282 research outputs found

    A high-order discontinuous Galerkin method for the poro-elasto-acoustic problem on polygonal and polyhedral grids

    Get PDF
    The aim of this work is to introduce and analyze a finite element discontinuous Galerkin method on polygonal meshes for the numerical discretization of acoustic waves propagation through poroelastic materials. Wave propagation is modeled by the acoustics equations in the acoustic domain and the low-frequency Biot's equations in the poroelastic one. The coupling is introduced by considering (physically consistent) interface conditions, imposed on the interface between the domains, modeling both open and sealed pores. Existence and uniqueness is proven for the strong formulation based on employing the semigroup theory. For the space discretization we introduce and analyze a high-order discontinuous Galerkin method on polygonal and polyhedral meshes, which is then coupled with Newmark-β\beta time integration schemes. A stability analysis both for the continuous problem and the semi-discrete one is presented and error estimates for the energy norm are derived for the semidiscrete problem. A wide set of numerical results obtained on test cases with manufactured solutions are presented in order to validate the error analysis. Examples of physical interest are also presented to test the capability of the proposed methods in practical cases.Comment: The proof of the well-posedness contains an error. This has an impact on the whole paper. We need time to fix the issu

    On stability of discretizations of the Helmholtz equation (extended version)

    Full text link
    We review the stability properties of several discretizations of the Helmholtz equation at large wavenumbers. For a model problem in a polygon, a complete kk-explicit stability (including kk-explicit stability of the continuous problem) and convergence theory for high order finite element methods is developed. In particular, quasi-optimality is shown for a fixed number of degrees of freedom per wavelength if the mesh size hh and the approximation order pp are selected such that kh/pkh/p is sufficiently small and p=O(logk)p = O(\log k), and, additionally, appropriate mesh refinement is used near the vertices. We also review the stability properties of two classes of numerical schemes that use piecewise solutions of the homogeneous Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin (DG) methods. The latter includes the Ultra Weak Variational Formulation

    A space-time quasi-Trefftz DG method for the wave equation with piecewise-smooth coefficients

    Full text link
    Trefftz methods are high-order Galerkin schemes in which all discrete functions are elementwise solution of the PDE to be approximated. They are viable only when the PDE is linear and its coefficients are piecewise constant. We introduce a 'quasi-Trefftz' discontinuous Galerkin method for the discretisation of the acoustic wave equation with piecewise-smooth wavespeed: the discrete functions are elementwise approximate PDE solutions. We show that the new discretisation enjoys the same excellent approximation properties as the classical Trefftz one, and prove stability and high-order convergence of the DG scheme. We introduce polynomial basis functions for the new discrete spaces and describe a simple algorithm to compute them. The technique we propose is inspired by the generalised plane waves previously developed for time-harmonic problems with variable coefficients; it turns out that in the case of the time-domain wave equation under consideration the quasi-Trefftz approach allows for polynomial basis functions.Comment: 25 pages, 9 figure

    Convergence analysis of energy conserving explicit local time-stepping methods for the wave equation

    Get PDF
    Local adaptivity and mesh refinement are key to the efficient simulation of wave phenomena in heterogeneous media or complex geometry. Locally refined meshes, however, dictate a small time-step everywhere with a crippling effect on any explicit time-marching method. In [18] a leap-frog (LF) based explicit local time-stepping (LTS) method was proposed, which overcomes the severe bottleneck due to a few small elements by taking small time-steps in the locally refined region and larger steps elsewhere. Here a rigorous convergence proof is presented for the fully-discrete LTS-LF method when combined with a standard conforming finite element method (FEM) in space. Numerical results further illustrate the usefulness of the LTS-LF Galerkin FEM in the presence of corner singularities

    Singular enrichment functions for Helmholtz scattering at corner locations using the Boundary Element Method

    Get PDF
    In this paper we use an enriched approximation space for the efficient and accurate solution of the Helmholtz equation in order to solve problems of wave scattering by polygonal obstacles. This is implemented in both Boundary Element Method (BEM) and Partition of Unity Boundary Element Method (PUBEM) settings. The enrichment draws upon the asymptotic singular behaviour of scattered fields at sharp corners, leading to a choice of fractional order Bessel functions that complement the existing Lagrangian (BEM) or plane wave (PUBEM) approximation spaces. Numerical examples consider configurations of scattering objects, subject to the Neumann ‘sound hard’ boundary conditions, demonstrating that the approach is a suitable choice for both convex scatterers and also for multiple scattering objects that give rise to multiple reflections. Substantial improvements are observed, significantly reducing the number of degrees of freedom required to achieve a prescribed accuracy in the vicinity of a sharp corner
    corecore