10 research outputs found

    Ascertaining Chronological Change Patterns in the Presence of Multiple Taxonomies

    Get PDF
    Data mining and knowledge discovery (KDD) is the technique of converting raw data into useful information. It is predictive technique for interesting data analysis. Change mining is technique of data mining that finds and reports changes in mined item set from one time to another time. Different data mining algorithms are evolved to show correlation among data mined. The data association changes from one time to time. The project highlights the HIGEN (HIGHLY GENERLISED PATTERN) algorithm that reports minimum level of abstraction of frequently generalized pattern. Association between items shown by algorithm for data coming from real time applications at multiple level of taxonomy. The experiment performed on artificial and factual datasets to show competence and effectiveness of proposed approach as well as usefulness of real time application context. DOI: 10.17762/ijritcc2321-8169.15010

    From Interactive to Experimental Multimedia

    Get PDF
    Perhaps the most dramatic Information Society development witnessed today is the wide availability of social networking capabilities for the users, orchestrated through the wide variety of virtual multimedia communication tools. Mobile and networked interactive multimedia applications are employed to promptly capture or create user-centered conten

    Discovering High-Utility Itemsets at Multiple Abstraction Levels

    Get PDF
    High-Utility Itemset Mining (HUIM) is a relevant data mining task. The goal is to discover recurrent combinations of items characterized by high prot from transactional datasets. HUIM has a wide range of applications among which market basket analysis and service proling. Based on the observation that items can be clustered into domain-specic categories, a parallel research issue is generalized itemset mining. It entails generating correlations among data items at multiple abstraction levels. The extraction of multiple-level patterns affords new insights into the analyzed data from dierent viewpoints. This paper aims at discovering a novel pattern that combines the expressiveness of generalized and High-Utility itemsets. According to a user-defined taxonomy items are rst aggregated into semantically related categories. Then, a new type of pattern,namely the Generalized High-utility Itemset (GHUI), is extracted. It represents a combinations of items at different granularity levels characterized by high prot (utility). While protable combinations of item categories provide interesting high-level information, GHUIs at lower abstraction levels represent more specic correlationsamong protable items. A single-phase algorithm is proposed to efficiently discover utility itemsets at multiple abstraction levels. The experiments, which were performed on both real and synthetic data, demonstrate the effectiveness and usefulness of the proposed approach

    Twitter data analysis by means of Strong Flipping Generalized Itemsets

    Get PDF
    Twitter data has recently been considered to perform a large variety of advanced analysis. Analysis ofTwitter data imposes new challenges because the data distribution is intrinsically sparse, due to a large number of messages post every day by using a wide vocabulary. Aimed at addressing this issue, generalized itemsets - sets of items at different abstraction levels - can be effectively mined and used todiscover interesting multiple-level correlations among data supplied with taxonomies. Each generalizeditemset is characterized by a correlation type (positive, negative, or null) according to the strength of thecorrelation among its items.This paper presents a novel data mining approach to supporting different and interesting targetedanalysis - topic trend analysis, context-aware service profiling - by analyzing Twitter posts. We aim atdiscovering contrasting situations by means of generalized itemsets. Specifically, we focus on comparingitemsets discovered at different abstraction levels and we select large subsets of specific (descendant)itemsets that show correlation type changes with respect to their common ancestor. To this aim, a novelkind of pattern, namely the Strong Flipping Generalized Itemset (SFGI), is extracted from Twitter mes-sages and contextual information supplied with taxonomy hierarchies. Each SFGI consists of a frequentgeneralized itemset X and the set of its descendants showing a correlation type change with respect to X. Experiments performed on both real and synthetic datasets demonstrate the effectiveness of the pro-posed approach in discovering interesting and hidden knowledge from Twitter dat

    Expressive generalized itemsets

    Get PDF
    Generalized itemset mining is a powerful tool to discover multiple-level correlations among the analyzed data. A taxonomy is used to aggregate data items into higher-level concepts and to discover frequent recurrences among data items at different granularity levels. However, since traditional high-level itemsets may also represent the knowledge covered by their lower-level frequent descendant itemsets, the expressiveness of high-level itemsets can be rather limited. To overcome this issue, this article proposes two novel itemset types, called Expressive Generalized Itemset (EGI) and Maximal Expressive Generalized Itemset (Max-EGI), in which the frequency of occurrence of a high-level itemset is evaluated only on the portion of data not yet covered by any of its frequent descendants. Specifically, EGI s represent, at a high level of abstraction, the knowledge associated with sets of infrequent itemsets, while Max-EGIs compactly represent all the infrequent descendants of a generalized itemset. Furthermore, we also propose an algorithm to discover Max-EGIs at the top of the traditionally mined itemsets. Experiments, performed on both real and synthetic datasets, demonstrate the effectiveness, efficiency, and scalability of the proposed approac

    MeTA: Characterization of medical treatments at different abstraction levels

    Get PDF
    Physicians and healthcare organizations always collect large amounts of data during patient care. These large and high-dimensional datasets are usually characterized by an inherent sparseness. Hence, the analysis of these datasets to gure out interesting and hidden knowledge is a challenging task. This paper proposes a new data mining framework based on generalized association rules to discover multiple-level correlations among patient data. Specically, correlations among prescribed examinations, drugs, and patient proles are discovered and analyzed at different abstraction levels. The rule extraction process is driven by a taxonomy to generalize examinations and drugs into their corresponding categories. To ease the manual inspection of the result, a worthwhile subset of rules, i.e., the non-redundant generalized rules, is considered. Furthermore, rules are classied according to the involved data features (medical treatments or patient proles) and then explored in a top-down fashion, i.e., from the small subset of high-level rules a drill-down is performed to target more specic rules. The experiments, performed on a real diabetic patient dataset, demonstrate the effectiveness of the proposed approach in discovering interesting rule groups at different abstraction levels

    Digging deep into weighted patient data through multiple-level patterns

    Get PDF
    Large data volumes have been collected by healthcare organizations at an unprecedented rate. Today both physicians and healthcare system managers are very interested in extracting value from such data. Nevertheless, the increasing data complexity and heterogeneity prompts the need for new efficient and effective data mining approaches to analyzing large patient datasets. Generalized association rule mining algorithms can be exploited to automatically extract hidden multiple-level associations among patient data items (e.g., examinations, drugs) from large datasets equipped with taxonomies. However, in current approaches all data items are assumed to be equally relevant within each transaction, even if this assumption is rarely true. This paper presents a new data mining environment targeted to patient data analysis. It tackles the issue of extracting generalized rules from weighted patient data, where items may weight differently according to their importance within each transaction. To this aim, it proposes a novel type of association rule, namely the Weighted Generalized Association Rule (W-GAR). The usefulness of the proposed pattern has been evaluated on real patient datasets equipped with a taxonomy built over examinations and drugs. The achieved results demonstrate the effectiveness of the proposed approach in mining interesting and actionable knowledge in a real medical care scenario

    Data mining by means of generalized patterns

    Get PDF
    The thesis is mainly focused on the study and the application of pattern discovery algorithms that aggregate database knowledge to discover and exploit valuable correlations, hidden in the analyzed data, at different abstraction levels. The aim of the research effort described in this work is two-fold: the discovery of associations, in the form of generalized patterns, from large data collections and the inference of semantic models, i.e., taxonomies and ontologies, suitable for driving the mining proces
    corecore