
thesis for the degree of licentiate of engineering

Robot Learning for Manipulation of Deformable
Linear Objects

Rita Laezza

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2021

Robot Learning for Manipulation of Deformable Linear Objects

Rita Laezza

Copyright © 2021 Rita Laezza
All rights reserved.

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000
www.chalmers.se

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice.
Gothenburg, Sweden, 2021

I wish this was a masterpiece...
an epic, a painting or a symphony.
Perhaps then it would be worthy
of my beloved who rest in peace.

But this is just a thesis,
with facts instead of brush strokes,
with math in place of musical notes

and no poetry, just this.

Dedicated to the memory of my grandmothers,
Maria José (1932-2020) and Matilde (1931-2021).

Forever my avó Zezita and nonna Tilde.

Abstract
Deformable Object Manipulation (DOM) is a challenging problem in robotics.
Until recently there has been limited research on the subject, with most robotic
manipulation methods being developed for rigid objects. Part of the challenge
in DOM is that non-rigid objects require solutions capable of generalizing to
changes in shape and mechanical properties. Recently, Machine Learning
(ML) has been proven successful in other fields where generalization is im-
portant such as computer vision, thus encouraging the application of ML to
robotics as well. Notably, Reinforcement Learning (RL) has shown promise
in finding control policies for manipulation of rigid objects. However, RL
requires large amounts of data that are better satisfied in simulation while
deformable objects are inherently more difficult to model and simulate.
This thesis presents ReForm, a simulation sandbox for robotic manipulation

of Deformable Linear Objects (DLOs) such as cables, ropes, and wires. DLO
manipulation is an interesting problem for a variety of applications throughout
manufacturing, agriculture, and medicine. Currently, this sandbox includes
six shape control tasks, which are classified as explicit when a precise shape
is to be achieved, or implicit when the deformation is just a consequence of
a more abstract goal, e.g. wrapping a DLO around another object. The pro-
posed simulation environments aim to facilitate comparison and reproducibil-
ity of robot learning research. To that end, an RL algorithm is tested on each
simulated task providing initial benchmarking results. ReForm is one of three
concurrent frameworks to first support DOM problems.

This thesis also addresses the problem of DLO state representation for an
explicit shape control problem. Moreover, the effects of elastoplastic proper-
ties on the RL reward definition are investigated. From a control perspective,
DLOs with these properties are particularly challenging to manipulate due to
their nonlinear behavior, acting elastic up to a yield point after which they be-
come permanently deformed. A low-dimensional representation from discrete
differential geometry is proposed, offering more descriptive shape information
than a simple point-cloud while avoiding the need for curve fitting. Empirical
results show that this representation leads to a better goal description in the
presence of elastoplasticity, preventing the RL algorithm from converging to
local minima which correspond to incorrect shapes of the DLO.

Keywords: Robotics, Robot Learning, Reinforcement Learning, Deformable
Object Manipulation, Deformable Linear Objects.

i

ii

List of Publications
This thesis is based on the following publications:

[A] Rita Laezza, Yiannis Karayiannidis, “Learning Shape Control of Elasto-
plastic Deformable Linear Objects”. 2021 IEEE International Conference on
Robotics and Automation (ICRA).

[B]Rita Laezza∗, Robert Gieselmann∗, Florian T. Pokorny, Yiannis Karayian-
nidis, “ReForm: A Robot Learning Sandbox for Deformable Linear Object
Manipulation”. 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA).

Other publications by the author, not included in this thesis, are:

[C]R. Laezza, Y. Karayiannidis, “Shape Control of Elastoplastic Deformable
Linear Objects through Reinforcement Learning”. Workshop on Robotic Ma-
nipulation of Deformable Objects (ROMADO) at 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) October 25-29,
2020, Las Vegas, NV, USA (Virtual).

[D] R. Laezza, R. Gieselmann, F. T. Pokorny, Y. Karayiannidis, “Presenting
ReForm: A Robot Learning Sandbox for Deformable Linear Object Manip-
ulation”. Workshop on Representing and Manipulating Deformable Objects
(RMDO) at 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA) May 31 - June 7, 2021, Xi’an, China (Hybrid).

iii

iv

Acknowledgments
I would like to begin by expressing the deepest gratitude to my supervisor,
Yiannis Karayiannidis, for his patient guidance and support during this first
half of my doctoral studies. I am looking forward to our continued collabora-
tion for the remainder of this journey.
From KTH, I would like to thank my co-supervisor, Florian Porkorny, and

particularly my PhD collaborator, Robert Gieselmann, alongside whom I have
had the pleasure to share the experiences of graduate education. This col-
laboration of course would not be possible without WASP — Wallenberg AI,
Autonomous Systems and Software Program — which brought us all together.

From WASP, I want to acknowledge the Professors involved in the graduate
school courses and trips, which provided invaluable knowledge and enabled
wonderful experiences that I will always cherish. I would also like to thank
my fellow WASP students from the first AI batch, with whom I have had some
of the most interesting and entertaining discussions.

Finally, I must thank my family for their moral support and encouragement
during the toughest times, as well as joint celebration during the happiest
ones. Last but not least, I want to thank my dearest Karl, who has given me
confidence to continue when I needed it the most.

v

vi

Acronyms
AI: Artificial Intelligence

AL: Apprenticeship Learning

ANN: Artificial Neural Network

CNN: Convolutional Neural Network

CV: Computer Vision

DDOD: Dense Depth Object Descriptor

DDPG: Deep Deterministic Policy Gradient

DL: Deep Learning

DLO: Deformable Linear Object

DNN: Deep Neural Network

DoF: Degree of Freedom

DOM: Deformable Object Manipulation

DP: Dynamic Programming

DRL: Deep Reinforcement Learning

IL: Imitation Learning

LfD: Learning from Demonstrations

MC: Monte Carlo

MDP: Markov Decision Process

ML: Machine Learning

MLP: Multilayer Perceptron

NLP: Natural Language Processing

PG: Policy Gradient

RGB: Red Green Blue

RL: Reinforcement Learning

RoL: Robot Learning

TD: Temporal Difference

vii

viii

Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms vii

I Overview 1

1 Introduction 3
1.1 Deformable Object Manipulation 5
1.2 Robot Learning . 7
1.3 Thesis Outline . 10

2 Deformable Linear Object Manipulation 11
2.1 Modeling . 12

2.1.1 Shape Representation 12
2.1.2 Deformation Physics . 15

2.2 Simulation . 17
2.3 Sensing . 18
2.4 Control . 19

ix

3 Reinforcement Learning 23
3.1 MDP Formulation . 26
3.2 Dynamic Programming . 28
3.3 Value Function Approximation 32
3.4 Policy Approximation . 34
3.5 Deep Reinforcement Learning 40

3.5.1 Deep Deterministic Policy Gradient 42
3.6 RL Simulation Environments 46

4 Concluding Remarks 47
4.1 Contributions . 48

4.1.1 Paper A . 48
4.1.2 Paper B . 48

4.2 Future work . 49
4.2.1 Simulation-to-Reality 49
4.2.2 Model-Based RL . 50

References 51

II Papers 63

A Learning Shape Control of Elastoplastic DLOs A1
1 Introduction . A3
2 Related Work . A6
3 Background . A7

3.1 Reinforcement Learning A7
3.2 DLO Simulation . A9

4 Problem Statement . A10
5 Shape Representation . A12
6 RL Formulation . A14
7 Experimental Results . A15
8 Concluding Remarks . A20
References . A20

x

B ReForm: A Robot Learning Sandbox for Deformable Linear Object
Manipulation B1
1 Introduction . B3
2 Related Work . B5
3 ReForm . B7
4 Manipulation Tasks . B12
5 Benchmarking Experiments . B13
6 Conclusion . B17
References . B17

xi

Part I

Overview

1

CHAPTER 1

Introduction

At present, most robotic manipulators are confined to industrial settings,
where their environment is highly controlled, and humans are generally not
allowed near. This is because many of these robots are programmed to op-
erate in a predefined manner and will not perceive an unexpected human in
their path, possibly injuring anyone who gets in the way. Recently, the field
of collaborative robotics has started to gain momentum, striving for closer
interaction between humans and robots. To that effect, a lot of research has
focused on making robots more adaptive in order to increase safety, by taking
into account the unpredictability of unstructured environments and of human
behavior. As this cooperation becomes more common, robots are beginning
to spread into other sectors, such as healthcare, agriculture and the service
industry. Each sector adds to the variability in tasks and manipulated ob-
jects leading to new challenges. This thesis addresses one of them, namely:
Deformable Object Manipulation (DOM).
The ability to handle non-rigid objects is particularly important since so

many human tasks require skilled manipulation of deformable materials. This
includes the handling of suturing threads in healthcare; the harvesting of
crops in agriculture; and cooking in the service industry. Note that in each

3

Chapter 1 Introduction

of these examples, there is a considerable amount of variation both in the
objects being handled and in the techniques for executing a certain type of
task. Looking closer at the example of surgical suturing, there are differences
in tissue properties between individuals, as well as within a single individual.
Suturing vessels is significantly different from suturing skin. In addition, the
type of needle and thread may also vary in resistance, plasticity and elasticity.
Often, when faced with the job of automating a DOM task, engineers design

specialized tools or machines. In agriculture, automated milking systems used
in dairy farms are an example of this approach. Even though this leads to
efficient results, it requires a unique apparatus for each task. Humans on the
other hand, can learn to execute a large set of tasks with their own hands. One
goal of robotics research is therefore to create general purpose collaborative
robots which are capable of dexterous manipulation akin to that of humans.
Contrary to industrial robots which are intended for repetitive production
at superhuman speed, strength and precision, collaborative robots have to
operate in a safe, gentle and adaptive manner.
Robotic manipulation tasks are routinely solved by first deriving a model of

the object dynamics and then using it for control. However, deformable objects
have complex nonlinear dynamics, which makes modeling more challenging.
Furthermore, due to the wide range of both mechanical and geometrical prop-
erties, these objects constitute a large and heterogeneous class. Going back
to the cooking example, since the dynamics of an egg cannot describe a bacon
strip, one would need to derive a model of each type of food being manipu-
lated. Alternatively, Machine Learning (ML) methods can be used to obtain
modeling parameters or even to learn a control policy without the need for an
explicit model. Furthermore, ML can be employed either to imitate human
manipulation or to go beyond that by learning through experience. These
methods fall under the umbrella of Robot Learning (RoL).
The papers presented in Part II lie at the intersection of deformable object

manipulation and robot learning. More specifically, DOM is the research
problem of interest and RoL is the family of methods which are applied to
address it. The goal of Part I is to provide an overview of these two fields,
needed to understand the research context. Therefore, it is meant to be a
complement to the papers, not a repetition. This chapter starts with the
wider context, where Section 1.1 presents the field of DOM and Section 1.2
continues with RoL. Section 1.3 follows with an outline of this thesis.

4

1.1 Deformable Object Manipulation

1.1 Deformable Object Manipulation
Deformable Object Manipulation (DOM) is a rapidly growing field of robotics.
It encompasses manipulation problems in which the object being manipulated
undergoes non-negligible deformation. To date, the majority of robotics re-
search has been limited to rigid object manipulation, thus requiring the as-
sumption that objects would not change shape. Naturally, this has narrowed
the scope of robotic applications, leaving many industrial tasks involving de-
formable objects still to be performed by humans. One of the most compelling
evidence to this fact is an example from the automotive industry, which started
to become automated already in the early 1970s, but until recently nearly
100% of the installment of car wiring systems was done manually [1].
Besides benefiting a variety of industrial applications, there are other sec-

tors which stand to gain from advances in DOM, as highlighted in the previous
section. However, deformation brings several technical challenges, which ac-
cording to Zhu et al. [2] can be summarized as:

• deformation is complex to model

• it is difficult to sense deformations

• deformable objects have an infinite number of degrees of freedom

Though these challenges are shared by all deformable objects, depending on
the type of object they can have varying degrees of impact on the manipulation
problem. For example, sensing deformation of a rope is particularly difficult
because of its low compression strength, i.e. low resistance when two opposing
points are pushed together. While grasping one end of the rope, very little
information can be deduced about the rest of its shape through force-torque
measurements alone. The same is not true for a metal wire with high strain,
i.e. high resistance when it starts to deform. Since the material opposes
deformation, there will be high forces which can be measured through force-
torque sensors. This difference led Sanchez et al. [3] to categorize deformable
objects according to these two physical properties1, as shown in Figure 1.1.

Another property by which deformable objects were grouped in [3] is their
approximate geometry. The rope and wire mentioned above are examples of

1 In [3], low compression strength is referred to as no compression strength, and high strain
is referred to as large strain.

5

Chapter 1 Introduction

Deformable Linear Objects (DLOs)2, which are characterised by having one
dimension considerably larger than the other two. More types of linear objects
include cables and threads. Objects can also be considered planar, when
one dimension is considerably smaller than the other two, e.g. metal sheets,
clothes and paper. Finally, volumetric objects have no dimension significantly
larger/smaller than the others, much like the sponge in Figure 1.1.

Geometric Properties

M
ec

h
an

ic
al

 P
ro

p
er

ti
es

High Strain

Low Compression Strength

Linear Planar Volumetric

Figure 1.1: Classification of deformable objects proposed by Sanchez [3]. Based on
mechanical properties, objects may have high strain or low compression
strength. Based on an approximated geometry, these may be linear,
planar or volumetric3.

Attempting to find a manipulation strategy which generalizes to all classes
presented in Figure 1.1, would require nothing short of human level intelligence
and dexterity. Most research has therefore been focused on specific classes
and even more often, on a particular task [3]. This thesis will focus on DLO
manipulation, which will be covered in Chapter 2.

2 Sometimes referred to as Deformable One-dimensional Objects (DOOs).
3 Though a Hoberman sphere is given as the volumetric example, it is technically not a

deformable object but rather an articulated structure, with low compression strength.

6

1.2 Robot Learning

1.2 Robot Learning
Robot learning can be defined as the application of machine learning to robotic
tasks. However, this is a very broad definition since robotics is an interdis-
ciplinary field, and ML can be applied to many different problems: i. for
human-robot interaction through speech one can use advances from Natural
Language Processing (NLP); ii. to endow robots with visual comprehension,
there are methods from Computer Vision (CV); iii. to find model parameters
based on sampled data, there is model learning; iv. to be able to copy a hu-
man skill, Learning from Demonstrations (LfD) can be implemented; v. and
in order to have robots learn directly by interacting with the environment,
there is Reinforcement Learning (RL). Note that while the first two research
areas are relevant for robotics, the last three are the most closely associated
with RoL [4]. Figure 1.2 illustrates the RoL landscape with its three central
approaches which will be described below.

Model Learning When ML is used for system identification, this is referred
to as model learning. While classical approaches use statistical methods to
learn specific classes of mathematical models, ML algorithms aim to learn
more general mappings from inputs to outputs, which do not require the
same amount of laborious hand-tuning. There are two main types of models
which can be learned: forward and inverse. The former aim at predicting the
evolution of the system based on the current observation or a history of past
observations. These predictions can then be used for control, which is what
the latter type of model does directly. That is, inverse models attempt to
predict the input required to achieve a desired output [4].

Learning from Demonstrations LfD includes two main strategies, namely
Imitation Learning (IL) and Apprenticeship Learning (AL) [4]. In IL, which is
also sometimes referred to as behavioral cloning, the robot estimates a policy
from a teacher’s demonstration in order to reproduce it. In AL, on the other
hand, a reward function is used to assign scores to the demonstrations, with
the intent to encode the true objective and go beyond pure imitation. This
reward function needs to be chosen such that a perfect score is attributed to
an optimal demonstration. Based on this reward function it is then possible
to find the optimal policy, through RL. Consequently, this approach is also
known as inverse reinforcement learning [4].

7

Chapter 1 Introduction

Vestibulum congue Vestibulum congue

Model Learning

Reinforcement

Learning

Learning from

Demonstrations

Robot

Learning

Machine Learning

Figure 1.2: Overview of the RoL landscape, with three main research areas: learn-
ing from demonstrations, model learning and reinforcement learning.
ML has also found many useful applications in robotics, from other
research fields such as CV and NLP.

Reinforcement Learning Model learning and IL approaches mainly use al-
gorithms from the supervised learning branch of ML, i.e. learn a mapping
function based on ground truth data. RL, on the other hand, is considered
to be a separate branch which aims to learn by trial-and-error. Contrary to
supervised learning, RL is centered around an agent which interacts with the
environment and makes decisions that influence what data it receives from fu-
ture experience. Moreover, while in supervised learning there are ground truth
labels, in RL there is only a scalar reward signal which the agent attempts to
maximize. This reward is also what sets it apart from unsupervised learning,
where no signal of correctness is given. Although all RoL techniques can be
applied to DOM problems, this thesis will focus on reinforcement learning in
particular. Hence, Chapter 3 will introduce RL theory in greater detail.

8

1.2 Robot Learning

After this overview of the three central RoL approaches, it is important to
ask the question: why should one use any of them? According to Connell and
Mahadevan [5], RoL is particularly important for problems in which:

• the environment is nonstationary

• it may be prohibitively hard to program a robot

• not all situations, as well as goals, may be foreseeable

Taking a particular example from DOM, let us consider a task we are all
familiar with: folding laundry. Programming a robot to fold our clothes is
extremely challenging. Since these are low compression strength materials,
sensing has to rely mostly on vision data. This, coupled with the fact that
the clothes we own change over time, make it a nonstationary environment.
Furthermore, there is high variability in the geometrical and fabric properties
of garments, which potentially requires a unique robot program for each indi-
vidual item, i.e. the steps to fold a cotton t-shirt are not the same as to fold a
pair of leather pants. Therefore, hard-coded approaches may quickly become
impractical. Finally, the state of our laundry when taken straight out of the
dryer is truly unforeseeable.

Unsurprisingly, the first complete pipeline for autonomous folding of clothes
using a dual-armed robot proposed in [6] made use of several ML techniques to
achieve a 79% success rate, for a small subset of garments. It should be noted
that the grippers used in this work were specialized for handling clothes [7].
Besides RoL software, it is believed that another major bottleneck in DOM
is the hardware [2]. This includes not only the robot, but also the grippers
and sensors chosen for a particular task. Learning itself may become much
simpler depending on the type of sensing and actuation used while interacting
with the environment.

The work by Doumanoglou et al. [6] is evidence that ML plays an important
role in DOM. Nevertheless, their approach applied mostly CV algorithms to
solve subproblems of the task, leaving the main RoL techniques to be explored.
Generally, robotic manipulation approaches fall in-between two extremes: ei-
ther a single RoL method is applied in an end-to-end approach, or a modular
framework is implemented using different algorithms to solve each individual
subproblem. This work focuses on applying RL to learn robot-agnostic control
policies, assuming a modular implementation with CV techniques for tracking
the DLO and inverse kinematics algorithms for control.

9

Chapter 1 Introduction

1.3 Thesis Outline
This Licentiate thesis presents progress towards the graduate project funded
by WASP to develop Artificial Intelligence (AI) and learning-based
approaches for robotic manipulation of deformable objects. The
project can be divided into two separate components, one which refers to
the core technology of AI, and the other to the DOM application. Initially,
this was to be achieved by combining:

• data-driven modeling of robot-object interaction, based on Deep Neural
Networks (DNNs) and vision/force data.

• design of control policies based on reinforcement learning principles and
testing them in real-world and simulated robotic setups.

This helped reduce the focus for the core technology to RL. As highlighted
in Section 1.1, DOM is a large and heterogeneous problem which would be
difficult to tackle all at once, so the application was narrowed to deformable
linear object manipulation. Therefore, the rest of Part I is organized into two
main chapters: Chapter 2 introduces relevant related work on DLO manipula-
tion, and Chapter 3 presents the theoretical background of RL. Finally, some
concluding remarks are provided in Chapter 4.

Contributions After this overview, Part II consists of two contributed pa-
pers. Paper A addresses the challenges of state representation and reward
definition when applying RL methods to a DLO shape control problem, with
elastoplastic properties. In particular, a discrete curvature representation is
used to define a reward that better encodes details of the desired shape. Paper
B presents ReForm, a new RoL sandbox to facilitate research on DLO ma-
nipulation. For this, the simulation environment used in the previous paper
is compiled together with five additional tasks. A more detailed description
of the contributions is provided in Section 4.1.

10

CHAPTER 2

Deformable Linear Object Manipulation

DLOs were one of the first classes of deformable objects to be studied within
robotic manipulation. This is due in part to their comparatively simple ge-
ometry, with respect to planar and volumetric objects, which makes them
computationally less expensive to simulate [3]. More importantly, DLOs are
crucial components in numerous industrial, healthcare and service applica-
tions. Consider the countless electrical cables which are installed in electronic
devices, and the variety of hoses and tubes found across so many industrial
machines. Previous work on robotic DLO manipulation has tackled specific
tasks, such as USB cable insertion [8], hot-wire cutting [9], knot tying [10] as
well as untangling [11], wire harness assembly [12], surgical suturing [13], etc.
Other works have focused on important subproblems such as state estimation
[14], modeling [15] and shape/deformation control [16].
In this chapter, four key subproblems of robotic manipulation are intro-

duced: i. modeling, ii. simulation, iii. sensing and iv. control. Section 2.1
gives an overview of modeling techniques used for DLO manipulation. Section
2.2 covers simulation of DLOs with an emphasis on software. This is followed
by Section 2.3 where three major sensing modalities are summarized. Finally,
the problem of control is addressed in Section 2.4.

11

Chapter 2 Deformable Linear Object Manipulation

2.1 Modeling
In DOM problems, modeling can be applied to describe either the instan-
taneous geometry of the objects or their evolving dynamics. The former is
useful for defining a shape representation, while keeping dimensionality low.
Dynamical models on the other hand, attempt to describe the behavior of the
object when external forces are applied and are mostly used for prediction and
control. Note that both geometric and dynamical models may be analytical
or learned via ML methods. This section begins by presenting the problem of
shape representation in Section 2.1.1, followed with an overview of modeling
techniques for deformation physics in Section 2.1.2.

2.1.1 Shape Representation
In robotic manipulation, it is often sufficient to define the state of a rigid object
by its pose vector in R6, i.e. position and orientation, as illustrated in Figure
2.1. If the geometry and weight of the object are also known, that provides a
complete description. Conversely, there is no obvious choice of representation
for a DLO since the state must also include information about its shape [17].
One straightforward option is to discretize the continuous object as a set of
points in RN×3 i.e. a point cloud, also shown in the figure. Despite simple,
this has a couple of drawbacks: Firstly, it is an approximation which will be
increasingly accurate as N →∞, also leading to a larger state space; Secondly,
it cannot describe torsion if needed, in which case the orientation of each point
needs to be included in the state, further increasing its space to RN×6.

ℝ𝑁×3

𝑁 = 5

ℝ6

Figure 2.1: Comparison of state representations for a rigid object and a DLO.
While the rigid cube can be represented by its pose, the DLO is ap-
proximated as a point cloud with N points.

12

2.1 Modeling

Shape representation is intimately related to the state estimation technique
used for a given task. For example, Tang et al. [10] developed a framework
for DLO manipulation using Coherent Point Drift (CPD) for tracking the
object. Since CPD is a point set registration method i.e. it aligns a point
cloud with another, they discretized the DLO as a set of uniformly spaced
points. Zea et al. [18] on the other hand, chose Bézier curves to represent
the DLO for a Bayesian state estimation method. Yet another approach was
used by Wnuk et al. [19] who represented the DLO’s state by its skeleton
line, from which a kinematic multi-body model was derived for control. These
three representations are shown in Table 2.1, though there are many more
summarized in [20], [21].

All aforementioned methods rely on vision data and therefore require sev-
eral preprocessing steps of RGB and/or depth measurements. Segmentation,
i.e. separating objects from the background, is particularly important for
the success of DLO tracking. CPD only requires this image processing phase
to obtain the point cloud representation. However, the other two methods
employ continuous shape representations, further requiring a curve fitting al-
gorithm. In [18] they construct a rectangle chain approximation of the Bézier
curves, to simplify the fitting process. Much like many other algorithms, their
work also relies on a dynamical model to better predict the object’s state. Fur-
thermore, in [19] the skeleton curve is modeled as a weighted sum of Radial
Basis Functions (RBFs), for which they compute weights minimizing the error
between the point cloud and the RBF. Conversely, in Paper A the point cloud
is assumed to be the starting point for the proposed discrete representation,
which does not require curve fitting.

Besides analytical modeling approaches, there have also been attempts to
learn shape representations through black box models, e.g. Artificial Neu-
ral Networks (ANNs). Yan et al. [14] proposed a self-supervised learning
approach for estimating the DLO as an ordered sequence of points. Alter-
natively, Sundaresan et al. [22] learned Dense Depth Object Descriptors
(DDODs). Once a shape representation is obtained, it can be used either
as i. a feedback signal or as ii. state variables. In the first case, the repre-
sentation should be robust to noise. In the second case, the goal is to find a
good trade-off between lower dimensionality and higher accuracy [2]. Finally,
in end-to-end approaches a latent shape representation is implicitly learned
directly from sensory data. Sensing modalities are discussed in Section 2.3.

13

Chapter 2 Deformable Linear Object Manipulation

Table 2.1: Examples of DLO state representations used in related work. This table
presents the formal definition on the left and an illustrative plot on the
right, where the DLO is drawn in blue and the representations in yellow.
The cubic Bézier curve (n = 3), includes the set of n+ 1 control points
pi and the respective Bézier polygon as the dashed line, in black.

A point cloud [10] represents the DLO
as a discrete set of N points:

X = {x1,x2, . . . ,xN} ∈ RN×3

where xn ∈ R3 is the n-th point’s posi-
tion in Cartesian space.

ABézier curve [18] of order n is defined
as a weighted sum of Bernstein polyno-
mials, Bni (u), with a set of n+ 1 control
points, pi:

B(u) =
n∑
i=0

piBni (u)

where,

Bni (u) =
(
n

i

)
(1− u)n−iui

with u ∈ [0, 1].

n = 3

A skeleton line [19] is modeled as a
continuous spatial curve in Euclidean
space,

f(s) : R 7→ R3

where s ∈ [0], [1] are local coordinates
running along the DLO’s length, L. The
curve in turn is described by the Frenet-
Ferret frame:

R(s) = [f ′(s) f ′′(s) f ′(s)× f ′′(s)]

14

2.1 Modeling

2.1.2 Deformation Physics
Deformation occurs when an object changes shape due to the application
of external forces. In addition, there are internal forces that neighbouring
particles of a continuous material exert on each other, which are expressed
as the stress, σ. When a force F is applied, this results in a dimensional
change along the force direction, namely the strain ε. There is a wide range
of deformation behavior depending on the material properties of an object.
Stress tests are typically performed to analyse such properties, by applying
tensile, compressive, bending, torsion or shear forces. Stress and strain are
computed differently depending on the type of force and geometry of the
object. For a tensile force, the stress and strain of a rod are given by:

σ = F

A0
and ε = L− L0

L0

where A0 and L0 are the original cross-sectional area and length, respectively
and L is the measured length. Note that as the rod extends, its cross-sectional
area will shrink since the volume of the object remains constant. The rela-
tionship between such axial and lateral strains is given by Poisson’s ratio, ν
[3]. Figure 2.2 shows an illustration of tensile stress tests applied to three rods
with different material properties and the corresponding stress-strain curves.

Figure 2.2: Illustration of different types of deformation. The stress-strain curves
on the right show the behavior up to a certain strain, followed by the
removal of the force. The resulting deformations are shown on the left.

15

Chapter 2 Deformable Linear Object Manipulation

When an object undergoes elastic deformation it returns to its original shape
once the force is removed. An isotropic material, i.e. uniform in all orienta-
tions, with Young’s modulus E, it is said to be linearly elastic if the strain
is proportional to the stress, σ = Eε. In contrast, when an object undergoes
plastic deformation it will become permanently deformed. An intermediate
behavior is exhibited by elastoplastic materials which become permanently
deformed after a certain threshold but are able to partially recover once the
force is removed [3], as shown in Figure 2.2. These may act elastic within a
certain range of stresses and plastic when a yield point is crossed. Once this
happens, the resulting shape becomes strongly history-dependent. The effect
of these properties are studied in Paper A. Finally, while for the aforemen-
tioned types of deformation the stress rate is of no importance, the same is
not true for viscous materials. When the material is viscoelastic, the strain is
a function of the stress rate. If this time dependent behavior is accompanied
by permanent deformation, then the material is viscoplastic [23].
Due to this large variability, it becomes necessary to choose a modeling

technique which can adequately describe an object’s behavior. Other factors to
consider are computational complexity, physical accuracy, and photo-realism
[20]. Given their simplicity and computational efficiency, discrete models have
been used extensively, of which mass-spring systems are the most common
formulation. In [24], a DLO was modeled as a series of masses connected
by linear, bending and torsion springs. However, discrete models are not
as physically accurate as continuum models, which are more complex and
therefore also more computationally heavy. As a consequence, these tend to
be used outside of robotics for detailed material analysis e.g. finite element
modeling of Warrington-Seale rope [25]. Finite Element Methods (FEM) are
numerical techniques commonly used to solve partial differential equations of
continuum-based models, by splitting the object into discrete elements that
approximate its geometry [3]. Refer to [20] for a comprehensive overview.
Other works have used simpler energy-based models [15], [26]–[28], for sim-

ulating and controlling DLOs. Despite being physically inspired and compu-
tationally efficient, they do not explicitly model material properties. Recently,
high-fidelity physics engines which support real-time execution have become
readily available. That has enabled the use of more advanced models of DLOs
which can be easily utilized out of the box. An overview of simulation using
physics engines is presented in the next section.

16

2.2 Simulation

2.2 Simulation

In the field of robotics, there are several simulators which are commonly used
such as Gazebo [29], CoppeliaSim (f.k.a. V-REP) [30], PyBullet [31], and
MuJoCo [32]. It is important to distinguish between a simulation software and
the underlying physics engine. For example, both Gazebo and CoppeliaSim
support Open Dynamics Engine (ODE) or Bullet as the physics engine, among
others. On the other hand, MuJoCo and (Py)Bullet are standalone physics
engines. Since they all offer rigid body kinematics and dynamics it is possible
to approximate a DLO as a series of rigid links connected by ball-joints, which
can be viewed as an underactuated robot.
Unfortunately, simulating more complex deformation is still limited [2].

MuJoCo 2.0 supports simulation of composite objects like particle systems,
ropes, cloth and other soft bodies. A DLO may be simulated either as a 1D
grid or a rope object. The former are strings of spheres connected by ten-
dons with soft equality constraints for the length, which do not allow rotation.
Alternatively, a rope is defined by a kinematic tree of bodies, for which the
orientation can change. Compared to 1D grids, the rope simulation suffers
from less jitter and can also use capsule and ellipsoid geometries [33]. Bullet
supports similar soft body dynamics for cloth, rope and deformable volumes,
using btSoftBody objects. To create a DLO, Bullet offers the CreateRope
function in btSoftBodyHelpers, but more complex DLOs require a special-
ized implementation [34]. For both of these engines the mechanical properties
of a DLO need to be set through constraint parameters connecting rigid bod-
ies. Even though such parameters can be tuned to approximate the behavior
of a real DLO, they are not based on deformation properties and are better
suited to represent low compression strength materials.
Alternative simulators allow to set actual material properties, with param-

eters such as Young Modulus and Poisson’s Ratio. This is true for the Simula-
tion Open Framework Architecture (SOFA) [35] which was initially developed
for medical applications and supports both mass-spring and FEM deformable
models. SOFA has also been used for soft robotics, e.g. to control elastic
soft robots [36]. AGX Dynamics, the simulator used in Part II, offers similar
possibilities. There are two main DLO classes provided with this software:
Cable and Wire. The former is aimed for fixed-length DLOs, which may ex-
hibit elastoplastic behavior, while the latter is better fitted for DLOs where
torsion is not relevant and length may vary [37].

17

Chapter 2 Deformable Linear Object Manipulation

Though the aforementioned simulators are the most represented in robotics
research, there are many other options. For example, Blender is a 3D ani-
mation software that also supports Bullet for more advanced physics simu-
lation. Sundaresan et al. [22] use Blender to generate synthetic depth data
for rope manipulation through DDODs. Simulators used as game engines,
such as NVIDIA PhysX and FleX, have also been applied to robotic contexts,
with simulated environments like SoftGym [38], SAPIEN [39] and ThreeD-
World [40]. Section 3.6 covers simulation environments in the context of RL
for robotic manipulation. Finally, there are also smaller scale simulators for
specific applications, such as the Elastica [41] library based on Cosserat rod
theory, which has been used with RL but is not intended for robotics.

2.3 Sensing
Sensing is considered as one of the most important areas of research when it
comes to DOM [2]. There are several sensing modalities which may be used
for robotic manipulation, e.g. vision, tactile, olfactory, thermal and force.
According to Yin et al. [21] vision seems to be the predominant sensing
modality in DOM applications. However, the choice of modality depends on
the task, as well as the state representation which needs to be estimated. For
example, with low compression strength DLOs which incur large deformations,
vision is preferable to force-torque sensing since the latter only provides local
information about the object’s stiffness [2]. Conversely, for contact rich task
where there may be occlusion by the gripper, perhaps tactile sensing is a
better choice [42]. There are three main sensing modalities which have been
used for DLO manipulation: vision, force-torque, and tactile. These will be
presented below together with some related work.

Vision Naturally, when it comes to DOM applications, vision is an almost
indispensable sensing modality. However, since vision data is high dimen-
sional it is common to use tracking algorithms to obtain much smaller state
representations of the object. Deformation increases the difficulty of object
tracking considerably, but some algorithms have shown promising results for
DLO manipulation, e.g [10], [12]. Alternatively, RGB and depth maps have
been used directly in end-to-end implementations [43]. A unique challenge for
DLO manipulation is the need to perceive topological information, such as
knots and loops which lead to self-occlusion [11].

18

2.4 Control

Force-torque One of the most commonly used sensing modalities in rigid ob-
ject manipulation problems is force-torque sensing. Tough it does not provide
much usable information for low compression strength objects, they may be
useful for high strain DLOs [44]. Force-torque measurements can be obtained
directly using sensors, or estimated based on proprioceptive signals, i.e. the
joint torques of the robot.

Tactile The third and least mature modality is tactile sensing [45]. Even
though there are many types of tactile inputs, in general they encode local
information on the contact surface, such as forces, pressure or texture. There
is large variability on the sensing technology used, and consequently also in the
capabilities of the sensors. The most common approaches are based on optical
e.g. GelSight [42] or capacitive technologies e.g. tactile sensors installed on
PR2 [46], among others. The former have been successfully applied to DLO
manipulation in [8], and shown to improve dexterity.

Vision, force-torque and tactile sensing may be combined for state estima-
tion or identification of model parameters, through sensor fusion techniques.

2.4 Control
Robotic manipulators generally consist of a mechanical structure with a set
of rigid links connected by a set of revolute and/or prismatic joints, each
associated with a joint variable q which has to be controlled. Manipulators
can be classified as Cartesian, cylindrical, SCARA (Selective Compliance As-
sembly Robot Arm), spherical or anthropomorphic. Typically a manipulator
is also fitted with an end-effector specific for the task, e.g. gripper, suction
plate, etc. [47]. Therefore, a control strategy for DLO manipulation has to
address both the manipulation and grasping problems, which depend on the
mechanical structure of the manipulator and end-effector. For the sake of
simplicity, in this work the problem was reduced to the manipulation of one
or two points on a DLO rigidly attached to end-effector(s), thus removing the
grasping problem. Furthermore, to increase generality no particular manipu-
lator was assumed and all control inputs are defined in operational space, i.e.
in terms of positions, velocities or accelerations of the end-effector required to
execute a task. This is in contrast with end-to-end approaches which attempt
to embed the geometry of the robot into the learned controller, given that
sensory inputs are mapped directly to joint variables.

19

Chapter 2 Deformable Linear Object Manipulation

Problem Formulation In this thesis, the control problem is formulated in
terms of the desired velocity of a given controlled point on the DLO. This
point is assumed to be fixed to the end-effector, thus sharing the same velocity
vvve. For an arbitrary n-DoF manipulator, the joint velocities q̇qq ∈ Rn, can be
mapped to the end-effector velocity as:

vvve =
[
ṗppe
ωωωe

]
= JJJ(qqq)q̇qq

where JJJ(qqq) is the Jacobian matrix, and ṗppe,ωωωe ∈ R3 are the end-effector’s linear
and angular velocity, respectively. Therefore the goal is to find a manipulator
agnostic policy π that maps a given state sss, to a reference velocity vvvref

e , in
order to control the shape of a DLO:

vvvref
e = π(sss)

where sss contains information about both the DLO and the end-effector. This
control policy can then be mapped to the joint velocities of an arbitrary ma-
nipulator, such as the anthropomorphic arm of Figure 2.3. The reference
joint velocities can be calculated by minimizing the norm ||vvvref

e − JJJ(qqq)q̇qq||, us-
ing simple inverse differential kinematics or Hierarchical Quadratic Program-
ming (HQP) in case equality and inequality constraints are desired and can
be ordered into a strict hierarchy [48].

hinge 𝒗𝑒

ሶ𝑞1

ሶ𝑞2

𝜙5

𝜙4

𝜙3

𝜙2

𝜙1

desired shape

current shape

controlled point

feature points

Figure 2.3: Illustration of problem formulation. For an explicit shape control prob-
lem, the goal is to deform the DLO into a desired shape, by controlling
the velocity of the end-effector vvve. Inverse kinematics can then be im-
plemented to map vvve to joint velocities q̇1 and q̇2, as well as to control
feature points φi on the DLO, with i ∈ {1, . . . , 5}.

20

2.4 Control

Given the ubiquity of inverse kinematic control in robotics, several DLO ma-
nipulation strategies have followed a similar approach, by modeling the object
with a deformation Jacobian JJJDLO(φφφ), where φφφ is some representation of the
DLO’s shape [49]–[52]. A simple representation is given by coordinates of fea-
ture points, as shown in Figure 2.3. However, this Jacobian matrix depends
on the deformation model of the DLO requiring some calibration procedure
to obtain initial modeling parameters. On the other hand, if the model is un-
known, this matrix can be directly estimated through system identification.
Furthermore, this type of implementation has to be adaptive since the non-
linear behavior of the DLO quickly makes the initial estimate inaccurate [49].
Therefore, these methods have only been applied to DLOs which are assumed
to be elastic and are likely to fail in objects with elastoplastic properties.
One of the key obstacles for such model-based approaches is the modeling

complexity of deformable objects, as highlighted in Section 2.1. Since models
are bound to misrepresent the behavior of the object, the controller needs to
be robust to model inaccuracies. Alternatively, a learned model can be used,
however this requires sufficiently varied training data, otherwise overfitting
may lead to poor generalization in unseen states. Yet another approach is
to learn a policy directly, without learning an explicit deformation model.
However, such model-free methods tend to be less data efficient, since finding
the adequate mapping between states and actions implicitly requires that the
underlying deformation model must also be learned [2]. The problem is only
exacerbated by the larger state and action spaces associated with DOM.
The work presented in this thesis addresses multiple DLO shape control

problems in a model-free fashion. RL is applied to learn a policy in operational
space, using different state representations and reward definitions which can be
obtained from vision data. The goal of shape control may be either to deform
the DLO into a specific shape, or to manipulate it so that a more general
condition is satisfied, e.g. tying a knot, wrapping DLO around a cylinder, etc.
In Part II, shape control problems are classified based on this goal difference.
The first type of problems are considered explicit shape control, and the
latter are implicit shape control. This distinction is particularly useful in
the context of RL, since adequately defining the goal of the task is key to
its success. In particular, this affects the reward definition, as is highlighted
in Paper A, which focuses on an explicit shape control problem. Paper B,
includes three environments of each class.

21

Chapter 2 Deformable Linear Object Manipulation

While RL is a very general framework for trial-and-error learning which in-
cludes a great variety of algorithms, in this thesis a single algorithm was used:
Deep Deterministic Policy Gradient (DDPG). Therefore, in order to provide
the necessary context for the papers presented in Part II it might be sufficient
to describe DDPG and move on. Let us try to do this now:

DDPG is a model-free, off-policy, actor-critic method. A policy is updated
using the deterministic policy gradient theorem, with an estimate of the action-
value function. In turn the action-value estimate is updated based on the mean
squared error between the current value estimate and the TD(0) target.

For readers familiar with reinforcement learning the provided description
may have been clear, but for others the terminology of RL can be a steep hill
to climb. The following chapter provides the necessary context to understand
DDPG and the motivation behind choosing it over other algorithms. Before
that, the RL landscape is introduced starting with a broad view of the subject.
This is followed by the challenges of applying RL specifically to robotics.
Finally, a few related works where RL has been used for deformable object
manipulation are enumerated.

22

CHAPTER 3

Reinforcement Learning

RL was briefly introduced in Section 1.2, within the context of robot learning.
However, reinforcement learning can be applied to a wide range of sequential
decision making problems. Indeed one of the most mediatic successes of RL
has been the achievement of superhuman performance in the game of Go. First
in 2016 when DeepMind’s AlphaGo [53] algorithm defeated grandmaster Lee
Sedol, and replicated one year later when it came out victorious over Ke Jie,
the highest ranked player at the time. RL has been exceptionally efficient at
learning to play a variety of board games like chess [54] and backgammon [55]
as well as video games like Atari [56] and StarCraft II [57].
But why did these methods suddenly become so effective? RL had been

around for decades, and using ANNs as the main function approximation tech-
nique was common. The answer lies partially within advances in DL, which
enabled more powerful Deep Reinforcement Learning (DRL) algorithms. A
key turning point can be traced to 2012, when the Convolutional Neural Net-
work (CNN) architecture later named AlexNet [58] far outperformed past
results of the annual ImageNet Large-Scale Visual Recognition Challenge.
Besides algorithmic improvements, the increase of available compute power
made possible by GPU acceleration was also a catalyst.

23

Chapter 3 Reinforcement Learning

Nevertheless, there are other important factors that contributed to the suc-
cess of DRL in games which unfortunately do not hold true for robotic ma-
nipulation. Firstly, these environments are mostly fully observable and de-
terministic1, with often discrete and fairly low-dimensional state and action
spaces. Secondly, they enable the possibility of self-play, effectively learning to
improve on past policies by competing against them. Thirdly, winning a game
consists of a simple goal definition which provides an obvious reward signal.
Finally, it is important to note that AlphaGo combined RL with planning by
Monte Carlo Tree Search (MCTS) methods [53].
In contrast, the state and action spaces in robotic manipulation problems

are continuous and high-dimensional. Furthermore, due to limitations in per-
ception they are mostly partially observable. Indeed the majority of the ob-
stacles to applying RL in robotics is due to interaction with the real world,
where there are numerous sources of stochasticity and noise. While game
agents can remain in a virtual world and therefore play through thousands of
matches in seconds, robotic agents have to control physical systems which are
limited to real-time execution. This problem is only exacerbated by conserva-
tive velocity constraints meant to prevent damage on such an expensive piece
of equipment. There have been attempts to use multiple robots in parallel to
collect more data [59], however the costs are prohibitive for most academic
research institutions. Even the simplest task of resetting the environment is
a challenge, given that it either requires some automated approach capable of
handling unpredictable states or a human tediously standing by to do it [60].
Two main approaches have been used to overcome this issue: i. use LfD to
initialize the RL algorithm with a good starting control policy and try to im-
prove from there, or ii. learn in simulation first and then transfer the learned
policy to the real robot. This thesis focuses on the latter, by developing DOM
simulation environments such as the related works presented in Section 3.6.
In addition, for many robotic tasks there is no clear reward function which

fully describes the goal. Though sparse rewards similar to the ones used in
games can be used for simpler robotic problems such as peg-in-hole, e.g. assign
positive reward once the task is completed, more complex tasks tend to require
reward shaping to lead the agent to the goal [60]. This problem is addressed
in Paper A, for an explicit shape control task.

1 Backgammon is not fully deterministic since it includes dice rolls and Starcraft II is only
partially observable with some randomness.

24

To summarize, the key challenges of reinforcement learning in robotic ap-
plications have been succinctly described by Kober et al. [60] as four curses:

• Curse of dimensionality

• Curse of real-world samples

• Curse of goal specification

• Curse of under-modeling and model uncertainty

The last curse specifically referred to modeling accuracy in simulators. Given
that these consist of simplifications of the real world, policies learned in such a
setting may not work on the real robot. Consequently, addressing simulation-
to-reality transfer is an open research topic, also termed Sim2Real, that will
be discussed in Section 4.2.1. Despite these curses, the authors compiled a
comprehensive list of robotic tasks to which RL has been successfully applied.
Since the survey’s publication in 2013, there has been a growing interest in
this field, fueled by the achievements of DRL.
RL has also been tested on a few DOM applications such as the ball-paddling

example from [60] where an elastic string connects the two objects. More
recently, low compression strength materials such as cloth and rope have been
successfully manipulated without the use of demonstrations [61]. This is in
contrast with previous work on cloth folding and hanging which combined RL
and LfD [43]. Reinforcement learning has also been used to solve modified
classical robotics tasks, such as a peg-in-hole task where the insertion is made
of foam [62], and its converse where a soft cable is inserted into a rigid hole
[63]. There have even been examples from robotic surgery applications, such
as pattern cutting in gauze with DRL policies for tensioning [64].

In this chapter, the goal will be to introduce the theory behind reinforce-
ment learning. At its core, RL is a computational approach for an agent
to learn how to achieve a goal by interacting with the environment. This
agent-environment interaction, illustrated in Figure 3.1, can be modeled as
a Markov Decision Process (MDP). Furthermore, RL is intimately related to
optimal control theory and Dynamic Programming (DP), since both aim to
find optimal control policies that optimize an objective function or cumulative
reward. However, they assume perfect knowledge of the environment in the
form of a transition model and potentially also a disturbance model.

25

Chapter 3 Reinforcement Learning

3.1 MDP Formulation
Markov decision processes provide a useful formalism to describe sequential
decision making problems. For this reason, it is common practice to frame RL
problems as MDPs. Major textbooks on RL mainly focus on MDPs with finite
state and action spaces [65]–[67], however robotic control is better character-
ized by continuous spaces. Since both cases will be considered throughout
this chapter, Definition 1 provides a general description of an MDP.

Environment

Environment

Agent

Agent

Environment

Agent

Environment

Environment

Agent

Agent

state

𝑠𝑡

Environment

Agent

Environment

Environment

Agent

Agent

action

𝑎𝑡

Environment

Agent

Environment

Environment

Agent

Agent

reward

Environment

Agent

Environment

Environment
Environment

Agent

Agent
Agent

𝑟𝑡

𝑠𝑡+1

Agent

Figure 3.1: Illustration of agent-environment interaction. The agent is in state st
and takes action at, leading to a reward rt and new state st+1.

Definition 1: Markov Decision Process An MDP is defined as a tuple
M = (S,A, p, r, γ), where: The set S represents the state space and the set A
the action space, which can be discrete or continuous. The action space may
in some cases be a function of the state, A(s) for each s ∈ S. For continuous
spaces, it is assumed that S ⊆ RDs and A ⊆ RDa , where Ds, Da ∈ N are the
dimensionalities. The aforementioned spaces characterize the MDP as finite
or infinite, e.g. if both spaces are finite the MDP is finite. When the state
space is continuous the dynamics of the environment are represented by the
probability density function p(st+1|st, at), which describes the probability of
transitioning to state st+1, when in state st the agent takes action at. For a
discrete state space, this is given by a probability mass function. The objective
of the task is encoded by a scalar reward function, which may depend on the
current state r(st), both state and action r(st, at), and even the successive
state r(st, at, st+1). Finally, γ ∈ [0, 1] is the discount factor which defines
how much weight is placed on future rewards in the objective, where γ = 0
implies none, and γ = 1 implies equal weighting for all future rewards.

26

3.1 MDP Formulation

For simplicity, discrete-time MDPs are considered, though much of the the-
ory which will be introduced can be extended to continuous-time [68]. There-
fore, the agent-environment interaction leads to a discrete trajectory:

h0:T = {s0, a0, r0, s1, a1, r1, . . . , st, at, rt, st+1, . . . , sT }

where T is the time of termination. While the convention throughout this
thesis is that a reward at time t is the result of taking action at when in state
st, as shown in Figure 3.1, this differs from the convention used in [66].

MDPs may also be classified with respect to their time horizon. An MDP
is said to be finite-horizon if T <∞, otherwise the MDP is said to be infinite-
horizon. Sutton and Barto [66] further classify tasks as episodic if they can
be broken down into a sequence of episodes, such as finite-horizon cases, or
continuing for infinite-horizon MDPs. It is possible to unify these classes if
termination is assumed to be equivalent to reaching an absorbing state sT ,
for which any action leads to a transition to itself, without any reward, i.e.
st = sT , rt = 0, ∀t > T [66]. The objective in MDP problems can then be
generally defined in terms of the return, Rt:

Rt
.=

T∑
k=t

γk−trk = rt + γrt+1 + γ2rt+2 + . . . (3.1)

where rk is the immediate reward at time k and T ∈ [0,∞], with the caveat
that when T = ∞ the discount factor must satisfy γ < 1, otherwise the sum
becomes undefined. The return expresses the sum of future rewards at time
step t, and can be easily related to the successive return, for all t < T , as:

Rt = rt + γrt+1 + γ2rt+2 + . . .

= rt + γ (rt+1 + γrt+2 + . . .)
= rt + γRt+1 (3.2)

leading to a recursive property which is exploited in DP algorithms.
Finally, for a problem to be modeled as an MDP, the Markov property

must hold. Namely the state needs to be a sufficient statistic for predicting
the future, independently from past observations. Furthermore, MDPs are
assumed to be stationary, i.e. the transition probabilities and reward function
are not time-dependent.

27

Chapter 3 Reinforcement Learning

3.2 Dynamic Programming
Dynamic programming refers to a group of algorithms used to compute opti-
mal policies, based on a known MDP. For simplicity, the algorithms presented
in this section assume finite MDPs with discrete state and action spaces. A
policy defines how the agent interacts with the environment. Therefore, a
stochastic policy π(a|s) = P(at = a|st = s) describes the probability of taking
action a in state s, at time step t. Policies can also be deterministic, i.e.
π(s) = a, in which case they simply map states to actions, π : S → A.

DP makes use of value functions to guide the search for an optimal policy,
i.e. the policy which maximizes the expected return. In order to evaluate a
state, the state-value function expresses the expected return conditioned on
starting in a state s, and following policy π thereafter:

vπ(s) .= Eπ [Rt|st = s] (3.3)

Similarly, to evaluate a state-action pair, the action-value function expresses
the expected return further conditioned on taking a specific action a:

qπ(s, a) .= Eπ [Rt|st = s, at = a] (3.4)

A result of the recursive property from equation (3.2), is that it is possible
to derive the Bellman equation for vπ as:

vπ(s) = Eπ[rt + γvπ(st+1)|st = s] (3.5)

=
∑
a

π(a|s)
∑
s′

p(s′|s, a) [rt + γvπ(s′)] stochastic policy

=
∑
s′

p (s′|s, π(s)) [rt + γvπ(s′)] deterministic policy

where s′ ∈ S indicates any given successive state. These expressions can be
used as update rules to evaluate a policy. Algorithm 1 takes as input the
policy to be evaluated π and a small threshold β which defines the estimation
accuracy. Note that vvv is a vector with the value of all states s ∈ S, and vvv(s)
is a specific element of that vector. At the end of a full sweep through the
state space, the largest observed change ∆ is used to evaluate the stopping
condition. Since in-place updates are applied for each evaluated state, the
values vvv(s′) may be from the previous sweep or the current one.

28

3.2 Dynamic Programming

Algorithm 1 Iterative Policy Evaluation (deterministic policy)
Set desired accuracy parameter β
Randomly initialize vvv, except vvv(sT) = 0
function IPE(π, vvv, β)

∆← β

while ∆ ≥ β do
∆← 0
for all s ∈ S do

v ← vvv(s)
vvv(s)←

∑
s′ p(s′|s, π(s)) [r + γvvv(s′)]

∆← max(∆, |v − vvv(s)|)
return vvv

The action-value function can be expressed with respect to the state-value
function. Namely, if an agent is in state s and takes action a leading to
successive state s′, and from there onward follows the policy π:

qπ(s, a) = Eπ[rt + γvπ(st+1)|st = s, at = a] (3.6)

=
∑
s′

p (s′|s, a) [r + γvπ(s′)]

Therefore, if qπ(s, a) ≥ vπ(s), then the action taken in state s when following
policy π was worse than a, which is a special case of Theorem 1.

Theorem 1: Policy Improvement Let π and π′ be deterministic policies
such that

qπ (s, π′(s)) ≥ vπ(s), ∀s ∈ S

Then the policy π′ is at least as good as π, i.e. vπ′(s) ≥ vπ(s), ∀s ∈ S.
This idea can be extended from a single state-action pair to all possible

states and actions by always choosing the best action according to qπ(s, a),
which leads to the new greedy policy π′:

π′(s) = argmax
a

qπ(s, a) (3.7)

By iterating this process, it is possible to monotonically improve until the new
greedy policy is as good but not better than the previous one, i.e. vπ(s) =
vπ′(s), ∀s ∈ S. Once this occurs, then vπ must be v∗ implying that π was
already an optimal policy π∗.

29

Chapter 3 Reinforcement Learning

Theorem 1 results in the first DP algorithm for control, namely policy it-
eration. It works by interleaving policy evaluation and policy improvement
steps, and is guaranteed to converge to the optimal solution, as in Algorithm
2. The general idea of alternating between these two interacting processes
of evaluation and improvement is referred to as Generalized Policy Iteration
(GPI), illustrated in Figure 3.2. GPI can be used to describe the RL methods
which will be presented throughout the rest of the chapter.

Figure 3.2: Illustration of generalized policy iteration: policy evaluation and im-
provement processes interact until the system converges to optimal
policy, π∗. GPI can also be expressed in terms of action-values, and
the evaluation step does not necessarily have to converge to vπ [66].

Algorithm 2 Policy Iteration (deterministic policy)
Set desired accuracy parameter β
policy_stable ← false
Randomly initialize π and vvv, except vvv(sT) = 0
while policy_stable = false do

vvv ← IPE(π, vvv, β) . Policy Evaluation
policy_stable ← true . Policy Improvement �

for all s ∈ S do
old_action ← π(s)
π(s)← argmaxa

∑
s′ p(s′|s, a) [r + γvvv(s′)]

if old_action 6= π(s) then
policy_stable ← false

30

3.2 Dynamic Programming

Since each iteration in Algorithm 2 includes an evaluation loop, the conver-
gence speed to the optimal policy depends on the number of steps required
to reach the desired estimation accuracy β. Furthermore, the greedy policy
may actually converge before the state value function converges, which leads
to several strategies to truncate the IPE loop. The most extreme case of GPI,
is when the evaluation is stopped after just one sweep of the state space, lead-
ing to the other major DP algorithm that is based on the Bellman optimality
equation for v∗:

v∗(s) = max
a

E[rt + γv∗(st+1)|st = s, at = a] (3.8)

= max
a

∑
s′

p(s′|s, a) [r + γv∗(s′)]

The value iteration algorithm is formulated by using equation (3.8) as an
update rule. This leads to a loop similar to the IPE algorithm but where the
value estimate is based on the best action, as can be seen in Algorithm 3.

Algorithm 3 Value Iteration (deterministic policy)
Set desired accuracy parameter β
Randomly initialize vvv, except vvv(sT) = 0
function VI(vvv, β)

∆← β

while ∆ ≥ β do
∆← 0
for all s ∈ S do

v ← vvv(s)
vvv(s)← maxa

∑
s′ p(s′|s, a) [r + γvvv(s′)]

∆← max(∆, |v − vvv(s)|)
return π = argmaxa

∑
s′ p(s′|s, a) [r + γvvv(s′)]

Policy and value iteration provide the theoretical basis for RL. However,
since DP is model-based it can only be applied when the MDP is known
and relatively small. Alternatively, model-free RL can be explored through
methods where the value function is approximated, as in Section 3.3, or a
policy is directly optimized, as in Section 3.4. Nevertheless, both alternatives
are less sample efficient than model-based algorithms. On the other hand,
learning a model is challenging [69], as will be discussed in Section 4.2.2.

31

Chapter 3 Reinforcement Learning

3.3 Value Function Approximation

Monte Carlo (MC) methods provide a simple strategy to approximate value
functions by sampling complete trajectories from the agent-environment in-
teraction, which can be real or simulated. MC algorithms work by estimating
the average return based on the rewards observed throughout an episode un-
til termination. Therefore, they can only be applied to episodic tasks, for
which the return can be explicitly computed by moving backwards in time,
i.e. Rt = rt + γ(rt+1 + γ(. . . (rT−1 + γRT)), with t < T − 2.
Temporal Difference (TD) learning, is an alternative approach which

does not require sampling full episodes. While MC methods use the return
Rt ≡ R(T)

t to update the value estimate, TD methods bootstrap using current
value estimates as the target, e.g. R(1)

t = rt+γv(st+1) = rt+γq(st+1, at+1) or
R

(2)
t = rt+γrt+1 +γ2v(st+2), where the superscript (n) denotes the bootstrap

depth. A one-step bootstrap update is referred to as TD(0), and is similar to
DP updates. The Sarsa algorithm uses such an update to approximate the
action-value function. This method is presented below (in red) together with
the Q-learning algorithm (in blue) proposed by Watkins [70].

Algorithm 4 TD Control (Sarsa & Q-learning)

Randomly initialize QQQ(s, a),∀s ∈ S,∀a ∈ A(s), except QQQ(sT , ·) = 000
for episode = 1 : M do

Obtain initial state s0

Choose a0 from current state s0 using policy derived from QQQ S
for t = 0 : T − 1 do

Choose at from current state st using policy derived from QQQ Q

Execute action at, observe reward rt and new state st+1

QQQ(st, at)←QQQ(st, at) + α [rt + γmaxa′ QQQ(st+1, a
′)−QQQ(st, at)] QQQ Q

Choose at+1 from next state st+1 using policy derived from QQQ S

QQQ(st, at)←QQQ(st, at) + α [rt + γQQQ(st+1, at+1)−QQQ(st, at)] S

at ← at+1 S

st ← st+1

32

3.3 Value Function Approximation

Algorithm 4 facilitates the comparison of TD control methods based on
action-values. Sarsa uses soft updates QQQ(st, at) ← QQQ(st, at) + αδt, where
δt = R

(1)
t − QQQ(st, at) is the TD error and α is the step-size. While Sarsa

has R(1)
t as the bootstrapping target, Q-learning has the return of the optimal

policy rt+γmaxa′ QQQ(st+1, a
′). Q-learning is an off-policy algorithm because it

uses action-value estimates from π∗ while following another policy π, whereas
Sarsa is an on-policy method which uses estimates from the same policy π.

Contrary to DP updates that consider the whole distribution of possible
states, MC and TD methods only update values of visited states. Therefore,
they must guarantee sufficient exploration of the state space. Consequently,
the greedy policies implemented in DP methods which exploited value esti-
mates need to be modified to include exploratory actions. This introduces
a trade-off referred to as the exploration-exploitation dilemma. A simple ap-
proach is given by the ε-greedy policy, with ε ∈ (0, 1):

π(s) =
{
a∗ = argmaxa∈AQQQ(s, a) with probability 1− ε
a ∈ A with probability ε

(3.9)

which means the total probability of choosing an optimal action is π(a∗|s) =
ε
|A| + (1− ε) and any suboptimal action is π(a|s) = ε

|A| , with a 6= a∗.
This type of approach effectively embeds exploration into the algorithm and

on-policy methods, e.g. Sarsa, rely on it for exploration. Conversely, off-policy
algorithms have a behavior policy µ, which selects actions and a separate target
policy π, which is actually updated. This allows the use of deterministic target
policies, e.g. greedy, since the behavior policy will continue to sample random
actions. For example, in the Q-learning algorithm, actions may be selected
based on a separate behavior policy like ε-greedy.
It is possible to unify TD learning with MC methods given that as n→ T ,

the TD updates become equivalent to Monte Carlo updates. However, the
optimal value of n is not known a priori because it is problem and algorithm
dependent. The TD(λ) approach addresses this issue by averaging over several
n-step returns to compute an update, where λ ∈ [0, 1] refers to the eligibility
trace-decay parameter [66, Chapter 12]. The target of this type of update is
the λ-return, defined as the geometrically weighted average of all n:

Rλt
.= (1− λ)

∞∑
n=1

λn−1R
(n)
t = (1− λ)

T−t∑
n=1

λn−1R
(n)
t + λT−tRt (3.10)

33

Chapter 3 Reinforcement Learning

For the methods presented so far, the state- and action-value functions
have been estimated as a vector vvv ∈ R|S| and a matrix QQQ ∈ R|S|×|A|, respec-
tively. Nevertheless, this is only possible if the state and action spaces are
bounded and discrete. Otherwise, they must either be quantized or function
approximation needs to be employed. There are many alternative function
approximation techniques however, this work focuses on DNNs that will be
briefly introduced in Section 3.5. To apply these methods, the state-value
function denoted v(s|v), is parameterized with v ∈ RDv , where Dv ∈ N is the
dimensionality of the parameter vector. For action-values, the parameterized
function may be action-in, denoted q(s, a|w) which outputs a scalar or action-
out, denoted q(s, ·|w) which instead outputs a vector. Choosing between these
two formulations depends on whether the RL algorithm requires the q value
for a particular action a or for all possible actions in a given state s. Note that
the action-out formulation implies a finite action space. Action-value function
parameters are denoted w ∈ RDw with dimensionality Dw ∈ N.

3.4 Policy Approximation
The previous two sections covered value-based methods, in which policies are
only implicitly defined through the value function, i.e. the critic, requir-
ing maximization over actions to either select an action or update the value
estimates. Consequently, the algorithms presented so far are not directly ap-
plicable to problems with continuous action spaces. An alternative approach
is found in policy-based methods, which search for an explicit policy i.e. an
actor, and do not suffer from the same limitation. This section will introduce
the key idea behind policy search, with a focus on gradient methods. These
will also be combined with value-based strategies in what is referred to as
actor-critic methods, which improve efficiency by reducing variance.

Policy-based methods are a natural choice for robotic applications, not only
due to their applicability to continuous MDPs but also because learning in
policy space often requires fewer parameters than in value space. Further-
more, they offer a direct approach to incorporate prior knowledge through the
choice and initialization of the policy representation, as well as the inclusion
of constraints. Moreover, since in value-based methods a small change in the
value function may result in large discontinuous changes to the policy, these
can lead to dangerous actions [71].

34

3.4 Policy Approximation

To approximate an optimal policy, one needs to define a parameterized pol-
icy πθθθ, with parameters θθθ ∈ RDθθθ of dimensionality Dθθθ. This section will focus
on Policy Gradient (PG) methods, which further require the policy to be
differentiable with respect to its parameters. However, there are also gradient-
free optimization methods such as evolutionary algorithms, which may be used
otherwise. Depending on the algorithm, this policy can be stochastic π(a|s,θθθ)
or deterministic π(s|θθθ). Once a policy parameterization has been defined, it is
possible to treat this as an optimization problem, by defining a performance
measure J(πθθθ). This measure is defined differently for episodic tasks where
the starting-state formulation is used and for continuing tasks which require
the average-reward formulation.

Starting-state formulation The goal is to maximize the total reward over
an episode, from a non-random starting-state s0 to a terminal state sT :

Js0(πθθθ) = Eπθθθ [R0] = Eπθθθ

[
T−1∑
k=0

γkrk

∣∣∣∣s0

]
(3.11)

which is just the state-value function vπθθθ (s0).

Average-reward formulation The goal is to maximize the expected average
reward per time step:

Jr̄(πθθθ) = 1
T
Eπθθθ

[
T−1∑
k=0

rk

]
(3.12)

which for infinite horizon MDPs can be evaluated as a limit:

Jr̄(πθθθ) = lim
T→∞

1
T
Eπθθθ

[
T−1∑
k=0

rk

]
(3.13)

For simplicity, this section considers the starting-state formulation for con-
tinuous state and action spaces. In either case, the goal is to improve the
parameterized policy πθθθ by updating its parameters θθθ through (stochastic)
gradient ascent:

θθθ ← θθθ + αa∇θθθJ(πθθθ)

where αa is the step-size parameter and the subscript a stands for actor.

35

Chapter 3 Reinforcement Learning

The problem with such PG objectives is that the policy πθθθ affects not only
the actions taken in each state, but it also indirectly affects the state distri-
bution ρπθθθ (s), through interaction with the unknown environment dynamics
p (s′|s, a). This makes gradient computation problematic since the effect of
policy parameters on the state distribution is not known.
A simple numerical approach to compute the gradient ∇θθθJ(θθθ) is by finite-

difference methods. These approximate derivatives with finite differences
by perturbing each parameter θk with a small amount ε, in each step:

∂J(θθθ)
∂θk

≈ J(θθθ + ε1k)− J(θθθ)
ε

(3.14)

where 1k is a unit vector with 1 in the k-th component and 0 elsewhere [71].
A more powerful strategy is used by likelihood ratio methods, which

allow for an analytical computation of the gradient using Theorem 2.

Theorem 2: Policy Gradient For the objective function J(πθθθ) and any
differentiable stochastic policy, the gradient is given by

∇θJ(πθθθ) ∝
∫
S
ρπθθθ (s)

∫
A
∇θθθπ(a|s,θθθ)qπθθθ (s, a)dads

= Eπθθθ [∇θθθ log π(a|s,θθθ)qπθθθ (s, a)]

where ρπθθθ (s) is the on-policy distribution under πθθθ. The proportionality sign
∝ becomes an equality for the continuing case, while in the episodic case the
proportionality factor is the average episode length.
Recently, the theorem was extended to deterministic policies by Silver et.

al. [72], assuming the underlying MDP satisfies some regularity conditions:

∇θJ(πθθθ) ∝
∫
S
ρπθθθ (s)∇θθθπ(s|θθθ)∇aqπθθθ (s, a)|a=πθθθ(s)ds

= Eπθθθ [∇θθθπ(s|θθθ)∇aqπθθθ (s, a)|a=πθθθ(s)]

which was shown to be a special (limiting) case of the stochastic policy gradient.

The key feature of the PG theorem is that ∇θθθJ(θθθ) does not include the
gradient of the on-policy state distribution ρπθθθ (s), despite the fact that this
depends on the policy parameters θθθ.

36

3.4 Policy Approximation

Therefore, PG methods based on the likelihood ratio only need to find an
estimate of the action-value qπθθθ (s, a). One of the first PG algorithms used the
sample return Rt for that purpose, making it an MC implementation. This
algorithm, appropriately named REINFORCE, was proposed by Williams [73]
and is presented in Algorithm 5.

Algorithm 5 REINFORCE (with baseline)
Randomly initialize policy π(a|s,θθθ), with parameters θθθ
Randomly initialize differentiable value function v(s|v), with parameters v
for episode = 1 : M do

Generate an episode h following π(a|s,θθθ)
for t = 0 : T − 1 do

Rt ←
∑T
k=t+1 γ

k−t−1rk

A← Rt − v(st|v)
v← v + αb∇vv(st|v)A
Rt ← A . i.e. use advantage function in place of return
θθθ ← θθθ + αa∇θθθ log π(at|st, θθθ)Rt . PG update

Since REINFORCE is an MC method, it suffers from high variance and is
slow to learn. To help reduce variance, Williams proposed a variant of the
algorithm with a baseline function, b(s). This can be any function which does
not depend on the actions a. The baseline is subtracted from the state-action
value in the policy gradient theorem, so that the expectation remains intact:

∇θθθJ(πθθθ) = Eπθθθ [∇θθθ log π(a|s,θθθ) (qπθθθ (s, a)− b(s))] (3.15)

This difference is called an advantage function, Aπθθθ (s, a), typically denoted
by uppercase letter A to differentiate it from actions. A good baseline is the
state-value function b(s) = vπθθθ (s) which results in:

Aπθθθ (s, a) = qπθθθ (s, a)− vπθθθ (s) (3.16)

Algorithm 5 shows REINFORCE with baseline in blue. Note that the step-
size of the value function has subscript b for baseline and not c for critic.
According to [66, Chapter 13.5], the value function is only considered a critic
when it is used for bootstrapping from estimated values of successive states.

37

Chapter 3 Reinforcement Learning

Instead of the MC return Rt, it is possible to choose a different estimate of
qπθθθ (s, a), using a TD learning critic to reduce variance, i.e. qπθθθ (s, a|w). This
leads to the final group of algorithms which will be presented in this chapter,
namely actor-critic methods. A baseline may still be used to further improve
stability, leading to advantage actor-critic methods. However, replacing the
true q(s, a) by an approximation does not guarantee that it will represent the
true gradient, unless Theorem 3 holds.

Theorem 3: Compatible Function Approximation If the following two
conditions are satisfied:

1. The value function approximator q(s, a|w) is compatible to the policy πθθθ:

∇wq(s, a|w) = ∇θθθ log π(a|s,θθθ)ᵀw stochastic policy
∇aq(s, a|w)|a=πθθθ(s) = ∇θθθπ(s|θθθ)ᵀw deterministic policy

2. The value function parameters w minimize the mean-squared error:

MSEsto = Eπθθθ
[
(qπθθθ (s, a)− q(s, a|w))2

]
MSEdet = Eπθθθ

[(
∇aqπθθθ (s, a)|a=πθθθ(s) −∇aq(s, a|w)|a=πθθθ(s)

)2]
then the policy gradient is unbiased:

∇θθθJ(πθθθ) = Eπθθθ [∇θ log π(a|s,θθθ)q(s, a|w)] stochastic policy
∇θθθJ(πθθθ) = Eπθθθ [∇θπ(s|θθθ)∇aq(s, a|w)|a=πθθθ(s)] deterministic policy

What this theorem expresses is that function approximators have to be
linear in the policy features: ∇θθθπ(s|θθθ) or ∇θθθ log π(a|s,θθθ). Furthermore, the
parameters should be the solution to the linear regression problem minimizing
theMSE. However, in practice this second condition is relaxed to include value
estimation methods such as TD learning [72].
It is now possible to introduce the precursor to DDPG, namely the Compat-

ible Off-Policy Deterministic Actor-Critic (COPDAC-Q) algorithm proposed
in [72]. Since this is an off-policy method with behavior policy µ(a|s) 6= π(s|θθθ),
the gradient becomes slightly different:

∇Jµ(πθθθ) ≈
∫
S
ρµ(s)∇θθθπ(s|θθθ)qπθθθ (s, a)ds (3.17)

= Eµ
[
∇θθθπ(s|θθθ)∇aqπθθθ (s, a)|a=πθθθ(s)

]

38

3.4 Policy Approximation

where ρµ(s) is the state distribution under policy µ. Moreover, the Q in the
name refers to the critic implementation which uses the action-value TD(0)
update, as presented in Algorithm 6. Hence, condition 2 is technically not
satisfied, since the critic parameters w are updated by TD learning. In prac-
tice, they implement the critic as a linear function approximator q(s, a|w) =
φ(s, a)ᵀw, from state-action features defined as φ(s, a) = aᵀ∇θθθπ(s|θθθ) to sat-
isfy condition 1. The paper mentions a state-value function baseline which is
also defined as a linear function approximator v(s|v) = vᵀφ(s). Nevertheless,
it is not clear how the parameters v affect the PG update and the features
φ(s) are never explicitly defined.

Algorithm 6 COPDAC-Q (Deterministic PG)
Randomly initialize policy π(s|θθθ), with parameters θθθ
for episode = 1 : M do

Obtain initial observation state s0
for t = 0 : T − 1 do

at ← µ(a|st)
Execute action at, observe reward rt and new state st+1
δt ← rt + γq

(
st+1, π(st+1|θθθ)

∣∣w)− q(st, at|w) . TD-error
θθθ ← θθθ + αa∇θθθπ(st|θθθ) (∇θθθπ(st|θθθ)ᵀw) . PG update
w← w + αcδt φ(st, at)
v← v + αbδt φ(st)

For the PG update the gradient of the action-value with respect to a is given
by: ∇aq(s, a|w) = ∇θθθπ(st|θθθ)ᵀw. Furthermore, for the gradient ascent steps,
the gradients of q(s, a|w) and v(s|v) are just the features φ(s, a) and φ(s),
respectively. Unlike the REINFORCE algorithm, the PG update is based on
the current value of the critic, and then the critic is updated towards the
direction of the TD-error, δt.
Already in [72], the COPDAC-Q algorithm was tested with ANN function

approximation, using Multilayer Perceptrons (MLPs) for both the actor and
the critic. This was tested on a goal-reaching task with a simulated 6-segment
octopus arm, where Ds = 50 and Da = 20. The MLPs had relatively low
capacity since the networks contained a single hidden layer where the policy
had 8 neurons with a sigmoidal activation, and the critic had 40 neurons with
a linear activation, i.e. Dθθθ = 8, Dw = 40. The next section introduces DRL.

39

Chapter 3 Reinforcement Learning

3.5 Deep Reinforcement Learning
Deep reinforcement learning refers to RL methods where DNNs are used to
represent a value function, the policy or even the model of the dynamics.

Deep Neural Networks DNNs are artificial neural networks with a multi-
layer architecture where each layer contains a set of neurons. Much like their
biological counterparts, neurons are the functional units of an ANN. The per-
ceptron [74] is an artificial neuron model which learns a mapping from input
vectors x to binary outputs y ∈ {0, 1}, as a composition of two functions
H(f(x)), where f(x) = www · xi + b with weight vector www and bias b, and H is
the activation function. For the perceptron algorithm, H is a Heaviside step,
but other activation functions include the sigmoid or hyperbolic tangent, and
more recently the Rectified Linear Unit (ReLU). As a supervised learning
method, the perceptron algorithm updates the parameters www, b in the direc-
tion which minimizes the error between the desired output and the current
one yi −H(www · xi + b), using a set of sampled input-output pairs {(xi, yi)}.
MLPs are networks made up of layers of perceptrons, typically with nonlin-

ear activation functions. They are referred to as fully connected, because each
neuron in one layer is connected to all neurons in the following layer, as shown
in Figure 3.3. CNNs are another type of feedforward architecture, which ap-
plies parameterized convolutional filters by strides along the input data, thus
reducing each local region into a scalar value. For data with a sequential na-
ture, Recurrent Neural Networks (RNNs) have been the architecture of choice.
These are not considered feedforward, since they have an internal state that is
used as input to the following layers. More recently, Transformer networks [75]
have outperformed previous architectures in numerous applications, thanks to
their attention mechanism.
Though architectures may vary, the training procedure for most ANNs is rel-

atively similar. Data is used to update the weights through backpropagation, in
a direction minimizing some error which encodes the objective. In supervised
learning, the error is typically defined for either prediction or classification
tasks. Updates may be done for each data point, i.e. stochastic gradient de-
scent, or in batches, i.e. minibatch gradient descent. Besides the development
of better architectures, many algorithmic improvements have also contributed
to more efficient training, such as the Adam algorithm for optimization [76]
or batch normalization [77] and dropout [78] for regularization.

40

3.5 Deep Reinforcement Learning

Input Layer

Output Layer

Hidden Layers

Figure 3.3: Illustration of MLP, i.e. feedforward fully connected neural network.

Despite being powerful function approximators, DNNs can lead to instabil-
ities and even divergence. This is because convergence of learned parameters
to a fixed point is not guaranteed when a nonlinear function approximator is
used for value-based algorithms, presented in Section 3.3. Even with simpler
linear function approximators, off-policy algorithms such as Q-learning, are no
longer guaranteed to converge. This is a consequence of the deadly triad,
which refers to the combination of function approximation, bootstrapping and
off-policy training. Whenever these three conditions are present, even DP al-
gorithms presented in Section 3.2 become unstable. For more details on this
subject, consult [66, Chapter 11.3].
One of the earlier successes of deep reinforcement learning was the proposal

of the Deep Q-Network (DQN) algorithm [56]. As the name indicates, it
consists of a modification of Algorithm 4, where the q value is represented by
a DNN. A key challenge in training neural networks using sampled RL data, is
that optimization algorithms commonly assume the samples are independently
and identically distributed (iid). Naturally, this assumption does not hold
for an RL trajectory, since the state and action distributions are correlated
by the interaction between the policy and the dynamics of the environment.
To address this issue and make use of the increased efficiency of minibatch
gradient methods, Mnih et al. [56] proposed that sampled experience tuples
(st, at, rt, st+1) be stored in a replay buffer D. For each step, a minibatch B of
uniformly sampled tuples is then used to update the Q-network. The buffer
was designed as a first in, first out system, with a fixed memory. Another

41

Chapter 3 Reinforcement Learning

challenge that needed to be addressed, is that implementing the Q-learning
critic as an ANN was unstable. This is due to the bootstrapping nature of the
algorithm which means that the network being updated q(s, a|w) by gradient
descent w ← w + αc∇wL is also used to calculate the target value of the
MSE loss:

L← 1
|B|

|B|∑
i=1

(yi − q(si, ai|w))2

where yi ← ri + maxa′ q(st, a′|w) is the target. To overcome this problem,
Mnih et al. [56] proposed using a target Q network, with separate parameters
w′, so that yi ← ri + maxa′ q(st, a′|w′). The target network can then be
updated at a slower rate, by setting w′ ← w only every C steps. Furthermore,
the authors also found that clipping the MSE term from the update to be
between -1 and 1, helped improve stability. However, this was fairly specific
to the test domain, as discussed in [79].
Based on the algorithmic changes described above, DQN was shown to reach

human-level performance in 49 of the Atari 2600 games. The critic network
was modelled as an action-out CNN architecture, which was trained using
pixels and games scores as inputs. However, if DQN is an off-policy, TD
method which uses function approximation, how does the deadly triad affect
its performance? Van Hasselt et al. attempt to answer that question in [80].

3.5.1 Deep Deterministic Policy Gradient
Unfortunately, DQN is only suitable for discrete and low-dimensional action
spaces. Building on the COPDAC-Q algorithm and the observations from the
DQN training strategy, Lillicrap et al. [81] proposed the deep deterministic
policy gradient algorithm, for high-dimensional continuous action spaces. As
shown in Algorithm 7, DDPG also makes use of the replay buffer and target
network ideas. They found that in order to avoid divergence, target networks
were required both for the critic and the actor. While this slows down the
learning, it is highly compensated by the learning stability. Unlike the DQN
strategy, the target networks are updated through soft updates defined by
parameter τ , in order to have them slowly track the learned networks, as shown
in item 3 of Algorithm 7. In the original implementation, the exploratory
behavior policy µ was obtained by adding noise ωt ∼ W to the current policy
π(st|θθθ). For their experiments, W was an Ornstein-Uhlenbeck process which
enables temporally correlated exploration.

42

3.5 Deep Reinforcement Learning

Algorithm 7 Deep Deterministic PG
Initialize actor network π(s|θθθ), with weights θθθ
Randomly initialize critic network q(s, a|w), with weights w
Initialize target networks q′ and π′, with weights w′ ← w, θθθ′ ← θθθ

Initialize replay buffer D ← ∅
for episode = 1 : M do

Initialize a random process W for action exploration
Obtain initial observation state s0
Set termination variable, dt ← 0
for t = 0 : T − 1 do

at ← π(st|θθθ) + ωt where ωt ∼ W
Execute action at, observe reward rt and new state st+1
if t+ 1 = T then dt ← 1
Store transition in replay buffer, D ← D ∪ {(st, at, rt, st+1, dt)}
Randomly sample minibatch of transitions B ⊂ D
1. Update critic network using target networks:

yi ← ri + γ(1− di)q′
(
si+1, π

′ (si+1
∣∣θθθ′) ∣∣∣w′) , ∀i ∈ [1, |B|]

L← 1
|B|

|B|∑
i=1

(yi − q(si, ai|w))2

w← w− αc∇wL . gradient descent step

2. Update actor network using critic network:

J ← 1
|B|

|B|∑
i=1

q
(
si, π(si|θθθ)

∣∣w)
θθθ ← θθθ + αa∇θθθJ . gradient ascent step

3. Update target networks, with τ � 1:

θθθ′ ← τθθθ + (1− τ)θθθ′

w′ ← τw + (1− τ)w′

43

Chapter 3 Reinforcement Learning

Not included in the pseudocode, is the addition of batch normalization [77]
to update the networks. The motive to include this deep learning strategy,
which normalizes a minibatch so that each dimension across samples has zero
mean and unit variance, is related to the application domain. While the DQN
was tested on the Atari games, the DDPG was tested on a suite of continuous
control environments. The former all have the same input type and therefore
were easily normalized as part of a preprocessing step, whereas in the latter
each task has a specific set of inputs and outputs, with different physical units,
e.g. positions (m) vs velocities (m/s).
Several policy gradient methods have been proposed and shown compar-

atively better results in some of tested environments. A few of the most
successful algorithms are listed in Table 3.1 for reference. Other algorithmic
improvements have also been proposed such as Prioritized (PER) [82] and
Hindsight Experience Replay (HER) [83], Generalized Advantage Estimation
(GAE) [84], TD-regularization [85] and Phasic Policy Gradient (PPG) [86].
In order to scale up RL, there have been variants of actor-critic algorithms
with a focus on parallel or distributed computing, such as the Asynchronous
Advantage Actor Critic (A3C) algorithm [87] and Importance Weighted Actor-
Learner Architectures (IMPALA) [88].

Table 3.1: Reference table for state-of-the-art policy gradient methods. DDPG has
been considered one of the more efficient off-policy DRL methods [89].

[X] Algorithm X-Policy X Actor Critic
[81] Deep Deterministic Policy Gradient

(DDPG)
Off Deterministic Yes

[90] Twin-Delayed DDPG (TD3) Off Deterministic Yes
[87] Advantage Actor Critic (A2C) On Stochastic Yes
[91] Actor Critic with Experience Replay

(ACER)
Off Stochastic Yes

[92] Trust Region Policy Optimization
(TRPO)

On Stochastic No

[93] Proximal Policy Optimization (PPO) On Stochastic No
[94] Actor Critic using Kronecker-Factored

Trust Region (ACKTR)
On Stochastic Yes

[95] Soft Actor-Critic (SAC) Off Stochastic Yes

44

3.5 Deep Reinforcement Learning

Nevertheless, DDPG was used as presented in Algorithm 7 for all exper-
iments in Part II. The reasoning behind using DDPG and not any of the
algorithms in Table 3.1 is based on the observations made by Henderson et
al. [96] about the difficulties in comparing DRL algorithms across different
publications. Specifically, they attempt to address the following questions:

• How much do hyperparameter settings influence the reported algorithm
performance?

• How does the network architecture of the policy and value functions
affect the performance?

• How does reward scaling affect results and why is it used?

• How do random seeds affect the reported performance? Can results be
distorted by averaging an improper number of trials?

• How do the environment properties affect variability in performance?

• Are commonly used codebase implementations comparable?

It is a well-known fact that hyperparameter settings and network architec-
ture have significant effects on performance of any deep learning algorithm.
Henderson et al. further show that reward scaling can have a large impact,
and recommend a more principled approach, e.g. Pop-Art [79]. They also
demonstrate that the variance between trials with different random seeds is
enough to create statistically different performance distributions. Moreover,
algorithm performance can vary across environments and it is not clear which
is the universally best performing method. Most DRL papers present results
in the form of learning curves, as some function of the return. However,
without understanding what the returns actually indicate, these curves can
be misleading since the algorithm may converge to local optima without ever
reaching the desired goal. Consequently, the authors recommend the inclusion
of a qualitative analysis of the results. This is observed in Paper A, where
some reward definitions lead to suboptimal solutions. Finally, they find that
implementation differences between codebases of the same algorithm can have
drastic effects on performance, making it important to either use standard-
ized codebases, or make the new code public together with all hyperparameter
details [96]. In this work, the default DDPG implementation from the rlpyt
library [97] was used.

45

Chapter 3 Reinforcement Learning

3.6 RL Simulation Environments
Much like the ImageNet challenge for CV methods mentioned at the start of
this chapter, several simulation environments were created in order to com-
pare RL algorithms. To facilitate this comparison, OpenAI released the Gym
[98] toolkit for developing RL simulation environments following the same
formalism. This standardization makes testing RL algorithms in different ap-
plications much easier, as all tasks have the same Python interface. Notably,
the environments used for benchmarking DRL in continuous control tasks by
Duan et al. [89], were made available as part of Gym [98]. These included clas-
sic control problems from RL literature, as well as more complex locomotion
tasks. Though the agents in these environments can be viewed as simplified
robots, they do not actually correspond to any real-world hardware. It was
with the publication of HER [83] that environments including real robotic
systems like Fetch [99] and the Shadow Hand [100] were added to Gym.
Besides the tasks provided by OpenAI, many other third-party environ-

ments were created using the same standard. That is the case for the work
introduced in Paper B which presents ReForm, a robot learning sandbox for
DLO manipulation. Also included in the paper is an overview of environments
for robotic manipulation, although some related work was missed such as
robo-gym, which simulates multiple commercially available industrial robots
using Gazebo [101]. A particularly important omission in the context of de-
formable object manipulation is the concurrent work by Huang et al. [102]
which published the PlasticineLab environments after the final version dead-
line for Paper B. These, together with ReForm and SoftGym [38], consist of
the only RL benchmarking environments currently available which address
the challenges of DOM.
SoftGym, was released while the work on ReForm was underway. This li-

brary uses NVIDIA FleX as the physics engine, which can simulate soft objects
such as clothes and ropes, as well as liquids. However, elastoplasticity is not
available in any of the environments. Conversely, PlasticineLab does include
an elastoplastic material model implemented using Taichi [103]. Nevertheless,
all deformable objects in the provided environments behave like Plasticine.
That includes the DLO manipulation task, where a rope is modeled as a long
Plasticine piece. This is in contrast with the AGX Dynamics engine used for
ReForm, which supports DLO models with a range of material properties.

46

CHAPTER 4

Concluding Remarks

Part I provided an overview of the research context in which the contributed
papers of Part II are inserted. Chapter 1 started with a birds-eye view of
deformable object manipulation and robot learning. This was followed by a
more in-depth treatment of DLO manipulation in Chapter 2 and RL theory
in Chapter 3. Finally, this chapter provides a summary of the paper contribu-
tions, in Section 4.1. To conclude, future directions currently being considered
for the remainder of this graduate project are discussed in Section 4.2.
Before that, one might stop to reflect about how we approach DOM prob-

lems in our daily lives. Is trial-and-error learning such as RL, responsible for
all human dexterity? Or are many manipulation skills learned by imitation?
How are the goals for each task defined? When folding laundry, does the exact
position of each fold matter, or is the purpose to flatten clothes while reduc-
ing storage area? How many tasks would humans be able to solve if instead
of having compliant five-fingered hands, they had rigid two-fingered parallel
grippers? Would tying shoelaces be easy or even possible? Which tasks are
strictly dependent on vision or tactile feedback? These are a few of the many
questions that arise when attempting to navigate the field of DOM from a
robot learning perspective.

47

Chapter 4 Concluding Remarks

4.1 Contributions
The product of the work completed so far is summarized by the literature
study included in Part I and the acceptance of two papers to the 2021 In-
ternational Conference on Robotics and Automation (ICRA). The following
sections describe the contributions of each paper included in Part II.

4.1.1 Paper A
This paper introduces a new shape control task for DLOs with elastoplastic
properties. The goal is to deform a DLO into a desired shape, with the
added difficulty that a permanent deformation may occur. In such a case,
it becomes challenging to define a distance measure which uniquely guides
the manipulation objective. RL offers a data-driven approach to tackle this
problem without needing a model. However, it still requires a reward definition
that adequately describes the goal. The key contribution in this work, is the
proposal of a reward function based on a shape representation using discrete
curvature and torsion. DDPG is applied to solve the manipulation task, in
simulation experiments. Results show that to converge to the correct shape,
the reward must include the proposed shape representation.

4.1.2 Paper B
This paper presents ReForm, a novel robot learning sandbox for deformable
linear object manipulation. It is meant as a tool for testing and benchmarking
DLO manipulation strategies. It consists of six environments representing im-
portant characteristics of deformable objects, with material properties ranging
from pure elasticity to elastoplasticity. The sandbox also includes problems
such as self-collisions. ReForm is a modular framework which allows choice
of parameters such as end-effector DoFs, reward function and type of obser-
vation. Since vision data is supported, CV methods can also be tested, for
example to address self-occlusion in DLO tracking.

In conclusion, an RL algorithm has been applied to learn control policies
based on DNNs, for a set of deformable linear object manipulation tasks,
thus partially fulfilling the objectives described in Section 1.3. Though all
contributed work has been confined to simulation, force and vision data have
also been utilized in this virtual setting.

48

4.2 Future work

4.2 Future work
As mentioned in Chapter 1, there is a hardware bottleneck when it comes
to DOM. Therefore, soft manipulators are becoming commonplace for DOM
tasks since they can adapt to the shape of deformable objects without needing
dedicated software [104]. Tactile sensing, on the other hand is lagging con-
siderably behind, and is viewed as one of the most important areas requiring
further development, for DOM to succeed [2]. Nevertheless, there are several
active lines of research on sensing technologies, such as GelSight [42] and many
others [105]–[107]. Although hardware improvements have an important role
to play in DOM, the research goal defined in Section 1.3 shifted the focus to
software solutions. Based on observations made during the initial phase of
this graduate project, the aim of upcoming work will be twofold: i. transfer
policies learned in simulation to the real world and ii. attempt to reduce
sample inefficiency by exploring model-based methods.

4.2.1 Simulation-to-Reality
Now that a sandbox for DLO manipulation tasks is available and has been
tested with RL algorithms, the next challenge is transferring policies learned
in simulation to a real robot. Sim2Real is an active research topic, meriting
workshops at the Robotics: Science and Systems (RSS) conference both in
2019 and 2020 [108]. In RSS 2021, there was yet another workshop exclusively
dedicated to simulation of deformable objects. Nevertheless, simulation accu-
racy is still quite limited, resulting in a reality gap which must be overcome
by: closing the gap, through improved simulations and system identification;
or bridging the gap, through methods which make use of simulated data that
is not completely accurate.
Domain Randomization [109] is a simple approach for the latter, that con-

sists of training DNNs with data generated from a distribution of simulation
parameters, such as object shapes, rendering colors, etc. Similarly, Dynam-
ics Randomization [110] has been shown to improve generalization of policies
learned in simulation. However, such randomization methods significantly
slow down training of the RL agent. Bengio et al. [111] proposed Curricu-
lum Learning to to speed up training of DNNs by starting small, with simpler
tasks and slowly increasing difficulty [112]. This notion was extended to RL for
robotics in [113]. Future work will explore the effectiveness of such strategies.

49

Chapter 4 Concluding Remarks

4.2.2 Model-Based RL
The motivation to start with model-free RL was due to the modeling com-
plexity of deformable objects, discussed in Section 2.1. However, there are
many benefits to having a model and future work will include the exploration
of model-based methods. This may be through model learning algorithms,
briefly introduced in Section 1.2. Alternatively, RL algorithms which simulta-
neously learn a model of the environment dynamics and estimate value func-
tions can be employed. Wang et al. [69] provide a comprehensive benchmark
of model-based RL algorithms. However, biased models significantly limit the
effectiveness of RL, leading to policies that exploit the model-bias.
While this thesis has addressed learning-based control with a focus on RL,

there are many other promising approaches to solve DOM problems. For ex-
ample, techniques from adaptive [114] and robust control [115] can be applied.
Furthermore, Model Predictive Control (MPC) is an optimal strategy closely
related to DP which can be used when a model is available. While DP consists
of offline optimization methods to obtain an explicit closed-loop control policy,
MPC is an online method which iteratively solves for the optimal open-loop
trajectory over a finite time window, at each time step. Such model-based ap-
proaches can be combined with model-free methods to achieve better results,
as demonstrated in [116], where MPC was combined with TRPO. All these
methods are currently being considered as potential future directions.

50

References

[1] P. Heisler, P. Steinmetz, I. S. Yoo, and J. Franke, “Automatization of the
cable-routing-process within the automated production of wiring systems,”
in Energy Efficiency in Strategy of Sustainable Production III, ser. Applied
Mechanics and Materials, vol. 871, Trans Tech Publications Ltd, Nov. 2017,
pp. 186–192.

[2] J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi, D. Beren-
son, F. Ficuciello, K. Harada, X. Li, and J. Pan, “Challenges and out-
look in robotic manipulation of deformable objects,” arXiv preprint arXiv:
2105.01767, 2021.

[3] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic
manipulation and sensing of deformable objects in domestic and industrial
applications: A survey,” The International Journal of Robotics Research,
vol. 37, no. 7, pp. 688–716, 2018.

[4] J. Peters, R. Tedrake, N. Roy, and J. Morimoto, “Robot learning,” in En-
cyclopedia of Machine Learning, C. Sammut and G. I. Webb, Eds. Boston,
MA: Springer US, 2010, pp. 865–869, isbn: 978-0-387-30164-8.

[5] J. H. Connell and S. Mahadevan, “Introduction to robot learning,” in Robot
Learning, Springer, 1993, pp. 1–17.

[6] A. Doumanoglou, J. Stria, G. Peleka, I. Mariolis, V. Petrik, A. Kargakos,
L. Wagner, V. Hlaváč, T.-K. Kim, and S. Malassiotis, “Folding clothes au-
tonomously: A complete pipeline,” IEEE Transactions on Robotics, vol. 32,
no. 6, pp. 1461–1478, 2016.

51

References

[7] M. J. Thuy-Hong-Loan Le, A. Landini, M. Zoppi, D. Zlatanov, and R.
Molfino, “On the development of a specialized flexible gripper for garment
handling,” Journal of Automation and Control Engineering Vol, vol. 1, no. 3,
2013.

[8] Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. H. Adelson, “Ca-
ble manipulation with a tactile-reactive gripper,” in Robotics: Science and
Systems (RSS), 2020.

[9] S. Duenser, R. Poranne, B. Thomaszewski, and S. Coros, “Robocut: Hot-wire
cutting with robot-controlled flexible rods,” ACM Transactions on Graphics
(TOG), vol. 39, no. 4, pp. 98–1, 2020.

[10] T. Tang, C. Wang, and M. Tomizuka, “A framework for manipulating de-
formable linear objects by coherent point drift,” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 4, pp. 3426–3433, 2018.

[11] J. Grannen, P. Sundaresan, B. Thananjeyan, J. Ichnowski, A. Balakrishna,
M. Hwang, V. Viswanath, M. Laskey, J. E. Gonzalez, and K. Goldberg,
“Untangling dense knots by learning task-relevant keypoints,” in Conference
on Robot Learning (CoRL), 2020.

[12] T. Tang and M. Tomizuka, “Track deformable objects from point clouds
with structure preserved registration,” The International Journal of Robotics
Research, p. 0 278 364 919 841 431, 2018.

[13] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg, “Au-
tomating multi-throw multilateral surgical suturing with a mechanical needle
guide and sequential convex optimization,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2016, pp. 4178–4185.

[14] M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state
estimation for manipulating deformable linear objects,” IEEE Robotics and
Automation Letters, 2020.

[15] H. Wakamatsu and S. Hirai, “Static modeling of linear object deformation
based on differential geometry,” The International Journal of Robotics Re-
search, vol. 23, no. 3, pp. 293–311, 2004.

[16] D. Berenson, “Manipulation of deformable objects without modeling and
simulating deformation,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), IEEE, 2013, pp. 4525–4532.

[17] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,” arXiv
preprint arXiv:2003.05436, 2020.

52

References

[18] A. Zea, F. Faion, and U. D. Hanebeck, “Tracking elongated extended objects
using splines,” in 2016 19th International Conference on Information Fusion
(FUSION), IEEE, 2016, pp. 612–619.

[19] M. Wnuk, C. Hinze, A. Lechler, and A. Verl, “Kinematic multibody model
generation of deformable linear objects from point clouds,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE,
2020, pp. 9545–9552.

[20] V. E. Arriola-Rios, P. Guler, F. Ficuciello, D. Kragic, B. Siciliano, and J. L.
Wyatt, “Modeling of deformable objects for robotic manipulation: A tutorial
and review,” Frontiers in Robotics and AI, vol. 7, p. 82, 2020.

[21] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and con-
trol methods for deformable object manipulation,” Science Robotics, vol. 6,
no. 54, 2021.

[22] P. Sundaresan, J. Grannen, B. Thananjeyan, A. Balakrishna, M. Laskey,
K. Stone, J. E. Gonzalez, and K. Goldberg, “Learning rope manipulation
policies using dense object descriptors trained on synthetic depth data,” in
IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2020, pp. 9411–9418.

[23] A. C. Ugural and S. K. Fenster, Advanced mechanics of materials and applied
elasticity. Pearson Education, 2011.

[24] N. Lv, J. Liu, X. Ding, J. Liu, H. Lin, and J. Ma, “Physically based real-time
interactive assembly simulation of cable harness,” Journal of Manufacturing
Systems, vol. 43, pp. 385–399, 2017.

[25] V. Fontanari, M. Benedetti, and B. D. Monelli, “Elasto-plastic behavior of a
warrington-seale rope: Experimental analysis and finite element modeling,”
Engineering Structures, vol. 82, pp. 113–120, 2015.

[26] A. Remde and D. Henrich, “Direct and inverse simulation of deformable
linear objects,” in Robot manipulation of deformable objects, Springer, 2000,
pp. 43–70.

[27] H. Wakamatsu, K. Takahashi, and S. Hirai, “Dynamic modeling of linear
object deformation based on differential geometry coordinates,” in IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2005,
pp. 1028–1033.

[28] H. Wakamatsu, T. Yamasaki, A. Tsumaya, E. Arai, and S. Hirai, “Dynamic
modeling of linear object deformation considering contact with obstacles,”
in 2006 9th International Conference on Control, Automation, Robotics and
Vision, IEEE, 2006, pp. 1–6.

53

References

[29] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sendai, Japan, Sep. 2004, pp. 2149–2154.

[30] E. Rohmer, S. P. N. Singh, and M. Freese, “V-rep: A versatile and scal-
able robot simulation framework,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2013, pp. 1321–1326.

[31] E. Coumans and Y. Bai, Pybullet, a python module for physics simulation for
games, robotics and machine learning, http://pybullet.org, 2016–2020.

[32] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2012, pp. 5026–5033.

[33] E. Todorov, Mujoco: Modeling, simulation and visualization of multi-joint
dynamics with contact, Roboti Publishing, Seattle, USA, 2021 [Online Ac-
cess].

[34] E. Coumans, Bullet 2.38 physics sdk manual, Bullet Physics Library, 2021
[Online Access].

[35] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau, H.
Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and S. Cotin, “SOFA: A
Multi-Model Framework for Interactive Physical Simulation,” in Soft Tis-
sue Biomechanical Modeling for Computer Assisted Surgery, ser. Studies
in Mechanobiology, Tissue Engineering and Biomaterials, Y. Payan, Ed.,
vol. 11, Springer, Jun. 2012, pp. 283–321.

[36] C. Duriez, “Control of elastic soft robots based on real-time finite element
method,” in IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2013, pp. 3982–3987.

[37] Algoryx, Agx dynamics user manual, Umeå, Sweden, 2021 [Online Access].

[38] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep
reinforcement learning for deformable object manipulation,” in Conference
on Robot Learning (CoRL), 2020.

[39] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y.
Yuan, H. Wang, et al., “Sapien: A simulated part-based interactive environ-
ment,” in IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020, pp. 11 097–11 107.

54

http://pybullet.org

References

[40] C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf, J. Traer, J. D. Fre-
itas, J. Kubilius, A. Bhandwaldar, N. Haber, M. Sano, K. Kim, E. Wang, M.
Lingelbach, A. Curtis, K. T. Feigelis, D. Bear, D. Gutfreund, D. D. Cox, A.
Torralba, J. J. DiCarlo, J. B. Tenenbaum, J. Mcdermott, and D. L. Yamins,
“ThreeDWorld: A platform for interactive multi-modal physical simulation,”
2021.

[41] M. Gazzola, L. Dudte, A. McCormick, and L. Mahadevan, “Forward and
inverse problems in the mechanics of soft filaments,” Royal Society open
science, vol. 5, no. 6, p. 171 628, 2018.

[42] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tac-
tile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12,
p. 2762, 2017.

[43] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement learn-
ing for deformable object manipulation,” in Conference on Robot Learning
(CoRL), 2018, pp. 734–743.

[44] A. X. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel, “Learning force-based
manipulation of deformable objects from multiple demonstrations,” in IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2015,
pp. 177–184.

[45] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in dexter-
ous robot hands,” Robotics and Autonomous Systems, vol. 74, pp. 195–220,
2015.

[46] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker,
“Human-inspired robotic grasp control with tactile sensing,” IEEE Transac-
tions on Robotics, vol. 27, no. 6, pp. 1067–1079, 2011.

[47] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,
planning and control. Springer Science & Business Media, 2010.

[48] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic pro-
gramming:: Fast online humanoid-robot motion generation,” The Interna-
tional Journal of Robotics Research, vol. 33, no. 7, pp. 1006–1028, 2014.

[49] M. Yu, H. Zhong, F. Zhong, and X. Li, “Adaptive control for robotic ma-
nipulation of deformable linear objects with offline and online learning of
unknown models,” arXiv preprint arXiv:2107.00194, 2021.

[50] J. Zhu, B. Navarro, P. Fraisse, A. Crosnier, and A. Cherubini, “Dual-arm
robotic manipulation of flexible cables,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 479–484.

55

References

[51] R. Lagneau, A. Krupa, and M. Marchal, “Automatic shape control of de-
formable wires based on model-free visual servoing,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 5252–5259, 2020.

[52] M. Ruan, D. Mc Conachie, and D. Berenson, “Accounting for directional
rigidity and constraints in control for manipulation of deformable objects
without physical simulation,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), IEEE, 2018, pp. 512–519.

[53] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,
“Mastering the game of go with deep neural networks and tree search,” Na-
ture, vol. 529, no. 7587, pp. 484–489, 2016.

[54] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play,” Sci-
ence, vol. 362, no. 6419, pp. 1140–1144, 2018.

[55] G. Tesauro, “Td-gammon, a self-teaching backgammon program, achieves
master-level play,” Neural computation, vol. 6, no. 2, pp. 215–219, 1994.

[56] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[57] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J.
Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmas-
ter level in starcraft ii using multi-agent reinforcement learning,” Nature,
vol. 575, no. 7782, pp. 350–354, 2019.

[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information pro-
cessing systems, vol. 25, pp. 1097–1105, 2012.

[59] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data
collection,” The International Journal of Robotics Research, vol. 37, no. 4-5,
pp. 421–436, 2018.

[60] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1274, 2013.

[61] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to Ma-
nipulate Deformable Objects without Demonstrations,” in Robotics: Science
and Systems (RSS), Corvalis, Oregon, USA, Jul. 2020.

56

References

[62] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M. Agogino, “Deep reinforce-
ment learning for robotic assembly of mixed deformable and rigid objects,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2018, pp. 2062–2069.

[63] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T.
Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards,” arXiv
preprint arXiv:1707.08817, 2017.

[64] B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and K. Goldberg,
“Multilateral surgical pattern cutting in 2d orthotropic gauze with deep rein-
forcement learning policies for tensioning,” in IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2017, pp. 2371–2378.

[65] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lectures on
artificial intelligence and machine learning, vol. 4, no. 1, pp. 1–103, 2010.

[66] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[67] D. Bertsekas, Reinforcement and Optimal Control. Athena Scientific, 2019.

[68] K. Doya, “Reinforcement learning in continuous time and space,” Neural
computation, vol. 12, no. 1, pp. 219–245, 2000.

[69] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang,
G. Zhang, P. Abbeel, and J. Ba, “Benchmarking model-based reinforcement
learning,” arXiv preprint arXiv:1907.02057, 2019.

[70] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[71] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE,
2006, pp. 2219–2225.

[72] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in ICML, 2014.

[73] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine learning, vol. 8, no. 3, pp. 229–256,
1992.

[74] F. Rosenblatt, “The perceptron: A probabilistic model for information stor-
age and organization in the brain.,” Psychological review, vol. 65, no. 6,
p. 386, 1958.

57

References

[75] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[76] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[77] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference
on Machine Learning (ICML), PMLR, 2015, pp. 448–456.

[78] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[79] H. van Hasselt, A. Guez, M. Hessel, V. Mnih, and D. Silver, “Learning values
across many orders of magnitude,” Advances in Neural Information Process-
ing Systems, vol. 29, pp. 4287–4295, 2016.

[80] H. van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and J. Mo-
dayil, “Deep reinforcement learning and the deadly triad,” arXiv preprint
arXiv:1812.02648, 2018.

[81] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[82] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[83] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience
replay,” in 31st International Conference on Neural Information Processing
Systems (NIPS), 2017, pp. 5055–5065.

[84] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[85] S. Parisi, V. Tangkaratt, J. Peters, and M. E. Khan, “Td-regularized actor-
critic methods,” Machine Learning, vol. 108, no. 8, pp. 1467–1501, 2019.

[86] K. W. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic policy gra-
dient,” in International Conference on Machine Learning (ICML), PMLR,
2021, pp. 2020–2027.

58

References

[87] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D.
Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement
learning,” in International Conference on Machine Learning (ICML), PMLR,
2016, pp. 1928–1937.

[88] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,
V. Firoiu, T. Harley, I. Dunning, et al., “Impala: Scalable distributed deep-
rl with importance weighted actor-learner architectures,” in International
Conference on Machine Learning (ICML), PMLR, 2018, pp. 1407–1416.

[89] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in International
Conference on Machine Learning (ICML), PMLR, 2016, pp. 1329–1338.

[90] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation er-
ror in actor-critic methods,” in International Conference on Machine Learn-
ing (ICML), PMLR, 2018, pp. 1587–1596.

[91] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,” arXiv
preprint arXiv:1611.01224, 2016.

[92] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust re-
gion policy optimization,” in International Conference on Machine Learning
(ICML), PMLR, 2015, pp. 1889–1897.

[93] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[94] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable trust-region
method for deep reinforcement learning using kronecker-factored approxima-
tion,” Advances in neural information processing systems, vol. 30, pp. 5279–
5288, 2017.

[95] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,”
in International Conference on Machine Learning (ICML), PMLR, 2018,
pp. 1861–1870.

[96] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[97] A. Stooke and P. Abbeel, “Rlpyt: A research code base for deep reinforcement
learning in pytorch,” arXiv preprint arXiv:1909.01500, 2019.

[98] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

59

References

[99] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch and
freight: Standard platforms for service robot applications,” in Workshop on
autonomous mobile service robots, 2016.

[100] S. Robotics, “Shadow dexterous hand technical specifications,” Shadow Robot
Company, London. www.shadowrobot.com, 2013.

[101] M. Lucchi, F. Zindler, S. Mühlbacher-Karrer, and H. Pichler, “Robo-gym–
an open source toolkit for distributed deep reinforcement learning on real
and simulated robots,” IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020.

[102] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and C. Gan, “Plas-
ticinelab: A soft-body manipulation benchmark with differentiable physics,”
in International Conference on Learning Representations (ICLR), 2021.

[103] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi: A
language for high-performance computation on spatially sparse data struc-
tures,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–16, 2019.

[104] W. Wang, Y. Tang, and C. Li, “Controlling bending deformation of a shape
memory alloy-based soft planar gripper to grip deformable objects,” Inter-
national Journal of Mechanical Sciences, vol. 193, p. 106 181, 2021.

[105] G. H. Büscher, R. Koiva, C. Schürmann, R. Haschke, and H. J. Ritter, “Flex-
ible and stretchable fabric-based tactile sensor,” Robotics and Autonomous
Systems, vol. 63, pp. 244–252, 2015.

[106] G. Cheng, E. Dean-Leon, F. Bergner, J. R. G. Olvera, Q. Leboutet, and
P. Mittendorfer, “A comprehensive realization of robot skin: Sensors, sens-
ing, control, and applications,” Proceedings of the IEEE, vol. 107, no. 10,
pp. 2034–2051, 2019.

[107] H. Lee, K. Park, J. Kim, and K. J. Kuchenbecker, “Internal array electrodes
improve the spatial resolution of soft tactile sensors based on electrical resis-
tance tomography,” in 2019 International Conference on Robotics and Au-
tomation (ICRA), IEEE, 2019, pp. 5411–5417.

[108] S. Höfer, K. Bekris, A. Handa, J. C. Gamboa, F. Golemo, M. Mozifian, C.
Atkeson, D. Fox, K. Goldberg, J. Leonard, et al., “Perspectives on sim2real
transfer for robotics: A summary of the rss 2020 workshop,” arXiv preprint
arXiv:2012.03806, 2020.

[109] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Do-
main randomization for transferring deep neural networks from simulation
to the real world,” in 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), IEEE, 2017, pp. 23–30.

60

References

[110] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in 2018 IEEE
international conference on robotics and automation (ICRA), IEEE, 2018,
pp. 3803–3810.

[111] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learn-
ing,” in International Conference on Machine Learning (ICML), PMLR,
2009, pp. 41–48.

[112] J. L. Elman, “Learning and development in neural networks: The importance
of starting small,” Cognition, vol. 48, no. 1, pp. 71–99, 1993.

[113] L. Hermann, M. Argus, A. Eitel, A. Amiranashvili, W. Burgard, and T.
Brox, “Adaptive curriculum generation from demonstrations for sim-to-real
visuomotor control,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2020, pp. 6498–6505.

[114] J. Qi, W. Ma, D. Navarro-Alarcon, H. Gao, and G. Ma, “Adaptive shape
servoing of elastic rods using parameterized regression features and auto-
tuning motion controls,” arXiv preprint arXiv:2008.06896, 2020.

[115] S. Hirai, T. Tsuboi, and T. Wada, “Robust grasping manipulation of de-
formable objects,” in Proceedings of the 2001 IEEE International Symposium
on Assembly and Task Planning (ISATP2001). Assembly and Disassembly in
the Twenty-first Century.(Cat. No. 01TH8560), IEEE, 2001, pp. 411–416.

[116] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-
tuning,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2018, pp. 7559–7566.

61

Part II

Papers

63

PAPERA
Learning Shape Control of Elastoplastic Deformable Linear

Objects

Rita Laezza, Yiannis Karayiannidis

Published in International Conference on Robotics and Automation (ICRA),
© 2021 IEEE DOI: 110.1109/ICRA48506.2021.9561984

The layout has been revised.

1 Introduction

Abstract

Deformable object manipulation tasks have long been regarded
as challenging robotic problems. However, until recently very
little work has been done on the subject, with most robotic
manipulation methods being developed for rigid objects. De-
formable objects are more difficult to model and simulate,
which has limited the use of model-free Reinforcement Learn-
ing (RL) strategies, due to their need for large amounts of
data that can only be satisfied in simulation. This paper pro-
poses a new shape control task for Deformable Linear Objects
(DLOs). More notably, we present the first study on the ef-
fects of elastoplastic properties on this type of problem. Ob-
jects with elastoplasticity such as metal wires, are found in
various applications and are challenging to manipulate due to
their nonlinear behavior. We first highlight the challenges of
solving such a manipulation task from an RL perspective, par-
ticularly in defining the reward. Then, based on concepts from
differential geometry, we propose an intrinsic shape represen-
tation using discrete curvature and torsion. Finally, we show
through an empirical study that in order to successfully solve
the proposed task using Deep Deterministic Policy Gradient
(DDPG), the reward needs to include intrinsic information
about the shape of the DLO.

1 Introduction
In recent years, there has been a growing interest in deformable object grasping
and manipulation problems by the robotics community [1], [2]. This is due in
part to their widespread across diverse applications as well as their increased
complexity, when compared to rigid object tasks. These problems have been
shown to be difficult to solve with classical approaches [1]. Consequently,
learning-based methods are being explored as a more powerful alternative [2].
Intuitively, if a robot is to reach human-level dexterity, there may be a need for
human-inspired learning. Reinforcement Learning is a particularly promising
family of methods which seeks to make robots capable of learning through

A3

Paper A

Figure 1: Simulation of DLO with plastic properties. By bending the object first
inwards and then outwards, when returning the gripper to the same
position at t2 and t4, the shape of the DLO is different due to (permanent)
plastic deformation. This motion is executed along a single DoF.

experience [3]. RL has been proven successful in solving complex games, such
as Go [4], as well as robotic control tasks, such as pick and place [5].
Contrary to grasping and manipulation of rigid objects, which have been

extensively addressed in the robotics literature, non-rigid objects have been
largely overlooked [1]. Though some of the same methods can be extended to
particular types of deformable objects, there are still many problems left un-
solved [1]. Most notably, while manipulation of rigid objects focuses mainly on
controlling their pose, when manipulating deformable objects it is often their
shape which needs to be controlled [2]. Furthermore, dealing with materials
which are highly deformable or with elastoplastic properties, makes modeling
and sensing of these objects a difficult challenge. In addition, most work on
deformable object manipulation has focused on specialized tasks, from ap-
plications like robotic surgery, food processing and fabric manufacturing [1].
While this is a practical choice to solve real-life problems, the solutions are
often not general [6]. With this work we propose a strategy for explicit shape
control of elastic and/or plastic objects, which could potentially be applied to
a large range of problems.

A4

1 Introduction

According to classification criteria suggested by Sanchez et al. [1], de-
formable objects can be categorized based on their mechanical properties, i.e.
low or high compression strength and their geometric properties, i.e. linear,
planar or solid shapes. In this work we focus on Deformable Linear Objects
with elastoplastic properties. Objects that fit into this category include metal
wires, rods and cables, found across multiple applications including medical,
industrial, and household services. DLOs are an appealing choice for their
relative geometric simplicity, making them more efficient to simulate but still
complex to manipulate. Within this class, we found that the manipulation
of objects with elastoplastic properties is yet to be studied, with most of the
literature focusing on purely elastic DLOs or low compression strength DLOs
such as ropes, which exhibit plastic behavior [1]. The reason elastoplastic
materials make for a particularly difficult class of objects is due to their non-
linear behavior, starting as purely elastic up to a yield point, after which
transitioning to a plastic domain. This is illustrated with an example of DLO
manipulation in Figure 1, where plastic deformation occurs after the initial
elastic deformation, leading to potentially irreversible changes. A practical
application of elastoplastic wires can be found in the production of orthodon-
tic braces. Our work opens up the potential for RL-based automation of the
shaping process, since this is still done manually to a large extent [7].

To address the problem of robotic manipulation of elastoplastic DLOs, we
are interested on the ability to learn velocity control policies in a model-free
fashion. To that end, we have implemented a simulation environment with a
new shape control problem. The control policy is learned in task space and
controlled by a Cartesian gripper with varying Degrees of Freedom (DoFs).
The gripper grasps the object either with a fixed grasp or a flexible pinch,
allowing rotation around one axis (i.e. hinge constraint). Since we aim to
learn continuous actions, a policy gradient method is used, namely DDPG [8].

As our main contribution, we present a detailed evaluation of the proposed
shape control problem from a Reinforcement Learning perspective. We begin
by presenting the challenges of designing a reward signal. We propose shape
representations using concepts from discrete differential geometry, namely cur-
vature and torsion. Based on these, we evaluate three dense reward functions
in a rigorous empirical study. Further, the impact of parameters such as me-
chanical properties of the DLO, number of controlled DoFs and type of grasp
is also studied.

A5

Paper A

2 Related Work

To date, ropes or rope-like objects are the most researched group of DLOs in
robotic manipulation. Common problems involving ropes include knot tying,
untangling, threading and reaching goal-configurations on a flat surface [1].
While all of these present interesting challenges, only the latter represents an
explicit shape control problem. For the others, what matters is not the
final geometric deformation, but the configuration of the DLO, relative to
itself, or other objects. Within these implicit shape control problems, the
work by Berenson [9], recently extended in [10], proposes promising methods
which preclude the use of physical simulation.
Deformable objects simulation is still an active research topic. A great

part of advances in the field come from the computer graphics community,
such as Pai [11], that used a Cosserat formulation to develop fast simulation
algorithms. There have also been efforts to model DLOs with the intent to
solve deformation tasks, more notably by Wakamatsu et al. [12], where a
method based on differential geometry was used for motion planning. Other
common DLO modeling approaches include Finite Element Methods (FEM)
and Mass-Spring-Damper (MSD) systems [1].
Sensing and state estimation of non-rigid objects also presents a challenge

which is often tackled separately [13], [14]. However, recent work on robotic
shape control of DLOs combines different vision-based state estimation meth-
ods with control strategies. Yan et al. [15] used self-supervised learning to
estimate the state of a rope resting on a tabletop, controlled by a single-arm.
The manipulation was done by successive grasping and planning, after each
state estimation step. Zhu et al. [6] used Fourier series to model the DLO
shape and successfully deformed flexible cables into desired shapes, using a ve-
locity controlled dual-armed robot. There have also been different approaches
for state representations of a DLO’s shape, including node-graphs, Frenet co-
ordinate frames and Kirchoff elastic rods [1], [12], [16]. More recently, using
deep learning techniques has opened up the possibility to learn directly from
the high-dimensional raw image data [17]. This can be used in end-to-end
strategies, where robot joint velocities are obtained directly from pixels.
We conclude this section by highlighting works which applied RL for de-

formable object manipulation tasks. Clomé et al. [18] first implemented a
policy improvement strategy with path integrals to manipulate a scarf around
a mannequin’s neck. More recently, RL was used in robot-assisted endovas-

A6

3 Background

cular catheterization [19]. Both of these works employ Dynamic Movement
Primitives (DMPs) and Learning from Demonstration (LfD). Matas et al. [17]
produced promising results in cloth-manipulation using a state-of-the-art RL
algorithm. Their work was formulated both in an end-to-end manner and
for sim-to-real transfer. They used a variation of Deep Deterministic Policy
Gradient, named DDPG from Demonstrations (DDPGfD) which seeds the
learning with expert demonstrations. Conversely, Wu et al. [20] proposed
to solve pick-and-place tasks of deformable objects completely from scratch.
In contrast with our work, [17], [18] and [19] covered implicit shape control
problems, while [20] did not address permanent deformation.

3 Background
Before presenting the proposed shape control problem, we introduce the nec-
essary technical background on RL in 3.1 and DLO simulation in 3.2.

3.1 Reinforcement Learning
In RL, control problems are framed as Markov Decision Processes. We con-
sider an infinite-horizon discounted MDP, defined as a tuple (S,A, p, r, γ),
where γ is the discount factor and S and A are continuous state and ac-
tion spaces, respectively. For most real-life problems this MDP is unknown
since the probability density function p(st+1|st, at), depends on an environ-
ment which is difficult to model. This function represents the probability
of transitioning to state st+1, given the current state st and action at, with
st, st+1 ∈ S and at ∈ A. Further, in practical applications, the reward func-
tion r : S × A → R, is defined based on the desired task, taking the environ-
ment into consideration. The reward at each transition, rt, is assumed to be
a bounded scalar [21]. To provide a measure of success, the return at time t
is defined as the sum of discounted future rewards:

Gt =
∞∑
k=t

γk−tr(sk, ak) (A.1)

In policy gradient methods the objective is to find an optimal stochastic
policy, πϑ : S → P(A), which maps states to action probabilities. The optimal
parameterized policy maximizes the expected return, i.e. J(π) = E[G0|π]. For

A7

Paper A

a specific state st and action at, the expected return is defined as the action-
value function Qπ:

Qπ(st, at) = Erk,sk∼ρπ,ak∼π[Gt|st, at] (A.2)

with k ≥ t and ρπ the state distribution under policy π.
As the name indicates, DDPG learns a deterministic policy µϑ : S → A, in-

stead of a stochastic one. This algorithm is considered an actor-critic method,
because the policy (actor) parameters are updated based on an estimated
value function (critic) [8]. Both actor and critic are modeled as Deep Neural
Networks (DNNs). Parameters ϑ ∈ Rn, are updated via stochastic gradi-
ent ascent, to maximize the Qϕ value, with ϕ ∈ Rm. The policy update is
calculated based on the current estimate of the Q value:

∇ϑJ(µϑ) ≈ Est∼ρµ [∇ϑµϑ(s)∇aQµ(s, a)|s=st,a=µϑ(st)] (A.3)

Parameters of the Qϕ network are updated according to the Bellman equation,
by minimizing the loss L(ϕ):

L(ϕ) = Est∼ρµ,at∼µ,rt
[
(Qϕ(st, at)− yt)2] (A.4)

yt = r(st, at) + γQϕ(st+1, µ(st+1))

To ensure sufficient exploration while experience is being sampled, noise
is added to the actor policy β(st) = µϑ(st) + N , effectively making this an
off-policy method. Practically, this means that the states in equations (A.3)
and (A.4) are sampled from ρβ instead of ρµ. Moreover, experience sam-
pled by following the exploration policy β is stored in a replay buffer, as
tuples (st, at, rt, st+1). Actor and critic networks are updated by uniformly
sampling mini-batches from the replay buffer, which helps mitigate problems
such as learning from temporally correlated data (environment steps are not
i.i.d.) and catastrophic forgetting [8]. The replay ratio defines the num-
ber of gradient updates per environment step (i.e. how much experience is
trained on before being discarded). To increase stability, two sets of net-
works are kept so that actor and critic updates are done with respect to
slow-changing target networks, with parameters ϑ′ and ϕ′. To that end, soft
updates ϕ′ ← λϕ + (1 − λ)ϕ′ and ϑ′ ← λϑ + (1 − λ)ϑ′ are used for each
parameterized function, with λ << 1.

A8

3 Background

3.2 DLO Simulation
Although our aim is to implement robot learning in real-life experiments, it
can be intractable to train RL algorithms directly in a real robot, since they
require a lot of sampled experience. This is especially true when learning from
scratch and using model-free methods, such as DDPG, which are notoriously
sample inefficient [21]. It is therefore common-practice to tackle problems
first in simulation, and later apply sim-to-real transfer. With this in mind,
we have implemented a virtual environment, to evaluate the potential of these
methods for deformable object manipulation.
When choosing a physics engine, there are many factors to consider, such

as accuracy, speed and development time. One requirement added by our par-
ticular application is the need for deformable object simulation capabilities.
The robotics and classical control environments available in Gym [22] were
implemented using MuJoCo (Multi-Joint dynamics with Contact) [23], which
seems to be the predominant choice in the Reinforcement Learning commu-
nity. It offers support for three types of soft bodies, namely rope, cloth and
sponge-like 3D objects. Bullet is the preferred open source alternative, which
is supported both by Gazebo and V-REP [24]. It provides limited function-
alities, although it was used for cloth simulation in [17]. SOFA (Simulation
Open Framework Architecture) [25] on the other hand is a framework targeted
at interactive computational medical simulation, with good support for soft
tissues. Nevertheless, we found that for DLO simulations, AGX Dynamics
provides the best set of tools.

AGX Dynamics also offers real-time rendering and a Cable class which
consists of a lumped element model with support for elastoplastic deforma-
tions [26], [27]. Further, it provides the possibility to define the object’s
Material with physically motivated mechanical properties such as Poisson’s
ratio, Young’s modulus and the yield point, where there is the transition be-
tween elastic and plastic deformation, as illustrated in Figure 2. On the other
hand, purely elastic DLOs exhibit linear behavior which makes robotic shape
control tasks significantly simpler.

A9

Paper A

Figure 2: Illustration of typical stress-strain curve of material with elastic and plas-
tic properties. Blue region consists of the (linear) elastic domain, while
the red region consists of the (nonlinear) plastic domain.

4 Problem Statement

We propose a shape control problem of an elastoplastic DLO, with two grip-
pers holding it in free space (without obstacles), as shown in Figure 1. The
goal is to deform the DLO into a desired shape from an undeformed starting
state. For simplicity, one of the grippers is static (red) while the other is able
to move (blue). The control input is the linear velocity of a Cartesian gripper
along each controlled DoF. This can be seen as task space velocity-resolved
control of a robotic arm. We consider different number of controlled DoFs,
which affects the size of both the state and action spaces. A perfect grip with-
out translational slippage is assumed, with two modalities: hinge or lock. The
former passively allows rotation about one axis of the gripping point, while
the latter is completely fixed, leading to more pronounced deformations.
In order to successfully apply RL to any application, a reward signal must

be designed such that it encodes the actual goal, without inadvertently lead-
ing to high rewards in non-goal states [28]. For the proposed shape control
problem, the goal can be described as a perfect overlap between the state of

A10

4 Problem Statement

0 1 2 3 4 5

x (cm)

4

3

2

1

z
(c

m
)

d e s ir e d

0 .0 1

0 .0 0 1

0 .0 0 0 1

0 1 2 3 4 5

x (cm)

4

3

2

1

z
(c

m
)

d e s ir e d

0 .0 1

0 .0 0 1

0 .0 0 0 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Environment Steps (10
6
)

1000

750

500

250

0

250

500

750

A
ve

ra
ge

 R
et

ur
n

0.01

0.001

0.0001

(a) Elastic DLO

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Environment Steps (10
6
)

1000

990

980

970

960

950

A
ve

ra
ge

 R
et

ur
n

0.01

0.001

0.0001

(b) Elastoplastic DLO

Figure 3: Learning was possible for the purely elastic DLO but failed for the elasto-
plastic case, as shown on the top row with the final shapes obtained for
5 trials with different success thresholds. Bottom row shows the average
return during training, highlighting the effect of threshold selection, with
complete failure of learning for higher accuracies. Three threshold values
were tested and shaded area shows standard deviation.

the achieved and the desired DLO. This is a challenging task compared to
rigid body problems, where the state of an object can be summarized by its
pose in R6. On the other hand, a perfect match for a DLO requires a state
representation at least in R3N , where N is the number of discrete points used
to describe the DLO’s shape as a point cloud. If we consider a sparse reward
where a positive scalar is attributed only when the goal is reached, this can
be problematic due to two main reasons:
i. When is the shape reached? This requires some distance measure which

is intimately related with the deformable linear object’s shape representation.

A11

Paper A

The simplest choice is to take the Euclidean distance between discrete points
of the desired and achieved deformations. However, this also requires a choice
of success threshold, which affects both the learning process and the accuracy
of the achieved shape.
ii. With an increased state space, exploration becomes more challenging,

particularly with sparse rewards. Indeed, this may result in what is called
the plateau problem, in which the agent never experiences a positive reward
during training, leading to failure to learn [28]. Note that the more complex
the shape, or the greater accuracy is desired, the larger N � 6 must be,
resulting in a larger state space.
To demonstrate these challenges we consider the proposed shape control

problem, with 1 DoF control. A DDPG agent is trained with a reward of
1 attributed only when the Euclidean distance between the desired and the
achieved shape is within a given threshold; otherwise, the agent receives a
reward of −1 at every step, encouraging the agent to reach the goal as fast
as possible. Positive rewards are therefore sparse. Figure 3 (a) shows the
results for an elastic DLO where the 0.001 threshold leads to good results
but the larger threshold leads to inaccurate shapes and the lower one hinders
learning. Figure 3 (b) shows that for the elastoplastic DLO, even with the
highest threshold i.e. lowest accuracy, the agent was unable to learn, with all
trials leading to wrong shapes.

5 Shape Representation
Sensing of deformable objects is a challenging research topic. In Section 2,
we list some of the state estimation methods that have been used to track
the shape of DLOs. However, here we do not focus on estimation, but rather
on the choice of shape representation. Given that we work in simulation, the
state of the DLO in Euclidean space can be easily summarized as a point
cloud with the coordinates of the lumped elements making up the object. We
leave the task of extracting this point cloud from vision data as future work.
From this simple representation we present useful concepts from differential
geometry that can better describe the intrinsic shape of a DLO.
If we consider the point could of a DLO to be a discrete curve c : N → R3

with N ≥ 4 points, it is possible to find a shape representation based on
the notions of curvature and torsion. As shown in Figure 4, the discrete

A12

5 Shape Representation

Figure 4: Discrete curve described by points c(i), tangent vectors TTT i, binormal
vectors BBBi and angles θi, φi. Two osculating circles are illustrated to
show the inverse relationship between radius Ri and curvature κi.

curvature κi can be described through the circumscribed osculating circle. For
three consecutive (noncollinear) points, there is a unique circle circumscribing
them, with radius Ri > 0. Curvature is defined as κi = 1/Ri, and for discrete
curves it can be approximated as:

κi = 2
l

tan θi2 ≈
θi
l
, with θi ∈

[
−π2 ,

π

2

]
(A.5)

where l is the segment length, and θi is the angle between tangent vectors of
two consecutive segments. For collinear points the curvature is zero. Further
the discrete torsion can be approximated as,

τi = 2
l

tan φi2 ≈
φi
l
, with φi ∈

[
−π2 ,

π

2

]
(A.6)

where φi is the angle between two consecutive binormal vectors. It is assumed
that all segments have equal length [29]. To obtain the exterior angles, for
each pair of adjacent points the tangent vector needs to be computed:

TTT i = c(i+ 1)− c(i)
l

, i = 0, . . . , N − 1 (A.7)

Then, for each pair of consecutive tangent vectors, the curvature angle can be

A13

Paper A

obtained,

θi = arccos
(

TTT i × TTT i+1

||TTT i|| · ||TTT i+1||

)
, i = 0, . . . , N − 2 (A.8)

which is enough to approximate the discrete curvature κi, as in equation (A.5).
For the torsion, it is further necessary to compute the binormal vectors, which
are orthogonal to the plane defined by the tangent and normal vectors. This
can also be computed based on the plane characterized by two consecutive
tangent vectors:

BBBi = TTT i × TTT i+1, i = 0, . . . , N − 2 (A.9)

Finally, the torsion angle can be computed as,

φi = arccos
(

BBBi ×BBBi+1

||BBBi|| · ||BBBi+1||

)
, i = 0, . . . , N − 3 (A.10)

Based on the definitions presented in this section we move on to Section 6
where we formulate different MDP state and reward definitions which can be
used to solve the proposed shape control problem.

6 RL Formulation
We define the action space A, such that a ∈ [−1, 1] and its dimensionality
depends on the number of controlled degrees of freedom. Outputs from the
policy DNN are then rescaled into viable velocity commands. The state s
includes the position and velocity of the end-effector, denoted by pppee, vvvee ∈ R3

respectively. Further, depending on the reward definition r(s), the achieved
curve ccc = [c(i), . . . , c(N)], the achieved curvature κκκ = [κi, . . . , κN−2] and/or
torsion τττ = [τi, . . . , τN−4] may also be included in the state definition.
As mentioned in Section 4, the simplest distance measure is the Euclidean

distance L(ccc) between the achieved curve ccc and the desired curve c̄cc. This leads
to our first reward function:

rt(ccct) = −Lt(ccct) = −||ccct − c̄cc||2 (A.11)

For planar deformations, an alternative reward function can be defined based
on the desired curvature κ̄κκ:

rt(κκκt) = −Lt(κκκt) = −||κκκt − κ̄κκ||2 (A.12)

A14

7 Experimental Results

This reward can also be extended with the distance between the achieved τττ and
desired τ̄ττ torsion, for 3D deformations. Finally, we formulate a weighted re-
ward function which combines the rewards from equations (A.11) and (A.12):

rt(ccct,κκκt) = −(1− α)Lt(ccct)− αLt(κκκt) (A.13)

with α ∈ [0, 1]. We denote variables dependent on the current environment
step with subscript t.

In Section 7 we evaluate the performance of the proposed dense reward
functions. To that end, we concatenate the shape representations used in
the reward i.e. ccct, κκκt and/or τττ t, with pppee and vvvee in a one-dimensional state
vector.

7 Experimental Results
To generate the goal shapes, a 5th order polynomial trajectory is used such
that plastic deformation occurs, when simulating an elastoplastic DLO. The
same trajectory leads to different shapes depending on the type of grip and
material properties of the object. The gripping points on the DLO are simu-
lated as being attached on each extremity to a rigid object, by either a Hinge
or a Lock constraint. We further use three Prismatic constraints, to simulate
a Cartesian gripper. The deformable linear object is modeled as an Aluminum
cable, which is 10cm long and has a radius of 1mm. The resolution of Cable
is set to 1000 segments per meter, while its Young’s Modulus is set to 69MPa
and its Poisson’s ratio to 0.35. For the elastoplastic behavior, a yield point
of 50MPa is defined in the bend direction of the DLO. Furthermore, the grip-
per is constrained by limiting its force range. The simulation time-step is
set to 0.01s, while actions are applied every second step leading to a control
frequency of 50 Hz.
In this work we evaluate the proposed shape control problem and the chal-

lenges of reward signal design using DDPG. For our experiments, the open
source rlpyt [30] codebase is used. The actor and critic DNNs have the same
architecture, namely two hidden layers with [400, 200] neurons. The Adam
optimization algorithm is used for gradient updates with learning rates of
1 × 10−4 and 1 × 10−3 for actor and critic, respectively. A batch size is set
to 1024, sampled uniformly from the replay buffer with 5 × 105 tuples, and

A15

Paper A

(a) Hinge (b) Lock

Figure 5: Results of ten trained policies to reach a desired shape with a purely
elastic DLO. The same 1 DoF trajectory was implemented to generate
both goals, although in (a) a hinge grip was used allowing for a planar
deformation while in (b) the grip was fixed, leading to a 3D deformation.

replay ratio of 64. Other important hyperparameters include the discount
factor, γ = 0.99 and soft update rate, λ = 0.01.
For each algorithm, 10 trials are performed and the results averaged. For

each trial, 20 parallel agents were used to gather experience, each with a
different random seed. We present the final shapes obtained for each trial,
trained with 1 million environment samples. Note however that this fixed from
the start and in simpler tasks the algorithm converged earlier. Conversely, for
the higher dimensional tasks training may have been insufficient.
To highlight the challenge of elastoplasticity, we first evaluate the perfor-

mance of DDPG for the same shape control problem applied to a purely elastic
DLO. Results are shown in Figure 5. In this case the agent is able to easily
learn the control policy, using reward (A.11).
Table 1 summarizes the results obtained with different reward functions, for

an elastoplastic DLO. The Euclidean distance LT (cccT) was measured for each
shape achieved after executing the learned control policies, with T denoting
the final time step. Reward (A.11) resulted in the best average distance
however, as seen in Figure 6 (top row), the learned policies do not reach
the desired shapes with permanent deformation. Instead the DDPG agent
gets stuck in a local reward maximum, where the gripper is in the correct
position, but the DLO has an incorrect shape. On the other hand, using

A16

7 Experimental Results

Table 1: Results for each reward proposed in 6, showing the final distance, LT (cccT).
Mean, standard deviation and best results are listed.

rt
Hinge Lock

mean ± σ best mean ± σ best
(A.11) 0.0132± 0.0022 0.0100 0.0077± 0.0003 0.0073
(A.12) 0.0561± 0.0298 0.0087 0.0298± 0.0231 0.0010
(A.13) 0.0143± 0.0106 0.0019 0.0077± 0.0043 0.0026

reward function (A.12) leads to the worst average distance between achieved
and desired shapes. This is also evident in Figure 6 (middle row) however, the
policies successfully learn to reach the desired permanent deformation. Note
that for the pinch grip, this reward function has another local maximum which
is far from the goal shape. Finally, we weight the two previous functions in
reward (A.13). With α = 0.5, this results in an average distance similar to
the one obtained with reward function (A.11), while also reaching the correct
plastic deformation, as shown in 6 (bottom row).
Finally, we evaluate the performance of DDPG with reward function (A.13)

for 2 and 3 DoFs. Results show how the shape complexity affects the learning
outcome. As seen in Figure 7, the lock grip shape is more challenging to
achieve. Note that for the 3D deformation, torsion τττ was included in the
state representation and reward function. As expected, the shapes are more
difficult to reach, due to the increased state and action spaces, however the
learned policies still learn to plastically deform the DLO.

A17

Paper A

(a) Hinge (b) Lock

Figure 6: Final shapes achieved for 1 DoF problems. Three state representations
and respective rewards are shown, namely reward (A.11) - top, reward
(A.12) - middle and reward (A.13) - bottom. All ten trained policies are
shown and shape leading to best reward is highlighted.

A18

7 Experimental Results

(a) Hinge (b) Lock

Figure 7: Results with higher DoFs. The best LT (cccT) distances for the 2 DoF
control (top) were: [0.0030, 0.0138]; while for the 3 DoF control (bottom)
they were: [0.0183, 0.0228].

A19

Paper A

8 Concluding Remarks
We have presented a new shape control problem for elastoplastic DLOs, high-
lighting its implementation challenges in the context of RL. We first presented
the difficulties of designing a reward that encodes the correct goal, while also
being resistant to local maxima. To that end we introduced a DLO shape
representation, based on curvature and torsion of a discrete curve. This led
to three alternative dense reward functions which were empirically compared.
Our results showed that for an elastic DLO, the 1 DoF shape control prob-

lem can be easily solved based on the Euclidean distance of the desired and
achieved curves. However, with elastoplastic DLOs, the reward must also
include a distance measure to the desired curvature and torsion. Finally,
we evaluated the proposed weighted reward function with 2 and 3 controlled
DoFs, leading to more challenging exploration, but still converging to reason-
able shapes.
For future work, we will use the proposed reward in multi-goal RL, to

obtain a general solution to this type of shape control problems. Further, the
problem of re-grasping and more complex shapes will be addressed. Ultimately
the greatest challenge ahead is to bring our results from simulation into the
real-world. This is planned to be done in a sim-to-real approach.

References
[1] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic

manipulation and sensing of deformable objects in domestic and industrial
applications: A survey,” The International Journal of Robotics Research,
vol. 37, no. 7, pp. 688–716, 2018.

[2] F. F. Khalil and P. Payeur, “Dexterous robotic manipulation of deformable
objects with multi-sensory feedback-a review,” in Robot Manipulators Trends
and Development, IntechOpen, 2010.

[3] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1274, 2013.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,
“Mastering the game of go with deep neural networks and tree search,” Na-
ture, vol. 529, no. 7587, pp. 484–489, 2016.

A20

References

[5] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience
replay,” in 31st International Conference on Neural Information Processing
Systems (NIPS), 2017, pp. 5055–5065.

[6] J. Zhu, B. Navarro, P. Fraisse, A. Crosnier, and A. Cherubini, “Dual-arm
robotic manipulation of flexible cables,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 479–484.

[7] Z. Xia, H. Deng, S. Weng, Y. Gan, J. Xiong, and H. Wang, “Development of
a robotic system for orthodontic archwire bending,” in IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 730–735.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[9] D. Berenson, “Manipulation of deformable objects without modeling and
simulating deformation,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), IEEE, 2013, pp. 4525–4532.

[10] M. Ruan, D. Mc Conachie, and D. Berenson, “Accounting for directional
rigidity and constraints in control for manipulation of deformable objects
without physical simulation,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), IEEE, 2018, pp. 512–519.

[11] D. K. Pai, “Strands: Interactive simulation of thin solids using cosserat mod-
els,” in Computer Graphics Forum, Wiley Online Library, vol. 21, 2002,
pp. 347–352.

[12] H. Wakamatsu and S. Hirai, “Static modeling of linear object deformation
based on differential geometry,” The International Journal of Robotics Re-
search, vol. 23, no. 3, pp. 293–311, 2004.

[13] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable objects
with point clouds,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), IEEE, 2013, pp. 1130–1137.

[14] S. Javdani, S. Tandon, J. Tang, J. F. O’Brien, and P. Abbeel, “Modeling and
perception of deformable one-dimensional objects,” in IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2011, pp. 1607–
1614.

[15] M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state
estimation for manipulating deformable linear objects,” IEEE Robotics and
Automation Letters, 2020.

A21

Paper A

[16] T. Bretl and Z. McCarthy, “Quasi-static manipulation of a kirchhoff elas-
tic rod based on a geometric analysis of equilibrium configurations,” The
International Journal of Robotics Research, vol. 33, no. 1, pp. 48–68, 2014.

[17] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement learn-
ing for deformable object manipulation,” in Conference on Robot Learning
(CoRL), 2018, pp. 734–743.

[18] A. Colomé, A. Planells, and C. Torras, “A friction-model-based framework
for reinforcement learning of robotic tasks in non-rigid environments,” in
IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2015, pp. 5649–5654.

[19] W. Chi, J. Liu, M. E. Abdelaziz, G. Dagnino, C. Riga, C. Bicknell, and G.-Z.
Yang, “Trajectory optimization of robot-assisted endovascular catheteriza-
tion with reinforcement learning,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 3875–3881.

[20] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to Ma-
nipulate Deformable Objects without Demonstrations,” in Robotics: Science
and Systems (RSS), Corvalis, Oregon, USA, Jul. 2020.

[21] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,”
in International Conference on Machine Learning (ICML), PMLR, 2018,
pp. 1861–1870.

[22] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[23] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2012, pp. 5026–5033.

[24] E. Rohmer, S. P. N. Singh, and M. Freese, “V-rep: A versatile and scal-
able robot simulation framework,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2013, pp. 1321–1326.

[25] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau, H.
Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and S. Cotin, “SOFA: A
Multi-Model Framework for Interactive Physical Simulation,” in Soft Tis-
sue Biomechanical Modeling for Computer Assisted Surgery, ser. Studies
in Mechanobiology, Tissue Engineering and Biomaterials, Y. Payan, Ed.,
vol. 11, Springer, Jun. 2012, pp. 283–321.

A22

References

[26] M. Servin and C. Lacoursière, “Rigid body cable for virtual environments,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14, pp. 783–
796, 2008.

[27] M. Servin, C. Lacoursiere, and N. Melin, “Interactive simulation of elastic
deformable materials,” in SIGRAD 2006. The Annual SIGRAD Conference;
Special Theme: Computer Games, Linköping University Electronic Press,
2006.

[28] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[29] D. Carroll, E. Hankins, E. Kose, and I. Sterling, “A survey of the differential
geometry of discrete curves,” The Mathematical Intelligencer, vol. 36, no. 4,
pp. 28–35, 2014.

[30] A. Stooke and P. Abbeel, “Rlpyt: A research code base for deep reinforcement
learning in pytorch,” arXiv preprint arXiv:1909.01500, 2019.

A23

PAPERB
ReForm: A Robot Learning Sandbox for Deformable Linear

Object Manipulation

Rita Laezza∗, Robert Gieselmann∗, Florian T. Pokorny,
Yiannis Karayiannidis

Published in International Conference on Robotics and Automation (ICRA),
© 2021 IEEE DOI: 10.1109/ICRA48506.2021.9561766

∗ equal contribution

The layout has been revised.

1 Introduction

Abstract

Recent advances in machine learning have triggered an enor-
mous interest in using learning-based approaches for robot
control and object manipulation. While the majority of ex-
isting algorithms are evaluated under the assumption that the
involved bodies are rigid, a large number of practical applica-
tions contain deformable objects. In this work we focus on De-
formable Linear Objects (DLOs) which can be used to model
cables, tubes or wires. They are present in many applications
such as manufacturing, agriculture and medicine. New meth-
ods in robotic manipulation research are often demonstrated
in custom environments impeding reproducibility and compar-
isons of algorithms. We introduce ReForm, a simulation sand-
box and a tool for benchmarking manipulation of DLOs. We
offer six distinct environments representing important charac-
teristics of deformable objects such as elasticity, plasticity or
self-collisions and occlusions. A modular framework is used,
enabling design parameters such as the end-effector degrees of
freedom, reward function and type of observation. ReForm is
a novel robot learning sandbox with which we intend to facil-
itate testing and reproducibility in manipulation research for
DLOs.

1 Introduction
Countless manufacturing and every-day tasks require handling of non-rigid
objects. Thus, it is important that they are properly studied, in all their
variability. Yet, the dynamics of deformable objects are complex and inher-
ently difficult to model and simulate [1]. This makes robotic manipulation of
such objects using learning-free control a challenge. For this reason machine
learning, in particular Reinforcement Learning (RL), has become increasingly
popular for solving robotic manipulation tasks [2], [3]. Despite their success,
RL methods are notoriously unstable and results hard to reproduce [4]. Fur-
thermore, the complexity of the robotics system and the learning algorithm
together, make it difficult to evaluate each component independently. There

B3

Paper B

(a) (b) (c)

(d) (e) (f)

Figure 1: Overview of environments included in ReForm: (a) BendWire (b) Bend-
WireObstacle (c) PushRope (d) PegInHole (e) CableClosing (f) Rubber-
Band. The first three are explicit shape control tasks, while the last three
are implicit shape control tasks.

have been several efforts to create robotics benchmarks in order to facilitate
comparisons between methods [5]–[13].
Nevertheless, current simulation benchmarks such as RLBench [7] or Meta-

World [9] focus almost exclusively on the manipulation of rigid objects. Due to
the large number of industrial applications, it is necessary to also address the
challenges of deformable objects. Simulation environments are particularly
important for learning algorithms, since they require large amounts of data
which is costly to obtain from real systems [5]. Further, real-world experiments
involving deformable parts are challenging due to effects such as irreversiblity
of deformations and self-occlusion.
There are few works that sufficiently address deformable objects. Based

on this observation, we developed ReForm, a novel simulation sandbox and
benchmarking tool for deformable object manipulation. In particular, Re-
Form focuses on Deformable Linear Objects (DLOs) with an emphasis on
the variation of mechanical properties, such as low compression strength (e.g.
rope), elastic, plastic and elastoplastic behaviors. The motivation to focus on

B4

2 Related Work

(a) (b) (c) (d)

Figure 2: Illustration of a peg-in-hole task for pegs with different stiffness values:
(a) rigid, (b) flexible and (c) soft. Image (d) shows an example of the
object being inserted.

DLO’s stems from the numerous manipulation tasks which are found across
industries, such as manufacturing, surgery and agriculture [14]. Concurrent
to our work, [15] recently presented SoftGym, a tool to benchmark soft object
manipulation in simulation. Despite its focus on deformability, they employ a
particle-based simulator which does not accurately model important material
properties such as stiffness or plasticity.
An important aspect of ReForm is the freedom given with respect to sim-

ulation and problem settings including the type of observation, actuation,
reward or material. For instance, one could modify the stiffness of an object
in a peg-in-hole task (see Figure 2). This enables users to quickly set up
new experiments with custom parameters. ReForm consists of six core DLO
manipulation tasks which are integrated using the popular OpenAI Gym [10]
framework. Moreover, we provide a modular interface to allow the creation of
entirely new manipulation tasks. In all environments, Cartesian manipulators
are employed that provide a continuous control setting. In this regard, the
active Degrees of Freedom (DOFs) can be modified by the user. To demon-
strate the influence of the type of observation, controlled DOFs and rewards,
we evaluate standard model-free reinforcement learning for a subset of the
manipulation tasks.

2 Related Work
Compared to rigid objects, shape in addition to pose estimation is required
to fully capture the state of a deformable object. While in some applications
deformation is treated as a disturbance, in many others achieving a particular

B5

Paper B

shape or deformation is the main objective [1]. The most commonly studied
problems are textile flattening or folding, knot tying and shape control of
ropes or cables [14], [16]–[19].
Matas et al, [17] studied an end-to-end reinforcement learning solution for

cloth manipulation. Their method learns to predict torque signals directly
from images in simulation. Using sim-to-real techniques they demonstrated
that the learned policy can be transferred to the real world. Note that their
method uses pre-training based on expert demonstrations. The work by [20]
studies dual-arm manipulation of flexible cables. [21] applies deep reinforce-
ment learning for a peg-in-hole task where the insertion is made of foam. In
[22], the authors train an agent to insert a soft cable into a hole. While they
demonstrated great results in simulation and on a real robot, their method
also relies on expert demonstrations.
The variety of implementations of algorithms and experiments makes com-

parisons between methods and results difficult. The development of bench-
marks is motivated by this need for reproducibility and comparability [4],
[5]. Despite their success, deep learning methods are inherently difficult to
compare due to stochasticity in the optimization process, dependence on ini-
tial parameters and random seeds. Moreover, deep reinforcement learning
is known to be data inefficient and often takes millions of interactions until
convergence. It also requires laborious hyperparameter tuning which ham-
pers the ability to discern true algorithmic improvements from the amount
of hand-tuning performed. [4] covered these and more issues of RL, focus-
ing on policy gradient methods for continuous control tasks. In this regard,
simulation benchmarks are particularly interesting as they provide constant
conditions and allow to iterate quicker over different methods.
RLBench [7] is a recent simulation benchmark which includes 100 manipu-

lation tasks. Unfortunately, only one of those, namely the rope-straightening
task, involves a deformable object. Concept2Robot [8], which is a framework
for learning manipulation concepts from human visual demonstrations and
language instructions, includes the task of folding something. However, the
simulation appears to be overly simplified1. Again, only one of 74 tasks ad-
dresses the challenges of deformable objects. The SURREAL [5] framework
provides a smaller robotics benchmark, with six classical manipulation tasks,

1Task 14 of Figure 3 in [8], shows two rigid bodies attached through a hinge constraint.
Code is currently not available.

B6

3 ReForm

such as peg-in-hole, but none including non-rigid objects. This suite was
also used in the RoboTurk [6] crowd-sourcing platform for imitation learn-
ing. Meta-World [9] is yet another benchmark which focuses on multi-task
learning in 50 scenarios but also excludes deformation from its simulations.
SAPIEN [13] is a household simulation benchmark which allows manipulation
of articulated objects, e.g doors. iGibson [12] is a similar benchmark that
allows interactions with the environment. Still, it mainly focuses on indoor
navigation. AssistiveGym [11] provides six benchmark tasks for human-robot
interaction, one of which involves dressing a human with a deformable textile.
SoftGym [15] is a recently proposed open-source benchmark for manipulat-

ing deformable objects in simulation. It contains control tasks for cloth-like
objects, ropes and a fluid. At the core, the simulator models deformable bod-
ies using a particle-based system. In contrast, our framework focuses on DLOs
and uses specialized object classes to model realistic material properties such
as stiffness, elasticity and plasticity. Elastica [23] is an open-source simulation
environment for soft, slender rods. It was designed to simulate soft robotic
actuators that can bend, twist, shear and stretch. Unlike Elastica, our system
addresses control of DLOs from a general object manipulation perspective.
Thus, we provide more flexibility with respect to tasks and material proper-
ties.

Henderson et al. [4] argues that the choice of environment plays an im-
portant role when validating a new RL algorithm, because typically no single
algorithm outperforms the others across all tasks. At present, deformable
objects are underrepresented in robot learning benchmarks. For that reason,
it is unclear how well state-of-the-art RL methods cope with the challenges
inherent to the manipulation of non-rigid bodies.

3 ReForm
With the introduction of ReForm2, we provide tools to experiment with DLOs
in simulation and train agents for the manipulation of cables, ropes and wires
in six different tasks. Our intention is to provide a robot learning sandbox
to benchmark new methods and foster research on deformable object manip-
ulation in simulation. We categorize different tasks as either explicit shape
control problems, where the goal is to deform the object into a specific geo-

2https://sites.google.com/view/reformdlo/home

B7

Paper B

Gym Environments

Explicit Shape Control Tasks

Implicit Shape Control Tasks

RL agent
(policy)

EndEffector

ObservationConfig

RewardConfig

ReForm: Robot Learning Sandbox for DLO Manipulation

Action

Observation

Reward

User

A
gx

 In
te

rf
ac

e

Simulator

AGX

Dynamics

Figure 3: System overview of ReForm sandbox for robot learning. It provides a
modular design to make benchmarking of new deformable object manip-
ulation strategies easy. Note that the RL agent can be replaced by an
arbitrary control policy.

metric configuration, or implicit shape control problems. For the latter, the
exact shape of the object is not the primary objective, instead a set of high-
level conditions must be fulfilled to solve the task. A few examples include
hot-wire cutting [24], tube mounting [25], knot tying and threading [14], etc.
Both implicit and explicit shape control problems are addressed in this work.
Similar to previous robotics benchmark software, we provide a modular im-

plementation, as shown in Figure 3. This is done by providing an OpenAI Gym
[10] interface, which is a well established toolbox for RL research. ReForm is
also designed to allow configuration freedom, making it easy to modify and
extend. Furthermore, the benchmark provides over ten observation types, in-
cluding ground-truth and image data. Agent actions are limited to task space
control, defined as linear and angular velocities of the end-effector. These
can also be defined in a modular fashion, as a set of motor constraints. For
environments where the gripper is holding the DLO, it is possible to control
grip compliance.
In the following, we present the main components of ReForm, starting with

the multiphysics simulator, followed by the description of available observation
types, the control interface and finally the reward interface.

Simulation Environment Modelling and simulating DLOs or deformable ob-
jects, in general, is inherently difficult due to the complex mechanics. AGX
Dynamics3 provides unified lumped element models with implicit integration

3https://www.algoryx.se/agx-dynamics/

B8

3 ReForm

and direct, sparse factorization. Specifically, it offers a Cable class for which
properties, such as Young modulus and Poisson’s ratio, can be defined along
stretch, twist and bend directions [26], [27]. Further, elastic Cable objects can
be assigned plasticity properties by defining a yield point. Figure 4a shows the
impact of this mechanical property on a shape control problem. Additionally,
it offers specialized material classes which capture elastoplastic deformation
in real-time. For these reasons, it provides an advantage over other physics
simulators e.g. Mujoco [28], Bullet and SOFA [29]. While MuJoCo enables
simulations of long object chains, it uses an explicit solver and cannot provide
high stiffness. SOFA, on the other hand, offers only an iterative solver and
was initially developed for interactive computational medical simulation.
Photorealism is another important aspect to be considered, specially for

end-to-end approaches which aim to learn directly from images. Currently,
ReForm uses OpenSceneGraph for rendering, but AGX Dynamics also sup-
ports more realistic game engines, e.g. Unity and Unreal. It is left as future
work to make use of these capabilities.

State Representation Robust state estimation is an open problem in de-
formable object manipulation research [30], [31]. In ReForm, both visual ob-
servations such as RGB/depth (see Figure 4) and force/torque measurements
are supported. Using the ObservationConfig class (see Listing 6.1) it is even
possible to create composite input types.
For evaluating the success of implemented methods, it is also possible to

obtain ground truth position and rotation of the segments that constitute the
DLO. Finally, for shape control problems, in which the location of the DLO
is not necessarily important, intrinsic metrics such as discrete curvature and
torsion [32] can be useful state representations.

1 observation_config = ObservationConfig (
2 goals =[ObservationConfig . ObservationType . DLO_POSITIONS]
3)
4 observation_config . set_img_rgb ()

Listing 6.1: Example of an observation object. In this case, the observations consist
of RGB image, while the goal is defined based on Cartesian coordinates
of discretized DLO.

B9

Paper B

(a) (b) (c) (d)

Figure 4: (a) Illustration of the effect of of plasticity on the shape of a DLO. All
three shapes were generated with identical velocity trajectories, the only
difference is the value of the yield point of the DLOs. This property
relates to the transition from the elastic to the plastic domain. Examples
of visual observations available in ReForm: (b) RGB image (c) Depth
image. (d) Illustration of grip compliance changes on the shape of DLOs
with identical mechanical properties, and identical trajectories.

Control Strategy In order to be platform-independent, we focus on task
space control settings only. An EndEffector class is provided to define the
controlled DOFs, along with velocity and acceleration limits (see Listing 6.2).
Besides velocity control commands, there is also support for grip compliance,
which allows for more complex DLO configurations, by varying the resistance
to rotation along one axis, as seen in Figure 4d. Our system allows to in-
clude velocity and acceleration limits which is important because RL policies
often produce jitter. The work in [33] highlights the importance of trajec-
tory speed for dynamic manipulation strategies applied to non-rigid objects.
Adding these constraints acts as a filter which prevents fast velocity changes
and excessive forces. Note that this has a similar effect to using temporally
correlated exploration noise, such as in [34], [35]. As a further benefit, this
makes our control interface task agnostic, since agent actions always lie be-
tween [−1, 1], but are automatically rescaled to a range appropriate for the
task.

Reward Definition Though ReForm can be used to evaluate methods other
than RL, we follow the formalism from OpenAI Gym [10], and thus include a
reward computation step. While standard implementations of Gym environ-
ments have a fixed reward, effectively making it part of the environment, our
library provides an abstract RewardConfig class, which enables the reward
definition to be part of the solution strategy. We find this to be particularly

B10

3 ReForm

important since for many deformable object manipulation tasks, the definition
of the reward function is not trivial [36]. While sparse rewards are generally
applicable, a learning signal is only provided once the goal has been reached.
It was shown by [3] that for some multi-goal scenarios this type of reward
makes learning nearly impossible. Engineering dense rewards by hand is often
a laborious task that might require significant domain expertise. In Section
5, we evaluate the impact of the reward definition for a subset of our environ-
ments.

1 gripper_right = EndEffector (
2 name=’gripper_right ’,
3 controllable =True ,
4 observable =True ,
5 max_velocity =0.014, # m/s
6 max_acceleration =0.010 # m/(s*s)
7)
8 gripper_right . add_constraint (
9 name=’prismatic_joint_right ’,

10 end_effector_dof = EndEffectorConstraint .Dof. X_TRANSLATION ,
11 compute_forces_enabled =True ,
12 velocity_control =True ,
13 compliance_control = False
14)
15 gripper_right . add_constraint (
16 name=’hinge_joint_right ’,
17 end_effector_dof = EndEffectorConstraint .Dof. Y_COMPLIANCE ,
18 compute_forces_enabled =False ,
19 velocity_control =False ,
20 compliance_control = False
21)

Listing 6.2: Example of an end-effector object. Both velocity and acceleration
limits are set at initialization (SI units). Note that since the simulation
consists of a small DLO, it is important to keep velocities low and
prevent large accelerations. If the end-effector is set to be observable,
this enables force-torque measurements that can be used for the
observations. Besides TRANSLATION constraints, there are COMPLIANCE
constraints to control the compliance of the grip.

B11

Paper B

4 Manipulation Tasks

In this section, we describe the tasks that are currently implemented in Re-
Form. An overview of all environments is given in Figure 1. In general, we
distinguish between explicit and implicit shape control. The former describes
problems in which the goal is represented by a particular shape configura-
tion of the deformable object. For some problems however it might be more
convenient to define the primary task by means of a high-level description.
Examples include assembly problems in which the final shape of the object is
secondary. These kinds of tasks are captured by implicit shape control. In
the following, we briefly describe the features and challenges of each task in
ReForm:
BendWire: a thin wire is attached to two grippers using a hinge con-

straint. The goal is to deform the wire into a desired shape, hence it can be
seen as explicit shape control. The material of the wire is stiff and exhibits
elastoplastic properties. The fact that plastic deformations are usually hard
or even impossible to reverse presents a key challenge. Even small deforma-
tions can significantly change the set of reachable wire states. DLOs of this
kind include most metal wires, which are found throughout manufacturing as
well as in medical applications, such as in dental braces. A similar problem
was tackled by [20].
BendWireObstacle: this environment is similar to BendWire but in-

cludes a cylindrical obstacle in the workspace. While not necessary, the ob-
stacle can be leveraged to facilitate the deformation task. With this setting,
we open the possibility for extrinsic manipulation. The work by Zhu et al.
[37] covered such a scenario for cable routing. This task is also an explicit
shape control problem.
PushRope: a soft rope is located on a planar surface. A controllable

pusher is used to bring the rope into a certain goal configuration. The rope
exhibits little stiffness and deforms immediately after contact. Further, the
friction between the rope and surface adds another interesting feature to the
manipulation task. PushRope is a common explicit shape control benchmark
which has been studied in [7], [36].
PegInHole: a soft peg is on one end rigidly attached to a gripper. The task

is to insert the peg into a hollow cylindrical object. Compared to the previous
environments, the goal is not represented by just a single configuration of
the object. Instead it is a set of configurations which satisfy the condition

B12

5 Benchmarking Experiments

of being inserted. Clearly, this is an implicit shape control problem. Due to
its simplicity and significance for assembly tasks, the peg-in-hole scenario has
become a widely-studied problem in robotics research. We offer a simulated
version that uses a deformable peg with a rigid hole. Note that [21] presented
the converse problem in which a rigid peg is inserted into a deformable hole.
CableClosing: a cable is controlled on both ends by planar actuators. The

task is successfully completed once the cable fully encloses a goal obstacle.
There are several static obstacles in the scene. In order to reach the goal, the
object has to be circumnavigated around the obstacles. Again, this describes
an implicit shape control problem. This task is quite unique, although it can
be compared with the work by [14], where they used objects in the environment
to tie different types of knots.
RubberBand: a purely elastic circular rubber band is connected to a

gripper by a ball joint. The task is to find a policy which wraps the rubber
band around three poles, making it an implicit shape control task. This envi-
ronment incorporates complicated contact mechanics between the deformable
object and the poles. Further, it describes a wrapping task which bridges
the gap to industrial applications, such as [38]. Though a rubber band is
technically not a linear object, it can be seen as a DLO connected with itself.

5 Benchmarking Experiments
In order to establish a first baseline, we performed an evaluation of all six
environments using model-free reinforcement learning. For each, we trained
and evaluated DDPG agents [35] as implemented in [39]. We used two hidden
layers for both policy and value networks, with [300, 400] neurons each. Due
to the different nature of explicit and implicit shape control tasks, we evaluate
them separately. For each task, the DDPG algorithm was applied using 1×106

steps of environment interaction.

Explicit Shape Control For these environments, the goal is to control the
end-effector(s) in order to deform a DLO into a desired shape. Each task has
different challenges including plasticity, interaction with a rigid body and low
compression strength. In order to evaluate the impact of design choices such
as observation type, action space and reward definition, we run experiments
varying these parameters. Figure 6 (top row) shows the effect of three differ-

B13

Paper B

Figure 5: Example of successful trajectory for the PegInHole task learned by the
DDPG agent.

ent observation types: ground truth positions, rotations and curvature. No
observation type seems to work best across all tasks. It is curious that for
the wire environments, there is a clear winner but they do not coincide, with
curvature working better for BendWire and DLO segment positions for Bend-
WireObstacle. Results for the PushRope task were quite close and suffered
from high variance, making it difficult to draw conclusions.
Figure 6 (top row) further shows the impact on augmenting the action

space. For the wire tasks, this was done by adding control of grip compliance,
which can lead to very different shapes (see Figure 4d). For the PushRope
task, a third DOF was added, effectively allowing the pusher to move over
the rope, thus making exploration much harder. As expected, increasing the
action space led to slower learning for this task. However, for the wire tasks
it is not easy to draw a clear conclusion. For the BendWire environment it
even seems to help performance. This may be because the goal shape consists
of a sharp angle (see Figure 1a), making the extra DOF useful for creating
sharper deformations.
For both the observation and action experiments, the same dense reward

was used, computed as negative the L2 distance between the current curvature
and the desired curvature. Further, a small positive reward is given when
the agent is close to the target shape. However, to analyse the impact of
our reward definition, we also implemented a sparse reward which provides a
negative signal until the goal is reached, after which a positive signal is given.
For each environment, the final curvature error for both sparse and dense
rewards were compared. Results are nearly identical across all tasks, with
0.13 ±0.07 (dense) and 0.13±0.20 (sparse) for BendWire; 0.23 ±0.08 (dense)
and 0.24±0.10 (sparse) for BendWireObstacle; and 0.14 ±0.03 (dense) and
0.15±0.01 (sparse) for PushRope.

B14

5 Benchmarking Experiments

Implicit Shape Control For all of the implicit shape control tasks, the state
observation consists of the position of the DLO segments and the grippers. We
further evaluated a second setting which also takes into account the velocity of
the involved bodies. Note that the definition of a continuous reward function
is not obvious for these tasks due the presence of obstacles in the workspace.
Instead, we provided intermediate feedback for reaching task-specific subgoals.
In the PegInHole task, the agent receives a positive reward of +1 for each cable
segment being inserted. In the CableClosing environment, the agent receives a
positive reward of +1 for partially enclosing the pole and an additional reward
of +1 for fully enclosing it. In the RubberBand task, the agent receives a
positive reward of +1 for each pole being enclosed by the rubber band and
an additional reward of +5 at task completion. Reversing the progress is
penalized accordingly using negative rewards.
The corresponding training returns are shown in Figure 6 (bottom row).

It can be seen that the policies converge in the PegInHole and CableClosing
environments. Figure 5 shows a trajectory generated by the learned policy for
the PegInHole insertion task. Yet, we could not achieve statisfying results in
the RubberBand environment. The DDPG standard implementation applies
Gaussian noise to the predicted actions in order to explore the state-action
space. We believe that this strategy is insufficient to reach high-reward regions
in the RubberBand case and suggest the use of more sophisticated exploration
methods. Furthermore, the wobbly dynamics present an additional challenge
of this control task. Note that we did not observe significant improvements
when including velocities into the observations. The increased dimensionality
of the input might have overshadowed the benefits of using this additional
type of information. After all, the issue of dealing with high-dimensional
state-spaces is inherent to the manipulation of deformable objects.

B15

Paper B

Figure 6: Left column shows average return results for the three explicit shape con-
trol environments: BendWire, BendWireObstacle and PushRope. Re-
sults are averaged over 5 runs, shaded regions represent mean standard
deviation during training. Results indicate the effect of different obser-
vation types and larger action spaces on learning. Right column shows
average return results for the three implicit shape control environments:
PegInHole, CableClosing and RubberBand. Results are presented for
observations with just the DLO positions and with both positions and
velocities. A dense reward definition was used; only one trial is shown.

B16

6 Conclusion

6 Conclusion
In this work we introduced ReForm, a new sandbox for robot learning includ-
ing six DLO manipulation environments. The development of our framework
is motivated by the need for more benchmarks which capture the complexities
of deformable objects. We evaluated the performance of DDPG agents for all
environments using different types of observations, action spaces and reward
functions. The results present a first baseline for future investigations.
During the Robotics Debates4 workshop at ICRA 2020, the issue of whether

“Robotics research is over-reliant on benchmark datasets and simulation” was
debated. Though there has been no final consensus about the need for simula-
tion benchmarks, several arguments in favor of it are i. the ability to replicate
results; ii. the idea that “simulators democratize robotics”, since researchers
with limited resources can still test their methods; iii. in related fields such
as computer vision and natural language understanding, benchmark datasets
have long been an important part of these communities.
In future work, we seek to extend ReForm by adding new manipulation

tasks. Moreover, photorealistic rendering and procedural generation abilities
will enable our framework for domain-adaptation and sim-to-real research.

References
[1] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic

manipulation and sensing of deformable objects in domestic and industrial
applications: A survey,” The International Journal of Robotics Research,
vol. 37, no. 7, pp. 688–716, 2018.

[2] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1274, 2013.

[3] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience
replay,” in 31st International Conference on Neural Information Processing
Systems (NIPS), 2017, pp. 5055–5065.

[4] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

4https://roboticsdebates.org/

B17

Paper B

[5] L. Fan, Y. Zhu, J. Zhu, Z. Liu, O. Zeng, A. Gupta, J. Creus-Costa, S.
Savarese, and L. Fei-Fei, “Surreal: Open-source reinforcement learning frame-
work and robot manipulation benchmark,” in Conference on Robot Learning
(CoRL), 2018, pp. 767–782.

[6] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao,
J. Emmons, A. Gupta, E. Orbay, S. Savarese, and L. Fei-Fei, “Roboturk:
A crowdsourcing platform for robotic skill learning through imitation,” in
Conference on Robot Learning (CoRL), 2018.

[7] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The robot
learning benchmark & learning environment,” IEEE Robotics and Automa-
tion Letters, vol. 5, no. 2, pp. 3019–3026, 2020.

[8] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg, “Concept2robot:
Learning manipulation concepts from instructions and human demonstra-
tions,” Robotics: Science and Systems (RSS), 2020.

[9] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine,
“Meta-world: A benchmark and evaluation for multi-task and meta reinforce-
ment learning,” in Conference on Robot Learning (CoRL), 2020, pp. 1094–
1100.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[11] Z. Erickson, V. Gangaram, A. Kapusta, C. K. Liu, and C. C. Kemp, “As-
sistive gym: A physics simulation framework for assistive robotics,” in IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2020.

[12] F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. E. Tchapmi, A. Toshev, R.
Martın-Martın, and S. Savarese, “Interactive gibson benchmark: A bench-
mark for interactive navigation in cluttered environments,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 713–720, 2020.

[13] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y.
Yuan, H. Wang, et al., “Sapien: A simulated part-based interactive environ-
ment,” in IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020, pp. 11 097–11 107.

[14] M. Saha and P. Isto, “Motion planning for robotic manipulation of de-
formable linear objects,” in IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2006, pp. 2478–2484.

[15] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep
reinforcement learning for deformable object manipulation,” in Conference
on Robot Learning (CoRL), 2020.

B18

References

[16] D. Berenson, “Manipulation of deformable objects without modeling and
simulating deformation,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), IEEE, 2013, pp. 4525–4532.

[17] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement learn-
ing for deformable object manipulation,” in Conference on Robot Learning
(CoRL), 2018, pp. 734–743.

[18] M. Ruan, D. Mc Conachie, and D. Berenson, “Accounting for directional
rigidity and constraints in control for manipulation of deformable objects
without physical simulation,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), IEEE, 2018, pp. 512–519.

[19] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to Ma-
nipulate Deformable Objects without Demonstrations,” in Robotics: Science
and Systems (RSS), Corvalis, Oregon, USA, Jul. 2020.

[20] J. Zhu, B. Navarro, P. Fraisse, A. Crosnier, and A. Cherubini, “Dual-arm
robotic manipulation of flexible cables,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 479–484.

[21] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M. Agogino, “Deep reinforce-
ment learning for robotic assembly of mixed deformable and rigid objects,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2018, pp. 2062–2069.

[22] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T.
Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards,” arXiv
preprint arXiv:1707.08817, 2017.

[23] N. Naughton, J. Sun, A. Tekinalp, T. Parthasarathy, G. Chowdhary, and
M. Gazzola, “Elastica: A compliant mechanics environment for soft robotic
control,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3389–
3396, 2021.

[24] S. Duenser, R. Poranne, B. Thomaszewski, and S. Coros, “Robocut: Hot-wire
cutting with robot-controlled flexible rods,” ACM Transactions on Graphics
(TOG), vol. 39, no. 4, pp. 98–1, 2020.

[25] M. Rambow, T. Schauß, M. Buss, and S. Hirche, “Autonomous manipulation
of deformable objects based on teleoperated demonstrations,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE,
2012, pp. 2809–2814.

B19

Paper B

[26] M. Servin and C. Lacoursière, “Rigid body cable for virtual environments,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14, pp. 783–
796, 2008.

[27] H. Lang, J. Linn, and M. Arnold, “Multi-body dynamics simulation of geo-
metrically exact Cosserat rods,” English,Multibody System Dynamics, vol. 25,
no. 3, pp. 285–312, 2011, issn: 1384-5640.

[28] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2012, pp. 5026–5033.

[29] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau, H.
Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, et al., “Sofa: A multi-model
framework for interactive physical simulation,” in Soft tissue biomechanical
modeling for computer assisted surgery, Springer, 2012, pp. 283–321.

[30] M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state
estimation for manipulating deformable linear objects,” IEEE Robotics and
Automation Letters, 2020.

[31] T. Tang and M. Tomizuka, “Track deformable objects from point clouds
with structure preserved registration,” The International Journal of Robotics
Research, p. 0 278 364 919 841 431, 2018.

[32] D. Carroll, E. Hankins, E. Kose, and I. Sterling, “A survey of the differential
geometry of discrete curves,” The Mathematical Intelligencer, vol. 36, no. 4,
pp. 28–35, 2014.

[33] R. Jangir, G. Alenyà, and C. Torras, “Dynamic cloth manipulation with deep
reinforcement learning,” in IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2020, pp. 4630–4636.

[34] P. Wawrzynski, “Control policy with autocorrelated noise in reinforcement
learning for robotics,” International Journal of Machine Learning and Com-
puting, vol. 5, no. 2, p. 91, 2015.

[35] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[36] X. Lin, H. S. Baweja, and D. Held, “Reinforcement learning without ground-
truth state,” arXiv preprint arXiv:1905.07866, 2019.

[37] J. Zhu, B. Navarro, R. Passama, P. Fraisse, A. Crosnier, and A. Cheru-
bini, “Robotic manipulation planning for shaping deformable linear objects
withenvironmental contacts,” IEEE Robotics and Automation Letters, vol. 5,
no. 1, pp. 16–23, 2019.

B20

References

[38] M. Murase, K. Yamazaki, and T. Matsubara, “Kullback leibler control ap-
proach to rubber band manipulation,” in 2017 IEEE/SICE International
Symposium on System Integration (SII), IEEE, 2017, pp. 680–685.

[39] A. Stooke and P. Abbeel, “Rlpyt: A research code base for deep reinforcement
learning in pytorch,” arXiv preprint arXiv:1909.01500, 2019.

B21

	Abstract
	List of Papers
	Acknowledgements
	Acronyms
	I Overview
	1 Introduction
	1.1 Deformable Object Manipulation
	1.2 Robot Learning
	1.3 Thesis Outline

	2 Deformable Linear Object Manipulation
	2.1 Modeling
	2.1.1 Shape Representation
	2.1.2 Deformation Physics

	2.2 Simulation
	2.3 Sensing
	2.4 Control

	3 Reinforcement Learning
	3.1 MDP Formulation
	3.2 Dynamic Programming
	3.3 Value Function Approximation
	3.4 Policy Approximation
	3.5 Deep Reinforcement Learning
	3.5.1 Deep Deterministic Policy Gradient

	3.6 RL Simulation Environments

	4 Concluding Remarks
	4.1 Contributions
	4.1.1 Paper A
	4.1.2 Paper B

	4.2 Future work
	4.2.1 Simulation-to-Reality
	4.2.2 Model-Based RL

	References

	II Papers
	A Learning Shape Control of Elastoplastic DLOs
	1 Introduction
	2 Related Work
	3 Background
	3.1 Reinforcement Learning
	3.2 DLO Simulation

	4 Problem Statement
	5 Shape Representation
	6 RL Formulation
	7 Experimental Results
	8 Concluding Remarks
	References

	B ReForm: A Robot Learning Sandbox for Deformable Linear Object Manipulation
	1 Introduction
	2 Related Work
	3 ReForm
	4 Manipulation Tasks
	5 Benchmarking Experiments
	6 Conclusion
	References

