4,890 research outputs found

    Turing Patterns and Biological Explanation

    Get PDF
    Turing patterns are a class of minimal mathematical models that have been used to discover and conceptualize certain abstract features of early biological development. This paper examines a range of these minimal models in order to articulate and elaborate a philosophical analysis of their epistemic uses. It is argued that minimal mathematical models aid in structuring the epistemic practices of biology by providing precise descriptions of the quantitative relations between various features of the complex systems, generating novel predictions that can be compared with experimental data, promoting theory exploration, and acting as constitutive parts of empirically adequate explanations of naturally occurring phenomena, such as biological pattern formation. Focusing on the roles that minimal model explanations play in science motivates the adoption of a broader diachronic view of scientific explanation

    causalizeR: a text mining algorithm to identify causal relationships in scientific literature

    Get PDF
    Complex interactions among multiple abiotic and biotic drivers result in rapid changes in ecosystems worldwide. Predicting how specific interactions can cause ripple effects potentially resulting in abrupt shifts in ecosystems is of high relevance to policymakers, but difficult to quantify using data from singular cases. We present causalizeR (https://github.com/fjmurguzur/causalizeR), a text-processing algorithm that extracts causal relations from literature based on simple grammatical rules that can be used to synthesize evidence in unstructured texts in a structured manner. The algorithm extracts causal links using the relative position of nouns relative to the keyword of choice to extract the cause and effects of interest. The resulting database can be combined with network analysis tools to estimate the direct and indirect effects of multiple drivers at the network level, which is useful for synthesizing available knowledge and for hypothesis creation and testing. We illustrate the use of the algorithm by detecting causal relationships in scientific literature relating to the tundra ecosystem

    Extracting Patient-Related Description from Medical Records in Bulgarian

    Get PDF
    This paper deals with the extraction of medical information from hospital patient records. It proposes a cascade approach for the extraction of multi-layer knowledge statements because the subject is too complex. We sketch the Information Extraction view to text analysis, where patient-related facts are recognised using predefined regular expressions and templates. A laboratory prototype for patient status ex- traction is presented together with the first evaluation results

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    Making AI Meaningful Again

    Get PDF
    Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial intelligence encouraged by these successes, especially in the domain of language processing. We then show an alternative approach to language-centric AI, in which we identify a role for philosophy

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Variation and Semantic Relation Interpretation: Linguistic and Processing Issues

    Get PDF
    International audienceStudies in linguistics define lexico-syntactic patterns to characterize the linguistic utterances that can be interpreted with semantic relations. Because patterns are assumed to reflect linguistic regularities that have a stable interpretation, several software implement such patterns to extract semantic relations from text. Nevertheless, a thorough analysis of pattern occurrences in various corpora proved that variation may affect their interpretation. In this paper, we report the linguistic variations that impact relation interpretation in language, and may lead to errors in relation extraction systems. We analyze several features of state-of-the-art pattern-based relation extraction tools, mostly how patterns are represented and matched with text, and discuss their role in the tool ability to manage variation

    Big Data and Causality

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Causality analysis continues to remain one of the fundamental research questions and the ultimate objective for a tremendous amount of scientific studies. In line with the rapid progress of science and technology, the age of big data has significantly influenced the causality analysis on various disciplines especially for the last decade due to the fact that the complexity and difficulty on identifying causality among big data has dramatically increased. Data mining, the process of uncovering hidden information from big data is now an important tool for causality analysis, and has been extensively exploited by scholars around the world. The primary aim of this paper is to provide a concise review of the causality analysis in big data. To this end the paper reviews recent significant applications of data mining techniques in causality analysis covering a substantial quantity of research to date, presented in chronological order with an overview table of data mining applications in causality analysis domain as a reference directory
    corecore