicrap et al., 2016), is a model-

free off-policy RL algorithm based on the actor-critic architecture. In this case, DDPG is 

 

Figure 3.2: Architecture of the robot training platform. The main aim of the platform is to 
generate a control skill that a robot can take actions based on the state information 

received from the task by modelling the robotic disassembly task as an MDP. 
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selected among the other RL algorithms for two reasons. First, it can select actions from a 

continuous action domain. Second, as an off-policy learning algorithm, it has the capability to 

learn directly from a dataset instead of entirely depending on actual interactions with the 

environment. Thus, the DDPG algorithm (and other actor-critic off-policy algorithms) are more 

suitable for learning industrial robotic operations, which often require continuous control. 

Additionally, in industrial robotic operating environments, a dataset is usually available. 

In the original paper (Lillicrap et al., 2016), the neural networks are updated after each time 

step. However, updating all the parameters of the algorithm after each time step will increase 

the computational load between each time step, thus reducing the response rate of the controller. 

This factor is often neglected in simulated control tasks but is important in real-world robotic 

learning. Therefore, the policy updates are delayed after each episode is finished, as shown in 

Algorithm 3.1.  

Table 3.1 lists the main hyper-parameters used in this experiment. The hyper-parameters used 

in this work are obtained by trial and error, and the optimisation or evaluation of the 

performance of the algorithm for different hyper-parameters is not considered in this work. The 

neural networks used for estimating actor, 𝜋(𝑠|𝜃 ), and critic, 𝑄(𝑠|𝜃 ), are updated by the 

Adam optimiser (Kingma & Ba, 2015) with the hyper-parameters described in Table 3.1. The 

Adam optimiser is widely used in deep RL studies (Fujimoto et al., 2018; Lillicrap et al., 2016; 

Ren et al., 2018). The neural networks are developed based on the TensorFlow platform 

(version 1.15.3) in the Python programming language (version 3.7). 
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3.3.3. Robot with Decreased Precision 

3.3.3.1. Robot Precision Modification 

A method to modify the robot's precision is proposed to study the effects of robot precision on 

the performance of a learned controller, as shown in Algorithm 3.2. The proposed method 

simply adds an uncorrelated zero-mean Gaussian noise, 𝒩(0, 𝜓), to the robot actions, where 

𝜓 represents the reduction in precision in millimetres (step 6 in Algorithm 3.2).  

Algorithm 3.1: DDPG with Delayed Update. 

1 Initialise actor network, 𝜋(𝑠|𝜃 ), and critic network, 𝑄(𝑠, 𝑎|𝜃 ); 

2 
Initialise target actor network, 𝜋 𝑠 𝜃 , with parameters 𝜃 ← 𝜃 , and target 

critic network, 𝑄 (𝑠, 𝑎|𝜃 ), with parameters 𝜃 ← 𝜃 ; 

3 Initialise replay buffer, ℛ; 

4 for episode, 𝑒 do 

5  for time step, 𝑡 do 

6   
Sample an action, 𝑎 , from actor network 𝜋(𝑠 |𝜃 ) + 𝒩(0, 𝜖), where 
𝒩(0, 𝜖) is a Gaussian noise for exploration; 

7   Clip 𝑎  with action boundaries, (𝑎 , 𝑎 ), for safety; 

8   Execute 𝑎 , receive next state, 𝑠 , and corresponding reward, 𝑟 ; 

9   
Store transition tuple (𝑠 , 𝑎 , 𝑠 , 𝑟 , 𝑇) into ℛ, where 𝑇 indicates the 
termination of the episode; 

10  until any termination condition is met; 

11  for 𝑁 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do  

12   Sample a batch of transitions, ℬ(𝑠 , 𝑎 , 𝑠 , 𝑟 , 𝑇), from ℛ; 

13   Compute update target, 𝑦 = 𝑟 + 𝛾𝑄 𝑠 , 𝜋 𝑠 |𝜃 |𝜃 ; 

14   
Update critic network by minimizing loss function, 𝐿 = 𝑁 ∑ (𝑦 −
𝑄(𝑠 , 𝑎 |𝜃 )) ; 

15   
Update actor network by gradient ascent, ∇ 𝒥 ≈
𝑁 ∑ 𝑄(𝑠 , 𝜋(𝑠 |𝜃 )|𝜃 ); 

16   
Soft update the target networks, 𝜃 ← 𝜏𝜃 + (1 − 𝜏)𝜃 , 𝜃 ← 𝜏𝜃 +

(1 − 𝜏)𝜃 ;  

17   Decrease the exploration by a decay constant, 𝜖 ← 𝑐 ∗ 𝜖;  

18 until maximum number of episodes is reached; 
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For clarity, the term imprecision in the following sections will be used to indicate the level of 

reduction in precision. For example, 𝜓 = 0.5𝑚𝑚, or an imprecision level of 0.5𝑚𝑚, means a 

±0.5𝑚𝑚 error being added to a robot action. In other words, it is equivalent to a reduction of 

the robot's precision by 0.5𝑚𝑚. In this experiment, the following imprecision levels are tested: 

𝜓 = 0.0𝑚𝑚, 0.1𝑚𝑚, 0.2𝑚𝑚, 0.3𝑚𝑚, 0.4𝑚𝑚, and 0.5𝑚𝑚. It is also worth noting that the 

documented intrinsic repeatability of the robot used in this experiment is ±0.1𝑚𝑚 (KUKA, 

2022). However, the robot's intrinsic repeatability does not affect each controller's relative 

performance since it is applied to all the controllers. Thus, the intrinsic repeatability of the 

robot is not involved in the following discussions. 

The key difference between adding noise to the actions (i.e., the proposed method) and various 

action exploration methods is that in action exploration methods, the learning agent utilises 

noisy actions as training data. In contrast, despite the noisy actions being executed in the 

proposed method, the learning agent still updates by the original actions. In other words, in the 

Table 3.1: Hyper-Parameters Used in the Experiment 

Neural Networks Parameters DDPG Parameters 

Hidden layer size 50*50 Replay buffer size 1.00E+05 

Hidden layer Neuron ReLU Batch size 30 

Output layer Neuron Tanh Discount rate, γ 0.9 

Optimiser Adam Soft update rate, τ 0.9 

Adam, alpha 0.001 Starting exploration, ϵ 3 

Adam, beta1 0.9 Exploration decay rate, 𝑐 0.995 

Adam, beta2 0.999 

 Adam, epsilon 1.00E-07 

Adam, AMSGrad FALSE 
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proposed method, the learning agent is unaware that noisy actions are executed (step 9 in 

Algorithm 3.2).  

3.3.3.2. Experimental Procedures  

The training is repeated ten times for each imprecision level to test the success rate. For each 

training, if the robot can reach the destination, i.e., x-displacement greater than 55𝑚𝑚, the 

training is deemed a success. Training that does not have any successful episodes within 200 

episodes is labelled failure.  

After each training, a validation is followed up in which the exploration coefficient, 𝜖, is set to 

zero to validate the performance of the trained controller. Then, the trained controllers operate 

ten times consecutively while the robot remains at the same imprecision level. The 

experimental results described in later sections are based on the results from the validation 

phases unless specified. 

Algorithm 3.2: DDPG Training with Increased Imprecision Level. 

1 Initialisation; 

2 for episode, 𝑒 do 

3  for time step, 𝑡 do 

4   𝑎 = 𝜋(𝑠 |𝜃 ) + 𝒩(0, 𝜖); 

5   Clip 𝑎  with action boundaries, (𝑎 , 𝑎 );  

6   𝑎 = 𝑎 + 𝒩(0, 𝜓); 

7   Clip 𝑎  with new action boundaries, (𝑎 − 𝜓, 𝑎 + 𝜓); 

8   Execute 𝑎  and receive feedback; 

9   Store transition tuple (𝑠 , 𝑎 , 𝑠 , 𝑟 , 𝑇) into ℛ; 

10  until any termination condition is met; 

11  Update parameters; 

12 until maximum number of episodes is reached; 
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3.4. Experimental Results and Discussions 

This section gives the results of the training. Figure 3.3 shows the photographs from the training 

process of one specific training. The robot takes random actions at the beginning of the training, 

and these actions can easily trigger the termination of the episode, which leads to a reset. It also 

shows that the robot progresses in learning the task. Each episode lasts approximately 5s to 40s 

in real time, depending on the triggering of the termination signal. 

The success rate for each imprecision level is summarised in Table 3.2. The first observation is 

that even when the repeatability is modified down to as low as ±0.5𝑚𝑚, which is five times 

the robot's intrinsic designed precision (±0.1𝑚𝑚), the system is robust enough to overcome 

the low repeatability of the robot and results in a 40% success rate. 

Figure 3.3: Photographs taken from the footage of one training session: (a) at the 
beginning of the episode, (b) after several episodes of training. It can be seen that the 

robot learned the sliding task by trial and error. (Note: 𝑡 in here represents the real time of 
the video, not the time step in MDP.) 
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The second observation is that the success rate does not necessarily decrease when a robot with 

less repeatability is deployed. This shows the robustness of the training system despite noisy 

actions being executed. Additionally, there are a few random factors that are associated with 

the training, such as the initialisation of the neural network parameters and the exploration 

parameter, 𝜖. A fairer comparison could be made with a controlled random seed. However, 

experiments with controlled random seeds are less meaningful in a real-world setting. 

3.4.1. Disassembly Task Training Results 

First, the training performance of the robot without any modified repeatability is analysed. In 

other words, the following analysis concerns the cases where the imprecision level is at 0.0𝑚𝑚.  

The results are from a typical successful of training (training round number 5). Figure 3.4(a) 

plots the learning curve of the agent gaining more episodic rewards with an increased number 

of episodes. As shown in the graph, the learning becomes stable after convergence. The 

validation results are plotted in Figure 3.4(b), showing that the learned controller can stably 

repeat the operation. 

Table 3.2: Training Success Rate for Robots with Different Imprecision levels 

Imprecision Level, 𝜓 (𝑚𝑚) Training Success Rate a 

0.0 70% 

0.1 60% 

0.2 30% 

0.3 30% 

0.4 60% 

0.5 40% 
 

a The success rates are calculated based on ten training sessions. 

 



Page 51 of 114 
 

Figure 3.5 shows the state information of a typical successful episode (learning 5, validation 

phase, episode 8). Figure 3.5(a), (b) and (c) show the displacement, average axial torque and 

average axial force, respectively. It can be observed that the robot is able to slide the bolt along 

the groove to the destination point with an average force of 2.0𝑁 and an average torque of 

0.91 𝑁𝑚 experienced by the robot flange across the episode, which is measured without an 

external F/T sensor but by the internal joint-level torque sensors alone. These force and torque 

 

Figure 3.4: Episodic reward against episodes for a specific successful training without 
modification of robot precision: (a) learning phase, (b) validation phase. The learning 

curve in (a) shows that the agent successfully learned the task at approximately episode 
80. The validation curve in (b) shows that the learned controller can stably repeat the 

learned skill. 
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values are far from the maximum values set for the task. By comparison, the payload of the 

manipulator is roughly 140𝑁, and the maximum torque for the weakest joint is 40𝑁𝑚 (KUKA, 

2022). Therefore, the goal of training the robot to experience low forces and torques is 

successful.  

3.4.2. Learning Directly from Dataset 

As mentioned in Section 3.3.2, one of the motivations for selecting the DDPG algorithm is that 

it is an off-policy algorithm, meaning it can learn policies directly from a previously generated 

dataset (Sutton & Barto, 2018). In other words, the algorithm can learn not only from the 

 

Figure 3.5: State information from a typical successful episode: (a) displacement of robot, 
(b) average axial force, (c) average axial torque. These results demonstrate that the robot 
can slide the bolt to the destination and maintain the force and torque within safety limits. 
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transition data of the current training but also from data generated by other training. This feature 

is particularly useful if a dataset is available before the training. 

An experiment is designed to confirm this aspect of the algorithm. After the training is repeated 

ten times in 𝜓 = 0.0𝑚𝑚, all the transition data are gathered into one dataset. Then, the robot 

is required to learn only from this dataset without taking any real-world actions. 

Figure 3.6 compares the performance of this policy that only learns from the dataset with that 

of all the other independently trained successful policies. The result shows the ability of the 

training platform to learn skills directly from a dataset without taking any real-world actions. 

It also shows that the policy that learns directly from the whole dataset outperforms all the 

 

Figure 3.6: Comparison between policy that learns directly from a dataset and all the other 
independently trained policies. The results are obtained by consecutively repeating the 

learned controller ten times. It demonstrates the ability of the RL method to learn directly 
from a dataset without taking any real-world actions. It also shows that if a robot can learn 

from a dataset larger than the dataset generated by individual training, the learning 
performance can outperform every individual.  . 
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other policies in terms of averaged rewards and stability. This is because a larger dataset 

contributes to a better learning performance as long as all the data have been gathered by the 

same procedure (Sutton & Barto, 2018). 

3.4.3. Robots with Different Degrees of Repeatability 

The results of the validation phases for robots with different imprecision levels are shown in 

Figure 3.7. 

An instability index, 𝐼 , defined as 

𝐼 =
𝜎

𝑁
  (3.5) 

is proposed to compare the stability of the learned policies, where 𝜎  is the standard deviation 

of the episodic reward for a single validation episode and 𝑁  is the number of successfully 

learned episodes. It can be seen that although the task can be learned successfully, the stability 

of the learned policies decreases, as shown in Figure 3.9. The relationship between the 

imprecision level and instability index is roughly linear.  

The reason is that the decreased repeatability increases the probability of taking actions that 

cause the maximum force and torque to be exceeded. Therefore, for the same learning task, if 

only one manipulator is used, in other words, without considering the transfer of the learned 

skills, the precision of the robot is a factor to consider. An intuitive conclusion that can be 

drawn is that the better the precision is, the more stable the learned skills. 
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Figure 3.7: Validation results of the successfully trained policies for imprecision levels of 
(a) 0.0𝑚𝑚, (b) 0.1𝑚𝑚, (c) 0.2𝑚𝑚, (d) 0.3𝑚𝑚, (e) 0.4𝑚𝑚, and (f) 0.5𝑚𝑚. The plots 

show that although some training is successful even when the imprecision is increased to 
0.5𝑚𝑚, some of the learned controllers are not able to repeat the learned motions stably 

for consecutive times. This observation becomes more obvious with increased imprecision 
levels. 
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3.4.4. Transferability of Learned Policies 

Another main motivation of this research is to examine the transferability of the learned 

policies among robots with different precision. In this subsection, the transferability of the 

learned skills is empirically analysed.  

A series of experiments are designed to transfer the successfully learned policies from one 

imprecision level to the others. Three levels are selected in these experiments: 𝜓 = 0.0𝑚𝑚, 

0.3𝑚𝑚, and 0.5𝑚𝑚. For example, the skills that are successfully trained when 𝜓 = 0.0𝑚𝑚 

are repeated on robots with imprecision levels of 0.3𝑚𝑚 and 0.5𝑚𝑚.  

  

 

Figure 3.8: Instability index plot against imprecision level. This plot demonstrates that the 
stability of the learned skills will decrease if the precision of the robot is low. 
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Figure 3.9: Qualitative visualisation of transferring the skills learned from (a) 𝜓 =
0.0𝑚𝑚, b) 𝜓 = 0.3𝑚𝑚, (c) 𝜓 = 0.5𝑚𝑚, to the others. The results are obtained by 

consecutively repeating the learned controllers by a robot with other imprecision levels for 
ten times. From left to right, most of the circles representing the performance of the 

controllers become darker and larger, meaning that the skills received less average reward 
and became less stable. This result does not depend on whether the skills are transferred 
from a low-precision robot to a high-precision robot or from a high-precision robot to a 

low-precision robot. 
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The results are shown in Figure 3.9. It is interesting to note that, on the one hand, skills learned 

by a robot with low precision can transfer to a robot with high precision and become better at 

performance and stability. On the other hand, policies learned by a robot with high precision 

perform worse on a robot with low precision.   

Moreover, this transferability study is further tested on a simulation platform using other RL 

algorithms from the actor-critic family: Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and 

Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018). Since DDPG, 

SAC and TD3 are off-policy actor-critic methods, they are expected to share similar results to 

those described for physical experiments.   

The simulation model is developed on a commercial multibody dynamics simulation software, 

MSC Adams (Student Edition 2022.1), based on the Euler-Lagrange method to create equations 

of motion. Although a simulation model can only approximate the task dynamics, the model is 

tested to produce similar behaviours of the real-life task. Furthermore, error signals are added 

to all dimensions of the states, described in Equation (3.2), to mimic the measuring errors from 

the sensors.  

Each policy is trained with the RL algorithm for 500 episodes and validated on the other 

imprecision levels for 200 episodes. The results of the experiments are shown in Table 3.3, and 

they are consistent with the physical experiment results: out of 36 times skill transfer, the skills 

learned from a low-precision robot will show better performance and stability on a high-

precision robot; the skills learned from a high-precision robot will show reduced performance 

and stability on a low-precision robot. 

This finding can be explained by the degree of difficulty that the system would need to 

overcome to learn the task successfully. The lower the precision during training, the greater the 
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difficulty and effort for learning, thus, the more generalisation capability of the learned skills. 

From this perspective, the mechanism is similar to domain randomisation (Chebotar et al., 

2019): adding randomness to the observations to improve the robustness of the learned policies. 

In the case of this work, a low-precision robot is used to avoid overfitting the skills to high-

precision robots. However, to the best of the authors' knowledge, whether randomness is added 

to the system from the states or the actions, the underlying mechanism of randomness 

improving the learned policies has not been theoretically proven.  

Table 3.3: Skill Transfer for Three Different Actor-Critic RL Algorithms 

RL 
algorithms 

DDPG SAC c TD3 d 

imprecision 
level 

  0.0mm a 0.3mm 0.5mm 0.0mm 0.3mm 0.5mm 0.0mm 0.3mm 0.5mm 

performance 
b 34.5 

29.7 22.6 
54.8 

45.0 26.3 
65.8 

42.1 22.9 

(-13.9%) (-34.6%) (-17.8%) (-52.0%) (-36.0%) (-65.3%) 

instability 5.6 
6.4 8.2 

7.8 
11.0 12.7 

1.5 
14.6 11.1 

(+12.8%) (+46.3%) (+41.3%) (+63.7%) 
(+865.1%

) 
(+636.9%

) 
imprecision 

level 
0.0mm 0.3mm 0.5mm 0.0mm 0.3mm 0.5mm 0.0mm 0.3mm 0.5mm 

performance 
35.8 

32.7 
18.0 53.3 

48.1 
32.1 68.4 

61.6 
44.2 

(+9.4%) (-44.9%) (+10.7%) (-33.3%) (+11.1%) (-28.3%) 

instability 
0.7 

4.6 
14.0 3.5 

5.6 
12.6 2.0 

8.8 
15.9 

(-84.2%) 
(+205.6%

) 
(-37.9%) 

(+122.2%
) 

(-77.4%) (+81.4%) 

imprecision 
level 

0.0mm 0.3mm 0.5mm 0.0mm 0.3mm 0.5mm 0.0mm 0.3mm 0.5mm 

performance 
49.8 41.9 

31.4 
57.12 49.97 

31.77 
57.8 53.9 

43.5 
(+58.4%) (+33.4%) (+79.8%) (+57.3%) (+32.9%) (+23.9%) 

instability 
3.0 7.2 

11.8 
3.85 7.43 

17.95 
1.0 3.1 

6.9 
(-74.7%) (-38.4%) (-78.5%) (-58.6%) (-85.8%) (-54.5%) 

 

a The results in bold represent the original skill that is transferred to the other imprecision 
levels, and the numbers in brackets represent the relative increment or reduction of the 
performance and instability after the transfer comparing against the original skill (the 
numbers in bold).  

 
b Performance and instability is measured by taking the average and standard deviation of 

the results of repeating the learned skill on each imprecision level for 200 times. 
 
c, d The hyper-parameters of SAC and TD3 are kept the same the ones for DDPG where 

possible. The other hyper-parameters of SAC are: target noise=0.01, target noise limit=0.01, 
policy delay=2. The other hyper-parameters of TD3 are: entropy regularization 
coefficient=0.2. Since the aim is to study skill transferability, the hyper-parameters are not 
optimised for the task. 
 



Page 60 of 114 
 

This knowledge of the relationship between the precision of the machine and the RL algorithm 

can be exploited to improve RL-based training systems. A possibility could be to develop a 

"training robot" with a lower level of repeatability than the other robots within a factory and 

exploit that robot to learn policies that can be transferred to all the robots with higher 

repeatability. 
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3.5. Conclusion 

This chapter has presented an RL-based training platform for robotic disassembly operations. 

The results show that the control skill of a robot performing a contact-rich manipulation task 

can be learned by a data-driven approach.  

As the authors did not have access to robots with different precision levels, to study the 

robustness of the proposed learning method, a technique to change the precision artificially 

was devised to enable a single robot to be used. In this study, the robot's precision was modified 

to as low as ±0.5𝑚𝑚 , and the robot can still learn successfully. Additionally, the results 

empirically demonstrated that the stability of the learned controllers depended on the precision 

of the machine. The study has also shown that the robot can learn directly from a dataset 

previously generated by other training without taking any actual actions. Finally, the 

transferability of the learned skills was empirically studied by applying the proposed precision 

modification technique in real and simulated environments. It has been found that the skills 

learned from a low-precision robot can be transferred to a high-precision robot, and they have 

shown increased performance and stability after the transfer. On the other hand, policies learned 

from a high-precision robot will obtain less performance and stability when implemented on 

robots with lower levels of precision.  

In the future, the following aspects of the work could be investigated. First, this chapter 

observes a pattern in the transferability of the skills, but the underlying principles and 

mechanisms require further investigation. Second, the application of the training platform 

could be extended to more complex disassembly tasks, for example, those involving a 

combination of movements such as twisting and pulling. Third, the findings shown in this 

chapter (in particular about skill transfer) can be tested on other robotic operations and RL 



Page 62 of 114 
 

algorithms. Third, the results about the transferability of robots with different precision levels 

should be further validated on actual different robots and in large-scale applications. 
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4.  Digital-twin-assisted robotic disassembly task 

training with system identification by the Bees 

Algorithm 

4.1. Preliminaries  

As discussed in the previous chapters, applying reinforcement learning (RL) in robotic 

disassembly skills generation can be useful for the rapid deployment of industrial robots in 

disassembly automation scenarios. However, applying RL in robotics exhibits a low sample 

efficiency problem associated with its exploration process (Chatzilygeroudis et al., 2020), 

which is also accompanied by risky exploring actions and excess wear on the robots and the 

objects.  

An intuitive and promising solution is to train the robot using a simulation-to-reality (sim-to-

real) transfer approach. In sim-to-real transfer, the decision-making agent is first trained in a 

simulation environment and then deployed to a real-world environment for operation or 

subsequent training (Salvato et al., 2021). Since data can be generated safely and cheaply in a 

simulated environment, robots can freely explore the dynamics of the environment. 

Furthermore, tasks that are too complex to be trained in reality can now be trained in simulated 

environments, such as manipulating Rubik’s Cube (Akkaya et al., 2019) and locomotion for 

quadruped robots (Tan et al., 2018). 

However, the sim-to-real transfer of the robot skills has been known to have a critical issue 

known as the “reality gap”, which describes a mismatch in performance when directly 

implementing the learned policy into the real-world setting, as simulators can only approximate 

the real process to a certain degree. Also, some phenomena are too costly to be modelled in a 
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simulated environment. Furthermore, building a high-quality simulation model might 

introduce additional expert knowledge and computational hardware, which might contradict 

the aim of reducing the cost of the data collection process. Thus, researchers have proposed 

various methods to reduce the reality gap with the current state of the simulators.   

A few researchers have started to address the reality gap issue by utilising the data collected 

from the real world. For example, by comparing with the real-world data, the simulation models 

can be optimised to produce responses as close to the real-world observations as possible. In 

this way, a “digital twin” of the environment can be built for RL agents to train their decision-

making skills (policies), and they can be subsequently transferred to the real world. 

Furthermore, this approach allows parameters that are difficult to measure, such as coefficient 

of friction and stiffness of the joints, to be identified. 

However, the previous research in this direction does not include force/torque feedback in their 

MDP models, which are crucial in contact-rich manipulation tasks for minimising the load on 

the robots and the objects used in assembly/ disassembly scenarios (Tiboni et al., 2023; Tsai et 

al., 2021).  

In this chapter, the process of building a digital-twin-assisted RL platform for robotic 

disassembly tasks, focusing on minimising the reaction load, is proposed and tested. 

Furthermore, the Bees Algorithm, a decentralised heuristic optimisation that is robust against 

local optima, has been used as a key method to improve the quality of the digital twin (Pham 

et al., 2006). 

Following the Introduction, Section 4.2 describes the disassembly task training process, the 

physical training platform, and some practical methods to process the observations. Section 4.3 

details the proposed method to increase the learning performance by the sim-to-real approach 
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and identify the system parameters to build the digital twins of the training environment. The 

results of the experiments are presented and discussed in Section 4.4. Section 4.5 concludes 

the chapter and provides suggestions for future works. 

4.2. Robotic disassembly task training 

4.2.1. Disassembly task description 

 In robotic disassembly, an important type of manipulation task is to remove a component along 

a disassembling direction with minimised reaction force exerted on the robot, as the clearance 

between the components in this type of task is usually small enough to generate reaction force 

easily. To demonstrate the ability to find the correct disassembling direction and to adjust the 

pose based on the force and torque feedback, the task of removing a bolt from a door-chain 

groove, as shown in Figure 4.1, is selected as the case for the training.  

Figure 4.1(a) shows the objects in the bolt sliding task with some critical dimensions. The aim 

is to slide the bolt from point A to point B and remove it from the groove. To demonstrate the 

ability of RL to generate skills with minimised expert knowledge, the coordinates of point B 

Figure 4.1: Illustration of the bolt sliding task the main dimensions in (a): real world and 
(b): simulator. The task starts with the pin inside the groove at point A. Then the robot will 

grasp the upper part of the bolt, slide it to point B, and take it out from point B.   
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are not given. Thus, the precise orientation and the distance to point B from point A are not 

known to the robot, and this information is crucial in the classical way of programming this 

type of task (Li et al., 2020; Zhang et al., 2019).   
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4.2.2. Physical training platform 

Figure 4.2 shows the physical task training platform for the experiment. The platform deploys 

a lightweight robot with a 14kg payload. It is equipped with a wrist-mount 6-axis force/torque 

(F/T) sensor and a 2-finger parallel-jaw gripper. The tool centre point (TCP) of the operation 

 

Figure 4.2: The experimental setup of the study. The training platform uses the Kuka IIWA 
LBR14 robot, the Robotiq 2F-140 gripper, the OnRobot Hex 6-axis F/T sensor, and an 

ordinary PC (not shown in the figure). The red coordinates denote the frames of the 
objects, which are 6-dimensional arrays of the positional information. (Note that the 
orientations of the red coordinates as shown in the figure do not represent the true 

orientation of the frames.) 



Page 68 of 114 
 

is set at the 𝑃  frame, as shown in Figure 4.2, for keeping the rotation point of the bolt and 

the F/T analysis point consistent with the simulation model. 

4.2.3. Disassembly skill training with RL 

4.2.3.1. RL problem formulation 

The robotic disassembly task can be modelled as a Markov Decision Process (MDP) and solved 

by RL methods (Sutton & Barto, 2018). In each time step, 𝑡, an RL agent generates an action, 

𝑎 ∈ 𝒜, based on the observed state, 𝑠 ∈ 𝒮, and the policy, 𝜋(𝑎 |𝑠 , 𝜃 ), parameterised by 𝜃. 

After executing the action, 𝑎 , the next state, 𝑠 , can be observed following a distribution, 

𝑝(𝑠 |𝑠 , 𝑎 ) , and a reward, 𝑟 (𝑠 ) , can be obtained. The aim of an RL algorithm is to 

maximise the total expected reward, 𝑅 = ∑ 𝛾 𝑟 (𝑠 ), until reaching the termination time 

step, 𝑇, through updating the policy 𝜋(𝑎 |𝑠 , 𝜃 ), where 𝛾 ∈ [0,1] represents the discounting 

of rewards from future time steps.  

A robotic force control problem can be represented by an MDP, with the states defined as, 

𝑠 = 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤, 𝐹 , 𝐹 , 𝐹 , 𝑇 , 𝑇 , 𝑇  (4.1) 

where 𝑥, 𝑦 and 𝑧 denote the Cartesian coordinates of a point of reference (which is 𝑃  in 

Figure 4.2 in this case), 𝑢 , 𝑣  and 𝑤  denote the rotation angle, and 𝐹  , 𝐹  , 𝐹  , 𝑇  , 𝑇   and 𝑇  

denote the force and torque acting along the 𝑥, 𝑦 and 𝑧 axes, respectively. The actions can be 

defined as, 

𝑎 = [∆𝑥, ∆𝑦, ∆𝑧, ∆𝑢, ∆𝑣, ∆𝑤] (4.2) 

where each element represents the movement command of the specified direction with respect 

to the point of reference of the manipulated object. The reward function is defined as  
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𝑟 = 𝑤 (𝑥 − 𝑥 ) − 𝑤
𝐹

𝐹
− 𝑤

𝑇

𝑇

+ 𝑤
𝑦 − 𝑦 𝑖𝑓 (𝑥 − 𝑥 ) > 55 𝑎𝑛𝑑 𝑦 − 𝑦 > 0 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.3) 

where 𝑥  denotes the coordinate of the robot flange along the x-axis at the current time step; 

𝐹 = 𝐹 + 𝐹 + 𝐹   and 𝑇 = 𝑇 + 𝑇 + 𝑇   denote the squared normalised 

force and torque experienced around the three axes; 𝐹  and 𝑇  are the maximum allowed 

force and torque on the flange of the robot during the task; the last term is to encourage an 

upward movement to take the bolt out when the bolt is roughly near the hole; 𝑤 , 𝑤 , 𝑤 , and 

𝑤  are the coefficients of the reward terms for scaling each term to the same order of magnitude, 

and they are set as 1.6, 0.3, 0.3, and 5.0, respectively, in this case.  

If 𝐹  or 𝑇  is greater than 𝐹  or 𝑇 , or the maximum time step has been reached, 

the episode will be terminated. In this experiment, the safety force is 20𝑁, the safety torque is 

5𝑁𝑚, and the maximum time step is 100. 

4.2.3.2. RL training procedure 

The robot is trained for 100 episodes in each training. At each episode of the training, the bolt 

is reset to point A in Figure 4.1. Then, the robot moves the gripper to the location where the 

bolt can be securely gripped, zeros the sensor reading, and follows the procedures of the MDP 

until it meets the termination conditions. 

In this work, the Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016) is used as 

the RL algorithm (The details of the algorithm and its implementation can be found in Section 

3.3.2.). The main hyper-parameters used in this training are listed in Table 4.1.  
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4.2.4. Physical observation processing 

As mentioned in Section 4.2.2, the reference frame for observing the state information in the 

physical setting should be consistent with that in the simulation models. Thus, the following 

three processes need to be sequentially performed: (1) aligning the orientations of the frames, 

(2) gravity compensation, and (3) transforming the F/T measurements from the 6-axis F/T 

sensor to the reference frame of interest (in this case, from 𝑃  to 𝑃 ), as illustrated in 

Figure 4.3.  

In this work, processing is applied to the physical readings. However, the same methods 

described in this subsection can also be applied to the digital observations to keep consistent 

with the physical reading. 

Table 4.1: Main Hyper-Parameters of the RL Used in the Physical Training. 

Neural Networks Parameters DDPG Parameters 

Hidden layer size 128 ∗ 128 ∗ 128 Replay buffer size 1𝑒5 

Hidden layer Neuron ReLU Batch size 2,000 

Output layer Neuron Tanh Discount rate, γ 0.9 

Optimiser Adam Soft update rate, τ 0.9 

Adam, 𝛼 0.0005 Starting exploration, ϵ 5 

Adam,  𝛽  0.9 Exploration decay rate, 𝑐 0.95 

Adam, 𝛽  0.999 

 Adam, 𝜖 1𝑒 − 7 

Adam, AMSGrad FALSE 
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4.2.4.1. Orientation alignment 

To align the orientations of the measurements from the 6-axis F/T sensor and the TCP of the 

robot with the orientations used in the simulation model, rotational matrices are applied to the 

observations made at 𝑃  and 𝑃 ,  

𝑠 = [𝑥, 𝑦, 𝑧] ∙ 𝑴𝑨, [𝑢, 𝑣, 𝑤] ∙ 𝑴𝑨, 𝐹 , 𝑓 , 𝐹 ∙ 𝑴𝑩, 𝑇 , 𝑇 , 𝑇 ∙ 𝑴𝑩  (4.4) 

where 𝑴𝑨  and 𝑴𝑩  represent the rotational matrices from 𝑃   and 𝑃   to 𝑃  , 

respectively, 

 

Figure 4.3: Illustration of the processing for the observations made from the physical 
experiment. (a) shows an example of aligning the orientations of the frames (i) before and 
(ii) after the processing. (b)(iii) illustrates the process of zeroing the reading of the sensor, 

which is to use an artificial force 𝐹  to offset the gravity. However, (iv) when the end-
effector is rotated along the other two axes other than the vertical axis, an error on F/T 

reading will occur because the directions of 𝐹  and the gravity are not aligned. Thus, an 
artificial force 𝐹  needs to be computed to ensure a zero reading when no external 

force is presented. In (c), the F/T reading from the sensor needs to be converted to 𝑃  to 
be the consistent with the simulation model. The 𝑙1 and 𝑙2 represent the distance from the 
measurement frame of the sensor to the centre of gravity (CoG) of the gripper and to the 

𝑃  frame, respectively. 
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𝑴

=

C(𝛽) C(𝛾) −C(𝛽) S(𝛾) S (𝛽)

S(𝛼) S(𝛽) C(𝛾) + C(𝛼) S(𝛾) − S(𝛼) S(𝛽) S(𝛾) + C(𝛼) C(𝛾) − S(𝛼) C(𝛽)

−C(𝛼) S(𝛽) C(𝛾) + S(𝛼) S(𝛾) C(𝛼) S(𝛽) S(𝛾) + S(𝛼) C(𝛾) C(𝛼) C(𝛽)

 

(4.5) 

where 𝑆(∙) = sin(∙) , 𝐶(∙) = cos(∙); 𝛼, 𝛽, and 𝛾 represent the rotation angles from the original 

orientations to the final orientations with respect to the original 𝑥, 𝑦, and 𝑧 axes.  

4.2.4.2. Gravity compensation 

As illustrated in Figure 4.3(b), the error caused by the end-effector's rotation after zeroing must 

be compensated for keeping a zero reading when no external F/T is presented. By using the 

coordinate systems shown in Figure 4.3(b), given that the end-effector is rotated 𝛼  and 𝛾 

degrees along 𝑥 and 𝑧 axes, respectively, the error caused by the rotation can be computed as 

−𝐹 =

⎣
⎢
⎢
⎢
⎢
⎡

−𝐺 ∗ sin(𝛾) 

𝐺 ∗ (2 − cos(𝛼) − cos(𝛾))
𝐺 ∗ sin (𝛼)

−𝐺 ∗ (sin(𝛼)) ∗ 𝑙
0

𝐺 ∗ (sin(𝛾)) ∗ 𝑙 ⎦
⎥
⎥
⎥
⎥
⎤

 

(4.6) 

where 𝐺 is the gravity of the payload attached to the sensor, and 𝑙  is the distance between the 

sensor and the CoG of the payload (in this case, 𝐺 = 10.06𝑁 , 𝑙 = 0.07𝑚 ). Thus, the F/T 

reading can be computed by subtracting the error 𝐹 = 𝐹 − 𝐹 .  

Note that this method only applies when (1) the zeroing operation is performed when the 

vertical direction of the sensor (Y axis) is aligned with the direction of gravity and (2) the centre 

of gravity lies only on the axis of the vertical direction of the sensor (Y axis). 
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4.2.4.3. F/T reading transformation 

As illustrated in Figure 4.3(c), the F/T reading only reflects the F/T sensed at 𝑃 . However, 

the point of contact is more interested in minimizing the damage to the components. Thus, to 

transform the reading from 𝑃  to 𝑃 , the following method is used, 

𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝐹

𝐹

𝐹

𝑇 + 𝐹 ∗ 𝑙

𝑇

𝑇 − 𝐹 ∗ 𝑙 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

(4.7) 

where 𝑙   is the distance between 𝑃   and 𝑃   (in this case, 𝑙 = 0.026𝑚 ). This method 

also assumes that 𝑃  lies only on the axis of the vertical direction of the sensor (Y axis). 
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4.3. Digital-twin-assisted skill transfer 

As discussed in Section 4.3, the proposed learning architecture involves (i) training a virtual 

agent in the digital twin of the real environment and (ii) using system identification to obtain 

the appropriate parameters for the digital twin, as illustrated in Figure 4.4. In this section, these 

two aspects are introduced respectively. 

4.3.1. Sim-to-real skill transfer 

In this work, the sim-to-real transfer is achieved by setting the same MDP for agents in both 

physical and digital spaces so that the policies trained in the simulators can be directly 

implemented on real robots. 

The contact dynamics is simulated by a commercial software called MSC Adams (educational 

edition 2023.1). Since only the contact between the objects is interested, only the bolt and the 

groove are modelled instead of building the manipulator, gripper and sensor, as shown in Figure 

4.1(b). Then, the movement commands work directly at the centre of the bolt. This approach 

assumes that the bolt is securely gripped during the operation so that no sliding of the bolt 

relative to the gripper has occurred. 

At each time step, the bolt is moved according to the action command, 𝑎  . Based on the 

simulation result, a state, 𝑠 , which contains the displacement relative to the origin and the 

simulated reaction forces, is obtained. Also, noise is added to the F/T reading, with the same 

magnitude documented in the sensor’s user manual, to improve the quality of the simulation 

(𝑛𝑜𝑖𝑠𝑒 = [0.2𝑁, 0.8𝑁, 0.2𝑁, 0.01𝑁𝑚, 0,02𝑁𝑚, 0,01𝑁𝑚]). 
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4.3.2. System identification using the Bees Algorithm 

The basic MSC Admas impact function includes four parameters, 𝜽 = [𝜃 , 𝜃 , 𝜃 , 𝜃 ] , to 

compute the reaction forces: stiffness (𝜃 ), damping (𝜃 ), force exponent (𝜃 ), and penetration 

depth (𝜃 ). It is usually difficult to directly measure these parameters, but they can be identified 

by utilising the transition data, 𝑇 = [𝑠 , 𝑎 , 𝑠 ] , gathered from the physical training by 

minimising the response differences generated from simulation, 𝒔𝒕 𝟏
𝒔𝒊𝒎 =

𝑠 , , 𝑠 , , … , 𝑠 ,  , and the physical environment, 𝒔𝒕 𝟏
𝒓𝒆𝒂𝒍 = 𝑠 , , 𝑠 , , … , 𝑠 ,  

under the same actions, 𝒂𝒕 = 𝑎 , , 𝑎 , , … , 𝑎 ,   and previous states 𝒔𝒕
𝒓𝒆𝒂𝒍 =

𝑠 , , 𝑠 , , … , 𝑠 , , where 𝑛 represents the size of the dataset, as illustrated in Figure 4.5.  

Thus, the system identification process can be formulated as a minimisation problem and 

solved by the optimisation algorithms, 

 

Figure 4.4: Overview architecture of the digital-twin assisted skill transfer. The virtual 
agent and the real-world agent share the same MDP formulation to ensure an easy transfer 

of skills. Also, system identification methods are used to improve the quality of the 
simulation. 
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𝑓 𝒔𝒕 𝟏
𝒔𝒊𝒎 𝜽 =

1

𝑛
𝐿2 𝒔𝒕 𝟏

𝒓𝒆𝒂𝒍 𝒂𝒕, 𝒔𝒕
𝒓𝒆𝒂𝒍 − 𝒔𝒕 𝟏

𝒔𝒊𝒎 𝒂𝒕, 𝒔𝒕
𝒓𝒆𝒂𝒍|𝜽  

(4.8) 

min 𝑓 𝒔𝒕 𝟏
𝒔𝒊𝒎 𝜽  𝑤. 𝑟. 𝑡.  𝜽 (4.9) 

The Bees Algorithm (BA) is selected as the optimisation algorithm for this task (Pham et al., 

2006). BA is a decentralised heuristic optimisation algorithm that has been proven to perform 

well in overcoming local optima by iteratively performing local search and global search (Pham 

& Castellani, 2014, 2015). Also, BA does not rely on obtaining the derivatives of the objective 

function, which are difficult to obtain for this task. Furthermore, it can be naturally applied to 

tasks with continuous searching space, which is the case in this work.  

The pseudo-code of the standard BA is shown in Algorithm 4.1 with the hyper-parameters listed 

in Table 4.2. Note that the number of bees selected in this experiment is kept at a minimum 

because it takes about 10 minutes to obtain one result from the fitness function, mainly due to 

 

Figure 4.5: Illustration of the system identification process by formulating the process as a 
minimisation problem. The digital twin executes the same actions as have been executed 

on the real robots. Then, the optimiser minimises the response discrepancy by using 
different system parameters. 
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the time to initialise the simulation environment with different parameters. Also, although more 

precise searching boundaries can be provided, large searching boundaries across multiple 

orders of magnitude are used to demonstrate the independence of expert knowledge. 

4.3.3. Experimental procedures 

To validate the proposed approach, an experiment is designed and conducted. First, the physical 

training without any pre-training in the simulation has been performed as described in Section 

4.2.3.2. Then, the system identification process is performed based on the transition data 

gathered from the physical experiment. Three digital twins are built based on the parameters 

obtained by running the BA (1) with 𝑛 = 883 for 10 cycles, (2) with 𝑛 = 1776 for 10 cycles, 

and (3) with 𝑛 = 883  for 20  cycles (883 transitions are data generated from a complete 

training session). A virtual agent is trained for 150 episodes in each digital environment with 

the same training parameters shown in Table 4.1. Finally, the virtual agents are tested in the 

physical environment. Every RL training described above is replicated three times and 

represented as the average reward obtained among all replications at the same time step unless 

specified.   
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Algorithm 4.1: Standard Bees Algorithm (Baronti et al., 2020).  

1 (Initialisation) Create an initial population, 𝒫, with 𝑛𝑠 + 𝑛𝑟 ∗ 𝑛𝑏 numbers of 

solutions across the whole solution space. Each solution, 𝑠 , marks the centre of 

the site (neighbourhood), 𝑠. The size of the neighbourhood is defined as 𝑠 =

𝑛𝑔ℎ ∗ (𝑀 − 𝑚), where 𝑀 and 𝑚 denote the upper and lower boundaries of each 

variable. Together with the local search edge, 𝑠 , 𝑠  and 𝑠  define the search 

scope, 𝐶(𝑠 , 𝑠 ). For each site, 𝑠, a stagnation counter is also initialised: 𝑠 =

𝑠𝑡𝑙𝑖𝑚. 

2 (Selection, Waggle Dance) Based on 𝑠 , the best 𝑛𝑏 sites are selected for local 

search, 𝒮 = 𝑠( ), … , 𝑠( ), and the others are removed from 𝒫. 

3 (Local Search) For each 𝑠 ∈ 𝒮, the following steps are performed: 

4  (Site Abandonment) If 𝑠 = 0, then the site is abandoned. 

5  (Foraging) Evenly sample 𝑛𝑟 solutions, 𝑣 , … , 𝑣 , from 𝐶(𝑠 , 𝑠 ). The best 

solution 𝑣 is then selected for the following comparison: 

6   If 𝑓(𝑣) > 𝑓(𝑠 ), 𝑣 replaces 𝑠  as the new site centre. 𝑠  and 𝑠  are kept 

unchanged. 

7   If 𝑠  is not the best solution and f(𝑣) ≤ 𝑓(𝑠 ), the local search is said to be 

stagnate. (Neighbourhood Shrinking) 𝑠 = 𝑠 ∗ 𝛼 and 𝑠 = 𝑠 − 1.  

8 (Global Search) Globally sample 𝑛𝑠 scout bees solutions, 𝑣 , … , 𝑣 . 

9 (Population Update) The new population, 𝒫, now consists of the solutions from 3-

Local Search and 4-Global Search. 

10 Reset the stagnation counter for the best solution, 𝑠 = 𝑠𝑡𝑙𝑖𝑚. 

11 (Stopping) Check with the stopping criteria and determine the stopping of the 

algorithm. 
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Table 4.2: Hyper-Parameters used in the BA. 

Hyper-parameter Description Value 

𝑛𝑠 Number of scout bees used only in the global search 2 

𝑛𝑏 Number of sites where local search is performed 2 

𝑛𝑟 Number of recruited forager bees for each 𝑛𝑏 site 2 

𝑠𝑡𝑙𝑖𝑚 Cycles of local stagnation before a site is abandoned 2 

𝛼 Neighbourhood shrinking scale, (0 <  𝛼 <  1) 0.5 

𝑀 Upper searching boundaries [1𝑒5, 5,1000,1] 

𝑚 Lower searching boundaries [0, 0, 0, 0] 
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4.4. Results and discussions 

4.4.1. Validation of the training systems 

Figure 4.6 shows the optimisation progress for identifying the suitable parameters to build the 

digital twins after obtaining the transition data from the physical training. As can be observed 

from the graphs, there have been cycles of stagnation during the optimisation process, 

especially in Figure 4.6(b), due to the small number of bees assigned to the algorithm, as it 

takes about 10 minutes to evaluate the fitness function for a single time. For optimisation with 

larger scales, the use of surrogate models will be investigated in the future. 

The results of the RL training are shown in Figure 4.7. It is demonstrated that the agents in all 

these environments have learned the task successfully. It takes approximately 15 minutes to 

complete the 100 episodes of training in the physical environment and about the same time to 

train each agent in the digital environments for 150 episodes.  

4.4.2. Digital-twin-assisted training results 

The results of the method proposed in this chapter are graphically demonstrated in Figure 4.8. 

To characterise the performance of each training, the following metric is used, 

𝑃 =
1

𝐸
𝐸𝑝𝑟  

(4.4) 

where 𝐸𝑝𝑟 represents the episodic reward, and 𝐸 denotes the total number of training episodes. 

This metric is used because it reflects the qualities of the control policies and the sample 

efficiency to reach those qualities. Finally, the performances of the training with the assistance 

of digital twins are compared with the one without the assistance, as shown in Table 4.3.  
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It can be observed from the second and third transfers that there have been remarkable 1164% 

and 673% learning performance increments, showing that the method proposed in this work 

can significantly increase the RL learning performance with the assistance of digital twins. 

However, a −509%  decrement can also be observed from the first transfer, which can be 

explained by the inferior quality of the optimisation result obtained from the system process 

since digital twin 2 and digital twin 3 have been trained with doubled dataset size and 

optimisation cycles. It can also be concluded that increasing the dataset size and optimisation 

performance can build a more accurate digital twin.  

It is also interesting to note that it is possible for the reality gap to cause worse performances 

than the training without the sim-to-real transfers, even though the same agent has successfully 

converged in its simulation environment.  
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Figure 4.6: Progression plots of identifying the optimised parameters for building the 
digital twins by BA optimisation with (a) 𝑛 = 883 for 10 cycles, (b) 𝑛 = 1776 for 10 

cycles, and (c) 𝑛 = 883 for 20 cycles by BA. The downward trends show that the 
discrepancy between the digital twins and the real-life environment decreases with the 

optimisation cycles. 
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Figure 4.7: Learning curves of (a) the physical training and virtual trainings in the digital 
twins built based on the results after running the BA with (a) 𝑛 = 883 for 10 cycles, (b) 
𝑛 = 1776 for 10 cycles, and (c) 𝑛 = 883 for 20 cycles. The upward trends demonstrate 

that the training environments have been set up successfully for agents to progress on 
learning. (The learning curves are smoothed by a coefficient of 0.05). 



Page 84 of 114 
 

 

  

 

Figure 4.8: Learning curves of the physical training process with and without skill 
transfers from the digital twins. It can be observed that transferring skills from digital 
twins 2 and 3 is able to increase the overall learning performance in terms of overall 

rewards obtained from the same period of training. However, the skill transfer from digital 
twin 1 not only fails, but also worsen the overall performance compared the skills 

obtained from physical training only. (The learning curves are smoothed by a coefficient 
of 0.05). 

Table 4.3: Comparison of the learning performances. 

 Performance Comparison 

Without transfer −1.86  

Skill transfer from digital twin 1 −11.34 −509% 

Skill transfer from digital twin 2 19.80 1164% 

Skill transfer from digital twin 3 10.66 673% 
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4.5. Conclusions and future works 

This work investigates a method to increase the performance of the RL training in contact-rich 

robotic disassembly tasks by skill transfers from the digital twins of the training environments 

with their system parameters optimised by the Bees Algorithm. This work also described 

practical methods to process observation data for keeping the reference frames consistent 

between the simulated and the real environments. Finally, the sim-to-real transfers have been 

conducted, and significant performance increments have been achieved, providing that the 

system identification process has been effectively conducted. It has been found that it is 

possible to have worse performance with the sim-to-real transfer if the reality gap is not 

effectively addressed. Furthermore, with the proposed method, increasing the size of the dataset 

and optimisation cycles have been demonstrated to reduce the reality gap and lead to successful 

sim-to-real transfers.  

The major issue of this research is the time cost to evaluate the fitness function at each time, 

which is a common limitation that should be addressed by developing novel methodologies or 

simulation environments that are more suitable for rapid initialisation. One of the promising 

research directions is to use surrogate models to increase the sample efficiency of the 

optimisation methods. Other suggested future works include large-scale testing with other 

optimisation and RL algorithms. Furthermore, optimisation with more dimensions of system 

parameters can be tested to further reduce the reality gap.   
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5.  Hyper-parameter Study of Deep Deterministic Policy 

Gradient Algorithm in Robotic Disassembly Tasks 

5.1. Preliminaries 

In both Chapters 3 and 4, the implementation of reinforcement learning (RL) as a method to 

acquire robotic skills has been discussed. Although many RL algorithms have been proposed, 

the selection of their hyper-parameters has been heavily reliant on the expert knowledge and 

intuition of the practitioners (Fujimoto et al., 2018; Haarnoja et al., 2018; Lillicrap et al., 2016). 

For RL algorithms implemented to solve problems in simulation environments, faster data 

generation can reduce this problem to a certain degree, as the cost to obtain some preliminary 

results is low before large-scale implementation (Chatzilygeroudis et al., 2020; Salvato et al., 

2021).  

However, to implement RL in physical robot training, such as the ones discussed in previous 

chapters, having some guidance on choosing the appropriate hyper-parameters will shorten the 

time of setting up the training platform. One approach to obtain such guidance is to conduct a 

hyper-parameter study on a simulation environment that approximates real-world task training. 

In this chapter, based on the simulated training task of removing a bolt from a door-chain 

groove described in Chapter 4, a full factorial study with four main hyper-parameters of the 

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016) has been conducted to (1) 

identify the hyper-parameters for the best learning performance, and (2) examine the sensitivity 

of the learning performance to the change of each hyper-parameter. 
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Following the Introduction, Section 5.2 introduces the method of the study, and the results are 

presented and discussed in Section 5.3. Section 5.4 concludes this chapter and provides 

suggestions for future research directions.  

5.2. Full factorial hyper-parameter study 

5.2.1. DDPG hyper-parameters 

Following the discussions of Chapters 3 and 4, the robotic disassembly task of removing a bolt 

from a door-chain groove is used as the case in this hyper-parameter study. (More details of the 

task training environment, training procedures, and the Markov Decision Process (MDP) 

formulation can be found in Section 4.2). 

For solving the MDP, an RL algorithm named Deep Deterministic Policy Gradient (DDPG) is 

selected for its capability of (1) selecting actions from continuous actions space and (2) learning 

directly from an offline dataset. (More details about the implementation of DDPG can be found 

in Section 3.3.2.) The pseudo-code of the algorithm is shown in Algorithm 5.1. 

Although using other function approximators and optimisers for the actors and critics is 

theoretically possible, the functions are usually modelled by Artificial Neural Networks (ANNs) 

and updated by the Adam optimiser (Kingma & Ba, 2015) following the implementation of the 

original paper. It can be observed from Algorithm 1 that the decisions made by the RL agent 

are outputs of the actor network, and its update is dependent directly on (1) the critic network 

(step 13), (2) the dataset that is used as the samples for the ANNs update (step 10), and (3) rate 

of the soft update (step 14). Thus, the following hyper-parameters are selected for the full 

factorial study: (1) actor ANN learning rate, (2) critic ANN learning rate, (3) batch size of the 

data for ANNs update, and (4) rate of the soft update, τ. (Note that selecting these hyper-

parameters does not mean that the other hyper-parameters, e.g. the architecture of the ANN or 
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the exploration constant, have no effect on the learning performance. However, these 

parameters are selected as they directly affect the action of updating the actor network, where 

the actor network is the most important output of an RL algorithm as the actor network itself is 

a complete decision-making policy.) 

5.2.2. Full factorial study 

Full and fractional designs are widely accepted as the most informatic experimental designs in 

manufacturing. They enable researchers to investigate the effects of each factor and the joint 

effects of the factors on a response. A factorial design can be either fractional or full factorial. 

Algorithm 5.1: Deep Deterministic Policy Gradient.   

1 Initialise actor network, 𝜋(𝑠|𝜃 ), and critic network, 𝑄(𝑠, 𝑎|𝜃 ); 

2 
Initialise target actor network, 𝜋 𝑠 𝜃 , with parameters 𝜃 ← 𝜃 , and target critic 

network, 𝑄 (𝑠, 𝑎|𝜃 ), with parameters 𝜃 ← 𝜃 ; 

3 Initialise replay buffer, ℛ; 

4 for episode, 𝑒 do 

5  for time step, 𝑡 do 

6   
Sample an action, 𝑎 , from actor network 𝜋(𝑠 |𝜃 ) + 𝒩(0, 𝜖), where 𝒩(0, 𝜖) is a 
Gaussian noise for exploration; 

7   Clip 𝑎  with action boundaries, (𝑎 , 𝑎 ), for safety; 

8   Execute 𝑎 , receive next state, 𝑠 , and corresponding reward, 𝑟 ; 

9   
Store transition tuple (𝑠 , 𝑎 , 𝑠 , 𝑟 , 𝑇) into ℛ, where 𝑇 indicates the termination 
of the episode; 

10   Sample a batch of transitions, ℬ(𝑠 , 𝑎 , 𝑠 , 𝑟 , 𝑇), from ℛ; 

11   Compute update target, 𝑦 = 𝑟 + 𝛾𝑄 𝑠 , 𝜋 𝑠 |𝜃 |𝜃 ; 

12   
Update critic network by minimizing loss function, 𝐿 = 𝑁 ∑ (𝑦 −
𝑄(𝑠 , 𝑎 |𝜃 )) ; 

13   Update actor network by gradient ascent, ∇ 𝒥 ≈ 𝑁 ∑ 𝑄(𝑠 , 𝜋(𝑠 |𝜃 )|𝜃 ); 

14   Soft update the target networks, 𝜃 ← 𝜏𝜃 + (1 − 𝜏)𝜃 , 𝜃 ← 𝜏𝜃 + (1 − 𝜏)𝜃 ; 

15   Decrease the exploration by a decay constant, 𝜖 ← 𝑐 ∗ 𝜖; 

16  until any termination condition is met; 

17 until maximum number of episodes is reached; 
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The former design is more practical in planning experiments, and it is frequently used for 

several factors at two or more levels. The latter design is more appropriate for investigating 

multiple levels of several factors, which is widely applied to study complex systems 

(Montgomery, 2017). 

In this study, each hyper-parameter will be assigned with three levels, as shown in Table 5.2. 

The levels are selected as reasonably distant as possible so the results can be less dependent on 

the practitioners’ experience and intuition. With four variables and three levels, there are 81 

possible combinations of the parameters to test, and each combination is replicated three times. 

In each training, the agent is trained in the simulation for 100 episodes and a maximum of 100 

time steps for each episode. The other fixed hyper-parameters are listed in Table 5.1. 

To characterise the performance of each training, the following metric is used, 

𝑃 =
1

𝐸
𝐸𝑝𝑟  

(5.1) 

where 𝐸𝑝𝑟 represents the episodic reward, and 𝐸 denotes the total number of training episodes, 

and each combination’s performance is characterised by the average 𝑃  among three 

replications, termed as the average training reward. This metric is used because it reflects the 

qualities of the control policies and the sample efficiency to reach those qualities. 
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Table 5.2: List of hyper-parameters and their levels. 

Hyper-parameters Level 1 Level 2 Level 3 

Batch size 100 1000 2000 

Soft update rate, 𝜏 0.1 0.5 0.9 

Actor learning rate 0.005 0.05 0.5 

Critic learning rate 0.005 0.05 0.5 

 

Table 5.1: List of the fixed hyper-parameters used in this study. 

Neural Networks Parameters DDPG Parameters 

Hidden layer size 128 ∗ 128 Replay buffer size 1𝑒4 

Hidden layer Neuron ReLU Discount rate, γ 0.9 

Output layer Neuron Tanh Starting exploration, ϵ 3 

Optimiser Adam Exploration decay rate, 𝑐 0.95 

Adam,  𝛽  0.9   

Adam, 𝛽  0.999   

Adam, 𝜖 1𝑒 − 7 
 

Adam, AMSGrad FALSE 
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5.3. Results and discussions  

After obtaining the results from 243 trainings, the results are analysed and discussed in this 

section. The full results can be found in the Appendix. 

Firstly, as shown in Figure 5.1, the average training reward of each combination is plotted by 

each level of the hyper-parameters. This analysis can be seen as changing only one hyper-

parameter at a time. From the figure, we can observe that the distributions of batch size, soft 

update rate, the first level of actor network learning rate, and the first two levels of critic 

network learning rate are scattered, meaning that selecting hyper-parameters from these levels 

does not have a dominant effect on the learning performance. However, if the learning rate for 

either the actor or the critic network is too big, e.g. 0.5 , it will result in a failure of all 

combinations that contain this level of the learning rate, regardless of the choice of other hyper-

parameters. 

The finding suggests that choosing the appropriate learning rates for both networks is important 

for successful training, as one inappropriate learning rate can result in a complete failure of the 

training. Furthermore, the results suggest that the learning rate with the lowest value should be 

tested first.   
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(Figure continues on the next page) 
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Figure 5.1: The average training reward distribution of different levels of the (a) batch 
size, (b) soft update rate, (c) actor network learning rate, and (d) critic network learning 
rate. Each dot represents the performance of each combination of the hyper-parameters. 
For batch size, soft update rate, the first level of actor network learning rate, and the first 

two levels of critic network learning rate, the distributions are scattered, meaning that 
selecting hyper-parameters from these levels does not have a dominant effect on the 

learning performance. However, if the learning rate for either of the actor or the critic 
network is too big, it will result in a failure of all combinations that contain this level of 

the learning rate, regardless the choice of other hyper-parameters. 
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As mentioned previously, the average training reward, 𝑃 , is an average value among three 

replications. Table 5.3 summarises the range, standard deviation, and a 95% confidence interval 

(the probability that the average training reward would fall around the obtained average value 

reward).  

The range of average value rewards is a direct indication to describe the influence of the hyper-

parameters. From Table 5.3, the average value reward ranges of batch size, soft update rate, 

actor network learning rate and critic network learning rate are 1.88, 5.04, 18.09 and 12.72, 

respectively, as plotted in Figure 5.2. Thus, it can be concluded that the learning performance 

is much more sensitive to the learning rates of the actor and critic networks, and the actor 

network learning rate is the most influential hyper-parameter of the learning performance. 
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Table 5.3 Statistical results of the hyper-parameter study. 

Hyper-
parameter 

Level 
Average 𝑷 

(among three replications) 
Range 
of 𝑷 

Standard 
deviation 

𝟗𝟓% Cl 

Batch size 

100 −5.02 

1.88 

15.22 −10.25, 0.22 

1000 −6.88 11.51 −12.12, −1.65 

2000 −6.29 13.97 −11.52, −1.05 

Soft update 
rate, 𝜏 

0.1 −9.23 

5.04 

8.22 −14.39, −4.06 

0.5 −4.77 15.45 −9.94, 0.39 

0.9 −4.19 15.47 −9.35, 0.98 

Actor learning 
rate 

0.005 5.57 
 

18.09 

15.84 1.44, 9.71 

0.05 −11.24 2.16 −15.38, −7.11 

0.5 −12.52 1.07 −16.65, −8.38 

Critic learning 
rate 

0.005 −0.29 

12.72 

17.35 −5.12, 4.53 

0.05 −4.88 13.15 −9.70, −0.06 

0.5 −13.01 1.13 −17.83, −8.19 
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Figure 5.2: Comparison of the average training reward with respect to each level of all 
hyper-parameters. It can be observed that the learning performance is much more sensitive 

to the learning rates of the actor and critic networks, as they their ranges are larger than 
the ones of the soft update rate and the batch size.. 
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5.4. Conclusions and future works 

This chapter has conducted a full factorial study on implementing the DDPG algorithm in a 

simulated robotic disassembly task of removing a bolt from a door-lock groove. Four hyper-

parameters that directly influence the updates of the policy ANN have been selected, with three 

levels of values assigned to each hyper-parameter. 241 simulated trainings have been 

performed, and their results have been presented. For this particular task, the learning rates of 

the actor and critic networks are the most influential hyper-parameters, while the batch size 

and soft update rate have relatively limited influence. Also, it was found that if either of the 

learning rates is set to an inappropriate value, the training will fail, regardless of the choice of 

other hyper-parameters. 

However, the current work only examines performance in one environment. In the future, the 

findings should also be tested in physical environments or other tasks with similar features. 

Also, more information should be analysed from the full factorial study, such as the influence 

of the learning performance by multiple factors. 
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6.  Summary of Conclusions and Future Works 

This thesis investigates the implementation aspect of applying Reinforcement Learning (RL) 

algorithms for robots to obtain disassembly skills by trial and error.  

In Chapter 2, a literature review on deploying industrial robots in disassembly automation and 

applying RL in industrial robotic operations has been conducted. A categorisation method for 

studies of developing a robotic disassembly system has been proposed, which includes four 

levels: (1) disassembly system design, (2) product sequence planning, (3) robotic motion 

planning, and (4) disassembly operation methods. Among them, disassembly operation is the 

most fundamental level because the decisions from every other level depend on the capability 

of robots to perform disassembly operations.   

Enabling the robots to learn from trial-and-error and existing data on disassembly operations 

is one meaningful way to make the robots flexible and robust, which can be achieved by 

integrating with the advancement of RL. However, although RL has been implemented in 

virtual environments on control tasks, the specific studies on applying RL in actual robotic 

operations for both assembly and disassembly still require further investigation. The current 

studies on RL mainly focus on developing theories or designs from an algorithm perspective.  

However, the application aspect, such as investigating the relationship between learning 

performance and the physical features of the robots and using simulations to accelerate 

trainings, requires further investigation. 

In Chapter 3, an RL-based training platform for robotic disassembly operations has been 

presented. The results show that the control skill of a robot performing a contact-rich 

manipulation task can be learned by a data-driven approach.  
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As the authors did not have access to robots with different precision levels, to study the 

robustness of the proposed learning method, a technique to change the precision artificially 

was devised to enable a single robot to be used. In this study, the robot's precision was modified 

to as low as ±0.5𝑚𝑚 , and the robot can still learn successfully. Additionally, the results 

empirically demonstrated that the stability of the learned controllers depended on the precision 

of the machine. The study has also shown that the robot can learn directly from a dataset 

previously generated by other training without taking any actual actions. Finally, the 

transferability of the learned skills was empirically studied by applying the proposed precision 

modification technique in real and simulated environments. It has been found that the skills 

learned from a low-precision robot can be transferred to a high-precision robot, and they have 

shown increased performance and stability after the transfer. On the other hand, policies learned 

from a high-precision robot will obtain less performance and stability when implemented on 

robots with lower levels of precision.  

Regarding the research presented in Chapter 3, the following aspects of the work could be 

investigated. First, this chapter observes a pattern in the transferability of the skills, but the 

underlying principles and mechanisms require further investigation. Second, the application of 

the training platform could be extended to more complex disassembly tasks, for example, those 

involving a combination of movements such as twisting and pulling. Third, the findings shown 

in this chapter (in particular about skill transfer) can be tested on other robotic operations and 

RL algorithms. Third, the results about the transferability of robots with different precision 

levels should be further validated on actual different robots and in large-scale applications.  

Chapter 4 investigates a method to increase the performance of the RL training in contact-rich 

robotic disassembly tasks by skill transfers from the digital twins of the training environments 

with their system parameters optimised by the Bees Algorithm. This chapter also described 
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practical methods to process observation data for keeping the reference frames consistent 

between the simulated and the real environments. Finally, the sim-to-real transfers have been 

conducted, and significant performance increments have been achieved, providing that the 

system identification process has been effectively conducted. It has been found that it is 

possible to have worse performance with the sim-to-real transfer if the reality gap is not 

effectively addressed. Furthermore, with the proposed method, increasing the size of the dataset 

and optimisation cycles have been demonstrated to reduce the reality gap and lead to successful 

sim-to-real transfers.  

The major issue of this research is the time cost to evaluate the fitness function at each time, 

which is a common limitation that should be addressed by developing novel methodologies or 

simulation environments that are more suitable for rapid initialisation. One of the promising 

research directions is to use surrogate models to increase the sample efficiency of the 

optimisation methods. Other suggested future works include large-scale testing with other 

optimisation and RL algorithms. Furthermore, optimisation with more dimensions of system 

parameters can be tested to further reduce the reality gap.   

Finally, in Chapter 5, a full factorial study has been conducted on implementing the DDPG 

algorithm in a simulated robotic disassembly task of removing a bolt from a door-lock groove. 

Four hyper-parameters that directly influence the updates of the policy ANN have been selected, 

with three levels of values assigned to each hyper-parameter. 241  simulated trainings have 

been performed, and their results have been presented. It was found that for this particular task, 

the learning rates of the actor and critic networks are the most influential hyper-parameters, 

while the batch size and soft update rate have relatively limited influence. Also, it was found 

that if either of the learning rates is set to an inappropriate value, the training will fail, regardless 

of the choice of other hyper-parameters. 
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However, the work described in Chapter 5 only examines performance in one environment. In 

the future, the findings should also be tested in physical environments or other tasks with 

similar features. Also, more information should be analysed from the full factorial study, such 

as the influence of the learning performance by multiple factors. 

From the above summary of conclusions, it can be found that RL is a useful way to obtain 

robotic operational skills, especially in situations where precise measuring methods or prior 

knowledge to program the robots are unavailable. However, the standout problem is RL’s 

tendency to overfit the learned policies to its training environment.  

For example, the main finding from Chapter 3 about the transferability of the learned skills 

among robots with different repeatability can be explained by overfitting: the skills learned 

from high-precision robots have been overfitted to the environments where there is less 

randomness when progressing from one time step to the next one. The overfitting of the skills 

prevented the skills learned from a less randomised environment from being transferred to the 

one with more randomness – a less precise robot.  

Similarly, the reality gap observed from Chapter 4 can also be explained by the overfitting 

issue: even though the agent has scored high rewards in a simulation environment, it still fails 

to learn in a real environment, which has a high structural similarity with the simulation 

environment and the same formulation of Markov Decision Process, because the skill has 

overfitted to the simulation environment.  

Thus, the generalisation capability of the skills learned by the robots in different task 

configurations requires further investigation, and methods to improve on that matter should be 

developed.  
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Furthermore, the sample efficiency of the learning methods needs to be further improved if 

more complicated operations are to be learned by RL. The average time to finish a physical 

training for the task described in this thesis is about 30 minutes. However, this is a relatively 

simple task in terms of the low number of dimensions for states and actions. The training time 

is expected to be longer for tasks with larger numbers of dimensions, e.g., the ones that use 

images as observations or with more dimensions of actions. Therefore, methods to shorten the 

training time, e.g. simulation-to-reality skill transfer, require further investigation.  

Finally, although using RL to generate robotic skills is a relatively new approach, and it 

provides some unique features, such as self-path-finding and self-tunning of parameters, the 

performance generated by RL needs to be compared with the one from the classic control 

methods or novel RL methods should be developed to integrate with the classic control methods.  
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Appendix 

The following table presents the results obtained from 241 trainings, following the procedures 

described in Section 5.2. 
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Table A.1: Results obtained from the simulated trainings. 

Exp 
Batch 
size 

𝜏 
Learning 

rate A 
Learning 

rate C 
Result 1 Result 2 Result 3 

1 100 0.1 0.005 0.005 9.17626 16.93363 24.48816 

2 100 0.1 0.005 0.05 −11.3976 −0.08352 −3.4708 

3 100 0.1 0.005 0.5 −15.8715 −12.5904 −15.1887 

4 100 0.1 0.05 0.005 −11.9383 −12.0288 −12.7523 

5 100 0.1 0.05 0.05 −11.897 −11.4616 −10.8061 

6 100 0.1 0.05 0.5 −10.8009 −15.8515 −11.2518 

7 100 0.1 0.5 0.005 −11.5274 −11.0365 −15.9025 

8 100 0.1 0.5 0.05 −11.5065 −11.0129 −11.5619 

9 100 0.1 0.5 0.5 −15.8369 −11.1858 −15.478 

10 100 0.5 0.005 0.005 −0.8075 −4.25468 84.84028 

11 100 0.5 0.005 0.05 16.50094 46.05646 43.55957 

12 100 0.5 0.005 0.5 −12.4696 −11.4545 −15.7195 

13 100 0.5 0.05 0.005 −11.501 −11.9962 −11.262 

14 100 0.5 0.05 0.05 −15.1732 −10.7871 −10.7896 

15 100 0.5 0.05 0.5 −10.8132 −10.7905 −15.3469 

16 100 0.5 0.5 0.005 −10.965 −11.8685 −11.042 

17 100 0.5 0.5 0.05 −11.4803 −15.1461 −15.6617 

18 100 0.5 0.5 0.5 −11.229 −14.682 −12.0468 

19 100 0.9 0.005 0.005 38.52126 47.70054 8.924718 

20 100 0.9 0.005 0.05 11.56007 −5.33118 40.02306 

21 100 0.9 0.005 0.5 −14.224 −11.4418 −11.2822 

22 100 0.9 0.05 0.005 −11.8414 5.026472 −10.8226 

23 100 0.9 0.05 0.05 −11.1814 −10.8087 −10.9757 

24 100 0.9 0.05 0.5 −15.8598 −11.8901 −12.01 

25 100 0.9 0.5 0.005 −15.6625 −11.6632 −11.4016 

26 100 0.9 0.5 0.05 −11.0108 −12.0306 −11.4501 

27 100 0.9 0.5 0.5 −15.9628 −11.6674 −11.4075 

 

(Table continues on the next page.) 



Page 105 of 114 
 

 

Exp 
Batch 
size 

𝜏 
Learning 

rate A 
Learning 

rate C 
Result 1 Result 2 Result 3 

28 1000 0.1 0.005 0.005 41.74139 −0.04781 11.7665 

29 1000 0.1 0.005 0.05 −12.1637 −10.8676 17.9777 

30 1000 0.1 0.005 0.5 −14.7528 −11.5924 −14.6871 

31 1000 0.1 0.05 0.005 −11.2283 −10.532 −6.33732 

32 1000 0.1 0.05 0.05 −11.6528 −11.0709 −15.9908 

33 1000 0.1 0.05 0.5 −15.9284 −11.4884 −11.8796 

34 1000 0.1 0.5 0.005 −11.0498 −11.4014 −11.2332 

35 1000 0.1 0.5 0.05 −15.1029 −15.3884 −11.2129 

36 1000 0.1 0.5 0.5 −11.2259 −11.2458 −10.8157 

37 1000 0.5 0.005 0.005 −11.848 9.185039 37.30527 

38 1000 0.5 0.005 0.05 14.46493 −3.51123 5.474035 

39 1000 0.5 0.005 0.5 −15.2274 −15.771 −15.2814 

40 1000 0.5 0.05 0.005 −11.5641 −11.2048 −11.375 

41 1000 0.5 0.05 0.05 −10.7579 −11.2136 −11.4564 

42 1000 0.5 0.05 0.5 −11.4411 −15.1693 −15.532 

43 1000 0.5 0.5 0.005 −11.2482 −11.9125 −15.8834 

44 1000 0.5 0.5 0.05 −12.0665 −11.345 −12.0122 

45 1000 0.5 0.5 0.5 −15.9573 −10.7586 −10.7484 

46 1000 0.9 0.005 0.005 10.61363 8.554989 46.83033 

47 1000 0.9 0.005 0.05 25.99672 7.666488 29.67458 

48 1000 0.9 0.005 0.5 −13.8785 −14.4529 −11.1343 

49 1000 0.9 0.05 0.005 −11.3526 −12.7453 −11.4741 

50 1000 0.9 0.05 0.05 −11.5608 −11.5983 −11.9312 

51 1000 0.9 0.05 0.5 −12.0425 −14.7026 −11.1974 

52 1000 0.9 0.5 0.005 −15.3142 −11.418 −15.8415 

53 1000 0.9 0.5 0.05 −15.4548 −11.5997 −11.5163 

54 1000 0.9 0.5 0.5 −11.4775 −11.2144 −10.7912 

 

(Table continues on the next page.) 
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Exp 
Batch 
size 

𝜏 
Learning 

rate A 
Learning 

rate C 
Result 1 Result 2 Result 3 

55 2000 0.1 0.005 0.005 −5.69888 −11.3688 −15.6906 

56 2000 0.1 0.005 0.05 −8.71551 −10.7951 −12.1149 

57 2000 0.1 0.005 0.5 −12.8697 −14.7597 −15.6765 

58 2000 0.1 0.05 0.005 −11.4661 −4.45361 −0.34589 

59 2000 0.1 0.05 0.05 −10.7778 −10.7502 −15.7632 

60 2000 0.1 0.05 0.5 −10.7344 −11.4447 −12.0646 

61 2000 0.1 0.5 0.005 -10.7406 -10.7546 -11.4905 

62 2000 0.1 0.5 0.05 -10.962 -15.2492 -11.942 

63 2000 0.1 0.5 0.5 -14.7279 -15.6732 -11.1803 

64 2000 0.5 0.005 0.005 3.505101 81.43456 22.95968 

65 2000 0.5 0.005 0.05 7.835876 -2.6551 36.21246 

66 2000 0.5 0.005 0.5 -15.8303 -14.3951 -11.8831 

67 2000 0.5 0.05 0.005 -11.2238 0.812539 -10.3664 

68 2000 0.5 0.05 0.05 -11.6398 -12.0428 -11.9123 

69 2000 0.5 0.05 0.5 -11.5941 -10.9551 -11.3605 

70 2000 0.5 0.5 0.005 -15.3015 -11.5669 -11.2123 

71 2000 0.5 0.5 0.05 -15.5194 -11.6078 -10.7944 

72 2000 0.5 0.5 0.5 -10.7606 -11.5724 -11.9258 

73 2000 0.9 0.005 0.005 10.1667 66.04961 30.35536 

74 2000 0.9 0.005 0.05 4.300311 32.64149 2.180627 

75 2000 0.9 0.005 0.5 -15.2498 -10.7634 -12.5469 

76 2000 0.9 0.05 0.005 -4.21451 -11.4038 -11.2191 

77 2000 0.9 0.05 0.05 -11.8574 -11.2174 -12.0139 

78 2000 0.9 0.05 0.5 -14.7739 -12.0241 -11.8801 

79 2000 0.9 0.5 0.005 -14.7215 -11.1772 -10.9693 

80 2000 0.9 0.5 0.05 -12.0656 -11.5186 -11.1792 

81 2000 0.9 0.5 0.5 -15.8027 -14.7397 -11.9489 
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